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Abstract: The construction sector is responsible for 40% of carbon emissions, 14% of water 

consumption and 60% of waste production in the world, generating a state of unsustainability. In 

order to keep these values under control and make the most sustainable choices starting from the 

earliest stages of building design, a Life Cycle Assessment (LCA) can be used. This consists of an 

analysis of the environmental impacts of a product, activity or process throughout all phases of the 

life cycle. The fundamental problem of implementing this analysis process in the construction sector 

is the difficulty in managing the fragmented building information that covers all aspects of 

buildings life stages in an integrated way. The Building Information Modeling (BIM) approach 

offers the possibility of managing a complex information system in an integrated manner. The BIM-

LCA integration solutions proposed in recent years made LCA analysis faster, cheaper and usable 

by more professionals. This paper proposes an analysis of the state of the art of the research 

published in the last ten years regarding the integration of BIM-LCA as a methodology whereby the 

BIM approach can support and simplify data management for LCA analysis. The aim was to present 

the work methodologies tested so far and to describe all the factors that were considered in applying 

the BIM-LCA integration. The novelty of this review consists of identifying a series of more 

recurrent parameters and measures used by most researchers deriving a trend of possible and 

consolidated workflows. The result is, therefore, to present evidence of a general heterogenous 

framework and to define the common and widespread approaches identifying the main features. 
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1. Introduction 

Increasing awareness in the scientific research community highlights the serious risks of climate 

change and the need for urgent action toward reducing carbon emissions [1]. It is a common opinion 

among researchers that emissions of greenhouse gases emitted by buildings should be as low as 

possible. In the communication “A clean planet for all” [2] adopted on 28th November 2018, the 

European Union presented a plan to achieve zero emissions. In particular, the emission values of 

buildings should be reduced by 80–95% compared to 1990, by 2050. For many years, efforts have 

focused on mitigating the impacts of building operations through the design of energy-efficient 

building envelopes and systems. However, this has led to an increase in the impacts inherent in the 

production of materials and their disposal [3,4]. 

Official statistics indicate that the architecture, engineering and construction (AEC) sector 

persists as the largest consumer of energy: for example, approximately 10% of global energy is used 

during the production phase of building materials, energy consumption in the operational phase of 
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the building produces 30–40% of greenhouse gas (GHG) emissions and construction and demolition 

waste account for 40% of solid waste in developed countries [5–7]. 

According to the European Union Directive [8], land is the scarcest resource on Earth, making 

land development one of the fundamental components in effective sustainable building practice [9]. 

Over 50% of the world’s population live in cities. The environmental damage caused by urban sprawl 

and building construction is severe and the development of building construction and human 

facilities are growing at speeds that the Earth cannot compensate for [10]. Buildings affect ecosystems 

in different ways, and they are increasingly overtaking agricultural lands and wetlands or bodies of 

water, compromising the existing wildlife. Energy is the building resource that has gained the most 

attention within the built environment research community. Building materials represent another 

limited resource within a building’s life cycle [11]. 

A design meeting sustainability requirements is often a challenge for professionals. Designing 

and constructing new buildings should be an opportunity to reduce the environmental impact, 

operating costs and energy consumption concerns [12]. Several tools and methodologies have been 

developed to evaluate the environmental impact of buildings, and there is a growing interest in 

integrating life cycle assessment (LCA) into building design decision-making [13]. LCA allows a 

scientific assessment of the life cycle of buildings, based on the impacts generated by the production 

and the disposal of materials used for construction and in the operational phase of the building itself. 

This methodology, according to EN 15643: 2012 [14], applied to the construction sector makes it 

possible to understand, at each design stage, where to intervene to reduce the impact on the 

environment. However, LCAs for buildings have not been widely applied due to their complexity 

and time-consuming nature. Several studies have attempted to address this issue with the use of 

building information modelling (BIM) and parametric tools, which make it possible to face specific 

issues arising on projects [15]. 

BIM [16] is seen as an approach that can assist the building community in accomplishing 

sustainability objectives. The use of BIM in AEC is growing globally. According to the European 

Directive 2014/24/EU [17], the use of BIM for public buildings is mandatory in the EU as of October 

2018. Many studies have underlined the importance of simplifying and improving the application of 

LCA analysis on buildings, and found that BIM-LCA integration optimised the performance of the 

LCA [18]. 

BIM-LCA integration helps to make the design process of a sustainable building more efficient 

and optimizes the required time to manage the necessary data, enabling the results to be obtained in 

a short time [19,20]. Traditional design environments typically provide less support for visualizing 

the feasibility of initial design decisions. Linking BIM to a sustainability-based tool enables detailed 

environmental compromise analyses to be conducted in the early stages of design [20]. BIM programs 

have the ability to simultaneously manage both the graphical and non-graphical aspects of the 

project. These features allow designers to quickly manage the amount of information needed to 

perform the LCA analysis. 

This review aims to analyse the research on the topic of BIM-LCA integration, by presenting the 

most recent studies. The novelty of this review focuses on identifying the critical key factors of BIM-

LCA integration and their connection during the various phases of the building and design process. 

More specifically, the present review schematizes the adopted workflow of the previous published 

studies on BIM-LCA integration, using key parameters (explained in depth in the next section). The 

goal of this paper is to provide a framework of all possible adopted approaches in the scientific 

community in order to guide designers towards the suitable choices against their own goals and the 

data available. 

1.1. Life Cycle Assessment 

LCA analysis is a method for quantifying the environmental impact of processes and products 

during the whole life cycle. The standards governing its use are ISO 14040 and ISO 14044 [21]. These 

standards define a four-step procedure, namely: goal and scope definition, life cycle inventory (LCI), 

life cycle impact assessment (LCIA) and results interpretation. 
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In the first step are defined two fundamental elements: the functional unit and the system 

boundaries [22,23]. The functional unit is used as a reference unit for quantitative evaluations and 

the system boundary defines the unitary elements included in the assessment [24]. The second step 

(LCI) consists of collecting, as well as describing and verifying, all data regarding the inputs, 

processes, emissions, etc., of the whole life cycle. Third (LCIA), the environmental impacts and used 

resources are quantified, based on the inventory analysis. Although the ISO standards describe the 

overall framework of LCA analysis, the exact method for calculating the environmental impacts is 

not defined. Different methods can be chosen depending on the nature of the research, defined by 

the environmental mechanisms as described in ISO 14044 [4]. The last step is the Life cycle 

interpretation, which allows for understanding of the meaningfulness of the results, drawing 

conclusions, explaining the limitations of the results obtained and providing recommendations to 

decision-makers. 

The life cycle assessment of buildings has been a widely researched area over the past decade 

due to the high environmental impact of this sector. LCA for buildings can be conducted at different 

levels of design, from individual materials and assembly to the whole building. Standard EN 

15978:2011 [25] is a methodological guide for the quantification of the environmental impacts of 

buildings. It is structured according to the life-cycle modules of buildings, including the product 

phase, construction process phase, use phase and end of life. 

Using LCA analysis in the early stages of the design process, it is possible to direct the designer 

to make choices aimed at improving the environmental performance of buildings in order to 

compare, in real time, different technological and geometric solutions. In addition, the use of LCA 

analysis in the preliminary design phase leads to a reduction in the future costs related to possible 

design variants. However, the application of LCA analysis in the preliminary design phase is still 

limited primarily due to the difficulties involved in requesting too specific input data in an embryonic 

phase of the project. 

1.2. BIM Approach 

BIM is rapidly advancing as an efficient approach to shared building design and construction 

[26]. To date, BIM is a consolidated approach to building design, although many steps must be made. 

BIM represents, but is not limited to [27]: 

 Added value, i.e., creating value for the client beyond the minimum deliverables. 

 Improved cooperation, i.e., a high level of communication, transparency and collaboration for 

the best interest of the project as a whole. 

 Improved time management, i.e., optimized workflows, fully automated low-level processes 

and focusing on high value-add services. 

 Holistic decision-making across disciplines and design domains. 

 The achievement of high design quality through the automated use of interoperable software 

tools [28]. 

Information modelling, design and management systems, such as BIM, are vital for the AEC 

industry. BIM is forecast as the next generation of information technology (IT) to replace drawing 

production-focused computer aided drafting (CAD) and involves the processes of generating, 

storing, managing, exchanging and sharing of building information in an interoperable and reusable 

way [29]. As a digitized representation of the building artefact, BIM has tendencies for continuous 

expansion to closely mimic the vast amount of information embedded in a typical building project. 

Such information, referred to as n-dimensional (nD), includes the time, cost, accessibility, 

sustainability, maintainability, acoustic, crime, thermal requirements, health, safety, etc. [29]. 

Modelling nD aspects, such as sustainability, requires issue-specific approaches and involves the 

extension of the building information model to incorporate the various building life cycle designs, 

which are vast and cut across the various building professional platforms. 

BIM is not merely a type of software but a human activity that involves paradigmatic process 

changes in design, construction and facility management [30]. BIM is oriented to the modelling and 
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to the communication of both graphical and non-graphical information, allowing the extraction of 

quantities, cost estimations and material properties for buildings, facilities and infrastructures [31]. 

Interoperability is one of the key aspects related to BIM and relies on ICT issues, business processes 

and contractual issues among the interacting parties [5]. The sharing of intelligent information 

contained in the BIM is made possible using open standard models, such as the industry foundation 

classes (IFC) [32]. 

Recent studies showed that BIM provides an effective way to investigate the options for the 

mitigation of emissions with regards to the material processing, delivery and construction methods. 

A 3D BIM model represents a repository of information and data that could be used to conduct 

analysis on the model, once extracted. BIM can manage the information flow by simplifying the data 

input and implementing the environmental information into the digital model. Furthermore, BIM 

can reduce the time-consuming nature of the LCA for collecting data as it allows for performing quick 

quantity take-offs [31]. 

1.3. BIM—LCA Integration 

In recent years, the integration between the BIM approach and the LCA methodology has been 

studied by researchers [33–35]. On one hand, there is the representation of a building information 

model consisting of parametric objects improved by semantic information of the whole lifecycle of 

the building to simplify the design, construction and operation processes [30,36]. On other hand, 

there is a method that evaluates the environmental impact of the building over its lifecycle [24], and 

whose application in the construction industry has increased considerably in recent years thanks to 

its inclusion in certification schemes such as BREEAM [37] and LEED [38]. 

The BIM-LCA integration is a powerful approach for the simplification of the LCA, representing 

an operation that leads to the solution of the problems due to the difficulty of managing the amount 

of data required for the LCA analysis [39]. However, one of the detected weaknesses of the integration 

of BIM-LCA is the data lacking from the BIM software to LCA applications [40]. 

The concept of a fully integrated approach to the eco-efficiency assessment of commercial 

buildings concerns on the information of a complete 3D CAD building model, allowing a report of 

environmental impacts from the combination of design and choice of materials used in construction. 

The key to assessing a proposed design is a 3D object-oriented CAD model that contains a wealth of 

building information not commonly utilised to any great extent. 

To perform such an environmental impact analysis of a building, each component of the 

building must be represented in the model. LCA design is fully automated from the 3D CAD drawing 

of a building to enable the calculation of the environmental impacts resulting from the choice of 

materials to be reflected in the design assessment. The automated take-off provides the quantities of 

all building components created from an extensive list of materials, such as concrete, metals, timber, 

glass, plastics, etc. This design information is combined with a life cycle inventory of construction 

materials to estimate key internationally recognized environmental indicators, such as Eco-indicator 

99 [41]. 

Seo [41] describes this integration in three steps: input encompasses the building and materials 

data processing stage; analysis involves the calculation of the required performance indicators; and 

solution covers the user decision-making process involved in selecting the preferred solution from a 

range of potential options. 

Several studies show the interactions between BIM and sustainability as well as the growing 

number of applications on BIM-LCA integration are highlighted in recent papers. The literature 

recognizes the advantages of BIM-LCA integration. The integration of LCA in BIM is a method of 

improving the sustainability performance of buildings due to the potential of BIM, which provides 

effective methods to explore options for the mitigation of environmental impacts in regard to the 

material processing, delivery and construction methods [42,43]. Despite the strengths, several 

weaknesses should be highlighted when referring to BIM-led LCA. From the tool perspective, the 

interoperability between BIM and LCA software requires improvement. When referring to the 
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method, the lack of environmental data and assumptions lead to increased uncertainties when 

conducting an LCA. 
Bueno et al. [39] compared the results of the analyses conducted with two different programs: 

the first one carried out with GaBi [44], and the second one carried out with the Tally Revit plugin 

[45,46]. From this analysis, the software plugin Tally presented limitations, mainly regarding the 

availability of the environmental data, as the number of constructive alternatives available in the 

plugin databases was quite limited, leading to the need for assumptions on the most similar types of 

building components. 

Despite the research efforts towards equalizing the scope of the studies to provide a fair 

comparison among the BIM software plugin and the GaBi software, the results were not consistent. 

The seriousness of the discrepancies in the results is the fact that they were not only absolute, but 

other relative differences among the environmental profiles for the alternatives compared, i.e., the 

programs pointed to different directions, leading the user to different—and often misleading—

optimal constructive choices. Bueno et al. [39] stated how GaBi and Tally are both LCA target 

software, but with extremely different purposes, applications and targeted users. 

The same difficulty in comparing the results was expressed by Schultz et al. [47]: the Athena IE 

and Tally programs were compared, and the programs were found to work differently making it 

difficult to compare the results. Likely, the reason lays in the simplifications and assumptions 

necessary for the development of a simpler BIM-based tool for application during the design process 

by any building designer, with no particular expertise in LCA. 

Dalla Mora et al. [48] compared two methods of integration for BIM-LCA, through the use of 

two plugins for Revit: Tally [49] and One Click LCA [50]. The comparison of the results obtained 

from different software was not easy, due to the assumptions of the tool and, in particular, the 

adoption of different databases that give different results. Tally and One Click LCA present different 

building material databases (with consequent mode of selection and different organization of the 

building structures) and calculations. While One Click LCA considers all materials separately, in 

Tally, the default procedure gives the possibility to choose how to consider a component. For 

example, a masonry wall could be treated as a single whole impact, or as sum of different layers; 

thus, the mortar and the finishing are considered as distinct materials. This is a positive plus for Tally, 

but also requires more attention into the construction of the building model in both tools. 

Other studies developed reviews on the same topics but adopted different approaches and 

focused on other aspects of the interoperability between the BIM and LCA processes, which is 

reported as follows. In the last two years, this topic increased in relevance and publications; therefore, 

this review aims to clarify certain remarks according to the main keywords and consolidated 

approaches. 

For example, Chong et al. [51] provided a mixed review to determine the current state of the art 

of BIM development for sustainability in a broader sense. The approach investigated different 

categories (planning, design, construction, operation and maintenance, refurbishment and 

demolition, the use of products and materials and the energy consumption). The reviews underline 

the complexity in terms of the software connections with life cycle assessment information and 

reported certain experiences that considered the LCA method to evaluate and identify the 

environmental impact of material choice. 

A recent study developed by Soust-Verdaguer et al. [52] addressed a critical review on studies 

regarding BIM-LCA integration. They conducted a methodological analysis and focused on the way 

that BIM can contribute to simplifying the input data and optimizing the output data during the LCA 

application in buildings. 

One more recent literature review by Obrecht et al. [53] identifies some major issues preventing 

a widespread application (LCA methodology synchronization, information database conformity, and 

information exchange automation) and shows that an automated link between LCA and BIM 

simplifies the assessment of the embodied impacts. 

The review by Soares et al. [54] evaluated various research topics on the improvement of the 

energy and environmental performance of buildings. The review considered various studies and 
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underlined the increasing relevance and application of the LCA methodology in the built 

environment context due the provision of valuable insights toward selecting improved construction 

options. The study noted that significant challenges should be addressed in future research due to 

the complexity and variability. 

Eleftheriadis et al. [55] study combined the LCA theory and the capabilities of BIM to survey the 

current developments in the energy efficiency of structural systems. The review identified eleven 

practical applications of BIM LCA and discussed the integration in terms of the adopted software, 

service life and life cycle stages (embodied, operational and end of life). 

A detailed review was provided by Wong et al. [20] that examined the concept of green BIM and 

environmental sustainability across the various stages of building development in order to manage 

buildings during their whole life cycle. 

Lastly a systematic literature review by Llatas et al. [56] recognises the opportunities to integrate 

the life cycle sustainability assessment (LCSA) into the building design process and also proposes a 

methodological approach to implement LCSA in BIM. 

1.4. Structure of the Paper 

This paper is structured as follows. Section 2 present the general framework of the literature 

review among the publications that integrate BIM and LCA to calculate the environmental impacts 

using applications on case studies. A brief description of the parameters of evaluation is listed to 

show how the papers have been selected and analyzed to understand the current trends on the 

integration of modeling and assessment. Section 3 presents a critical discussion of each criterion 

focusing on the methodological aspects and solutions to the issues proposed by the researchers. The 

review concludes in Section 4, summarizing the main remarks and future developments for the 

research. 

2. Materials and Methods 

In this review, the methodological approach aims to respond to the research gap and the 

objective of schematizing the adopted workflow from the published studies. 

Different phases have been recognised. First, a comprehensive literature search was conducted 

through a scholarly publication search engine. The literature search was based using the following 

keywords: life cycle assessment (LCA), building information modeling (BIM), sustainability and 

integration. 

In a subsequent phase, the collected papers were filtered considering those presenting a case 

study and supported by a description of the adopted workflow. Then, the analysis of papers 

produced a list of the most recurrent key parameters (seven measures, more deeply descripted in the 

next sections), even if related to different workflows, that represented the main characteristic 

measures of a workflow that considers LCA analysis in a BIM process. 

Last, this paper evaluated the results and collected data to describe the available consolidated 

approaches, through a discussion of the abovementioned key parameters and the relations between 

them. This paper took into consideration the recent studies dealing with BIM-LCA integration 

published in the last 12 years, from 2007 to 2019, giving an overall view of the changes and the 

developments of the studies and applications. 

The analysis considered 50 papers characterized by a case study, published on the main scientific 

article collection platforms (Science Direct, Scopus, Research Gate, Springer Link and Google 

Scholar): mainly journal papers (38) were considered and, in a minor part, conference proceedings, 

particularly those exposed in a conference of the two last years. 

The chart in Figure 1 shows the trend of the published studies based on building information 

modeling to perform lifecycle analysis, and it reveals the growing interest on this topic. This fact is 

surely related to the publication of the European standard EN 15978:2011 [25] regarding the LCA 

application to buildings. 
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Figure 1. Trend of the published studies regarding building information modeling (BIM)—life cycle 

assessment (LCA) integration from the 2007 to 2019, revealing how the interest on this topic has 

grown in recent years. 

Analysis Criteria 

Using a methodological point of view, more specifically the review schematizes the adopted 

workflow by published studies, using key parameters in order to offer the scientific community a 

framework of all possible approaches and the possibility of evaluating which ones may be more 

useful or widespread in relation to the goals and data availability. 

Different parameters were adopted to evaluate the state of the art regarding BIM-LCA 

integration: the first group of parameters considered the BIM model input, comprising the physical 

model; the second group referred to the LCA input data, composing the environmental characteristics 

of a building (Figure 2). 

 

Figure 2. Analysis criteria were adopted considering two groups: BIM model input and LCA input. 

The dashed line indicates the relevance area of the topics and highlights how the software component 

is shared in the field of digital modeling and assessments. 

The first parameter concerns the design stages of the BIM model that evaluated the LCA 

application, analysing for relation to an early or a detailed phase of the process. Here, the definitions 

of the design phase is according to Cavalliere et al. [57]: the early design stage referred to the project 

planning (PP) and project (P) phases, while the detailed stage referred to the building permit 

application (BPA) and tendering (T) phases. 

The second refers to the definition of the level of development (LOD), which defined the 

minimum information content for each element of the BIM at the different progressively detailed 

levels of completeness. According to Soust-Verdaguer [52], LODs are of high importance when 

conducting a BIM-LCA integration as they indicate the LCA data requirements of the model. 

Then, the tools used for building modelling are reported due to the crucial relevance in the case 

of analysis of different approaches, different exchange information files, and also in the case of design 

workflows that involve different software. For example, the type and the number of tools represent 

the complexity of the adopted approach. 

The second group considers four criteria regarding the LCA. The first parameter reports the 

environmental impacts (orthe categories describing the impacts) considered for the LCA analysis. 
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The functional unit (FU) is taken as a criterion to compare the reviewed papers. The FU is a 

quantified performance of a system used as defined by standard ISO 14040 and ISO 14044 [21]. In this 

regard, for each case analyzed, the FU is reported to point out if simplifications are made according 

to the different approaches [15]. 

The adopted LCA database has an equal relevance to the BIM tools, because the digital data 

collection contains the environmental information for the construction materials, and this choice 

determines the whole LCA analysis and the evaluation of each building component. Last, the LCA 

stages describe the different lifecycle stages considered in the analysis. Table A1, presented in 

Appendix A, shows the results of the analysis of selected papers and reports the information 

according to the declared parameters. 

3. Result and Discussion 

This paper evaluated the state-of-art of LCA integration in a BIM environment due the potential 

to include information to assess the decision making [20], including the energy, environmental and 

costing data among others, in order to improve the project information flow. 

In this section, the paper aims to present the general trend of each key parameter, introduced in 

the previous section, and to determine analytically the interconnections in terms of the approach and 

development. The analysis of this paper showed how the scientific research grew over recent years, 

but this analysis could also reveal how the selection of specific and accurate assumptions could affect 

the development of the study and the adoption of the next parameters, affecting the results and 

outputs. For example, the adoption of BIM software and LCA tools could influence the research, as 

well as the constraint of adopting a specific database compatible with the main software. or the 

development of a study in a defined design phase that must be compared with the level of 

development of the model and with the request for the calculation of the environmental impacts. 

3.1. Design Stages 

The analysis of the selected papers showed that the LCA assessment was included in the BIM 

design: except for a couple of studies, all the case studies defined the boundary conditions of the 

process, focusing on the early and detailed stages. 

Figure 3 shows how the two approaches were analyzed in the reference period; highlighting 

how the early stage was the subject of in-depth research starting with the first case studies. Only in 

the last period did the most advanced stage of the process, the detailed stage, become a topic of 

interest for researchers, indeed becoming the most developed topic. A plausible explanation is that 

research has acquired more accuracy due to the advancement of knowledge and the definition of BIM 

standards. 

In a more detailed point of view for Figure 3, the authors developing both stages [57–60], 

especially in the most recent research, aimed to show the design progress, to evaluate how the 

impacts have changed in a more detailed phase, but, above all, to affirm that the defined choices 

involved accurate values. 
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Figure 3. According to the published studies for the years selected for the review, the chart shows 

how many studies defined the level of design stage in BIM models, showing the recent interest in the 

detailed stage, in particular to analyze both stages in the same case study. 

According to Cavalliere et al. [57], two different trends existed for the performance of LCA for 

buildings based on the digital model. The first trend was concerned with performing detailed LCA 

with refined processes and specific building simulation tools, as for example Houlihan [58], Abanda 

[61] and Georges [62]. On the contrary, the second trend involved simplified approaches for the early 

design stages, as in Ajayi [63], Basbagill [64] and Bueno [65]. LCA analysis from the earliest stages of 

design makes the LCA a design tool, with the opportunity to modify the project by preferring the 
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During the early phases, there is also more potential for studying different alternatives, reducing 

costs, implementing changes and improving the performance [66]. This issue was also exposed by 
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support for sustainability-based decision making on structural solutions. This extension comprised a 

modelling framework and combined three key indicators—namely, the life cycle cost, carbon 

footprint and ecological footprint measures—to assess the sustainability of buildings. 

A novel approach considers the available information in the BIM model to be as accurate as 

possible in every design phase [57]. This was achieved by mixing LCA databases for building 
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elements and materials with different levels of detail and matching them according to the individual 

LOD of the various BIM components. The research demonstrated that the use of increasingly refined 

data reduced the range of variability from the early to detailed phase. The Global Warming Potential 

(GWP) at one specific phase was always within the variability of the previous phase. This outcome 

allowed the prediction of the final environmental impact of the construction phase from the early 

phases of the building process. In the early phases, the impact was overestimated compared to the 

results, which showed that the variability decreased from the early design phases to the final ones 

for most building elements as more refined data were used at higher LODs. 

The environmental impact results can be provided during the first decision making process and 

before the early design stages. A peculiarity of such a framework is the necessity of sustainability 

expertise and respective tools supporting the project manager and providing construction 

alternatives and GWP values starting from the early stages [68]. As shown in the case study section, 

such tools have to handle issues due to data requirements and inaccuracies. The majority of them are 

caused by missing information about specific energy consumptions as well as refurbishment or 

renovation measures, which depend on the user’s habits and choices and are all considerable sources 

of uncertainties for LCA analyses. 

3.2. Level of Development (LOD) 

The origin of the level of development (LOD) is linked with the intent to help the approach and 

access into the world of BIM through a shared method. The primary task of the LODs, associated 

with the BIM approach, is to define whether the model, or even just a part of it, is or is not reliable 

compared to the initial idea, defining, moreover, to what extent and in which areas the information 

can be used. To do this, also taking note of the vastness of definitions of the project, the American 

Institute of Architecture (AIA) in document G202-2013 [69] identified five different levels of LOD. 

LODs describe the minimum dimensional, spatial, quantitative, qualitative and other data included 

in a model element: LOD 100 (Initial/conceptual idea), LOD 200 (Generic models and quantity 

indication), LOD 300/350 (Executive Design), LOD 400 (Construction Design), LOD 500 (As Built 

Project). 

Each LOD should include progressively more detailed data in the corresponding BIM model. 

For example, in the Autodesk Revit BIM software, this information can be obtained from the 

following entities: object, object type (sometimes referred to the object class) and the building material 

itself. An object in a BIM model represents a real-life object with its specific properties. All objects 

included in a BIM model are associated to an object type. The object type regroups all the common 

rules and parameters of a group of objects, for example: a wall assembly. A useful property of an 

object type is that it allows the building designer to change it in one location, and this change is 

reflected in all the linked objects in the corresponding 3D model. Another important information 

requirement in a BIM model is the building material itself. To accurately describe an assembly in an 

object type, the designer must specify ever layer of a material and specify the thickness of these layers 

[70]. 

The advantages linked to the LOD system are numerous and can reach exponential growth. 

Among the many advantages offered by LODs, the clarity toward the customer and the members of 

the working group could be the main interest. This allows the customer to choose which alternative 

is the most appropriate, while communication within the working group allows avoiding waste of 

time in the transmission of unnecessary, incorrect or incomplete data. The advantage of clarity is 

strongly linked to the concepts of precision and speed in determining the costs and project times, as 

well as the clear definition of the professionals in the field and the relationships that bind them. At 

the same time, the advantages brought by the LODs could improve the comparison with the Public 

Administration, thus avoiding misunderstandings and differences in interpretation of the rules 

relating to the quantity and quality of the works. 

Soust-Verdaguer at al. [52] recommend the integration of BIM-LCA models involving a 

definition of the most relevant materials and components, including the thickness of the walls 

(including the levels of the components) and the definition of structural elements in their dimensions, 
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shapes and engineered positions. Based on this, they indicated LOD 300 as the most appropriate for 

verifying environmental impacts during the early stages of design. 

Cavalliere et al. [57] proposed a methodology based on the LOD. This study showed that it was 

possible to continuously assess the embodied environmental impacts in all phases of the building 

design process using BIM and combining LCA databases with different levels of detail. The suggested 

approach consisted of structuring the building into functional elements and construction categories 

as these are typically modelled at different LODs in the different planning stages. The novelty of the 

method is the consistent mixing of different LCA databases according to the LOD of the building 

elements at different design stages. By using different LCA databases that match the LOD of the 

elements, the embodied impacts can be continuously assessed with the maximum level of detail of 

the information available at the current design stage. 

This review shows how most papers do not approach the topic of LOD, despite having 

developed an articulated BIM model of the case study. A statement of the detail level or reference to 

the adoption of design criteria is not affirmed, even if the models were established by inputting the 

information of various materials and components into the tool to perform an automatic take-off 

quantity survey to perform the LCA assessment. 

Only a small number of studies (13 papers) introduced the concept of LOD and followed precise 

indications in terms of the definitions: Ajayi [63], Soust-Verdaguer [40], Rezaei [59], Lee [71], Dalla 

Mora [48], Rock [72], Santos [73], Nilsen and Bohne [74], Lu [75], Lu and Wang [76], Gomes [77] and 

Sharif and Hammand [78]. 

The data in Table A1 and Figure 4 allow for a couple of notes: the interest in LOD in the BIM-

LCA integration developed mainly in the last year (eight studies in 2019), likely in relation to the fact 

that, since 2015, BIM has become the object of application in design and legislation in various 

countries. Researchers [57,59,74], investigated the embodied environmental impacts in relation to 

various levels of development in order to underline how assumptions could increase or decrease the 

accuracy in calculations and provide different levels of information for decision-making throughout 

the entire design process. 

 

Figure 4. Trend of published studies focusing on LOD in BIM-LCA integration (black continuous 

line), revealing a growing interest in 2019 in relation to the development of research regarding BIM 

and sustainable construction (grey dashed line) according to the study of Santos et al. [79]. 

Rock [72] and Ajayi [63], developed a case study with LOD 200 based on the American Institute 

of Architect (AIA) standard, stating that the BIM model—produced at Level of Detail 200 for the 

approximate quantities, size, shape, location and orientation—was required both for energy analysis 

and quantity estimation. 

Lee [71] set LOD 300 as the reference LOD for the evaluation of the embodied environmental 

impact of a building because the Japanese national normative [80] reported that the embodied 

environmental impact evaluation of the main building materials (except for steel) could be calculated 

at this level. In Soust-Verdaguer [40], their case study was developed with LOD 300, selected to obtain 
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general information regarding the main materials and characteristics of the building during the 

design process. 

The research of Dalla Mora et al. [48] focused on the evaluation of different BIM tools and LCA 

plugins; their case study was modelled with LOD 200 because the aim was to investigate the different 

LCA database information for each component and structure. The choice of LOD 200 was selected to 

evaluate the environmental impacts of three different building structure types (masonry, xlam and 

steel) during the first step of the design process to support the selection of a structure characterized 

by minor environmental impacts for the next step of design. 

Santos [73] developed a case study according to Level of Development Specification Guide by 

the BIM Forum [81]. The model was set at LOD 300 because the project aimed to investigate the life 

cycle costing (LCC) and LCA in a detailed design phase when the brands of materials and relative 

costs were already fixed. Nilsen and Bohne 2019 [74] evaluated BIM based LCA in early design stages 

(low LOD) through literature reviews and a case study. This case study executed LCAs at different 

LOD levels using the LCA software One Click LCA (OCL). Assessments at LOD 200, LOD 300, LOD 

350 and an additional LOD 350 were utilized. 

Reviews show that LOD 300 was used as the values and parameters for whole building LCA 

[52,75,77], demonstrating that LOD 300 model is aligned to the accuracy level currently practiced in 

whole building LCA and that BIM models can indeed be prepared to facilitate LCA through a low 

complexity, high effectiveness operational measure. 

The choice of the LOD is closely related to the design stage set for the case study. Therefore, for 

an early design phase, the LOD 200 was sufficient to determine a generic quantity of the 

stratigraphy’s and materials to be analyzed, even if the information used to perform the LCA study 

was the average of the EPD (Environmental Product Declaration) documents available or generic 

materials in LCA databases. Instead, for a detailed design phase, the LOD should be at least 300 or 

higher to have a greater definition of the components and an already detailed choice at the executive 

design level. This thesis was confirmed by Santos [73] who stated that a LOD lower than 300 could 

contain only generic LCA data from the average data of each material, while at LOD 300 or above 

EPDs can be used as a source since the brands of materials are known in this phase. At LOD 400, the 

exact quantities of each materials should be known and specific data can be applied [74]. 

3.3. LCA and BIM Tools 

From the analysis, the integration of BIM-LCA can be developed on three levels. The first level 

integrates the BIM as a tool during the LCI phase for the quantification of materials and the 

construction of elements, for example in the case quantitative data are exported and then used in 

dedicated LCA programs. The second level, in addition to using BIM as a tool to quantify and 

organize building materials and components, integrates environmental information to the BIM 

software or to the energy assessment model. The third level involves the development of an 

automated process that combines different data and software. 

In the literature review, several approaches and tools for LCA in BIM are available. However, 

not all issues have been so far solved, and new challenges also arose. From the technical point of 

view, the creation of such tools as support instruments for decision-making showed problems, such 

as the missing interoperability between BIM interfaces and environmental databases, the import of 

BIM information into LCA software and the complexity of many actors in the treatment of a BIM 

model. The use of the IFC format proved advantageous by facilitating building description and 

construction industry data exchange through an open file format and neutral platform [68]. 

In recent years, many software programs were developed to carry out LCA (Figure 5), such as: 

SimaPro [82], a LCA tool for calculating the carbon footprint of products and components [83,84]; 

Building for Environmental and Economic Sustainability (BEES) [85]; Tally, a BIM plugin; Athena 

Impact Estimator [86]; One Click LCA [74]; and Open LCA [87]. Whole-building assessment tools are 

generally able to compare different design options and are useful during the initial design phases by 

providing a quick overview of the impacts of building construction [69]. 
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Figure 5. Adopted tools for LCA analysis through the calculation of data exported from a BIM model; 

a dashed line separates the LCA dedicated software from those that also calculate the building energy 

performance, often used for embodied energy calculations. The number of tools is over the total 

amount of considered papers (50) because there is not a strict connection between the number of 

papers and number of tools. As shown in Table A1, the authors of certain case studies adopted a 

workflow for exporting data from BIM models involving different tools and different exchange 

formats. 

Researchers performed comparisons of the tools. Schultz et al. [47] tested the methodology of 

the Athena IE and Tally packages to determine in a BIM-LCA integration process level of 

interoperability, the take-off methods, the database availability and the flexibility. In a different case 

study, Santos et al. [24] compared the LCA outputs given by Tally and a general EPD to underline 

how Tally was likely the best integrated within a BIM environment as it recognized the types (i.e., 

walls, doors, windows and floors) and the number of layers (i.e., materials) in each element. 

However, Tally did not recognize the chosen materials in the Revit project and it was difficult to 

verify the accuracy of the LCA analysis of the projects, mainly due to the lack of different materials, 

as most materials were generic (taken by the GaBi database), and it was not possible to edit the 

material information. 

The review gives evidence regarding the use of the Athena Impact Estimator for Buildings [88], 

revealed as the most widespread among the authors and researchers, especially in American 

countries, and the adoption was mainly coupled with Revit. The choice of Athena is due to a powerful 

and complicated database prevalently used in North America, which is able to evaluate all building 

components based on the international LCA methodology and also to edit design scenario 

supplanting materials. 

Among the BIM tools in the analysed papers (Figure 6), Autodesk Revit appeared as the most 

used (80%) while other studies adopted Graphisoft Archicad, such as Seo et al. [41], Shin et al. [89] 

and Soust-Verdaguer [40], or DProfiler [90]. The choice of Revit may depend on the diffusion of the 

Autodesk brand; it is a very developed and highly commercialized BIM software. Moreover, the 

benefit of easy access of the free license increases the interest in adoption. One further benefit for 

users is related to the concept of suite for Autodesk; thereby, all software are well integrated and 

flexible in exchanging data. Last, Revit users are supported by a series of owned plugins and 

Application Program Interfaces (APIs), a set of routines, protocols, and tools for building software 

applications, directly connected and integrated to the main software. 
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Figure 6. Software adoption in the selected cases studies; the colored flow lines indicate the 

relationships between tools in data exporting from the BIM model to LCA analysis; on the left side, 

the chart gives evidence of the widespread adoption of Autodesk Revit (more than 80%) for BIM 

models; on the right side, the LCA tools are listed, counting in brackets the number of cases linked to 

each BIM software. 

In the considered papers, some referred to LCA tools that were strictly connected to BIM tools, 

mainly as Tally plugins in Revit. Often, for performing LCA analysis, the users applied external post 

processing tools, including spreadsheets, such as Microsoft Excel or similar, to export the quantity 

take-off and then to perform LCA. For example, One Click LCA, in Nilsen [74], is an online LCA 

application that requires reports, such as a BIM model inventory file in either an MS Excel or gbXML 

format. The cases studied that used a plugin for specific BIM software (Tally/One Click LCA) had the 

advantage of immediate results, and the disadvantage of not being as precise as a dedicated software. 

From the literature review, regarding the general workflow from the BIM model to LCA 

assessment, most researchers applied Revit and half of the users exported in Microsoft Excel (22 

studies on 50 selected papers). Although this is considered as basic tool, it lends itself well to be fully 

integrated and easily managed with Revit take-off quantities without any particular use of external 

plugins, thus, allowing an agile calculation with the values obtained from the LCA databases or to be 

imported in external LCA tools. 

In another case, the authors proposed their own framework. Santos [73] developed an external 

prototype tool to perform LCA and LCC analysis, which was automatically linked in the exchange of 

information with the BIM model. With respect to the current state of the art, the novelty of this 

approach consisted of the use of IFC (Industry Foundation Classes) schema for the integration and 

exchange of information within a BIM-based environment. The IFC format allowed the user to 

manually edit or add any information, without resorting to linking to non-editable external 

databases. However, the adoption of EPD did not require the user to acquire licenses for the LCA 

databases. 

The paper review also showed that the integration was not fully defined due to a lack of 

alignment, both in terms of the nomenclature and in terms of the detail level, between the BIM 

material database and LCA tools. There was also a lack of an automatic data extractor from BIM to 

LCA, meaning a digital format (IFC or gbXML), which included fields and names for encoding BIM 

classes adaptable to LCA databases. 
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3.4. Functional Unit 

The functional unit (FU) serves as a reference for all flows in and out of the system and for the 

potential environmental effects [91]. The functional unit is an ISO standard term defined in ISO 14044 

[92] as “the quantified performance of a product system for use”. Comparing materials based on their 

weight or volume is the first step to gaining an understanding of the ecological qualities of building 

materials. 

The analysed case studies, as shown in Table A1, used different functional units. In most cases 

the whole building was taken as a reference. On the other hand, the analysis was sometimes 

conducted on individual building components, such as the walls [24,31,39,47,65]. This type of 

analysis was adopted in case studies that aimed to compare various technological solutions from 

decision makers during the design process and to understand the most suitable one from the 

environmental point of view.  

In other cases, the functional unit for the entire life cycle analysis process was assumed to be 1 

m2 of gross floor area (GFA) [93] or 1 m2 of heated floor area (HFA) [58,62]. In this case, the FU could 

differ from area units, given in m2 and often applied in paints, window and carpet products, or 

volume units, given in m3, or mass units, given in tons. For this reason, it is important that the 

information regarding the material densities be considered and embedded in the relevant conversion 

function in BIM [93]. In case studies where the FU referred only to a single building component, 

researchers investigated the achievement of near zero impact on the overall building. It is, therefore, 

justifiable that studies with complete buildings presented a macro-process and hardly detailed the 

impact categories of single component or materials, except to describe the scenarios and the choices 

adopted. 

As the environmental impacts in the construction sector operate by macro-processes, the study 

is easier if it is focused on the effects of certain choices of materials and components, leaving out 

detailed investigations on the components leading to minimal variations on the overall impact. If the 

case studies based on components are oriented toward the method and not the result, then the 

component type should also be considered irrelevant for the purposes of the analysis. 

Authors who addressed the components aimed to show a specific method and the component 

was irrelevant from the point of view of the analysis. The others aimed to show the incidence of a 

particular type of building or a particular structure, such as in the case of papers that analyzed the 

costs, or energy performance linked to interventions on the building envelope. In this case, it depends 

on the incidence of the individual components. A possible criterion is the adoption of the same FUs 

for energy and cost, such as the square meter of floor area. In other cases, such as in Santos et al. [73], 

in the case of LCC cost assessment, the functional units were multiple: the whole building for the 

results report and the square meters of building components in the analysis stage to control the costs 

and impacts. 

3.5. LCA Stage 

The LCA process is defined by four principal life cycle stages according to EN 15643: 2012 [14]. 

The building lifecycle-oriented analysis considers the impacts related to the product and construction 

stage (module A1–A5: from the raw material extraction to the processing and product installation), 

and use stage (module B1–B7: the consumption flows, maintenance and reconfiguration), which 

spans the period from the completion of the construction works to the point when the building 

reaches its end of life. The system boundary in the use stage includes the use of construction products 

(maintenance/replacement) and services for operating the building [94], and the end of life stage 

(module C1–C4: demolition or disassembly, transportation to the treatment site and end of life 

scenario) [31]. There is also an additional and separate module (module D: advantages and loads 

beyond the system limit). 

Each phase is further divided into different modules. A distinction is also made between the 

embodied and operational impacts. The impacts related to the operational energy use are defined by 

stage B6 and those to the operational water use, by stage B7, with the other 14 sub-stages together 
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comprising the ‘embodied’ impacts [95]. This is now the most common basis for calculating the 

embodied impacts of buildings within academic studies from Europe. 

In order to conduct the LCA analysis, contemplating all phases is not necessary. However, the 

definition of the system boundary is most relevant phase. The review shows that the motivations and 

choices of the study phases are not always declared, as described in Figure 7. In most of the case 

studies, the production and construction phases (A) were investigated, especially according to a 

cradle to gate objective; while the usage phase (B) was developed in the case of evaluation of the 

primary energy consumption of buildings and, therefore, considering the installation of systems and 

the general applications. 

 

Figure 7. The chart represents the development of the topic of the LCA phases, defined according to 

the standard EN 15643: 2012; the columns show the number of papers that analyzed each phase 

organized by modules; the solid line represents the total number of selected papers (50). 

Considering this review, phase A was included due the material evaluation and the agile 

calculations for the availability of data in databases, especially relating to production phases A1–A3, 

which represent the most considered stages in the studies, such as [24,93]. 

For the construction phase (A), the production stage (A1–A3) entails the highest energy 

consumption and the highest production rate of emissions; this stage fundamentally impacts the 

embodied energy (EE) and GWP. While in the construction stage (A4–A5), the construction context 

has yet to be defined for a material evaluation; therefore, the construction stage was not included and 

not relevant for the EE and GWP. In fact, the review shows how all subcategories are rarely 

considered, such as for [64,66,89,90,96,97], and the most of papers focused on the production stage 

and so provided attention to the material characteristics and the relative impact in the case of scenario 

comparisons. 

For the usage phase (B), buildings and building products have a different nature when 

comparing life phases, highly dependent on the building context. Building materials and component 

elements consumed a major part of production and only required small amounts for maintenance, 

repair and at the end of life. This phase is of minor relevance for EE and GWP. In general it is noted 

that when addressing the B phase only few subcategories are taken into account, such as B1—

Use/Application of installation product, B6—Operational Energy Use, and B7—Operational water 

Use [62,98,99], without considering maintenance, repair, replacement and transport. This implies the 

loss of information regarding specific energy consumptions or refurbishment or renovation measures 

caused by a dependence on the user’s habits and choices. 

End of life phases (C) are more complicated to develop since the is a need to model hypothetical 

scenarios. Therefore, only few case studies include this final evaluation [62,71,97,100]. 

A possible interpretation is provided by Rezaei [59]. When comparing the LCA results of the 

early design (LOD 200 or below) and detailed (LOD 300 or above), the material production phase (A) 

was significant for evaluating scenarios, next decisions and building steps, but the effects of 

construction and end of life were not considerable or were out of topic and irrelevant for the actual 

research. 
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However, the operation and maintenance stage (B) was the most critical stage in the LCA study 

especially in a comparison of scenarios. The environmental impact of the operation stage could be 

hardly modified by applying different adjustments (e.g., using renewable energy facilities, increasing 

the building thermal performance or decreasing the indoor temperature) and these decisions were 

defined only in a detailed design or better in a LOD 300 or above. 

3.6. Databases 

The database is one of the essential elements of LCA analysis. When comparing LCA analyses 

carried out on the same building or component, but using different databases, the results underline 

substantial differences. Schultz et al. [47] conducted an analysis on a building using two different 

software programs, Tally and Athena IE [101] to highlight discrepancies in the results due to the use 

of two different databases: Ecoinvent [102] and GaBi. They concluded that more databases and 

standardized calculation methods should be provided for comparable LCA analyses. 

The studies that attempted to compare results according to the adoption of different databases 

and tools [48,60] affirmed that the calculation engine was less relevant with respect to the databases 

and simplifications that influence the decision-making process in building design. 

The choice of the database is fundamental for the purpose of the LCA analysis. When possible, 

the database should be selected in relation to the specific information connected to the building site, 

local market and materials. Soust-Verdaguer et al. [40] did not determine a local database for a 

building design located in Uruguay, and, therefore, Ecoinvent was adopted. According to similar 

case studies, the decision was influenced because the Ecoinvent database is the most used in LCA 

applications of this building typology, regardless of the geographical area of the project. The 

Ecoinvent database disposes of various processes considered within each life cycle stage, including 

the construction materials, transport and energy. The hypothesis for the energy consumed for 

construction and deconstruction is based on the process by Kellenberger et al. [22] for traditional 

construction. 

Santos et al. [24] compared analyses conducted with Tally and EPD. EPD provides 

manufacturers with a single scheme to structure and harmonize their product’s information. As EPD 

typically only includes a product’s environmental impact until its manufacturing phase, only the 

“Cradle-to-Gate” approach will be considered in this study, i.e., the embodied environmental impacts 

[24]. In this case, difficulties also arose in the results comparison; the author evaluated the output 

declaring the impossibility to verify whether Tally offered an accurate LCA analysis of the projects, 

mainly due to the lack of different materials, because most materials are generic, and it was not 

possible to edit the material information. 

Moncaster [103] stated that the existing databases provided limited data for the product stage 

(stage 1) of the process regarding the embodied energy and carbon in the building materials. There 

is less data still for composite components, such as windows, service components and innovative 

materials and products. There is also a shortage of data across the construction sector in the embodied 

energy used and carbon emitted during stages 2 (construction), 3 (in use) and 4 (end of life). 

However, a direct comparison of databases is debatable, because the data is collected from 

various sources and it is based on different calculation methodologies according to their purpose. In 

principle, there are two different basic approaches to LCA, a process-based approach and an 

Economic Input–Output (EIO) based approach. The process-based approach is the original method 

of LCA that computes the environmental input and output as it follows the actual process flow, while 

the EIO method is an inter-industry economic input–output analysis based on monetary transactions 

and resource consumption data. Several researchers conducted a comparison of LCA databases 

modelled by the two different approaches [20,35], and the results commonly indicated fundamental 

gaps in the modelling of data, which, in some cases, resulted in significant differences in the 

assessment results. Most of the values from the two approaches were of the same order of magnitude 

[104]. 

Globally Ecoinvent and Athena were the most used databases: Ecoinvent is extensively adopted 

thanks to the availability for many platforms and tools, such as SimaPro, One Click LCA and Open 
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LCA; Athena is widely used for the disposal of exhaustive database and calculation tool for the 

American building sector (Figure 8). 

 

Figure 8. The database adoption in BIM-LCA assessment; the chart considers the amount of databases 

considered in the case studies, underling the widespread use of Ecoinvent, Athena IE and ICE. The 

number of databases is over the total amount of considered papers (50) because there is not a strict 

connection between the number of papers and number of databases; as shown in Table A1, some case 

studies proposed the adoption of more than one database for LCA assessment. 

The review underlines how the adoption of databases and tools are strictly connected, leading 

to implications in the BIM interoperability. For example, most of the cases performing analysis with 

Athena Eco Calculator, also adopted Athena LCID. The same remark is verified in the case of SimaPro 

software and Ecoinvent, even if the tool is able to adopt additional data by different database or EPDs. 

One Click LCA allows using a much wider international catalogue and makes available EPDs of 

materials and products at a national level (Figure 9). 

 

Figure 9. Database adoption in the selected cases studies in relation to the LCA tool adopted; the 

colored flow lines indicate the relationships between the tools (left side) and database (right side). 

Concerning the adoption of the open source Inventory of Carbon & Energy (ICE) by the 

University of Bath [105]: the database is one of most used, in 10 case studies; this database provides 
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information regarding the total CO2 and embodied energy. However, the primary benefit is the open 

format and the accessibility by spreadsheet. The adoption of ICE is remarkable in the case of 

environmental impacts related to energy calculated by elaboration of the take-off BIM data in MS 

Excel or similar programs [60,61,78,96,99,106–109]. 

There are some constraints facing BIM-LCA integration in the construction sector, such as the 

insufficient BIM database that requires improvement at the early design stages of construction 

projects in terms of developing the LCA applications. Hence, more information on the material 

properties should be adapted in BIM models in terms of the LCA analysis. Another challenge is that 

users of the Tally application must define the materials properly for the buildings under study. 

Hence, more effort is desirable to utilize technologically similar entries to the modelled materials. As 

well, geographical sources in Tally must be adapted to cover more regions worldwide. There is a 

limitation of the data that are related to building elements in BIM, and the difficulty of comparing 

scenarios are additional challenges facing this type of integration [64]. The proposed implementation 

of BIM tools requires more evolving technologies in response to the limitation of knowledge in order 

to support the sustainable construction and decision-making processes in the construction sector 

[100]. 

3.7. Impact 

The impact categories can be generally traced back to four main areas: the use of natural 

resources (resource depletion), effects on human health (human health and safety effects), effects on 

the ecosystem (ecological effects) and greenhouse effects (climate change). Each effect interacts with 

the environment related to different geographical scales, which could be used for a further 

classification of the impact categories: global (greenhouse effect and depletion of the ozone layer); 

regional (acidification, eutrophication and photochemical smog formation); and local (formation of 

photochemical smog and land use). 

The data in Figure 10 report the major impacts calculated—the Global Warming Potential 

(GWP), Operational Energy (OE), Acidification Potential (AP), CO2 Emissions (COE), Ozone 

Depletion Potential (ODP) and Eutrophication Potential (EP)—and underlines the great relevance 

given to the calculation of impacts strictly connected to energy issues, such as the Embodied Energy 

(EE), Non-Renewable Energy Demand (NRED), Operational Energy (OE), Primary Energy Delivery 

(PED), Total Primary Energy (PET), Primary Energy Consumption (PEC) and Total Non-Renewable 

Primary Energy (PENRT). This aspect found a link with studies that conducted an LCA analysis in 

relation to the embodied energy [108], the scenarios of decreasing energy consumption [60] and 

operational costs [109], the renovations of existent buildings [78], or fulfilling the requirements for 

green building labels [110,111]. 
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underlining the great relevance of the Global Warming Potential (GWP). The graphic symbol * is 

shown for impacts that are related to energy issues. The definitions of abbreviations are the same as 
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Regarding specific choices of environmental impacts, the review found no particular approaches 

in the selection criteria. However, it can be highlighted that specific assessment methods affected the 

calculation of impacts. For example, for the environmental impact measures consistent with the US 

EPA TRACI methodology [112], the impact list regarded six impact categories (global warming 

potential, acidification potential, human health particulate, ozone depletion potential, smog potential 

and eutrophication potential), which are commonly used in North America, while the other tools use 

various environmental impacts assessment methods that are more suitable for European countries 

[87,110,113]. 

The subscription to green building labels or the environmental certification process could 

require the list of impact categories to be assessed. This occurs, for example, with LEED [38] 

certification, which requires the evaluation and the reduction of environmental impacts (the same 

with TRACI) in the building process in comparison to a baseline design, as in Hasik et al. [110], Gomes 

et al. [77]. One more example is given by the adoption of LCA indicators in the DGNB protocol [114] 

concerning the LCA optimization during the planning process and the comparison with the 

benchmark value, fixed for the impact categories [68]. The adoption of the certification system 

addressed the LCA methodology. However, in practice, the case studies confirmed the fact that such 

certifications are still applied at the detailed stage of the process [115]. 

One more aspect should be mentioned. Different studies, such as Kim et al. [109] and Sharif et 

al. [78], described case studies performing energy simulations for making a connections between 

energy use and environmental impacts, such as the embodied energy, primary energy demand and 

others. In general, the aim is for a high energy standard but also to reduce the operational CO2. Thus, 

the optimized solution is to adopt recycled materials, characterized by low embodied CO, as the 

minimization of energy demands in the use phase resulted in an increase in the embodied CO2 of the 

building due to the increase in materials and other installations. 

As mentioned in Sharif et al. [78], the research on this topic regarding LCA and the impact 

categories required in rating system assessment could increase in the next years, and in future 

developments, to make a connection between the BIM integration of impact data and the specific 

requirements for mandatory building labels or voluntary rating systems. 

4. Conclusions and Main Remarks 

This paper was based on a paper review regarding the integration of BIM-LCA, by selecting 

scientific papers published during the period 2007–2019 and analysing different parameters related 

to the BIM model data and LCA approach. With a methodological point of view, the review 

schematized the adopted workflow of published studies using key parameters to offer the scientific 

community a framework of all possible approaches used. Some general remarks arose from the 

review according to each parameter considered. 

First, the review presented evidence of a general framework of the topic. The workflows adopted 

by the research were heterogenous, even if valid in relation to the context and background. A possible 

explanation is due to the aim of the research, the data availability, and the boundary conditions of 

the research related to the design stage and to the database choice. In this sense, the review showed 

and described the research trends and discussed the common and widespread approaches, 

identifying the main features. 

Certain BIM-LCA integration approaches referred to the early design modeling while others 

focused on the detailed stage since BIM provides capabilities to model basic and detailed building 

case-studies. The review shows how the trend of recent years has shifted from a focus on the early 

stage to the detailed stage, and in some cases the authors take into consideration both approaches. 

The early stage is characterized by less effort and more flexibility to allow stakeholders in the 

evaluation of different scenarios and a choice of materials to achieve sustainable buildings and low 

environmental impacts. The detailed stage, instead, provides an advanced knowledge of the 

building. Therefore, the application on detailed stages requires more accurate data to define the LCA 

analysis and needs different workflows in terms of the tools and database. This approach can lead to 

halving the environmental results previously assessed in the early stage as an obvious consequence. 
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Complex workflows will be one of the most developed scenario in future research in terms of the 

interoperability in BIM, especially in the development of tools and methodology to establish the 

automatic quantity take-off as recently introduced in research by Hollberg et al. [12,116]. 

The LOD was demonstrated to be the key concept of BIM-LCA integration. The review remarked 

on the close relation between the choice of the LOD and the design stage set for the case study. A low 

level (LOD 100 or 200) could help to estimate the environmental impacts in the earlier design stage. 

This led to the effective comparison of the different buildings design scenarios on the environmental 

point of view, and it could help to select more sustainable materials for different building assemblies 

and modify the detailed building (LOD 300 or above) to reduce the environmental impacts. 

One of the major problems is the lack of available LCA software integrated in BIM tools. The 

BIM integration certainly simplifies and facilitates the execution; however, the integration must be 

improved to obtain more reliable and comparable results to those obtained from dedicated software 

for LCA (GaBi or SimaPro for example).  

Regarding tool adoption, Autodesk Revit is the most used by researchers, supported by owned 

plugins and APIs, such as Tally, and has a satisfactory performance despite not being as reliable as 

dedicated LCA software. It simplifies the work by allowing the designer to perform environmental 

assessments of the construction choices directly from the BIM environment, without having to make 

other intermediate steps. The ability to use LCA analysis from the earliest stages of design gives the 

opportunity to improve the long-term sustainability of buildings. A different widespread workflow 

used the export take-off data, provided by Revit, managed by spreadsheet (such as Microsoft Excel) 

or by developing external tools to achieve LCA analysis by external software. 

The choice of functional unit is more coherent in case of analysis of complete building because 

it describes the overall environmental impact. Moreover, a complete building gives an exhaustive 

frame of design options to identify the categories and the components where to reduce the 

environmental impact. 

The analysis of the LCA stage suggested a link with the design stage and the LOD. In the case 

of early design, or in the case of LOD 200 or below, the LCA information for phase A was relevant to 

define the workflow of the building design. In the case of detailed design, or in the case of LOD 300 

or above, the evaluation of phase B should be absolutely considered for an accurate LCA assessment 

of the whole building. This point was supported by Stevanovic et al. [82]: the case study revealed that 

the environmental impact was primarily caused by electricity use for the appliances and lighting, 

cleaning processes and material production. 

Globally the most used databases were Ecoinvent and Athena, for different reasons. On the one 

hand, Ecoinvent is widely available on most of the platforms and tools, such as SimaPro, One Click 

LCA, and Open LCA. On the other hand, Athena is largely adopted for its exhaustive databases and 

calculation tool for the American building sector. 

The widespread adoption of EPDs is relevant due to the specific implication of datasets strictly 

related to country production and markets and also because the user can select EPD data sources 

relevant to the actual material properties. The trend in the recent research was to adopt a commercial 

database, improving the dataset with national ones, such as Belgian [79], Norway [74], China [75], 

Switzerland [57], UK [109] and Brazil [77]. 

BIM-LCA software must have more databases. In accordance with Cavalliere [57], in order to 

carry out LCA analysis in all phases of the design, databases should be added with information at 

various levels of detail to allow a quick and agile adoption during the design stages to obtain the best 

solution. 

Finally, the review underlines that BIM-LCA integration needs future developments in order to 

standardize processes and to allow the end user to easy manage environmental data; in fact the 

complex workflows, that combine BIM models for the quantification of building materials, 

environmental databases and LCA tools, have the advantage of including more environmental 

impact categories but still have the disadvantage of requiring more manual editing. 
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This section contains, in detail, the collected data in the analysis phase and study of the selected 

papers according to the declared parameters (Table A1). 
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Table A1. Collected data according to the analysis parameters. 

Reference 
Early or Detailed 

Design Stage  
LOD Tool Impact Functional Unit Database LCA Phase 

Seo et al., 2007 

[41] 
Early n/a 

Graphisoft Archicad, Eco-

indicator 99 tool 

Human Health, 

Ecosystem Quality, 

Resourse Use 

Complete Building Australian LCID n/a 

Wang et al, 

2011 [98] 
n/a n/a 

Autodesk Revit, Autodesk 

Ecotect 
COE, EE, PEC, PED Complete Building BEDEC database 

A1–A3, B1, B6–

B7 

Jrade and 

Abdulla, 2012 

[117] 

Early n/a 

Autodesk Revit, IFC analyser, 

MS Excel, Athena 

EcoCalculator, Athena IE 

GWP, AP, HH, EP, 

ODP, S 
Wall, Door Athena IE LCID n/a 

Shrivastava and 

Chini, 2012 

[118] 

Early n/a Autodesk Revit EE Complete Building 
Canadian Architect 

Database 
A1–A3 

Jrade and 

Jalaei, 2013 

[119] 

Early n/a 
Autodesk Revit, MS Excel, 

Athena IE 

AP, EP, GWP, HH, 

ODP, PEC, PCSP, 

REP, WRRU 

Complete Building Athena IE LCID A1–A3, B6–B7 

Basbagill et al., 

2013 [64] 
Early n/a 

DProfiler, eQuest, SimaPro, 

RSMeans, Athena 

EcoCalculator 

GWP, NREC, HT, 

AP, EP, EE 
Complete Building Athena IE LCID 

A1–A3, B1–B5, 

B6–B7 

Iddon and 

Firth, 2013 [106] 
Early n/a Other BIM Tool, MS Excel ECOE, OCOE Complete Building ICE A1–A3, B6 

Abanda et al., 

2014 [120] 
Detailed  n/a Autodesk Revit, MS Excel ECOE, EE Complete Building ICE 

A1–A3, A4–A5, 

B1–B5, B6–B7, 

C1–C4, D 

Antón and 

Díaz, 2014 [66] 
Early n/a 

DProfiler, SimaPro, Athena 

EcoCalculator 
EIF Complete Building Athena IE LCID 

A1–A3, B1–B5, 

B6–B7, 

Houlihan 

Wiberg et al., 

2014 [58] 

Detailed  n/a 
Autodesk Revit, MS Excel, 

SIMIEN, SimaPro 7.3 
ECOE, OCOE 

1Mq of heated floor 

area 
Ecoinvent 2.2 A1–A3, B4, B6, 

Jalaei and 

Jrade, 2014 

[121] 

Early n/a 

Autodesk Revit, Autodesk 

Ecotect, IESVE, MS Excel, 

Athena IE 

AP, EP, GWP, HH, 

ODP, PEC, PCSP, 

REP, WRRU 

Complete Building Athena IE LCID A1–A3, B6, 

Ajayi et al., 

2015 [63] 
Early 200 

Autodesk Revit, GBS, MS 

Excel, Athena IE 
GWP, HH Complete Building Athena IE LCID 

A1–A3, B1–B5, 

B6–B7 
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Lee et al., 2015 

[71] 
Detailed  300 Autodesk Revit 

ADP, AP, EP, GWP, 

ODP, POCP 
Complete Building Korea LCI 

A1–A3, A4–A5, 

B1–B5, B6–B7, 

C1–C4 

Shafiq et al., 

2015 [107] 
Early n/a Autodesk Revit, MS Excel ECOE, EE Complete Building ICE A1–A3, A4 

Shin and Cho, 

2015 [89] 
Early n/a Graphisoft Archicad, MS Excel COE Complete Building Korea LCI 

A1–A3, A4–A5, 

B1–B5, B6 

Georges et al., 

2015 [62] 
Detailed  n/a 

Autodesk Revit, MS Excel, 

SIMIEN, SimaPro 7.3 
ECOE, EE, OCOE 1mq of HFA Ecoinvent 2.2 

A1–A3, B1, B4, 

B6 

Peng, 2016 [96] Detailed  n/a 
Autodesk Revit, Autodesk 

Ecotect 
COE Complete Building ICE 

A1–A3, A4–A5, 

B1–B5, B6–B7, 

C1–C4 

Shadram et al., 

2016 [122] 
Detailed  n/a 

Autodesk Revit, Power Pivot, 

FME, Google Maps API 
ECOE, EE Complete Building EPD inventory A1–A3, A4 

Schultz et al., 

2016 [47] 
Early n/a 

Autodesk Revit, Tally, Athena 

IE 

GWP, ODP, AP, EP, 

PEC, SMP, PENRT 
Wall 

Australian LCID 

Athena IE LCID 

GaBi 

n/a 

Abanda et al., 

2017 [61] 
Detailed  n/a 

Autodesk Revit, Navisworks, 

MS Excel, Autodesk API 
ECOE, EE Complete Building ICE n/a 

Basbagill et al., 

2017 [90] 
Early n/a 

DProfiler, Cost lab, eQUEST, 

SimaPro, Athena 

EcoCalculator, MS Excel 

EE, EIF Complete Building Athena IE LCID 
A1–A3, B1–B5, 

B6–B7 

Marzouk et al., 

2017 [97] 
Detailed  n/a 

Autodesk Revit, SQL, DB link 

for MS access, Athena IE, MS 

Excel, Visual Studio 

COE, AP, PM, EM, 

ODP, S, PSP 
Complete Building Athena IE LCID 

A1–A3, A4–A5, 

B1–B5, B6–B7, 

C1–C4 

Najjar et al., 

2017 [100] 
Early n/a Autodesk Revit, Tally, GBS 

AP, EP, GWP, ODP, 

SMP, PET, PERT, 

PENRT 

Complete Building GaBi 
A1–A3, B1–B5, 

B6–B7, C1–C4 

Bueno and 

Fabricio, 2018 

[39] 

Early n/a 
Autodesk Revit, Autodesk 

Dynamo, Tally  

AP, EP, GWP, ODP, 

PED, RED 
Wall 

Ecoinvent 

GaBi 
n/a 

Santos et al., 

2018 [24] 
Detailed  n/a 

Autodesk Revit, Autodesk 

Dynamo, MS Excel, Tally 

AP, EP, GWP, ODP, 

PED, PER-NRE, 

ADPele 

Wall 
GaBi 

EPD 
A1–A3 

Soust-

Verdaguer et 

al., 2018 [40] 

Detailed  300 Graphisoft Archicad, MS Excel 
GWP, ODP, 

FAETP, HTTP 
 Ecoinvent 2.0 

A1–A3, A4–A5, 

B2–B4, B6, C1, 

C2, C4 
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Cavalliere et al., 

2018 [31] 
Detailed  n/a Autodesk Revit, SimaPro 

AP, EP, GWP, HH, 

ODP, PEC, PCSP, 

REP, WRRU 

whole external wall Ecoinvent 3 n/a 

Röck et al., 2018 

Rock [72] 
Early 200 

Autodesk Revit, Autodesk 

Dynamo, MS Excel 
GWP Complete Building SIA MB 2032 database n/a 

Shadram and 

Mukkavaara 

2018, [99] 

Detailed  n/a 

Autodesk Revit, Autodesk 

Dynamo, MySQL, 

Grasshopper, Slingshot, 

Archsim, Octopus, Energy 

plus 

EE, OE Complete Building ICE 
A1–A3, B1, B4, 

B6–B7 

Bueno et al., 

2018 [65] 
Early n/a 

Autodesk Revit, Autodesk 

Dynamo, MS Excel 

ReciPe midpoit 

indicators 

Wall and Roofing 

system 
Ecoinvent n/a 

Eleftheriadis et 

al., 2018 [93] 
Early n/a Autodesk Revit, MS Excel ECE, ECOE 1mq of GFA EPD A1–A3 

Nizam et al., 

2018 [108] 
Early n/a 

Autodesk Revit, External 

Database 
EE Complete Building 

ICE 

Chinese Handbook 
A1–A3, A4–A5 

Panteli et al., 

2018 [33] 
Early n/a Autodesk Revit, Insight 

GWP, AP, EP, ODP, 

ADPele, ADPfoss, 

TETP, FAETP, 

HTTP, MAETP, 

POCP 

Complete Building EcoHestia LCID A1–A3, A4–A5 

Dalla Mora et 

al., 2018 [48] 
Early 200 

Autodesk Revit, OneClick 

LCA, Tally 
GWP, PED Complete Building 

Ecoinvent 2.2 

GaBi 

A1–A3, A5, 

B2–B4, C1–C4, 

Santos et al., 

2019 [73] 
Detailed  300 

Autodesk Revit, LCA/LCC 

prototype tool 

ADPE, ADPM, AP, 

EP, GWP, ODP, 

POCP, PE-NRE, PE-

RE, PED 

Complete Building, 

m2 for building 

components, m3 for 

reinforced concrete  

EPD-Belgium  

Ecoinvent 

A1–A3, A4–A5, 

B2–B4, B6–B7, 

C2–C4, D 

Nilsen and 

Bohne, 2019 

[74] 

Early 

200–

300–

350 

Autodesk Revit, OneClick 

LCA 
GWP 

m3 for building 

materials 
EPD-Norway A1–A3 

Lu et al., 2019 

[75] 
Early 300 

Autodesk Revit, spreadsheet, 

Glodon GTJ2018 
COE n/a 

China Carbon Emission 

Estimator for Residential 

Buildings (CEERB), carbon 

emission coefficient (CEC) 

database 

A1–A3, A4–A5, 

B1–B5, B6–B7, 

C1–C4, D 
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Lu and Wang, 

2019 [76] 
Early 300 

Autodesk Revit, spreadsheet, 

Glodon GTJ2018 
COE n/a 

China Carbon Emission 

Estimator for Residential 

Buildings (CEERB), carbon 

emission coefficient (CEC) 

database 

A1–A3, A4–A5, 

B1–B5, B6–B7, 

C1–C4, D 

Rezaei et al., 

2019 [59] 
Early and Detailed 

100, 

300 
Autodesk Revit, OpenLCA 

Impact by Impact 

2002+ method 
Complete building 

Ecoinvent 3.3 for Québec or 

North America 

A1–A3, A4–A5, 

B1–B5, B6–B7, 

C1–C4, D 

Cavalliere et al., 

2019 [57] 
Early and Detailed 

100–

200–

300–

400 

other BIM tool, 3D Rhinoceros, 

MS Excel 
GWP 

m2 of heated floor 

area 

Swiss Buildings Database, 

KBOB and Bauteilkatalog, 

based on Ecoinvent 3.3 

background data s 

A1–A3, B4, 

C3–C4 

Kim, 2019 [109] Detailed  n/a 
Autodesk Revit 2016, LCA 

LCC IES IMPACT 
ECOE Complete building 

UK IES IMPACT dataset 

provided by BRE, 

ICE 

A (cradle-to-

site) and B 

(cradle-to-

grave) 

Di Bari et al., 

2019 [68] 
Early n/a 

other BIM tool, SBS-online 

tool, MS Excel 
GWP Complete building GaBi 3 n/a 

Stevanovic et 

al., 2019 [82] 
Detailed  n/a 

Autodesk Revit, Autodesk 

Design Review 2013, MS Excel, 

Belgian MMG+_KULeuven 

tool, SimaPro 8.3 

CEN and CEN+ 

categories (mainly 

GWP, PE, AP, HTP, 

PM) 

€/unit Ecoinvent 2.2 

A1–A3, A4–A5, 

B2, B4, B5, B6–

B7, C1–C3. 

Gomes et al., 

2019 [77] 
Detailed  300 

Autodesk Revit Architecture 

2016 
 Complete building EPD-Brasil 

A1–A3, A4–A5, 

B1–B5, C1–C2 

Galiano-

Garrigós et al., 

2019 [60] 

Early and Detailed n/a Autodesk Revit, MS Excel EE, EC Complete ICE n/a 

Hasik et al., 

2019 [110] 
Detailed  n/a Autodesk Revit, Tally 

AP, EP, GWP, ODP, 

SMP, NRED 
Complete GaBi 

A1–A3, A4, 

B2–B5, C2–C4, 

D 

Sharif and 

Hammad, 2019 

[78] 

Detailed  300 
Autodesk Revit, Design 

Builder, Athena IE 
GWP, EE, OE Complete 

ICE 

Athena IE LCID 

A1–A3, A5, 

B1–B5, B6–B7, 

C1, C3–C4 

M. K. Najjar et 

al., 2019 [87] 
Early n/a 

Autodesk Revit, Open LCA 

1.5.0 

Impact 2002+, ILCD 

2011 methods 
Complete Ecoinvent 3 

A1–A3, A4–A5, 

B1–B5, B6–B7, 

C1–C4 
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Jalaei et al., 

2019 [113] 
Detailed  n/a 

Autodesk Revit, Navisworks, 

Athena IE 

GWP, AP, HH, EP, 

ODP, SMP 
Complete Athena IE LCID 

A4–A5, B1–B5, 

B6–B7, C1–C4 

M. Najjar et al., 

2019 [111] 
Early n/a 

Autodesk Revit, GBS, Open 

LCA 1.5.0 

Impact 2002+, ILCD 

2011 methods 
Complete Ecoinvent 3 

A1–A3, A4–A5, 

B1–B5, B6–B7, 

C1–C4 

Abbreviations: ADP, Abiotic Depletion Potential; ADPele, Abiotic Depletion Potential—elements; ADPfoss, Abiotic Depletion Potential—fossil; AP, Acidification 

Potential; COE, CO2 Emissions; ECE, Embodied Carbon Emission; ECOE, Embodied CO2 Emissions; EE, Embodied Energy; EFP, Effects Potential; EIF, Embodied 

Impact Factor; EP, Eutrophication Potential; FAETP, Fresh water Aquatic Ecotoxicity Potential; GHG, Greenhouse Gases; GWP, Global Warming Potential; HH, 

Human Health; HTP, Human toxicity potential; MAETP, Marine Aquatic Ecotoxicity Potential; NRED, Non-Renewable Energy Demand; OCOE, Operative CO2 

Emissions; ODP, Ozone Depletion Potential; OE, Operational Energy; PED, Primary Energy Delivery; PET, Total Primary Energy; PCSP, Photo-chemical Smog 

Potential; PEC, Primary Energy Consumption; PERT, Total renewable primary energy; PENRT, Total Non-Renewable Primary Energy; PM, Particular Matter; 

POCP, Photochemical Ozone Creation Potential; REP, Respiratory Effects Potential; S, Smog; SMP, Smog Formation Potential; WRRU, Weighted Raw Resource Use; 

FEW, freshwater aquatic ecotoxicity; HT, human toxicity; GBS, Green Building Studio; Athena IE, Athena Impact Estimator; EPD, Environmental Product 

Declaration. 
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