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Abstract: The paper is related to a conjecture by Pegon, Santambrogio and Xia concerning the dimension
of the boundary of some sets which we are calling “irrigation balls”. We propose a notion of sub-balls and
sub-spheres of prescribed radius and we prove that, generically, the only possible Minkowski dimension of
sub-spheres is the one expected in the conjecture. At the same time, beside the scale transition properties
and the dimension estimates on some significant sets, we propose a third approach to study the fractal reg-
ularity which relies on lower oscillation estimates on the landscape function, which turns out to behave as
a Weierstrass-type function.
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1 Introduction
As nowadays is well known, the ramified structures which characterize river basins, blood vessels, leaves,
trees and so on may be derived directly from a variational principle without relying on assumptions based
on empirical observations (see [14, 22]). Indeed, if a cost functional is introduced which encourages joint
transportation, the ramified structure comes out as the result of a compromise between the convenience of
keeping together the fibers and the necessity of reaching a measure spread out on a large set. These recent
developments, known as branched transport or irrigation models, can be included in the literature on the
Monge transport problem, even if they are radically distinct from the approach proposed by Monge in [16].
Indeed, in the Monge–Kantorovitch model (see [10, 16]), the cost of the motion of a single particle is not
influenced by interactions with the remaining part. In the context of irrigation models, one is not so much
interested in knowing the final destination of a single particle (the so called “who goes where” problem)
as in obtaining some information about the shape of the set of the trajectories, knowing, in particular, if
particles move together giving rise to a river. The distinction is clearly reflected in the fact that V-shaped
trajectories, optimal for the Monge–Kantorovitch functional, become Y-shaped ones, i.e. branching paths,
for the irrigation functional. The branched transport has been introduced in [14, 22], where the existence of
minima in an appropriate context is also proved. Further results are contained in [1, 3, 4, 12, 13, 20].
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From the point of view of the regularity problem, one has two completely different issues: the regularity
of the curves which describe the branches out of the branching points, and the properties of the branching
structure (fractal regularity). An answer to the first question is given in [17], where the authors prove that the
derivative of the particles trajectories for an optimal irrigation pattern have a locally bounded variation (if
the irrigation measure is the Lebesgue measure restricted to a sufficiently regular set). The first result about
fractal regularity is the multiscale result given in [6, Theorem 6.17], in which the authors prove that, under
suitable assumptions andmodulo constants, the number of branches of length ε starting from a branch hav-
ing length ℓ is ℓε . An alternative way to approach the fractal regularity is the proof that some significant sets
connected to branched networks in the Euclidean spaceℝd have a fractal dimension.

This approach has led Pegon, Santambrogio and Xia to introduce in [18] the notion of unit (volume)
irrigation ball and to investigate the dimension of its boundary (irrigation sphere in the present paper).
They conjecture, see [18, Conjecture 4.3], that such a dimension should be d − β, where β = d(α − 1) + 1 is
a relevant constant in the irrigation problem, and they partially prove the assertion showing in [18, The-
orem 4.2] that, if 1 − 1

d < α ≤ 1, the upper Minkowski dimension of the boundary of the unit volume ball
is less than or equal to d − β. Unfortunately, this inequality still leaves open the possibility that the sphere
is a smooth surface of dimension d − 1 and the conjecture is supported in [18] essentially by numerical
computations.

The main aim of this paper is to supply more theoretical evidences by looking to some other significant
sets which have a fractal dimension.We shall also propose a third approach to the fractal regularity by estab-
lishing oscillation estimateswhich are closely related to the scale transition approach in [6] (indeed the main
result of this type is a consequence of [6, Theorem 6.17]) and to the approach in [18] because they are a fun-
damental tool for the dimension estimates. We shall recall the notion of what we call irrigation ball, we shall
discuss some of its geometrical aspects and we shall introduce a natural notion of sub-balls (with the cor-
responding spheres). We shall prove some estimates on the lower and upper Minkowski dimensions of the
spheres, which generically (both from a measure theoretic and from a topological point of view) hold true;
see Theorem 2.5 and Corollary 2.7, respectively. Such results guarantee that the irrigation sub-spheres do
not behave as regular sets, in the sense that, generically, the unique possible Minkowski dimension they
may have is d − β. In addiction, we prove that the graph of the landscape function associated to an irrigation
sphere (another significant set) has a Minkowski dimension equal to d + 1 − β.

The estimates on the landscape function oscillations have been a key tool to get the results and are, as
already said, a further description of fractal regularity.We actually prove that the landscape function behaves
as a Weierstrass-type function (see [9, 21]), well studied in the literature (see [2] and the references therein).
In this regard it is worth remarking that the landscape function related to an optimal irrigation pattern, under
the assumptionswhichwill be introduced in Section 3, represents a significant example of aWeierstrass-type
function which naturally arises in the study of branching structures and does not come from any artificial
construction.

The paper is organized as follows: the main results will be formulated at the end of Section 2, after we
recall the notion of irrigation ball introduced in [18], underline its geometrical aspects and propose a natu-
ral notion of concentric sub-ball of a given radius and related sphere. This preliminary part will give us the
necessary notions needed for the statements. Section 3 is devoted to study the oscillations of the landscape
function. In Section 4 we prove how the results obtained in the previous section allow to estimate the dimen-
sion of the level sets of a Hölder continuous function. Finally, in Section 5 we provide the proof of the main
results.

2 Irrigation Balls and Concentric Sub-balls
The reader is supposed to be familiar with the literature on irrigation models or branched transport (see
[1, 3, 4, 12–14, 20, 22]). Since the notation in the literature is not uniform, we shall list some of the symbols
and basic notions we shall mainly use in the following. The references to the papers in which the reader can
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find a more detailed explanation are not necessarily the place in which each notion has been introduced for
the first time:
∙ χ denotes any irrigation pattern; see [6, Definition 1.1].
∙ Branch of a pattern; see [7, Definition 6.2].
∙ Dχ is the flow zone and Dχ is the domain of the pattern; see [6, Definition 1.8].
∙ ⪯ is the flow ordering; see [6, Definition 2.6].
∙ ℓ(x, y) is the branch distance; see [6, Definition 2.9].
∙ ℓ(x) is the residual distance; see [6, Definition 2.3].
∙ Iα(χ) is the cost of the pattern; see [6, Definition 1.5] for i = 0.
∙ μχ is the irrigation measure; see [7, Definition 2.15].
∙ Optimal pattern is any irrigation pattern which minimizes Iα among the competitors with the same irri-

gation measure; see [7, Definition 4.1].
∙ Simple pattern is any irrigation pattern with no cycle; see [7, Definition 6.1].
∙ μ(x) is the mass flowing trough a point; see [6, Formula (1.1) (with i = 0) and Remark 1.12].
∙ Z is the (Santambrogio) landscape function introduced in [19]; see also [6, Definition 1.9].

For any Euclidean set E ⊂ ℝd, we shall denote by |E| its (outer) Lebesgue measure (in the following, the
reader can safely assume to work always with measurable sets and functions if he finds it more relaxing).
Moreover, we shall denote by dimM(E) and dimM(E) the lower and upper, respectively, Minkowski dimension
of the set E (see [15, Section 5.3]) and, when the two dimensions agree, we shall denote by dimM(E) the
Minkowski dimension of E. (The Minkowski dimension also has alternative names. It is sometimes called
box-counting, metric, fractal or capacity dimension. Finally, the notion of Minkowski dimension has been
extended to measures in [8, Definition 1.7]).

Given 1 − 1
d < α ≤ 1, we define as irrigation ball of unit volume and prescribed center x0 ∈ ℝ

d, a solution
of the minimization problem consisting in finding an irrigation pattern χ of minimum cost Iα(χ) among those
which have source S = x0 and irrigationmeasure μχ equal to the restriction of the Lebesguemeasure to amea-
surable set B such that |B| = 1. The existence of such a χ is proved in [18, Theorem 2.1], the uniqueness is
out of question if α < 1 because χ cannot be invariant under rotations around x0. Sometimes we shall use the
term irrigation ball in order to denote the set B (which is also not unique) when the context makes the use
not ambiguous.

When an irrigation unit volume ball χ is given, it defines a landscape function Z (see [5, 18, 19]). In [18,
Theorem 2.3] it is proved that Z takes a constant value Z∗ on ∂B, where

Z∗ := eα
α (

α + 1
d )

, with eα := Iα(χ).

We shall call Z∗ the radius of the unit volume irrigation ball and we shall consider Z as the radial distance
function from the center x0. The scaling law in [18, Lemma 2.2] shows that for any given constant V > 0 the
problem of minimizing Iα with the constraint |B| = V, i.e. of finding an irrigation ball of volume V, can be
solved by scaling χ by a factor λ = V1/d, so obtaining a new pattern χV such that

Iα(χV ) = λαd+1eα = Vα+ 1d eα (2.1)

and a new value of the corresponding landscape function on ∂B given by

R(V) = Vα+ 1d −1Z∗ = V
β
d Z∗. (2.2)

The last equality gives the radius of the irrigation ball in terms of the volume. Inverting such a function, we
find

V(R) = ( RZ∗ )
d
β , (2.3)

which gives the volume of an irrigation ball as a function of the radius R. In particular, we can compute the
measure bα of the unit ball (ball of radius 1) as

bα = (
1
Z∗ )

d
β = (

α
eα(α + 1

d )
)

d
β = (

αd
eα(αd + 1)

)
d
β , (2.4)
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which we prefer to use as a fundamental constant instead of eα for its more geometric meaning. So (2.2)
and (2.3) respectively become

R(V) = ( Vbα
)

β
d , (2.5)

V(R) = bαR
d
β .

We finally observe that the least irrigation cost for an irrigation ball of radius R is given by eα(R) = Iα(χV(R))
and can be computed by (2.1), (2.4) and (2.5) as

eα(R) = (V(R))α+
1
d eα

= (bαR
d
β )α+

1
d eα

=
α

b
β
d
α (α + 1

d )
(bαR

d
β )α+

1
d

=
α

α + 1
d
bα+

1−β
d

α R
αd+1
β

=
αd

αd + 1bαR
d
β +1

=
αd

αd + 1RV(R),

which shows that the mean value of the landscape function on the ball B is obtained by multiplying the
radius R by αd

αd+1 . One could be tempted to define the irrigation ball by fixing a radius, intended as an upper
bound on the landscape function, and maximizing the volume, but this choice would not lead to an optimal
pattern. Indeed, adding a useless length to the fibers which end at a small landscape level would help to keep
the maximum level low. So the definition in [18] looks to be the most reasonable one.

The above geometrical setting widely motivates the following definition.

Definition 2.1. Let x0 ∈ ℝd and R > 0 and let B be an irrigation ball centered in x0 and having radius R. For
any 0 ≤ ρ ≤ R the sets

Bρ := {x ∈ B | Z(x) < ρ},

Bρ := {x ∈ B | Z(x) ≤ ρ},
Sρ := {x ∈ B | Z(x) = ρ}

will be respectively called (concentric) open, closed sub-ball and sub-sphere ofB of radius ρ.

It is worth explicitly remarking that, for α = 1, the branched cost functional reduces to the usual Monge–
Kantorovitch one, and so the notion of balls, concentric sub-balls and sub-spheres reduces to the usual one
while the landscape function is nothing else than the Euclidean distance from the center (the source). Of
course, in such a case, [18, Conjecture 4.3] is trivially true. On the contrary, when α < 1, sub-balls are not
irrigation balls of lower radius. We shall see soon that, for ρ = R, we haveBρ = Bmodulo a negligible set. We
shall introduce functions defined on the interval [0, R] by setting for all ρ ∈ [0, R],

m(ρ) := |Bρ| and (temporarily) m(ρ) := |Bρ|. (2.6)

The functionsm andm are increasing,m is lower semicontinuous (left continuous) andm is upper semicon-
tinuous (right continuous). In Section 5 we shall prove the following statements.

Proposition 2.2. For any ρ ∈ [0, R] we have |Sρ| = 0.

Corollary 2.3. For any ρ ∈ [0, R] we have m(ρ) = m(ρ) (so we will not use m anymore) and m is a continuous
function.

Proposition 2.4. For any ρ ∈ [0, R] we have Sρ = ∂Bρ.
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We are now in a position to state the main results in the paper in which we shall implicitly assume that an
irrigation ballB of radius R is given and we shall use the notation introduced above.

Theorem 2.5. For a.e. ρ ∈ ]0, R],
dimM(Sρ) ≤ d − β.

Theorem 2.6. There exists a dense Gδ-set G ⊂ [0, R] such that for all ρ ∈ G,

dimM(Sρ) ≤ d − β ≤ dimM(Sρ).

Corollary 2.7. If ρ ∈ G as in Theorem 2.6, one of the two following alternatives holds:
∙ dimM(Sρ) < dimM(Sρ) (i.e. the irrigation sphere Sρ has not a Minkowski dimension).
∙ dimM(Sρ) = d − β.

Theorem 2.8. The graph of the landscape function has a Minkowski dimension equal to d − β + 1.

3 Lower Oscillation Estimates on the Landscape Function
Definition 3.1. Let A ⊂ ℝd and let f : A → ℝ be a function. We call the quantity

ωB(f) := sup
J⊂f(B)

J interval

|J|

the connected oscillation of f on B ⊂ A.

Note that ωB(f) ≤ oscB f := supB f − infB f for any B ⊂ A and the equality holds if f is continuous and B is
a connected set. Note that in this section and in the next one β will denote a generic exponent in [0, 1] (and
we do not specify this every time), while in Proposition 3.9 (and related formulas) and in the last section, in
which we shall go back to the irrigation problem, β will be taken as 1 + d(α − 1) as specified in Section 1.

Definition 3.2. Let A ⊂ ℝd be given. We say that a function f : A → ℝ is Hölder continuous with exponent β
if there exists CH > 0 such that

|f(x) − f(y)| ≤ CH |x − y|β (HC)

for every x, y ∈ A. We say that f satisfies the lower Hölder condition if there exists a constant CL > 0 such that
for every r > 0 the connected oscillation of f on (the trace on A of) every ball Br of radius r centered in a point
of A satisfies

ωBr (f) ≥ CLrβ . (LHC)

Note that if A is a convex set and f is a continuous function, we get the usual definition of lower Hölder
condition given in the literature on Weierstrass-type functions (defined on intervals). Note also that condi-
tion (LHC) with exponent β < 1 implies nondifferentiability (i.e. nonexistence of a finite derivative) of the
function at every point. We give a local version of the previous definitions.

Definition 3.3. Let A ⊂ ℝd be given. We say that a function f : A → ℝ is Hölder continuous at a low scale
with exponent β > 0 if there exists a constant R > 0 such that (HC) holds true for every x, y ∈ A such that
|x − y| ≤ R. Analogously, we say that f satisfies the lower Hölder condition at a low scalewith exponent β > 0
if there exists a constant R > 0 such that (LHC) holds true for (the trace on A of) every ball Bwith radius r ≤ R
centered in a point of A.

Sometimes we shall emphasize the constant R, which can of course be changed by varying the con-
stants CH and CL, by writing that (HC) or (LHC) is satisfied, with a given constant, at the scale R.

Hölder continuous functions can easily be extended to larger sets. The result is probably better known for
Lipschitz continuous functions, one just has to observe that Hölder continuity is the Lipschitz continuity
with respect to the metric d(x, y) = |x − y|β. A slightly less simple variant, which we shall use to avoid a use-
less loss of generality, allows to extend a Hölder continuous function at a low scale defined on a set A to
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a neighborhood Ns(A) for a suitable s > 0 (depending on the scale R), where, in correspondence to any s > 0
and X ⊂ ℝd, we denote by

Ns(X) := {x ∈ ℝd | d(x, X) < s}

the s-neighborhood of the set X.
Let A ⊂ ℝd and let f : A → ℝ be a function which satisfies (HC) at a low scale R. For all x ∈ ℝd we set

φ(x) := inf
z∈A
|x−z|< 23 R

(f(z) + 3β

2β − 1
CH |x − z|β). (3.1)

Lemma 3.4. If z1, z2 ∈ A and x ∈ ℝd are such that

|z1 − x| ≤
1
2 |z2 − x| <

1
3R, (3.2)

then
f(z1) +

3βCH
2β − 1
|z1 − x| ≤ f(z2) +

3βCH
2β − 1
|z2 − x|.

Proof. We can assume without any restriction that x = 0, and so from (3.2) we deduce |z1 − z2| ≤ 3
2 |z2| ≤ R.

Moreover
|z2|β − |z1|β ≥ (1 − 2−β)|z2|β ≥ (1 − 2−β)(

2
3 |z1 − z2|)

β
=
2β − 1
3β
|z1 − z2|β .

So, by (HC), we get f(z1) − f(z2) ≤ CH |z1 − z2|β ≤ 3βCH
2β−1 (|z2|

β − |z1|β).

Corollary 3.5. For any 0 < s < R
3 , if x ∈ Ns(A), then

φ(x) = inf
z∈A
|x−z|<2s

(f(z) + 3βCH
2β − 1
|x − z|β). (3.3)

Corollary 3.6. The function φ is an extension of f , i.e. φ|A = f .

Proposition 3.7. The restriction of the function φ to the set NR/6(A) is Hölder continuous at scale
R
3 with a con-

stant 3βCH
2β−1 .

Proof. Set s = R
6 and fix x1, x2 ∈ Ns(A) such that |x1 − x2| ≤ R

3 . Then, for all z ∈ A such that |z − x1| < 2s, we
have |z − x2| ≤ 2s + R

3 <
2
3R, and so, by (3.1),

φ(x2) − (f(z) +
3βCH
2β − 1
|x1 − z|β) ≤ f(z) +

3βCH
2β − 1
|x2 − z|β − (f(z) +

3βCH
2β − 1
|x1 − z|β) ≤

3βCH
2β − 1
|x1 − x2|β .

Then, by taking the supremum with respect to z and by applying (3.3), we deduce

φ(x2) − φ(x1) ≤
3βCH
2β − 1
|x1 − x2|β .

We also recall some definitions concerning the regularity of a measure μ.

Definition 3.8. A measure μ is Ahlfors regular from below in dimension d if there exists a constant cA > 0
such that

μ(B(x, r)) ≥ cArd for all r ∈ [0, 1], x ∈ supp(μ), (LAR)

while μ is Ahlfors regular from above in dimension d if there exists a constant CA > 0 such that

μ(B(x, r)) ≤ CArd for all r > 0. (UAR)

We shall say that μ is Ahlfors regular (in dimension d) if it is Ahlfors regular both from above and below.
Finally, we shall say that μ is inner lower (resp. upper) Ahlfors regular on a set A ⊂ ℝd if (LAR) (resp. (UAR))
holds on balls contained in A.
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In what follows we shall take a set 0 ̸= B ⊂ Dχ which satisfies the following conditions:

for all x, y ∈ Dχ such that y ⪯ x : if x ∈ B, then y ∈ B, (A1)

which states that the set B is backward-stable with respect to the flow induced by the pattern χ,

μχ is (UAR) and inner (LAR) on B, (A2)
for all x, y ∈ Dχ ∩ B such that y ⪯ x : if dist(x, ∂B) ≤ ℓ(y, x), then Z(y) + CB(ℓ(y, x))β ≤ Z(x), (A3)

inf
∂B

Z ≥ CZ(μχ(ℝd))
β
d , (A4)

where CB and CZ are given positive constants and μχ(ℝd) = μ(x0) represents the total mass of the irrigation
measure, i.e. the mass in the source. The main aim of this section is the proof of the following statement.

Proposition 3.9. Let Z satisfy (HC) with β = 1 + d(α − 1) on a set 0 ̸= B ⊂ Dχ which satisfies conditions (A1),
(A2), (A3) and (A4). Then Z satisfies (LHC) with the same value of β at a scale R and with a constant CL which
depends on α, the dimension d, the global mass μχ(ℝd) and the constants CH , cA, CA, CB and CZ respectively
appearing in (HC), (LAR), (UAR), (A3) and (A4).

In the following, we shall assume that such values are given, so that the expression universal constant will
be intended as a constant which only depends on the above quantities.

We recall that the variation of the landscape function between two points x and y ∈ Dχ which are com-
parable by the flow order ⪯ is obtained by the following relation:

Z(x) − Z(y) =
x

∫
y

(μ(z))α−1dH1(z) for all y ⪯ x, (3.4)

where μ(z) denotes the mass flowing in the point z. Proposition 3.9 is a consequence of the fractal regularity
result [6, Theorem 6.17], whose application is not straightforward just because we are only assuming the
inner version of (LAR) instead of the global one. Note that the constant ε0 appearing in that statement is
quantified in the proof and it can be written as

ε0 :=
cα
2 (

CA
cA

2d)
α−2
ℓ = CTℓ,

where cA and CA are as above and cα = α(1−α)
2 . So CT is a scale transition universal constant and ℓ represents

the length of the main branch. The proof shows that the role of condition (LAR) consists in an estimate from
below on the measure of a tubular neighborhood of a branch Γ. Of course the inner version of (LAR) works
in the same way when we assume, as we shall do, that such a neighborhood is contained in B. In [6], (LAR)
is assumed globally, but, of course, all the estimates which are quantified in terms of constants which do
not involve cA but only depend on the other constants (in particular CH and CA) can be used without any
restriction in this setting. Finally, we warn the reader that some estimates in [6] seem to explicitly depend
on cA while they actually depend on CH . Indeed, the Hölder continuity of Z is usually derived from (LAR)
(see [5, Theorem 6.2]), while we are assuming it directly in the statement of Proposition 3.9.

Proof of Proposition 3.9. Set C1 := C−1T C1/dA > 0, R = C
−1
1 (μχ(ℝd))1/d and fix 0 < r ≤ R and x ∈ B. We shall ini-

tially assume that
μ(y) ≤ (C1r)d for all y ⪯ x such that ℓ(y, x) < r. (3.5)

In particular, by our choice of R, we have ℓ(x0, x) > r. Then, starting from x, we can proceed backward along
the flow, toward the source x0, and find y ⪯ x such that ℓ(y, x) = r. Then, by applying (3.4) and (3.5), we get
that Z(x) − Z(y) ≥ Cβ−11 rβ and we can conclude the proof easily. On the other hand, (3.5) does not hold when

there exists y ⪯ x and ℓ(y, x) < r such that μ(y) > (C1r)d . (3.6)

Then set rT := C−1T r. As a consequence, ℓ(y) > rT (indeed, otherwise condition (A2) would imply

μ(y) ≤ μχ(Bℓ(y)(y)) ≤ CA(ℓ(y))d ≤ CA(rT)d = (C1r)d ,
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in contradiction to (3.6)). Then, by applying [6, Lemma 2.17], we deduce the existence of a branch Γ starting
from y having length rT . Let

Nr(Γ) := {z ∈ ℝd | dist(z, Γ) < r}

be the tubular neighborhood of Γ of radius r. We shall assume that Nr(Γ) ⊂ B, in such a way to only use the
inner version of (LAR) in order to estimate μχ(Nr(Γ)). Then we can argue as in [6, Theorem 6.17], getting the
existence of a branch Γ̃, starting from a point of Γ and with a length ℓ̃ such that r ≤ ℓ̃ ≤ Wr, where W is the
“scale window” universal constant introduced in [6]. So we can deduce, by applying as usual (UAR), that
μ(z) ≤ CA(Wr)d for all z ∈ Γ̃. Then, by taking two points x1 ⪯ x2 ∈ Γ̃ such that ℓ(x1, x2) ≥ r, by applying (3.4),
we obtain that ωΓ̃(Z) ≥ C

α−1
A Wβ−1rβ. For the arbitrariness of r we can conclude that (LHC) holds.

If our extra assumption in this proof is false, we can deduce that the ball B0 centered in x with radius
(2 + C−1T )r is not contained in B. So, for all ε > 0 there exists a point xε ∈ Dχ ∩ B0 such that dist(xε , ∂B) < ε.
Then, starting from xε, if it is possible, we proceed backward along the flow of a distance r up to reach a
point yε belonging to the ball B1 centered in x with radius (3 + C−1T )r. Since by construction ℓ(xε , yε) = r,
by (A3) we get that ωB1 (Z) ≥ Z(xε) − Z(yε) ≥ CBrβ, so (LHC) holds (under a suitable choice of CL). Finally,
note that we cannot reach yε only when, during the backward motion, we find the source x0, and so, since
dist(xε , ∂B) < ε and Z(x0) = 0, we get, by (HC) and (A4) and by our choice of R, that

ωB1 (Z) ≥ Z(xε) ≥ inf∂B
Z − CHεβ ≥ CZC

β
1R

β
− CHεβ .

So, for ε small, we see that (LHC) holds in every case (under a suitable choice of CL).

Proposition 3.10. Condition (A3) follows from the following variant:

there exists C󸀠B > 0 such that for all x ∈ B ∩ Dχ we have ℓ(x) ≤ C󸀠B dist(x, ∂B). (A3󸀠)

Proof. Fix y ⪯ x ∈ B such that dist(x, ∂B) ≤ ℓ(y, x) =: ℓ. Then for all y ⪯ z ⪯ x we have that dist(z, ∂B) ≤ 2ℓ,
so by combining this last inequality with (A3󸀠), we deduce ℓ(z) ≤ 2C󸀠Bℓ. Since μχ is (UAR), we deduce that

μ(z) ≤ μχ(B2C󸀠
Bℓ(z)) ≤ CA(2C

󸀠
Bℓ)

d .

Therefore, by (3.4), since d(α − 1) = β − 1, condition (A3) follows with CB = Cα−1A (2C
󸀠
B)

β−1.

We conclude this section by giving an estimate on themargin of growth of the landscape functionwith respect
to the residual distance.

Lemma 3.11. If Z satisfies (HC) and μχ satisfies (UAR) globally, then, for a suitable constant CM > 0,

for all x ∈ Dχ there exists z ⪰ x such that Z(z) − Z(x) ≥ CMℓ(x)β .

Proof. Fix x ∈ Dχ. Then, by applying [6, Lemma 2.17] (which, as already pointed out, can be applied thanks
to the Hölder continuity of Z), for every ε > 0 there exists yε ⪰ x such that ℓ(x, yε) = ℓ(x) − ε. By (3.4) and
(UAR) we get

Z(yε) − Z(x) =
yε

∫
x

(μ(z))α−1dH1(z) ≥ Cα−1A ℓ(x)
β−1ℓ(x, yε).

Then the thesis follows by taking CM < Cα−1A and ε small enough.

4 Dimension Estimates on Level Sets
The main results of this paper will follow from two estimates respectively derived from properties (HC)
and (LHC) at a low scale.

Fixing a function f : A → ℝ, for any a ≤ b ∈ ℝ we set

Lba := {x ∈ A | a ≤ f(x) ≤ b}

and Lc = Lcc when a = b = c ∈ ℝ to denote a level set of the function f .
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Lemma 4.1. Let A ⊂ ℝd and let f : A → ℝ be a function which satisfies (HC) at scale R with exponent β. Then,
for any a < b ∈ ℝ and for any

0 < δ < CH
2β−1(2β − 1)

Rβ ,

setting

h = ((2
β − 1)δ
3β2CH

)
1
β ,

we have that, for any large k ∈ ℕ, if (ci)1≤i≤k ⊂ [a + δ
2 , b −

δ
2 ] is any family of levels such that

|ci − cj| ≥ δ for all i ̸= j, (4.1)

then
k
∑
i=1
|Nh(Lci )| ≤ |Nh(Lba)|. (4.2)

Proof. Set Ni := Nh(Lci ) for all i. We shall prove the thesis by showing that

Ni ∩ A ⊂ Lba for all i ∈ {1, . . . , k}, (4.3)

and
Ni ∩ Nj = 0 for all i, j ∈ {1, . . . , k}, i ̸= j. (4.4)

By fixing i and x ∈ Ni ∩ A, there exists some xi ∈ Lci such that |x − xi| < h < R. Then, by (HC), we deduce that

|f(x) − ci| ≤ CH |x − xi|β <
δ
2(

2β − 1
3β
) <

δ
2 .

So, since ci ∈ [a + δ
2 , b −

δ
2 ], we deduce that x ∈ L

b
a and, by the arbitrariness of x, we deduce (4.3). As proved

in Proposition 3.7, the restriction of f to the set Lba can be extended to Nh(Lba) if h is small enough (i.e. k is
large enough) in such a way to remain Hölder continuous at scale R

3 with a constant 3β
2β−1CH . So, by identify-

ing f with its extension, we can prove (4.4) by showing that f(Ni) ∩ f(Nj) = 0 for i ̸= j. If, by contradiction,
f(Ni) ∩ f(Nj) ̸= 0 for some i ̸= j, we get the existence of xi ∈ Ni and xj ∈ Nj such that f(xi) = f(xj) and the
existence of xi ∈ Lci and xj ∈ Lcj such that

max(|xi − xi|, |xj − xj|) < h <
R
6 .

Then, by Hölder continuity, max(|f(xi) − ci|, |f(xj) − cj|) < CHhβ ≤ δ
2 . Then, since f(xi) = f(xj), by the triangu-

lar inequality, we get a contradiction to (4.1).

A corresponding statement which gives the opposite estimate is the following lemma.

Lemma 4.2. Let A ⊂ ℝd and let f : A → ℝ be a function which satisfies (LHC) at scale R with exponent β. Then,
for any a < b ∈ ℝ and for any 0 < δ < CLR

β, setting h = ( δ
2CL )

1/β, we have that for any k ∈ ℕ, if (ci)1≤i≤k is
a δ

2 -net of [a, b], then
k
∑
i=1
|Nh(Lci )| ≥ |Lba|. (4.5)

Proof. SetNi := Nh(Lci ) for all i. The thesis follows since, by construction, (Ni)1≤i≤k is a coveringof Lba. Indeed,
fixing x ∈ Lba, since by assumption h < R, and setting B = B(x, h), by (LHC) we have that ωB(f) ≥ CLhβ = δ

2 ,
and so f(B(x, h) ∩ A) must contain an interval whose length is at least δ

2 . Then, since (ci)1≤i≤k is a
δ
2 -net

of [a, b], there exists y ∈ B such that f(y) = ci for some i ∈ {1, . . . , k}. Then, since |x − y| < h, we deduce that
x ∈ Ni.

The two following propositions are easy consequences of the above lemmas.

Proposition 4.3. Let A ⊂ ℝd and let f : A → ℝ be a function which satisfies (HC) at scale R with exponent β.
Let h > 0, γ < β and a < b ∈ ℝ such that |Nh(L

b
a)| < +∞. Then there exist an open set V ⊂ [a, b] and a positive

constant h < h such that
|Nh(Lc)|

hγ
≤ 1 for all c ∈ V. (4.6)
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Proof. Fix k ∈ ℕ, k ≥ 1 and set δ = b−a
2k . We can split the interval [a, b] into 2k + 1 sub-intervals Vi ⊂ [a, b]

such that the first and last interval V1 and V2k+1 have length |V1| = |V2k+1| = δ
2 and the remaining 2k − 1have

length δ. Setting

h = ((2
β − 1)δ
3β2CH

)
1
β ,

we claim that for every k large enough there exists ı ∈ {1, . . . , k} such that

|Nh(Lc)| ≤
|Nh(Lba)|

k
for all c ∈ V2ı . (4.7)

Indeed, on the contrary, for all i ∈ {1, . . . , k} would exist ci ∈ V2i such that |Nh(Lci )| > |Nh(Lba)|/k, i.e. there
would exist a finite family of levels (ci)1≤i≤k which, by construction, is contained in [a + δ

2 , b −
δ
2 ] and satis-

fies (4.1). Therefore,∑ki=1 |Nh(Lci )| > |Nh(Lba)|, but since, for k large enough,

δ = b − a2k <
CH

2β−1(2β − 1)
Rβ

and Lemma 4.1 applies, we get a contradiction to (4.2).
So we take V = V2ı as in (4.7). For all c ∈ V,

|Nh(Lc)| ≤
|Nh(Lba)|

k
≤

4CH
b − a

3β

2β − 1
hβ|Nh(Lba)| =

4CH
b − a

3β

2β − 1
hβ−γhγ|Nh(Lba)|,

and so (4.6) follows since the constant 4CH
b−a

3β
2β−1h

β−γ|Nh(Lba)| is less than 1 (since β > γ and h is small) when k
is large enough.

Proposition 4.4. Let A ⊂ ℝd and let f : A → ℝ be a function which satisfies (LHC) at scale R with exponent
β ∈ ]0, 1]. Let h > 0, γ < β and a < b ∈ ℝ such that |Lba| > 0. Then there exist an open set V ⊂ [a, b] and a pos-
itive constant h < h such that

|Nh(Lc)|
hγ
≥ 1 for all c ∈ V. (4.8)

Proof. Fix k ∈ ℕ, k ≥ 1 and set δ = 3(b−a)
k . We can split the interval [a, b] into 2k + 1 sub-intervals Vi ⊂ [a, b]

such that the first and last interval V1 and V2k+1 have length |V1| = |V2k+1| = δ
12 and the remaining 2k − 1

have length δ
6 . Setting

h = ( δ
2CL
)

1
β ,

we claim that for every k large enough there exists ı ∈ {1, . . . , k} such that

|Nh(Lc)| ≥
|Lba|
k

for all c ∈ V2ı . (4.9)

Indeed, on the contrary, for all i ∈ {1, . . . , k} would exist ci ∈ V2i such that |Nh(Lci )| ≤ |Lba|/k, i.e. there
would exist a finite family of levels (ci)1≤i≤k which, by construction, is a δ

2 -net of [a, b] and satisfies
∑ki=1 |Nh(Lci )| ≤ |Lba|. Since, for k large enough,

δ = 3(b − a)
k
< CLR

β ,

and Lemma 4.2 applies, we get a contradiction to (4.5).
So we take V = V2ı as in (4.9). For all c ∈ V,

|Nh(Lc)| ≥
2CL

3(b − a)h
β|Lba| =

2CL
3(b − a)h

β−γhγ|Lba|,

and so (4.8) follows since the constant 2CL
3(b−a)h

β−γ|Lba| is greater than 1 (since β < γ and h is small) when k is
large enough.

Given a measurable set A ⊂ ℝd and a real-valued function f : A → ℝ, we define F : A × ℝ → ℝ by setting
F(x, y) := f(x) − y for all x ∈ A and y ∈ ℝ. Of course we have that the graph of f is the zero level set of the



G. Devillanova and S. Solimini, Irrigation Balls | 65

function F. We point out that if f satisfies (LHC) (at a low scale), so does F with the same constant CL and the
same scale R. On the other hand, if f is (HC), then F is only (HC) (with the same exponent β) at a low scale for
any R > 0 with a different constant C̃H . Finally, note that, if f is measurable, the level sets of the function F
can easily be estimated as

|Lba| = (b − a)|A| for all a < b ∈ ℝ. (4.10)

For a general f just one of the two inequalities holds and only the lower bound to |Lba| given by (4.10) can be
applied.

Theorem 4.5. Let A ⊂ ℝd be a measurable set such that |Ns(A)| < +∞ for some s > 0. Let f : A → ℝ be Hölder
continuous with exponent β. Then

dimM(graph f) ≤ d + 1 − β. (4.11)

Proof. Fix k ∈ ℕ suitably large and let {−1 < c1 < ⋅ ⋅ ⋅ < c2k+1 < 1} be a partition of the interval [−1, 1] such
that c1 + 1 = 1 − c2k+1 = 1

2k+1 and ci+1 − ci = 2
2k+1 for all i ∈ {1, . . . , 2k}. Then fix a real number R > 0 such

that the function F is (HC) at scale R for some constant C̃H . We can apply Lemma 4.1 to the function F (with
d replaced by d + 1) by taking a = −1, b = 1 and k large enough to get that δ := 1

2k+1 < C̃HR
β. Then set

h = ( δ
2C̃H
)

1
β .

By a translation in the y-variable of F we easily see that the value of |Nh(Lci )| is the same for all indexes i, so
(4.2) and (4.10) give |Nh(Lci )| ≤ 1

2k+1 |Nh(L1−1)| =
2

2k+1 |Nh(A)| for all i ∈ {1, . . . , 2k + 1}. Since, by construction
ck+1 = 0, we get that

|Nh(graph f)| ≤
1

2k + 1 |Nh(L1−1)| =
2

2k + 1 |Nh(A)| ≤ 4C̃H |Nh(A)|hβ

since
h = ( δ

2C̃H
)

1
β = (

1
2(2k + 1)C̃H

)
1
β ,

and so 1
2k+1 = 2C̃Hh

β. The values assumed by h for k varying inℕ are dense enough to estimate the limit for
h → 0. So we get an upper bound on the Minkowski content (see [15, Section 5.5])

Ms
c(graph f) := lim

h→0+
|Nh(graph f)|

hd+1−s
≤ 2C̃H |Nh(L1−1)| = 4C̃H |Nh(A)|

when the dimension s equals d + 1 − β.

Theorem 4.6. Let A ⊂ ℝd be a measurable set such that |A| > 0. Let f : A → ℝ satisfy the lower Hölder condi-
tion with exponent β. Then

dimM(graph f) ≥ d + 1 − β. (4.12)

Proof. The proof follows the same argument already used to prove Theorem 4.5 by applying Lemma 4.2
instead of Lemma 4.1 and using (4.10) as a lower bound.

By combining (4.12) with (4.11), we get the following result.

Corollary 4.7. The graph of any function defined on ameasurable set A ⊂ℝd such that |A| > 0 and |Ns(A)| < +∞
for some s > 0, which satisfies (HC) and (LHC) with the same exponent β, has a Minkowski dimension equal to
d + 1 − β.

We introduce some notation. Fixing h > 0 and γ ∈ ℝ, we set

S−(γ, h) := {c ∈ f(A) | there exists h < h such that |Nh(Lc)| ≤ hγ},

S+(γ, h) := {c ∈ f(A) | there exists h < h such that |Nh(Lc)| ≥ hγ},

and state the following conditions on the measure of the sets |Lba| related to f :

for all a, b ∈ f(A), a < b, there exists s > 0 such that |Ns(Lba)| < +∞, (M−)
for all a, b ∈ f(A), a < b, we have |Lba| > 0. (M+)
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Remark 4.8. Note that conditions (M−) and (M+) are trivially satisfied when A is bounded or, respectively,
A is an open connected set and f is a continuous function.

Propositions 4.3 and 4.4 respectively guarantee that, if condition (M±) is satisfied and ±γ > ±β, the inner part
of the set S±(γ, h) is dense in f(A). So, setting S±(γ) := ⋂h>0 S

±(γ, h), we get, by the Baire Theorem, that both
S±(γ) are dense Gδ-sets if conditions (M±) are both satisfied. Obviously, by construction, if c ∈ S−(γ), then
dimM(Lc) ≤ d − γ, while if c ∈ S+(γ), then dimM(Lc) ≥ d − γ.

Finally, the sets

S± := ⋂
±γ>±β
γ∈ℚ

S±(γ)

are dense Gδ-sets if conditions (M±) are true.

Theorem 4.9. Let A ⊂ ℝd and let f : A → ℝ be a real-valued function defined on A which satisfies (HC) with
exponent β. Then, if condition (M−) holds true, there exists a dense Gδ-set S ⊂ f(A) such that

dimM(Lc) ≤ d − β for all c ∈ S. (4.13)

Proof. Just take as S in (4.13) the set S−.

Theorem 4.10. Let A ⊂ ℝd and let f : A → ℝ be a real-valued function defined on A which satisfies (LHC) (at
a low scale) with exponent β. Then, if condition (M+) holds true, there exists a dense Gδ-set S ⊂ f(A) such that

dimM(Lc) ≥ d − β for all c ∈ S. (4.14)

Proof. Just take as S in (4.14) the set S+.

Finally, by combining Theorem 4.9 with Theorem 4.10, we get the following corollary which states a topo-
logical generic estimate on the Minkowski dimension (when it exists) of the level sets of a function which
satisfies (HC) and (LHC) with the same exponent β.

Corollary 4.11. Let A ⊂ ℝd be an open set and let f : A → ℝ be a real-valued function defined on A which sat-
isfies (HC) and (LHC) (at a low scale) with exponent β. Then, if both (M±) are true, there exists a dense Gδ-set
S ⊂ f(A) such that

dimM(Lc) ≤ d − β ≤ dimM(Lc) for all c ∈ S.

As a consequence, if c ∈ S and there exists dimM(Lc), then dimM(Lc) = d − β.

Proof. Just take S = S− ∩ S+, which is still a dense Gδ-set, and combine (4.13) with (4.14).

5 Conclusions
To the aim to apply to the irrigation ball B and to its landscape function Z the results in the previous sec-
tion, we need to preliminarily establish property (LHC), and therefore to prove the assumptions needed in
Section 3.

By [18, Theorem 3.7], the landscape function Z satisfies (HC) with exponent β = 1 + d(α − 1). Moreover,
since μχ is the restriction of the Lebesgue measure to the irrigation ball B, we have that Z satisfies (UAR)
globally and the inner (LAR) onB (with the same constants CA and cA). So,B satisfies (A2) and, trivially, (A1).
Condition (A4) follows from (2.5) with CZ = b

−β/d
α .

Lemma 5.1. The irrigation ballB satisfies condition (A3󸀠).

Proof. Fix x ∈ B. Since Z = R on ∂B, we deduce by (HC) that R − Z(x) ≤ CH dist(x, ∂B)β. On the other hand, by
Lemma3.11, there exists z ⪰ x such that Z(x) ≤ Z(z) − CMℓ(x)β ≤ R − CMℓ(x)β. By combining the two inequal-
ities above, we get CMℓ(x)β ≤ CH dist(x, ∂B)β, and so the thesis follows with C󸀠B = (CHC

−1
M )

1/β.
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By Proposition 3.10, Z also satisfies (A3). So, by Proposition 3.9, Z satisfies (LHC) on B. Since the irrigation
sub-spheres are level sets of Z, the main results of this paper (stated in Section 2) follow from Section 4.

Proof of Proposition 2.2. We prove that any Sρ does not contain Lebesgue points. Let x ∈ Sρ and B = B(x, r)
with r < R. By Proposition 3.9 we deduce the existence of a point x ∈ B such that |Z(x) − Z(x)| ≥ CLrβ. Then,
setting r󸀠 := ( CL2CH )

1/βr (which is of the same order as r), we have B(x, r󸀠) ∩ Sρ = 0.

Proof of Proposition 2.4. The inclusion ∂Bρ ⊂ Sρ is trivial. On the other hand, fixing x ∈ Sρ, we shall prove
that for all (small) δ > 0 such that |x − x0| > δ in the Euclidean ball Bδ(x) there exists a point y such that
Z(y) < ρ, i.e. y ∈ Bρ. Indeed, fixing 0 < ε < δ, we get a point x ∈ Dχ ∩ Bε(x), and since x0 ∉ Bδ(x), we can fix
a point ywhich precedes x in the flow order such that y ∈ ∂Bδ(x). Obviously, we have that ℓ(y, x) ≥ δ − ε, and
so we get, by (3.4), Z(x) − Z(y) ≥ |B|α−1ℓ(y, x) ≥ |B|α−1(ε − δ). Therefore, since Z satisfies (HC),

Z(y) ≤ Z(y) − Z(x) + oscB(x0 ,ε) Z + |Z(x0)| ≤ ρ + CHεβ − |B|α−1(δ − ε).

So, by letting ε go to zero, we have Z(y) < ρ.

Proof of Theorem 2.5. Given ρ ∈ [0, R] and δ > 0, setting h = ( δCH )
1/β, we deduce that

|Nh(Lc)| ≤ |Lc+δc−δ|.

On the other hand, by Definition 2.6, we have that |Lc+δc−δ| = m(c + δ) − m(c − δ). Then, since
1
hβ =

CH
δ , we

deduce that
|Nh(Lc)|

hβ
≤ CH[

m(c + δ) − m(c)
δ

+
m(c) − m(c − δ)

δ ]. (5.1)

Since the function m is monotone, by the Lebesgue theorem on differentiability of monotone functions
(see [11]), for a.e. c the following upper Dini derivative is finite:

Dm(c) := lim sup
σ→0+

m(c + σ) − m(c)
σ

.

So, we deduce by (5.1) that for a.e. c,

lim sup
h→0

|Nh(Lc)|
hβ
≤ 2CHDm(c) < +∞,

and therefore that dimM(Sρ) = dimM(Lc) ≤ d − β.

Finally, since Z is continuous on B, which is a bounded open connected set, both conditions (M±) are sat-
isfied (see Remark 4.8). Then Theorem 2.6 and Theorem 2.8 respectively follow from Corollary 4.11 and
Corollary 4.7 applied to the landscape function Z.
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