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A B S T R A C T

The scientific progress in artificial intelligence and robotics has enabled precision viticulture to pursue
sustainability and improve the final yield. For instance, monitoring the canopy volume of each plant can
allow the correct ripening of the bunches. In this context, this paper proposes a novel approach for the
characterization of biomass volume using images acquired in a vineyard with the low-cost Azure Kinect RGB-D
camera. Semantic image segmentation is implemented using three encoder–decoder deep architectures (U-Net,
DeepLabV3+, and MANet) to produce accurate masks of the vine leaf structure. In a transfer learning approach,
a public dataset acquired with the Intel RealSense D435 depth camera is used to train the segmentation
networks. Then, a complete pipeline to estimate possible changes in biomass volume is presented. Experiments
are run to analyze the biomass removed during the trimming process of grapevine plants. The best segmentation
result is obtained by the U-Net architecture with ResNet50 backbone, showing an accuracy of 92.10%, although
the training and test sets consist of images acquired by different cameras. However, the DeepLabV3+ network
with ResNeXt50 backbone, which scores an accuracy of 90.25% on the test set, gives the best estimate of the
removed biomass, requiring the shortest time for training. These outcomes prove the potential capability of
this automatic approach for controlling leaf growth and ensuring sustainable viticulture practices.
1. Introduction

In this century, sustainability, food security, smart use of agricul-
tural resources, crop yield, and quality improvement are the basis of
new agricultural paradigms, which account for the spatial and temporal
variability of crop and soil characteristics within actual fields (Stafford,
2000). Precision viticulture (PV) is a subset of precision agriculture
(PA) and aligns with its core objectives (Arnó Satorra et al., 2009).
Both aim to manage crops effectively, enhance economic benefits, and
minimize environmental impact (Matese et al., 2015).

Viticultural areas are characterized by an irregular spatial distri-
bution that involves complex maintenance and control activities for
farmers. Automation applied to precision farming allows different cul-
tivation practices within different areas of the vineyard (Comba et al.,
2018; King et al., 2014; Bramley and Hamilton, 2004). Among these
practices, trimming is fundamental during the phenological phases.
It regulates vegetation volume to maintain microclimatic conditions
inside the canopy, such as penetration of light and air circulation, to
disfavor the development of diseases and allow the correct ripeness of
the bunches. Because of the importance of this operation, in this paper,
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we propose an approach for estimating the plant volume changes after
the trimming process.

In this context, the development of Artificial Intelligence (AI), smart
sensors, and robotics offers non-invasive approaches to assessing sev-
eral plant characteristics, such as canopy volume, plant height, leaf area
coverage, and biomass (Botta et al., 2022). Remote Sensing (RS) (Cister-
nas et al., 2020) offers rapid and comprehensive information about the
morphology, dimensions, and vitality of grapevines across entire vine-
yards (Hall et al., 2002; Oliver et al., 2013). The fundamental elements
of remote sensing are platforms and sensors. The leading platforms are
satellites, aerial (aircraft and unmanned aerial vehicles, UAVs), and
ground-based platforms (unmanned ground vehicles, UGVs) (Jafarbiglu
and Pourreza, 2022). The choice of a platform depends on the specific
application, as each of them has advantages and disadvantages.

Satellite platforms have several limitations due to their dependence
on meteorological conditions, high costs, and the difficulty in discern-
ing the composition of vineyards characterized by inter-row paths and
herbaceous vegetation (Borgogno-Mondino et al., 2018; Sishodia et al.,
2020; Matese and Filippo Di Gennaro, 2015). Low-altitude platforms,
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such as manned or unmanned aerial vehicles, provide high-resolution
images, making it easier to distinguish vines from weeds and other
objects. Manned aircraft guarantees a better spatial resolution, an
arbitrary frequency of observations, and real-time availability of raw
data, but are costly and inflexible in flight scheduling due to airspace
regulations (Matese et al., 2015). UAVs, though cheaper, can cover
smaller areas, but offer high-resolution imagery, helping to differen-
tiate canopy pixels and classify details within canopies (Jafarbiglu and
Pourreza, 2022).

The last type of platform is the ground-based one, which is also
called proximal due to the closer position of sensors, within a few
meters, to the target (e.g., soil, plant, crop, etc.) than in the other
platforms (Sishodia et al., 2020). The advantages over space and air-
borne remote sensing are portability, flexibility, and controllability.
These platforms can be mobile, if they carry out measurements while
moving or ‘‘on-the-go’’ being installed directly on machines, such as
tractors or agriculture robots, or they can be fixed if the measurements
are taken in a fixed position, e.g. by using tripods. Proximal sensing
is suitable for both small and large-scale monitoring, offering high-
resolution images without constraints like flight schedules and climatic
conditions (Andújar et al., 2019; Moreno and Andújar, 2023).

Each of the mentioned platforms can be equipped with sensors
of different types; typical sensors are optoelectronic, such as LiDAR
and RGB-D. (Pallottino et al., 2019; Vulpi et al., 2022). This type
of sensor can be passive or active about the energy source (Oliver
et al., 2013). Using a laser beam, LiDARs allow mapping the field to
perform tasks such as phenotyping (Lin, 2015); they also provide 3D
point cloud, but differences in the color and shapes of the canopy and
ambient light changes can produce outliers in their 3D models. RGB-
D cameras have been proposed as an alternative solution to recover
3D colored models of plants. Depth cameras can operate on Time-
of-Flight (ToF) or Stereo Vision (SV) principles. The ToF cameras
are more precise in case of challenging lighting conditions than SV
sensors, which are better in terms of 3D images (Moreno and Andújar,
2023). Due to their low cost and ease of use, the diffusion of RGB-
D cameras allowed digital imaging and computer vision development
using Machine Learning (ML) techniques, making proximal sensing
powerful in characterizing vine traits. The work in Mohimont et al.
(2022) discusses the application of ML techniques in viticulture which
mainly focus on the detection, counting and prediction of grape yield.
Several methods in image analysis use Convolutional Neural Networks
(CNN) for image processing that consist of developing segmentation,
shape recognition, and feature extraction algorithms starting from nat-
ural images. For example, in Palacios et al. (2020), an algorithm for
grapevine flower counting is developed to forecast crop yield. The
prompt detection of diseases can also increase the sustainability of
crops, as the use of pesticides can be dramatically reduced. In Kerkech
et al. (2020), an approach to segmenting UAV images is proposed to
map diseased areas and guarantee the healthy state of the plant by
continuous monitoring. Plant phenotyping is another critical aspect.
In Milella et al. (2019), RGB-D cameras are used to produce data,
which CNNs process for automating grapevine phenotyping. In this
way, canopy volume estimation and bunch counting can be effectively
approached. Further developments in Marani et al. (2021) propose an
automated segmentation of grape bunches in color images acquired
from an RGB-D camera mounted on an agricultural vehicle. One of
the main bottlenecks of deep learning is the need for large sets of
labeled data and powerful computing resources. The recent availability
of public datasets, manually labeled (Santos et al., 2020; Apostolidis
et al., 2022; Casado-García et al., 2023), can enable their use, even
for biomass characterization, which plays a central role in vineyard
management. A discussion point concerns the question that in literature
individual datasets are often relied upon for both the training and
testing phases, especially in the agricultural sector where datasets focus
on specific phenological phases of plants. In this context, it can be
very useful to develop a model capable of generalization, as proposed
2

Fig. 1. An agricultural machine trimming the grapevines in the Conte Spagnoletti Zeuli
vineyard (Italy) where the field experiments were done.

in Casado-García et al. (2023), in which an approach for bunch detec-
tion was proposed involving the use of different datasets, cameras and
grape varieties.

However, to the best of the authors’ knowledge, depth data captured
on the field and deep learning techniques have not been used for a
complete and detailed study of the vine plant canopy and the estimation
of volume changes in time. In fact, for example in Di Gennaro and
Matese (2020) the volume of vine biomass was evaluated through high-
resolution images acquired by UAV and point cloud analysis without
the application of DL techniques. On the contrary, in other contexts,
the study of the biomass volume was done. In Liu et al. (2021) RGB
and depth images were used to estimate the canopy growth of the
Toona sinensis plant. Another example is Qi et al. (2021) where deep
learning networks and point cloud models from UAV imagery are used
to segment and calculate the canopy volume of Citrus reticulate Blanco
cv. Shatangju trees, determining optimal methods for accurate volume
estimation. Although there are works on leaf volume combining deep
learning techniques and 3D imaging, a lack of studies emerges for
the characterization of the vine’s biomass also considering that the
acquisition part is often carried out using UAV platforms.

This work proposes a comprehensive approach for estimating the
volume of leaves removed after the trimming process using color and
depth information provided by an RGB-D camera to help farmers
monitor plant condition and the resulting expected production amount.
In detail, for the control of this process, the use of a low-cost system
based on a ground-based platform has been proposed, represented by
the RGB-D camera Azure Kinect product by Microsoft, which could be
integrated into a tractor that normally performs vineyard maintenance
operations. Semantic segmentation techniques and point cloud analysis
were used to extract the desired information.

The main proposed innovations are the following:

1. The implementation of semantic segmentation was done by
exploiting two different datasets for the training and testing
phases, respectively. The two datasets were acquired by different
cameras, namely the Intel RealSense D435 and the Microsoft
Azure Kinect, mounted on different setups, framing the ‘‘Negroa-
maro’’ and the ‘‘Nero di Troia’’ Vitis Vinifera cultivars. The
dataset acquired with the Microsoft Azure Kinect, considered
for the biomass volume evaluation after the trimming process,
consists of very limited data (36 images) that are insufficient for
training any methodologies but are enough for testing purposes.
Therefore, the transfer learning approach aims to overcome the
problem of scarcity of data, find a solution to the demand
for a large amount of labeled data needed for training neural
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Fig. 2. Color images and corresponding ground truth mask acquired with the Intel RealSense D435 camera (a) in July, when the grapes were small and green and there were
few leaves, (b) in September, when the grapes were red and there were many leaves, and (c) in October, when there were few leaves and no grapes. The legend shows the three
classes of interest.
networks, and try to develop a model that can generalize and be
applied in as many contexts as possible. In addition, the dataset
used in this paper is innovative compared to existing public
datasets, as it allows the exploitation of all the sensor’s multi-
modal data, a crucial factor for the present work. This approach
enables the comprehensive analysis of volumetric changes in
leaf mass, a dimension that remains unexplored when relying
only on RGB images typically found in prevalent public datasets.
As highlighted in Blekos et al. (2023), a substantial gap exists
in viticulture-related public datasets, wherein, as demonstrated
by Lu and Young (2020), the majority comprise RGB and labeled
images.

2. The multimodality of the sensor was exploited to correlate the
information extracted from the semantic segmentation with the
estimate of the volume information provided by the 3D point
clouds obtained from natural images in a real context. In particu-
lar, by comparing the 3D images corresponding to the segmented
area extracted with the deep learning techniques, it was possible
to have the value of the weight of the leaves removed from the
trimming process and to compare it with the real weight.

3. A registration procedure was used to superimpose the point
clouds and allow volume comparisons. In this way, since the pro-
posed approach has no constraints on the sensor’s pose with re-
spect to the plants, the proposed pipeline can allow a future cam-
era integration into standard tractors performing maintenance
operations.

Interesting results were obtained both from the semantic segmenta-
tion and from the analysis of the point clouds, thus highlighting how
combining these two techniques allows the automatic estimation of the
removed biomass and the control of the volume of the vine canopy to
guarantee correct ripening of the bunches.
3

The paper is organized as follows: Section 2 describes the datasets,
the deep neural networks for image semantic segmentation and the
techniques for point cloud processing; Section 3 presents the experi-
ments and the results of the processing; Section 4 proposes a discussion
of the results obtained in the study by addressing its limitations in
order to be able to offer explanations on the observed results and future
improvements; Section 5 reports final comments.

2. Materials and methods

The framework of this paper consists of combining image semantic
segmentation and point cloud analysis to estimate the leaf volume
removed during trimming (Fig. 1) using images acquired with the
Microsoft Azure Kinect camera. The next subsections detail the whole
framework, also presenting the on-field datasets.

2.1. Datasets

In this work, to detect the canopy of grapevine plants a semantic
segmentation approach was applied by using two different datasets:
RGB images of a public dataset acquired by the Intel RealSense D435
were used for training the models; RGB images acquired by the Mi-
crosoft Azure Kinect during on-field experiments were considered for
the testing phase. This transfer learning approach was partially based
on the work of Casado-García et al. (2023), where the experiments
were run by training and testing the models with the same dataset
and by evaluating the generalization capacity on different datasets. In
the proposed approach, the innovation is to exploit two completely
different datasets for the training and testing phases.

The following subsections describe these datasets, highlighting their
differences.
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2.1.1. Training dataset
A public dataset1 obtained with the Intel RealSense D435 depth

camera was used as the training set. In general, this camera provides
color, infrared and depth images; but in this case, only color ones were
used during training.

The images were acquired in a vineyard in San Donaci (Italy) where
the Vitis Vinifera, cultivar ‘‘Negroamaro’’, is grown as a grape variety.
The camera was tilted by 90◦ to have the data in portrait orientation
and was mounted on a moving robot that caught lateral views of the
row at a distance of 0.8 to 1 m covering a horizontal FoV between 0.9
and 1.2 m. In this way, every plant is framed in a single picture. The
dataset consists of 315 color images in PNG format with 1280 × 720-
pixel resolution, as the ones shown in Fig. 2, captured during different
phenological phases of the vineyard. This dataset had pre-labeled im-
ages that create a segmentation ground truth, shown in Fig. 2, of
three classes: canopy, bunches and background. The same dataset
was used in Casado-García et al. (2023) by selecting a larger part for
training and the remaining part for testing the networks. This work
aimed to demonstrate that a model constructed on only a type of data
could be used to evaluate different contexts. For this reason, the whole
dataset acquired with the RealSense was used during the training phase,
while for the testing a different dataset was considered. In detail,
the RealSense D435 dataset was randomly divided into the training
and validation sets, considering that 20% of the data was reserved for
validation and the remaining 80% was used for training. A specific
function, i.e. the Shuffle function (W3schools, 2023), was employed to
mix these two portions of the dataset at each epoch, preserving the
initial division while altering the data distribution within both subsets.
This approach aimed to prevent the model from learning the order of
the data and ultimately enhancing its ability to generalize.

2.1.2. Testing dataset
The testing dataset2 consisted of 36 images that were used to verify

the ability of the network to generalize and produce a good segmen-
tation even on different images from those used in the training phase.
The images were acquired on June 23rd 2022 in the Conte Spagnoletti
Zeuli vineyard in Andria (Italy), in which the Vitis Vinifera, cultivar
‘‘Nero di Troia’’ (red wine grape variety) is grown. The Microsoft Azure
Kinect camera was mounted horizontally on a tripod fixed at a variable
distance between 1.5 and 2 m to the row and positioned towards the
trunk of a single plant. At this distance, the horizontal FoV varies
between 2.3 and 3.1 m; thus, every image frames multiple plants of
the row. Between the acquired images, 18 were captured from the east
row and the other 18 from the west row in a time range between 8:29
and 8:43 in the morning (local time). These two parts of the dataset
were equally divided into 9 images referring to plants before trimming
and 9 to plants after trimming. As shown in Fig. 3(a), the acquisitions
of the east row were backlit and less precise than those obtained from
the west.

Specifically, the depth maps had smaller resolutions and narrower
FoV with respect to the color images, as shown in Table 1. However, the
built-in methods of the Azure Kinect Sensor SDK (v1.4.1) (Microsoft,
2022) allowed image transformation between color and depth geome-
try to map all pixels in the color reference to pixels of the depth map,
or, equivalently, to the vertex of the corresponding point cloud (see
Fig. 5).

The dataset includes the ground truth masks of the images needed
for the evaluation of the segmentation quality. These masks were
obtained by manual labeling considering three classes: leaves, bunches
and background. As shown in Fig. 6, each pixel belonging to leaves,
bunches and background was colored in green, blue and black, re-
spectively. Considering the approach outlined in Casado-García et al.

1 Open dataset available in Casado-García et al. (2023).
2 Open dataset available in ISP STIIMA (2023).
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Fig. 3. Color images acquired with Microsoft Azure Kinect RGB-D camera of (a) the
east and (b) west rows.

Table 1
Main parameters of the color and depth sensor of the Microsoft Kinect Azure camera.

Depth sensor Color sensor

Resolution (pixels) 640 × 576 2048 × 1536
FoV (H × V) 75◦ × 65◦ 90◦ × 74.3◦

(2023), it was decided to incorporate also the grape class despite the
primary goal of the work being the semantic segmentation of biomass
volume rather than individual plant component segmentation. This de-
cision was derived from experimental observations, which indicate that
the three classes did not significantly impact the results. In addition, it
allowed us to explore whether our proposed approach could effectively
generalize the semantic classification when considering a different
dataset acquired with a different sensor on a different cultivar.

At the end of the trimming process, the removed biomass was
collected and weighted after about 5 h (temperature of 29 ◦C - 31 ◦C,
humidity of 45.4%–51.5% and atmospheric pressure of 1012 hPa–1014
hPa). Specifically, the measured mass of the removed leaves from the
east and west rows was equal to 283 g and 244 g, respectively. This
information will be the ground truth for the next point cloud analyses.

2.2. Deep neural networks

Fig. 7 shows the block diagram containing the steps for process-
ing multi-modal data for semantic segmentation steps. In detail, the
color images were first processed to recognize the biomass using deep
learning segmentation architectures and mixed with the corresponding
depth maps to produce the biomass point clouds.
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Fig. 4. Color (a) and depth images (b) produced by the Microsoft Azure Kinect camera.

Several encoder–decoder neural networks for color image segmen-
tation were compared for biomass analysis. Convolutional Neural Net-
works (CNNs) have become popular for semantic segmentation tasks. In
these networks, the encoder, also known as the backbone, receives the
input image to generate down-sampled feature maps and is composed
of convolutional and max-pooling layers that gradually reduce the
spatial resolution of the feature maps while increasing their depth; the
decoder section generates a segmentation map by using upsampling
blocks and convolutional layers that gradually increase the spatial
resolution of the feature maps, restoring the size of the original image.
The used architectures, shown in Table 2, were selected to achieve
the best results in leaf segmentation, obtaining high accuracy in the
shortest time, as demonstrated in Casado-Garcıa et al. (2022). The U-
Net was the first network to propose an encoder–decoder architecture
to perform semantic segmentation in medical contexts (Ronneberger
et al., 2015). Its name derives from the U-shape assumed by the
network itself; the encoder uses a typical CNN architecture and the
decoder consists of up-convolutions and concatenations with features
from the encoder path. The DeepLabV3+ is a network built upon the
previous versions of the DeepLab architecture and incorporates atrous
convolutions (Chen et al., 2018), to improve its accuracy and efficiency.
Finally, the MANet (Multi-scale Attention Net) uses multiple attention
mechanisms that help the network to focus on important regions of
the input image and ignore irrelevant information (Li et al., 2021).
The backbone can be of different types; in this work, ResNet50 and
5

Fig. 5. Point cloud of the whole plant produced by the Microsoft Azure Kinect camera
from the data in Fig. 4.

Table 2
Segmentation architectures and backbones presented in this
work.

Segmentation
architecture

Backbone

U-Net ResNet50, ResNeXt50
DeepLabV3+ ResNet50, ResNeXt50
MANet ResNet50, ResNeXt50

ResNeXt50 were considered. The first is a CNN where the ‘‘Res’’ in
ResNet stands for ‘‘residual’’, which refers to the use of residual blocks
in the architecture, and the 50 indicates the number of layers (He et al.,
2016). Residual blocks can overcome the degradation problem due to
vanishing gradients of the backpropagating loss function, which does
not allow the network to learn. Residual blocks let the loss gradient
flow directly towards the input, thus improving the learning of the
model. The ResNeXt50 is a variant of the ResNet where the ‘‘X’’ stands
for ‘‘Next dimension’’ which indicates an additional dimension, called
cardinality, that refers to the size of the set of transformations, i.e. to
the number of independent paths in a residual block (Xie et al., 2017).

Any implementation of the proposed networks followed the concept
of transfer learning (Weiss et al., 2016), which involves using pre-
trained models that have already learned useful functions from a large
dataset. In the proposed approach, all the backbones were pre-trained
by the ImageNet dataset (Deng et al., 2009). In this way, these pre-
trained models are able to learn general image features that can be
used in various computer vision tasks, including plant part recognition.
The pre-trained networks were considered as a starting point to train
the network on the new dataset, i.e. the Training Dataset provided
by the RealSense D435, by making changes to the network weights.
This process of fine tuning helps specialize the neural network for the
new task, in this case the grapevine biomass recognition task, without
completely losing the knowledge learned from the pre-trained models.
The concept of transfer learning was also applied during the testing
phase as a different dataset was used to evaluate the performance of
the network. The use of a test dataset different from the training one
was chosen to evaluate the ability of the neural network to generalize
and see if it is able to recognize similar patterns even in data coming
from a different sensor.

The network training requires some operations on the dataset and
the selection of some parameters. First, data Augmentation (Negassi
et al., 2022) involved adding more data to the existing dataset by
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Fig. 6. (a) Input image acquired by the Azure Kinect camera and (b) corresponding image annotation with the three classes of interest. Color correspondence is shown in the
legend.
Fig. 7. Block diagram of the data processing for biomass segmentation.

applying different transformations to the images. The augmentation
was implemented using the Albumentations library (Buslaev et al.,
2020) in Python which allowed applying the flipping and transposition
operations with a probability of 50%, the rotation operation with a
probability of 40% and a rotation limit of 10 degrees, and the Grid
Distortion operation. This approach increased the actual cardinality of
the training dataset improving its variability for better generalization
capabilities.

Subsequently, a resize operation on the input images was performed
to change the original aspect ratio of the training images (9:16) and
maintain the correspondence with images produced by the Azure Kinect
(4:3).

Then, to avoid overfitting, a patience parameter was set; this param-
eter is related to the concept of Early stopping that allows suspending
training when the performance on the validation data set starts to
deteriorate (Prechelt, 2002). In this work, patience was set to 3, which
means that the training stops if the validation loss does not improve for
three consecutive epochs.

Further hyperparameters, such as the number of epochs, the batch
size and the learning rate, were also set (Bengio, 2012). One of the
most important is the learning rate as it decides how fast the network
weights are tuned to find the loss minimum. A small learning rate
makes the model converge slowly, while a large learning rate makes
the model diverge. The solution is to find the optimal compromise
for the learning rate related to the considered data. Using the Fastai
library, it is possible to perform a preliminary experiment to find a
reasonable learning rate for training the model (Gugger, 2018b). In
this work, different learning rate values were chosen using the 1-cycle
learning rate policy, where the learning rate was gradually increased to a
maximum and then reduced during training to improve both the speed
and accuracy of the training (Gugger, 2018a). Moreover, according to
6

Table 3
Training hyperparameters for all the segmentation networks.

Parameters Values

Patience 3
Epoch 20
Batch size 4
Learning rate (before unfreeze) 10−4 , 10−3

Learning rate (after unfreeze) 10−7

the transfer learning approach, two training phases were implemented:
in the first, only the last layers were trained starting with a high
learning rate (before unfreeze); in the second, the whole network fine-
tuned its weights with a lower learning rate (after unfreeze). All the
hyperparameters are reported in Table 3

The mean segmentation accuracy (MSA) was considered to evaluate
the training results. The MSA is computed as the average value of the
accuracy of each class.

Subsequently, after the training phase, at the end of the testing
phase the output segmentation masks were compared with ground truth
images using suitable evaluation metrics. In a One-vs-All approach,
given a class, 𝑇𝑃 , 𝑇𝑁 , 𝐹𝑃 , 𝐹𝑁 are the number of True Positive, True
Negative, False Positive and False Negative predictions of the class
against all the others, respectively. In this work, the following metrics
were considered (Grandini et al., 2020; Fränti and Mariescu-Istodor,
2023; Roy and Ameer, 2021; Csurka et al., 2013):

1. Accuracy : it measures the percentage of correctly classified pixels
in the entire image, regardless of class:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(1)

2. Mean Segmentation Recall (MSR): it is the average of the recall
values of each class, i.e. sensitivity in labeling pixels, computed
as:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2)

3. Intersection over Union score (IoU score): it follows the definition
of the Jaccard index, which calculates the ratio of the intersec-
tion between the predicted and ground truth images to their
union. Its formulation is given by:

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
(3)

In the proposed experiments, two IoU scores were used:

• Mean IoU score: it measures the average percentage of
correctly classified pixels across all classes in the image;
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Fig. 8. Block diagram of the point cloud comparison for estimating the removed
biomass after trimming.

• Weighted IoU score: it is the average IoU of all classes,
weighted by the number of pixels of the classes.

4. BF Score (Boundary F1 Score): it measures the F1 score of the
boundary pixels between the predicted and ground truth images.
For each image, the Mean BF Score is the average BF score of all
classes in that image.

2.3. Point cloud processing

Fig. 8 describes the point cloud processing steps carried out to
estimate the removed biomass, starting from the data acquired before
and after the trimming phases. A point cloud is a collection of data
points mapped in three dimensions (Bello et al., 2020) that provides a
detailed, three-dimensional representation of the crops. The point cloud
processing in Fig. 8 aims to find a match between the estimated volume
of the removed leaves and their actual mass (ground truth).

As a first step, the couples of point clouds of corresponding plants
before and after trimming were registered. This was an important step
to estimate the optimal rigid transformation between two point clouds
since each acquisition had its own pose. The ICP (Iterative Closest
Point) method proposed by Besl and Mckay in 1992 (Besl and McKay,
1992) is the most widely used algorithm for point cloud registration.
Starting from two point clouds (a template and a reference), pairs of
corresponding points are iteratively extracted. A rigid transformation
is applied to the template point cloud to reduce the distance between
the couples of points. The algorithm ends with an optimal transforma-
tion that minimizes the distance measurement between the two point
clouds.

The filtering operation was also crucial because point clouds pro-
duced by low-cost sensors suffer from noise sources and contain outliers
due to sensor limitations, ambient lighting, and target reflectance,
which produce artifacts in the scene. Outliers were removed from the
point cloud by clustering vertices with a k-nearest neighbor algorithm.
The average distance to the neighbors of all vertices was thus computed
and compared to an outlier threshold value. Vertices having average
distances above the specified threshold were removed from the point
cloud.

The final step in point cloud processing was voxelization. The 3D
space was converted into a voxel representation through a resampling
process, equivalent to the pixel discretization in 2D images (Xu et al.,
2021). Each voxel was set to an occupancy state if it enclosed a vertex
of the point cloud. In this way, the resulting space became ordered
and allowed the final comparison of the spatial distribution of biomass
volumes.
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Table 4
MSA results and time required in training all the segmentation architectures. The best
results are in bold.

Segmentation architecture MSA (%) Time (min)

U-Net ResNet50 92.55 50.42
ResNeXt50 92.03 40.68

DeepLabV3+ ResNet50 92.56 16.55
ResNeXt50 94.00 12.05

MANet ResNet50 91.02 59.50
ResNeXt50 94.40 113.13

3. Results

In the following, the results of image segmentation, both during the
training and test phases, and the point cloud processing are reported. It
is worth noticing that the training and testing phases of the proposed
neural networks were performed on different datasets obtained with
different sensors. Therefore the data processing procedures and the
parameter settings are described in detail.

In the next experiments, all the networks are trained using the
PyTorch (Paszke et al., 2019) and FastAI (Howard and Gugger, 2020)
libraries on a consumer workstation (Intel NUC 9 Pro Kit), equipped
with an Nvidia GeForce GTX 1660 SUPER GPU.

3.1. Training results

As stated in Section 2.1.1, the dataset of 315 images acquired by
the Intel RealSense D435 sensor was used for training.

The values in Table 4 were achieved using the Shuffle function in
order to mix the dataset at each epoch and prevent the model from
learning the order of the data. The MANet with ResNeXt50 backbone
performed the best training as it reached the highest value of MSA.
Table 4 also shows the time required for training each network. In this
case, the DeepLabV3+ with ResNeXt50 backbone achieved the shortest
time, with comparable MSA (94.00%) as the MANet with ResNeXt50
backbone.

The images in Fig. 9 compare the ground truth labels with the
predicted masks. The MANet network with ResNeXt50 backbone pro-
duced good results since it was able to well-segment both the plant
canopy and the grape bunches. On the contrary, the MANet network
with the ResNet50 backbone was the worst in bunch segmentation, thus
returning the lowest MSA value. However, all the networks produced
robust results in segmenting the canopy well, while having problems
identifying the bunches, which are often included in the leaf class.

3.2. Testing results

After the training phase, the networks were tested on the actual
dataset made of the Azure Kinect images to produce predictions.

For an initial evaluation of the results, Fig. 10 shows two sets of
segmentation results obtained by processing images of the west and
east vineyard rows. The masks predicted from the west row were more
precise than those from the east row. Specifically, in many images from
the east row, the networks were not able to identify the central part of
the plants due to the presence of sun rays. From these images, only
the DeepLabV3+ network with ResNet50 backbone made a discrete
prediction. On the contrary, all the networks provided good results in
segmenting the images of the west row. In particular, the best segmen-
tation was obtained by the U-Net with ResNet50 backbone, while the
predictions produced by MANet were the worst regardless of the back-
bone. Furthermore, the networks were not able to correctly segment the
grape bunches in both west and east images. This aspect was due to the
difference in the cultivars of the training and test datasets. Although the
plant canopies were comparable, the appearance of the grape bunches
had significant differences that led to misdetections during testing.
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Fig. 9. Predictions on a sample image of the training dataset. The target image is the reference ground truth.
Fig. 10. Predicted segmentation masks for test images of (a) the west and (b) the east rows, computed by the proposed segmentation architectures.
These qualitative results can be verified by quantitative metrics.
Table 5 and Table 6 report all the outcomes of the proposed networks
for the west and east rows, respectively. Considering the metrics from
the west row in Table 5, the results obtained with all the networks
are satisfactory since the segmentation masks are generated by train-
ing and testing the networks on images produced by two different
sensors, which introduced variability and made the segmentation task
more challenging. Specifically, the best network is the U-Net with the
ResNet50 backbone which reached an accuracy of 92.10%, an MSR of
92.21% and a mean IoU score of 85.09%. In all cases, the BF score
was the metric with the lowest values but, on the other hand, the
IoU presented good results. It suggests that the model was good at
accurately predicting the overall shape of the segmented regions, as
reflected by the high IoU, but it could not accurately delineate the
boundaries of those regions, as reflected by the low BF score. However,
a low Mean BF Score was not a significant problem since retrieving the
leaf boundaries is not crucial to this work, which aimed at segmenting
8

the leaf mass as a whole. In this regards, the high IoU score indicates
that the algorithm was performing well. With reference to the east row,
the network that made the best prediction was the DeepLabV3+ with
the ResNet50 backbone (Accuracy, MSR and IoU of 79.45%, 78.68%
and 65.00%, respectively) accordingly with the results in Fig. 10. In
this case, as expected, even the best accuracy was significantly lower
than that from the west row, because of the poor quality of the input
image due to direct sunlight.

3.3. Point clouds results

The point cloud analysis gives information about the biomass re-
moved during the trimming process. In this context, only the plant
leaves structure, extracted from both ground truth and segmentation
masks network-predicted, was considered (see Fig. 11). Both masks
were used to check if predictions were accurate enough to compute
the removed leaf volume, compared to the ground truth.
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Fig. 11. Leaf mass point clouds for (a) the east and (b) the west rows. Blue circles refer to the point clouds extracted from the ground truth masks, while orange circles refer to
the points computed from the predicted segmentation masks.
Table 5
Segmentation results for the images of the west row. The results in bold are the best.
egmentation architecture Accuracy MSR Mean IoU Weighted IoU Mean BF

(%) (%) Score (%) Score (%) Score (%)

U-Net ResNet50 92.10 92.21 85.09 85.41 73.98
ResNeXt50 89.08 88.37 79.73 80.29 69.64

DeepLabV3+ ResNet50 87.14 85.35 76.05 76.92 68.50
ResNeXt50 90.25 89.80 81.78 82.25 70.74

MANet ResNet50 90.61 90.14 82.37 82.83 73.0
ResNeXt50 88.90 87.75 79.26 79.91 73.35

Table 6
Segmentation results for the images of the east row. The results in bold are the best.
egmentation architecture Accuracy MSR Mean IoU Weighted IoU Mean BF

(%) (%) Score (%) Score (%) Score(%)

U-Net ResNet50 65.67 63.97 44.56 45.33 50.15
ResNeXt50 58.24 56.10 34.10 35.16 33.99

DeepLabV3+ ResNet50 79.45 78.68 65 65.28 57.30
ResNeXt50 58.51 56.38 34.46 35.51 40.34

MANet ResNet50 60.37 58.39 37.30 38.25 51.79
ResNeXt50 73.45 72.19 55.68 56.19 55.80

As a first step, it is necessary to compare the effects of the use of
segmentation predictions on the point clouds of the biomass. Fig. 11
shows a superposition of the same point clouds obtained considering
the ground truth masks (blue circles) and the corresponding predictions
(orange circles). In this case, considering the west or the east rows
produced different results. Specifically, although the point clouds of
the west row in Fig. 11(b) were almost perfectly overlapped, the
comparison of biomass point clouds from the east row in Fig. 11(a)
revealed a large void in the point cloud obtained from segmentation
predictions. This incorrect superposition is clearly due to the wrong
segmentation of the biomass, especially in the center, because of the
direct sunlight affecting the east row data.

After filtering the point clouds, the ICP algorithm was applied con-
sidering as ‘template’ and ‘reference’ the point clouds acquired before
and after trimming, respectively. It is important to notice that the ICP
algorithm was applied to the whole point clouds of the whole plant
scene, as provided directly by the Azure Kinect camera, including also
trunks, soil and artificial infrastructures, such as poles. In this way, the
ICP registration was more robust as fixed objects were considered in
contrast to the plant canopy which changed its shape because of the
trimming procedure.

Observing Fig. 12, the trunks and the poles, if any, were aligned,
but the leaf structure, especially at the edges, i.e. on the sides, was
not perfectly registered. This depends on the different points of view
of the camera across the acquisitions, that framed different areas of
the same plants. In addition, uncontrollable atmospheric agents, such
as the wind, caused intrinsic differences between the acquired images.
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Table 7
Comparison between mass, measured on field, and computed volumes
obtained using the ground truth segmentation masks for the east and
west rows.

East West

Removed mass (from
ground truth) [g]

283 244

Estimated volume
changes [m3]

0.457 0.409

On the other hand, the ICP algorithm performed well for both the west
and east rows, since the direct light of the east rows did not affect the
depth maps and, thus, the point clouds, unlike the color ones.

The transformation matrix from the ICP algorithm was used to
register the point clouds. As shown in Fig. 13, referring to a couple
of data from the west row, there was not a perfect overlap. This
alteration included all the previously mentioned sources (noise, implicit
alterations, leaves movements, etc.), but was mainly ascribable to the
trimming process: the removed leaves determined a difference between
the two point clouds. This was even more evident by comparing the
color images before (Fig. 14(a)) and after trimming (Fig. 14(b)), where
the reduction in the leaf mass in the red circles is also present in the
volume highlighted in Fig. 14.

After the transformation, the voxelization sampled the 3D space into
a grid cell with side lengths of 0.1 m. Fig. 15 shows an overlap of the
voxels enclosing vertices of the pre- and post-trimming point clouds,
except in those areas (in the red circle) where the leaves were trimmed.

Finally, a differential operation was carried out to highlight the
voxels of the pre-trimming point clouds that were not present in the
post-trimming ones, assuming that these elements correspond to the
removed leaves. At the step, further filtering was applied to eliminate
those resulting voxels at the highest depth, i.e. with high 𝑧 coordinates.
These detected differences should not be related to the trimming pro-
cedure since it can remove only the most superficial leaves, at lower 𝑧
coordinates. The result of this operation is shown in Fig. 16, where the
points marked in red correspond to the removed volumes, as seen in
Fig. 13.

The described processing was performed on all the point clouds in
the east and west rows. To prove the validity of the pipeline itself, the
first experiments were run considering the ground truth segmentation
maps, instead of the actual predictions.

Each detected voxel of alteration was associated with a volume of
10−3 m3. Since the measured mass of the removed leaves of the west
row was lower, the volume should also be smaller than that of the east
row. The hypothesis was confirmed by the results reported in Table 7.

To evaluate the consistency of the results, the density of the detected
removed biomass was computed from both the east and west rows
as the ratio between the on-field measured mass and the estimated
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Fig. 12. Comparison between the pre- and post-trimming point clouds before and after the application of the ICP algorithm, for (a) the west and (b) east row. The pre-trimming
point clouds are the ‘template’ and the post-trimming ones are the ‘reference’.
Fig. 13. Overlay of the pre- and post-trimming point clouds from the images in Fig. 14.
The red circle encloses the removed leaves.

volume. These two values should be ideally equal if the volumes are
perfectly estimated. The density values were equal to 619.3 g∕m3

and 596.6 g∕m3 for the east and west rows, respectively. The low
difference of 22.7 g∕m3 in the estimated density values was mainly due
to residual noise that may still be present despite the processing, as well
as misalignment between the point clouds captured before and after
trimming.
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Table 8
Comparison between mass, measured on field, and computed volumes obtained using
the predictions from the DeeplabV3+ with ResNet50 backbone for the east and west
rows.

East West

Removed mass (from
ground truth) [g]

283 244

Estimated volume
changes [m3]

0.388 0.431

Once the point cloud processing pipeline is verified, it is possible
to merge the results of the segmentation predictions made by the
proposed neural networks. The first evaluation was made considering
the DeeplabV3+ with ResNet50 backbone, which produced acceptable
results even for the east row. However, from the results in Table 8,
the estimated volume of the removed biomass of the west row was
higher than that of the east row, contrary to expectations. This result
was clearly biased by the wrong segmentation of the images of the
east rows, whose biomass was underestimated. On the contrary, the
volume obtained for the west row was comparable with that obtained
by using the ground truth masks, thus highlighting the quality of the
segmentation, even if the training was run on a dataset of different
specifications.

The results of the application of the whole pipeline on the images of
the west row are in Table 9. Considering the accuracy results, the U-Net
with ResNet50 backbone, which showed the best segmentation results,
was expected to estimate the closest volume changes in comparison
to that in Table 7, obtained from the ground truth masks and equal
to 0.409 m3. Similarly, the DeepLabV3+ with ResNet50 backbone was
expected to produce the least accurate results. On the contrary, Table 9



Computers and Electronics in Agriculture 218 (2024) 108712A. Bono et al.
Fig. 14. Comparison between color images (a) before and (b) after trimming. The red circle encloses the removed leaves.
Fig. 15. Voxelization of the pre- and post-trimming point clouds (blue and orange
cubes, respectively). The red circle encloses the area where the leaves were removed.

shows that the network that produced the closest result to 0.409 m3

was the DeepLabV3+ with ResNext50 backbone, while the worst was
the MANet with ResNeXt50 backbone.

Keeping the ResNeXt50 backbone, the same trend as the segmenta-
tion metrics was observed: the best architecture was the DeepLabV3+,
followed by U-Net and MANet. The results followed a different trend
when ResNet50 was used as the backbone. In this case, the best
performing network was the DeepLabV3+, which however scored the
worst accuracy value in Table 5.

A further comparison could be made by keeping the segmenta-
tion architectures and varying the backbone. Observing the accuracy
values in Table 5, the best backbone for the U-Net and the MANet
was the ResNet50, while the DeepLabV3+ performed better with the
ResNeXt50. The same trend can be observed considering the results
obtained for estimating the removed biomass volume.

4. Discussions

The primary objective of the current work is to monitor the trim-
ming process to analyze the canopy volume of vine plants. To our
knowledge, there is a lack of studies in this field. There are some works
in which the canopy of other plants has been analyzed, but the vol-
ume estimation in a vineyard was not considered. The methodologies
proposed in these studies do not combine RGB or three-dimensional
image analysis and often rely on data acquired by unmanned aerial
11
Fig. 16. Representation of the removed leaves (red marks) on the pre-trimmed point
cloud from two points of view; the red circle encloses the area where leaves were
removed.

vehicles (UAVs). In contrast, our study adopts a ground-based platform,
which allows the capture of more representative images, showing the
complex leaf structure of grapevine plants in more detail. In Section 3.1,
it was found that all the proposed deep neural networks demonstrated
a remarkable ability to segment the canopy accurately. During the
training phase, the outcomes obtained from these networks demon-
strated comparability in terms of Mean Segmentation Accuracy (MSA),
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Table 9
Volume and accuracy values obtained using the predicted segmentation masks produced
by the proposed networks for the west side. Values close to 0.409 m3 are the best.

Segmentation architecture Estimated volume [m3] Accuracy(%)

U-Net ResNet50 0.472 92.10
ResNeXt50 0.500 89.08

DeepLabV3+ ResNet50 0.431 87.14
ResNeXt50 0.421 90.25

MANet ResNet50 0.477 90.61
ResNeXt50 0.519 88.90

achieving values higher than 90%. The time required for each net-
work to converge and achieve the optimal segmentation result varied
significantly among the different networks. However, time differences
could not be considered particularly significant; since the training is
performed only once, investing a long time in this part of the work
does not pose any significant issues. Another aspect that emerged
during the training phase was the problem of accurately identifying the
grape bunches. Nevertheless, this was not crucial since the goal was to
segment the biomass volume semantically rather than performing an
instance segmentation of the individual components of the plants.

Also considering the testing results (Section 3.2), the networks could
not detect the grapes; as previously stated, this was irrelevant since
bunch pixels are labeled as leaves not altering the estimation of the
whole biomass volume. The canopy segmentation achieved by all the
networks was particularly satisfactory considering that the training and
testing phases involved images captured by two different cameras. This
introduction of variability between the camera sources increased the
complexity of the segmentation task. Despite this challenge, the results
obtained in both phases demonstrated agreement, emphasizing the effi-
cacy of the transfer learning approach. This approach, initially inspired
by the work of Casado-García et al. (2023), has further emphasized the
importance of the transfer learning procedure as it proved advantages
in overcoming the limited availability of data and reducing the labor-
intensive process of manually labeling many images. It makes the use
of deep learning methods less time- and effort-consuming.

In the last part of the work, the point clouds of the plant canopy
were analyzed to estimate potential volume changes resulting from the
trimming process. First of all the point clouds were not influenced by
the sunrays, as computed at short distances, following the principle of
ToF in the infrared spectrum. In this case, there may be other problems,
such as atmospheric agents (i.e., wind), that could compromise the
application of the ICP algorithm. In fact, further works will be aimed at
improving the registration of the point clouds by giving more emphasis
to the fixed structures of the scene, such as trunks, poles and soil,
even segmented by preliminary deep neural networks. This will also
enable the effective comparison of point clouds acquired at different
phenological phases.

Furthermore, the analysis of the results proved that the network
that achieved the best segmentation results did not necessarily provide
the most accurate estimate of the removed leaves. The DeepLabV3+
with both the ResNet50 and ResNeXt50 backbones provided the best
estimation of removed biomass volume, since these values are the
closest to the reference value of 0.409 m3, achieved with the ground
truth masks. This was in contrast with the accuracy of the segmentation
process, where the U-Net with ResNet50 showed the best results.
Despite U-Net’s superior overall segmentation capability, it struggled
to accurately identify areas of the canopy that were most affected
by the trimming operation, such as extended branches. Conversely,
the DeepLabV3+ network with ResNeXt50 improved performance in
evaluating the removed volume, indicating a greater ability to segment
the specific regions affected by the trimming process. These volumes
were much more significant in the proposed work, which aimed at
estimating the removed biomass instead of straight canopy segmenta-
tion. Probably, this is due to the U-Net architecture that consider the
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canopy as a whole, where every part had the same semantic weight,
i.e. significance. On the other hand, the atrous convolutions, used
by the DeepLabV3+, allows expanding the network’s field of view
without increasing the number of parameters, enabling the extraction
of information from a broader area of the input without enlarging the
size of the filters. Having a broader receptive field can better model
extended canopy parts, such as long branches, which are typically
subjected to the trimming process.

This discrepancy in the results emphasizes the significance of con-
sidering not only the overall quality of the segmentation but also the
network’s ability to identify the most relevant areas of interest for the
specific analysis. In this case, only after the accurate evaluation of all
the processing steps carried out on color images and point clouds is it
possible to select the best-performing network.

5. Conclusions

This paper presents a framework for evaluating the canopy volume
changes of vine plants after a trimming process, analyzing images
obtained during on-field experiments with a low-cost RGB-D camera,
namely the Microsoft Azure Kinect. The main findings of the proposed
paper were: to demonstrate that the transfer learning approach allows
the generalization of semantic segmentation on datasets different from
those used in the learning phase; to verify that the use of an initial
semantic segmentation of the canopy guarantees an effective estimation
of the plant volumes; to confirm that the point cloud registration
allows volume change evaluation after the trimming process and the
portability of the method on any mobile platform.

Several pre-trained deep neural networks were compared, trained
on 315 images of a publicly available dataset, and tested on 36 natural
images. The latter were acquired from two grapevine rows (from both
west and east sides) of a cultivar different from the training one and
under different sunlight conditions. In particular, the segmentation
networks (U-Net, DeepLabV3+ and MANet architectures, with ResNet
or ResNeXt backbone), pre-trained by the ImageNet dataset, were tuned
using images of Intel RealSense D435 dataset, to take advantage of ex-
isting manual annotation. Segmentation metrics on the test set proved
the network’s ability in model generalization, especially on the images
of the west row. In this case, the U-Net with ResNet backbone scored
92.10% and 85.09% in accuracy and IoU. Conversely, the presence of
direct sunlight on the images of the east row downed the quality of the
results.

The second part of the study analyzed the point clouds of the
plant canopy to estimate possible volume changes due to an actual
trimming process. A specific framework, including point cloud filtering,
registration and voxelization, was presented to compare, i.e. differen-
tiate, 3D models and estimate the removed biomass. The first analyses
used the ground truth segmentation masks as input to the point cloud
processing, demonstrating its effectiveness regardless of the quality of
the preliminary segmentation. The results showed a correct correlation
with the weights of the cut leaves for both rows, east and west. On the
other hand, the outcomes of the segmentation networks produced three
results: (i) the best agreement of volume estimation (0.421 m3) with the
expected ground truth (0.409 m3) was achieved by the DeepLabV3+
with a ResNext50 backbone, which was not the best network in seg-
mentation metrics. (ii) the DeepLabV3+ with a ResNext50 backbone
was the most efficient network in training, with the shortest training
time (about 12 min); (iii) the misclassification of the images of the east
row, due to direct sunlight, produced an underestimation of the volume
of the removed biomass. Future work will focus on further experiments
by acquiring larger datasets in challenging lighting conditions to avoid
the misclassifications that could have affected the actual performances.

In conclusion, this work demonstrated that multimodal RGB-D cam-
eras allow the analysis of the plant canopy. By mounting a low-cost
sensor on the equipment for routine vineyard maintenance, such as
tractors, farmers can have a tool for monitoring the growth of the
canopy over time, maintaining the crop yield and minimizing potential

damages that may affect the harvest.
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