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A finite element method for a weakly nonlinear dynamic

analysis of thermo-acoustic instability in longitudinal

and annular combustors
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aPolitecnico di Bari, 70125 Via Re David, 200, Bari (Ba), Italy
bProduct Development Turbomachinery and Combustion, Ansaldo Sviluppo Energia S.r.l,
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Abstract

Low-frequency nonlinear dynamics of thermo-acoustic modes in longitu-

dinal and annular combustors have been intensively studied experimentally,

numerically, and theoretically to better understand the mechanisms leading

to limit cycles. This article presents a numerical procedure based on a finite

element method able to perform weakly nonlinear analysis of longitudinal

as well as multi-burner annular combustors considering complex nonlinear

flame models. At first the proposed numerical procedure is validated in a

longitudinal configuration against analytical results obtained in a low-order

framework, nonlinear flame models with a third-order and of a fifth-order

polynomial with time delays are assumed. Subsequently, the ability of the

proposed numerical approach to treat complex combustion systems with in-

dependent flames is verified on an annular configuration equipped with twelve

burners. In both configurations, at the variation of the acoustic-combustion

interaction index n, the amplitudes of velocity fluctuations of the predicted
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limit cycles are plotted against the control parameter to track the bifurca-

tion diagrams. Regardless of the configuration, supercritical and subcritical

bifurcations are obtained depending of the chosen flame model. In a second

step, the influence on the bifurcation trajectories of the time delay and of

the amount of acoustic damping is investigated. Results reveal an influence

of both parameters on the position of the Hopf bifurcation points and of the

fold points and also an impact on the limit cycle amplitude of the velocity

fluctuations.

Keywords: Thermo-acoustic instabilities, Helmholtz solver, Longitudinal

combustor, Annular combustor, Limit cycles, Bifurcation diagrams

1. Introduction

Lean premixed combustors used in modern gas turbines for power genera-1

tion and aero-engines are often affected by combustion instabilities generated2

by mutual interactions between pressure fluctuations (p′) and heat release3

rate oscillations (q̇′) produced by the flame [1, 2, 3]. Many theoretical and4

numerical studies are focused on the analysis of limit cycles of low-frequency5

instabilities considering simple longitudinal configurations assuming theoret-6

ical flame response models [4, 5, 6, 7]. The main difficulty to perform these7

analyses is the definition of the model used to describe the response of the8

flame to acoustic perturbations [8]. If a linear response is assumed, a sta-9

bility analysis can be performed in order to identify the frequency at which10

the system is unstable meaning that pressure oscillations may start after in-11

finitesimally small disturbances [9, 10, 11, 12]. However, linear tools cannot12

account for finite amplitude effects on the oscillation frequency and cannot13
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predict the fluctuations level. These features can be examined by combining14

an acoustic model of the system with a nonlinear description of the flame15

dynamics [13, 7]. The evaluation of a suitable nonlinear flame model for a16

given combustor is, probably, one of the most challenging task of the study of17

thermo-acoustic combustion instability. In annular configurations more diffi-18

culties arise due to the presence of multiple flames which respond collectively19

over a wide frequency range [14]. The present study deals with these difficul-20

ties developing a numerical approach able to perform limit cycle calculations21

considering complex nonlinear flame models with time delays in combina-22

tion with a Helmholtz solver, using this framework to calculate the limit23

cycle conditions and the bifurcation diagrams of a single burner longitudinal24

combustor and of a more complex multi-burner annular configuration.25

At this point, it is worth briefly reviewing some recent investigations26

of nonlinear flame models. First studies on the transition to the limit cycle27

were carried out in solid fuel rocket motors by Culick who observed that some28

stable motors would suddenly jump to a self-sustained oscillation state, when29

pulsed [15]. Since in rocket engines the oscillations have such high amplitudes30

that the gas dynamics is nonlinear, he considered nonlinear gas dynamics31

and linear flame models. Nonlinear combustion models were later taken into32

account [16], assuming that the heat release rate was a quadratic or rectified33

(modulus sign) function of the fluctuating velocity or pressure.34

The bifurcation diagram can be helpful for understanding the influence35

of nonlinear flame model, since it shows the amplitude of limit cycles as a36

function of control parameters. This is useful if there is a known bound37

on the acceptable oscillation amplitude. It also shows whether the point38
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of linear instability (the so called Hopf bifurcation point) is supercritical39

or subcritical. This is an important qualitative distinction because: in a40

subcritical system, high amplitude oscillations occur suddenly when the state41

becomes linearly unstable and even when the system is linearly stable; in a42

supercritical system, amplitude oscillations occur only when the system is43

linearly unstable [17].44

In the years several techniques have been proposed in order to track45

the bifurcation diagrams. Due to the complexity of the problem most of46

them deals with longitudinal combustor characterized by one single source47

of heat release rate. Subcritical bifurcation is obtained by Moeck et al. [18]48

performing a systematic variation of parameters and tracking direct time49

integration. However this method is computationally expensive.50

Another method for obtaining the bifurcation diagrams is numerical con-51

tinuation [16, 19, 20]. This approach is based on the iterative solution of a52

set of parameterized nonlinear equations given an initial guess. The diagram53

is tracked varying a parameter and including the solutions which satisfy the54

set of equations for a given state of the system. The unstable limit cycle can55

also be computed. Compared to other methods, it is very efficient in obtain-56

ing the dependence of the solution from the control parameter. However,57

it takes a long time to map the bifurcation diagram and it can be also too58

computationally expensive. Thanks to improvements in the method and in59

the parallel computing, continuation methods are likely to become important60

tools in nonlinear analysis of thermo-acoustics [21].61

Juniper [21] and Subramanian et al. [22] used DDE-BIFTOOL, which is a62

software based on the numerical continuation methods for delay systems [23].63
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The steady state of the system is evaluated through the Newton-Raphson64

scheme and the steady state solution is used for tracking the bifurcation di-65

agram as the control parameter varies. The use of low-order network models66

to map the bifurcation diagram as a function of a control parameter has67

been shown by Campa and Juniper [24]. Instead of numerically integrate the68

fully non-linear equations governing the phenomenon, the authors proposed69

a weakly nonlinear approach consisting in a linear eigenvalue analysis around70

a non-linear steady state of the system. This approach, less computationally71

expensive than the continuation method, will be used in this work. Subra-72

manian et al. [5] has analyzed subcritical transition to instability relating73

the non-linearity in the model with the criticality of the ensuing bifurca-74

tion, starting from the equation of Stuart-Landau. They also identify the75

parameter regions where triggering is possible using the method of harmonic76

balance.77

The Flame Describing Function (FDF) approach was developed to re-78

produce the limit cycles experimentally observed [25]. The stability map79

of a burner with an unconfined flame [26] and of a burner with a confined80

flame [27, 28] was obtained by using flame describing functions. Recently this81

methodology was applied to the case of turbulent premixed swirled flames82

[7, 29]. Additionally, a diffusion flame characterizing a Rijke tube has been83

modeled by means of flame describing function to get the stability map [30].84

Nonlinear effects induced by nonstandard types of fluctuations in a multiple85

flame combustor equipped with a perforated plate were investigated by Kabi-86

raj et al. [31]. Very recently, Heckl [32] has modeled the measured Flame87

Describing Function by Noiray et al. [26] with an entirely analytical approach,88
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finding the pattern of the oscillation regimes in parameter space, such as fre-89

quency and amplitude of limit cycles at different conditions. However, it90

should be notice that a FDF does not provide only the flame response of a91

specific combustor but is also a description of the entire burner area, includ-92

ing the effects of flame confinement, heat losses and interaction of the flame93

with the walls, all aspects that make the FDF linked to the specific combustor94

and operating conditions at which the measurements are performed.95

Very few are the works in which a nonlinear analysis is performed on96

an annular combustor. The problem may be simplified by considering only97

one single azimuthal mode described by Van der Pol oscillator equations98

coupled with a nonlinear flame model expressed in terms of pressure pertur-99

bation. Results in [33, 34, 35] indicate that this approach is able to predict100

both spinning and standing unstable modes depending on the nonlinearity101

and nonuniformity in the flame response. Recently, Bourgouin et al. [36]102

managed to introduce in their analytical one-dimensional framework a more103

reliable experimental Flame Describing Function (FDF) however the heat re-104

lease rate from the different burners is considered uniformly distributed over105

the circumference of the annular chamber. Following this approach, the spin-106

ning instability recorded during experiments of the laboratory scale MICCA107

annular combustor was reproduced in terms of frequency and amplitude of108

velocity fluctuations at the limit cycle. Multiple independent flames are con-109

sidered in the acoustic network modeling approach developed by Parmentier110

et al. [37] followed by Bauerheim et al. [38]. They presented however, only111

a linear stability analysis of spinning and standing modes assuming a sim-112

ple time delay n-τ dynamical response. Three dimensional geometries may113
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be analyzed by means a Helmholtz solver approach. In the time domain114

Pankiewitz and Sattelmayer [39], examined a three-dimensional combustion115

chamber, predicting the amplitude of limit cycles determined by a nonlinear116

flame model with a very simple saturation mechanism. Campa and Cam-117

poreale [10, 40] performed a linear stability analysis of a practical annular118

combustor assuming a distributed flame transfer function. On the compu-119

tational level, Large-Eddy Simulation (LES) codes have been used to inves-120

tigate combustion instability by suitably calculating pressure oscillations in121

combination with turbulent combustion phenomena [41, 42]. Large numerical122

resources are, however, required.123

The present article specifically reports a numerical technique able to per-124

form a weakly nonlinear analysis of thermo-acoustic combustion instabilities125

in a Helmholtz solver framework. In the frequency domain, the limit cycle126

condition, i.e. the condition in which the growth rate α equals zero, is pre-127

dicted solving the damped inhomogeneous Helmholtz equation coupled with128

two theoretical nonlinear flame models derived multiplying a linear n-τ flame129

transfer function (FTF) with a third-order and fifth-order polynomial expres-130

sion which saturate the gain of the FTF with the increase of the amplitude131

of velocity fluctuations |û/u|. At first the analysis is performed on a lon-132

gitudinal combustor. Varying the acoustic-combustion interaction index n,133

the bifurcation diagrams are tracked assuming both nonlinear flame models.134

In a second step, for the first time, the analysis is conducted in an annular135

combustor with indipendent flames proving the feasibility of the presented136

numerical approach also for multiple flames configurations. In both configu-137

rations, the influence on the predicted limit cycles of the time delays and of138
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the damping level considered in the systems is also investigated. The article139

is organized as follow. After an overview of the nonlinear analysis theory140

presented in Section 2, the thermo-acoustic theory and the description of141

the flame models used in the study are presented in Section 3. Results are142

discussed in Section 4 for both configurations analyzed.143

2. Nonlinear analysis144

The behaviour of a nonlinear unstable system can change as a control145

parameter varies. These qualitative changes in the system dynamics are146

called bifurcations and the parameter values at which they occur is called147

bifurcation point [17].148

Figure 1 shows two diagrams, describing the bifurcation dynamics as a149

function of a control parameter R. The variable on the y-axis is the steady150

state amplitude of the system, which is the limit cycle amplitude. At low151

values of R the system tends to a zero amplitude stable solution (solid line152

in Fig. 1). When R reaches the Hopf bifurcation point, the solution of the153

system becomes unstable. Increasing the value of the control parameter, the154

solution at zero amplitude remains unstable (dashed line in Fig. 1) and the155

system starts to oscillate reaching the steady state amplitude (solid line at156

non-zero amplitudes), known as the limit cycle or the stable periodic solution.157

158

The nonlinear behavior around the Hopf bifurcation point determines two159

different types of bifurcation and how the system answers to nonlinear per-160

turbations. The first type is the supercritical bifurcation (Fig. 1a), which161

is characterized by a gradually increase of the amplitude once reached the162
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Figure 1: Steady state oscillation amplitude as a function of R for (a) a supercritical

bifurcation and (b) a subcritical bifurcation [24]. As the control parameter R is increased,

the system follows the red arrow path. As it is decreased, the system follows the blue

arrow path.

Hopf point. In this condition, all perturbations imposed on the system tend163

to decay to zero only if the Hopf point is not reached, otherwise all the per-164

turbations reach a new stable periodic solution at the limit cycle equilibrium.165

The second type of behavior is the subcritical bifurcation (Fig. 1b), which is166

characterized by a sudden increase of the steady state amplitude at the Hopf167

point. Once reached the limit cycle equilibrium, the perturbations imposed168

on the system continue to reach a stable periodic solution even for values of169

R lower than the one corresponding to the Hopf point, until the fold point is170

reached. For values of R lower than the one corresponding to the fold point,171

all perturbations decay to zero, as shown by the blue arrow path in Fig. 1b.172

The dashed line at non-zero amplitudes in Fig. 1b is known as the unsta-173

ble periodic solution [17]. If the system is triggered to an amplitude below174

the unstable periodic solution, the imposed perturbations tend to decay to175

zero. Otherwise, the imposed perturbations tend to grow reaching the stable176

periodic solution.177
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Considering the condition of a subcritical bifurcation as in Fig. 1b, the178

behaviour of the growth rate as a function of the amplitude for a generic179

value of the control parameter in the bi-stable zone is shown in Fig. 2. As180

well described by Strogatz [17], two fixed points can be observed referring to181

periodic solutions: the fixed point indicated with a full point refers to a stable182

periodic solution, the fixed point indicated with a hollow point refers to an183

unstable periodic solution. It can also be observed that if the derivative of the184

growth rate to the amplitude at a constant control parameter is positive, the185

fixed point is an unstable periodic solution. If the derivative of the growth186

rate to the amplitude at a constant control parameter is negative, the fixed187

point is a stable periodic solution.

Figure 2: Growth rate (α) as a function of the amplitude for a generic value of the control

parameter in the bistable zone, when a subcritical bifurcation occurs.

188
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3. The thermo-acoustic problem: Helmholtz solver approach189

The derivation of the mathematical model used for thermo-acoustic stud-190

ies will be briefly discussed in this section. The complete formulation can be191

found in other works [12, 43].192

The fluid is regarded as an ideal gas. The effects of viscosity, thermal193

diffusivity and heat transfer with walls are neglected, the mean pressure is194

assumed uniform in the domain. The mean flow velocity u is assumed much195

lower than the speed of sound (hypothesis that is generally verified in the196

combustion chamber of gas turbines [2]), so its influence on the propagation197

of the pressure waves inside the duct is negligible. Under such hypotheses,198

in presence of heat fluctuations, the inhomogeneous wave equation can be199

obtained [12]200

1

c2
∂2p′

∂t2
− ρ∇ ·

(
1

ρ
∇p′
)

=
γ − 1

c2
∂q̇′

∂t
, (1)

where p′ is the pressure fluctuation, q̇′ is the heat release rate fluctuation201

per unit volume, γ is the ratio of specific heats, ρ is the density and c is202

the speed of sound. The effects of losses due to viscous and thermal bound-203

ary layers can be modelled making use of suitable acoustic impedance as204

boundary conditions. Here, aiming at analyzing the effects of damping, for205

one dimensional combustion systems, the first derivative of p′ in Eq. (1) is206

multiplied by a nondimensional damping coefficient ζ [44], giving207

1

c2
∂2p′

∂t2
+

ζ

cL
∂p′

∂t
− ρ∇ ·

(
1

ρ
∇p′
)

=
γ − 1

c2
∂q̇′

∂t
, (2)

where L is the characteristic dimension of the analysed system. In this208

work, L is assumed equal to the radius in the longitudinal configuration209
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and to
√
R2
ex −R2

in in case of the annular combustor, being Rex and Rin,210

respectively, the external and the internal radius of the annulus domain in211

which ζ is considered. The damping coefficient for jth mode is modelled as212

ζj = c1j
2 + c2j

1/2 (3)

where c1 and c2 are assumed constant for each mode. In this study, the213

damping coefficients ζ is varied from 0.03 to 0.3. More information on these214

coefficients can be found in [45]. This is the only damping mechanism con-215

sidered in this study. In all configurations analysed, either p′ or u′ are set216

to zero at the boundaries of the computational domain, so that the energy217

acoustic flux (f=p′u′) through the boundaries is null [43].218

In the present article, the thermo-acoustic problem is solved in the fre-219

quency domain. The fluctuating variables are expressed by complex functions220

of time and position with a sinusoidal form: p′=<(p̂ exp(iωt)), where ω is a221

angular frequency. Applying the harmonic analysis for p′ and q̇′ in Eq. (2)222

the damped inhomogeneous Helmholtz equation is obtained in the frequency223

domain224

λ2

c2
p̂− λζ

cL
p̂− ρ∇ ·

(
1

ρ
∇p̂
)

= −γ − 1

c2
λˆ̇q (4)

where λ = −iω. With the definition of the flame model, Eq. (4) yields a225

classical linear stability problem at the eigenvalues λ [17]. In the eigenvalue226

problem, ω is a complex angular frequency, its real part gives the frequency of227

the oscillations, f=<(ω)/2π Hz, while the imaginary part of ω corresponds228

to the growth rate α=−=(ω)/2π s−1 parameter that governs the stability229

the system, considering that the damping is directly model in the solved230

equations. If α is positive, the acoustic mode is unstable so the amplitude of231

12



fluctuations grows with time. If α is negative, the acoustic mode is stable,232

i.e., perturbations decay with time. A limit cycle condition is reached when233

α=0.234

3.1. The linear flame model235

In the frequency domain, the linear flame model is assumed as the classical236

n-τ model [2, 46]237

ˆ̇q

q̇
= −nûi

ui
exp(−iωrτ), (5)

where n is the acoustic-combustion interaction index, τ the time delay be-238

tween the velocity fluctuations in a reference point ûi and the heat release239

rate fluctuations ˆ̇q. The minus sign derives by the definition of the n-τ model240

in terms of fluctuations of equivalence ratio φ̂/φ=−û/u [47]. In order to ex-241

amine only the phase shift induced by the flame and considering that always242

time delays smaller than the period of the analysed mode are assumed only243

the real part (ωr) of the angular frequency ω is considered in the flame model244

of Eq. (5). The FTFs so modelled can be directly compared with the mea-245

sured FTFs that are also defined in terms of the frequency of ωr of the forcing246

signal used to measure the flame response [48].247

3.2. The nonlinear flame models248

Following Dowling [13], a theoretical nonlinear flame model is expressed249

as the product of the linear flame transfer function (TL(ωr)) shown in Eq. (5),250

which depends only on frequency, by another function that depends only on251

the amplitude of velocity fluctuations taken at the same reference point i252
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defined in Eq. (5)1. This function is referred as Nonlinear Flame Transfer253

Function NFTF(|û/u|) [24, 49] and introduce a saturation of the gain G of254

the FTF with the increase of the amplitude of velocity fluctuations |û/u|.255

Under these assumptions, the analytical frame describing function becomes256

T NLflame(ωr, |û/u|) = TL(ωr) · NFTF(|û/u|). (6)

The NFTF function derives directly from the nonlinearity introduced257

into the flame model and it can be computed taking the first order of the258

Fourier transform of the flame model formulated in the time domain (more259

details can be found in the Appendix 1). Hereafter are reported the NFTF260

functions for two flame models used in this study in which the heat release261

rate fluctuations are related to the velocity fluctuations through a third-262

order and a fifth-order polynomial law. In both cases, only the influence263

of the odd-powered polynomial terms are examined because, although even-264

powered polynomial terms are physically admissible, their contribution to265

the acoustic energy integrates to zero over a cycle, as can be observed in266

Appendix 1. The nonlinear flame model in which the third-powered term is267

the highest order is268

q̇′(t)

q̇
= −n

[
µ2

(
u′(t− τ)

u

)3

+ µ0
u′(t− τ)

u

]
, (7)

where the coefficient µ0 is chosen equal to unity noting that for |û/u| →0269

the nonlinear flame model should tends to the linear model. The coefficient270

µ2 is negative and its value is related to the effects of saturation of the flame271

1In the remaining part of the article the subscript i will be omitted to improved the

readability of equations.
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response with large velocity fluctuations that are observed [44]. A parametric272

system identification technique based on engine data can be used, as proposed273

by Noiray et al. [35], in order to evaluate the third-order polynomial flame274

model. In this study µ2=−2. The function NFTF for this model (algebraic275

steps are shown in the Appendix 1) results276

NFTF =
3

4
µ2|û/u|2 + µ0. (8)

The pattern of the NFTF function of Eq. (7) is shown in Fig. 3. Only277

positive values of the amplitude |û/u| are considered to ensure the physical278

meaning of the flame model. It is possible to observe that the NFTF man-279

ifests a monotone decreasing pattern for increasing amplitudes until zero is280

reached for |û/u|=0.81. The NFTF is assumed null also for higher values of281

amplitude of velocity fluctuations.

Figure 3: Pattern of the NFTF function for the third-order polynomial flame model of

Eq. (7) with µ0=1 and µ2=-2.

282

The nonlinear flame model in which the fifth-powered term is the highest283

order is284

q̇′(t)

q̇
= −n

[
µ4

(
u′(t− τ)

u

)5

+ µ2

(
u′(t− τ)

u

)3

+ µ0
u′(t− τ)

u

]
, (9)
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where µ4, µ2 and µ0 are coefficients equal to −5, 5 and 1, respectively. The285

function NFTF for this model (see Appendix 1) is286

NFTF =
5

8
µ4|û/u|4 +

3

4
µ2|û/u|2 + µ0. (10)

The pattern of the NFTF function of Eq. (7) is shown in Fig. 4. Differently287

from the previous case shown in Fig. 3 the function has an initial increase288

reaching its maximum value, after which it decreases until zero is reached at289

|û/u|=1.19.

Figure 4: Patterns of the NFTF function for the fifth-order polynomial flame model of

Eq. (9) with µ0=1, µ2=5 and µ4=-5.

290

3.3. Linear and weakly nonlinear stability analysis291

The numerical analysis is carried out by using the finite element method

(FEM) based the commercial software Comsol Multiphysics. This code solves

the classical Helmholtz equation in which the heat release rate fluctuations

are treated as pressure source. In order to include the damping, the second

term of the Eq. (2) (−λζ/cLp̂) is considered on the RHS of the equation

16



together with the heat release rate fluctuations

λ2

c2
p̂− ρ∇ ·

(
1

ρ
∇p̂
)

=−γ − 1

c2
λˆ̇q +

λζ

cL
p̂

ˆ̇q = q̇
û

u
NFTFe−iωrτ

iωû+
1

ρ
∇p̂ = 0

(11)

(12)

(13)

The finite element discretization of this set of equations along with the bound-292

ary conditions results to the following eigenvalue problem [9]293

[A] P + ω [B(ω)] P + ω2 [C ] P = [D(ω)] P, (14)

where P is the pressure eigenmodes vector, the matrices [A] and [C ] contain294

coefficients originating from the discretization of the Helmholtz equation,295

[B(ω)] is the matrix of the boundary conditions and of the damping and296

[D(ω)] represents source term due to the unsteady heat release rate. In case297

of a linear stability analysis, i.e., assuming |û/u| →0, the NFTF equals unity298

and Eq. (12) can be directly used to model the heat release rate fluctuations299

in Eq. (11). However, with the introduction of the heat release the eigenvalue300

problem of Eq. (14) becomes nonlinear and is solved with an iterative algo-301

rithm. At the kth iteration equation (14) is first reduced to a linear eigenvalue302

problem around a specific frequency Ωk303

([A] + Ωk [B(Ωk)]− [D(Ωk)]) P + ω2
k [C ] P = 0, (15)

where Ωk = ωk−1 is the previous iteration result. The software uses the304

ARPACK numerical routine for large-scale eigenvalue problems. This is305

based on a variant of the Arnoldi algorithm, called the implicit restarted306
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Arnoldi method [50]. This procedure is iterated until the error defined by307

ε = |ωk − Ωk| is lower than a specific value, typically 10−6.308

For finite value of velocity fluctuations, the NFTF of Eq. (12) depends309

on the value of |û/u|. As already shown in previous works [7, 29] the weakly310

nonlinear approach allows to couple a linear tool, i.e., the eigenvalue analysis,311

with a nonlinear function linearizing the nonlinear term. This is obtained312

performing the eigenvalue analysis assuming an initial guess for the value of313

velocity fluctuations |û/u| and reiterating this analysis increasing |û/u| until314

the limit cycle condition, i.e., α=0 condition, is reached. For the calculation315

of the bifurcation diagrams, this numerical procedure is performed for each316

value of the acoustic-combustion interaction index n.317

4. Results and discussion318

The nonlinear behaviour of the flame modes of the third-order polynomial319

and fifth-order polynomial will be investigated. Two different configurations320

are examined: a longitudinal combustor with a single heat release zone and321

an annular combustor with multiple burners.322

4.1. The longitudinal combustor323

The first configuration analysed is a simple longitudinal combustor with324

a compact flame located in a narrow domain at around one quarter of the325

tube length, which is 3 m [10, 12]. Figure 5 shows the computational mesh326

and the location of the heat release is highlighted. The temperature increases327

from 300 K to 700 K across the combustion zone. An open condition, p′=0,328

is assumed at the inlet section and outlet section of the domain.329
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Figure 5: Computational mesh of the longitudinal combustor. The flame location is

highlighted in blue.

Figure 6: Frequency and growth rate (α) of the first eigenmode of the longitudinal com-

bustor considering the flame model of Eq. (6) under the hypothesis of |û/u| →0.

At first, under the assumption of |û/u| →0, a linear stability analysis is330

performed considering the linear flame transfer function expressed in Eq. (5).331
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Considering the compactness of the flame, the time delay τ is assumed con-332

stant in the flame model. This analysis is useful to have a better comprehen-333

sion of the influence on the system of the time delay and of the damping. In334

Fig. 6, the growth rate (α) is plotted against the frequency for the first axial335

mode of the system for different values of time delay τ , which is expressed336

normalized against the period of the mode T . The time delay τ is varied in337

order to keep τ/T from 0 to 1. The patterns are tracked for two values of338

the damping coefficient: ζ equal to 0.02 and 0.1. The acoustic-combustion339

interaction index n is kept equal to unity for this analysis. Figure 6 shows340

that frequency and growth rate decrease or increase depending on the value341

of the time delay assumed. Circular patterns like the ones found in [7] are342

found. This result is due to the chosen FTF where only the real part of343

the frequency is considered. Increasing the damping coefficient results in344

a vertical shift of the patterns towards more stable condition, i.e., growth345

rates decrease. The frequencies remain constant (frequency shifts are under346

1 Hz). This is justified remembering that the frequency variation depends on347

the ratio between α/ωr. If α/ωr �1 the complex frequency ω ∼ ωr [51]. It348

should be notice that for the analysed condition this ratio is always far below349

the unity, e.g., in the condition where the absolute value of α is maximum350

α/frequency ∼ 8/75 ∼ 0.07.351

When a finite level of velocity fluctuations is considered in the model, a352

harmonic base weakly nonlinear stability analysis is performed and the bifur-353

cation diagrams are mapped considering the acoustic-combustion interaction354

index n as the control parameter. Figure 8 shows the bifurcation diagram355

when the nonlinear flame model of Eq. (8), in which the third-powered term356
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is the highest order, is introduced. A supercritical bifurcation is observed.357

The influence of the damping coefficient ζ and the time delay τ is examined358

and results are reported in Fig. 8a and Fig. 8b, respectively. In both dia-359

grams, the rectangular marks indicate the position of the Hopf bifurcation360

point. For a fixed value of time delay equal to 11 ms (τ/T=0.78), the damp-361

ing coefficient ζ is varied from 0 to 0.3. The black dashed line in Fig. 8a362

corresponds to the zero-damping condition, i.e., ζ=0. It is possible to ob-363

serve that the system is unstable for any value of the control parameter n364

except for the condition with n=0. Furthermore, the amplitude of the limit365

cycle is constant and corresponds to the value that saturates the gain of the366

nonlinear flame model (the NFTF function) and nullifies the heat release rate367

fluctuations, as it is possible to observer in Fig. 8. For the specific case, this368

value of |û/u| is equal to 0.81. When considering ζ non-zero, the position of369

the Hopf point moves towards higher values of the control parameter n as370

the damping level increases. For higher value of the acoustic-combustion in-371

teraction index, the increase of the energy dissipation rate causes a reduction372

of the amplitude of oscillations. However, due to the nonlinear saturation of373

the heat release rate, regardless the damping level, the amplitude |û/u| tends374

asymptotically to the value, which saturates the heat release rate. In Fig. 8b375

for a fixed value of ζ=0.1 the time delay is varied from 8 ms to 13 ms. Starting376

from the condition in which the maximum amplitude of velocity fluctuation377

is registered, i.e., τ=11 ms, which corresponds to the more unstable condi-378

tion in the linear stability analysis, an increase or decrease of the time delay379

produces a shift of the transition point at higher levels of the coefficient n380

and a decrease of the amplitude of velocity fluctuation for a given value of n.381
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Table 1 summarize the values of the frequencies in the Hopf point (fHopf ).382

As shown in Fig. 6 the damping has small influence in the frequency, which383

varies only with the time delay τ . In particular, starting from the condition384

with the time delay equal to 8 ms, a reduction of the frequency is registered385

increasing τ . Figure 7 shows the wave shape of the resonant mode in the386

condition with τ=11 ms.387

Table 1: Frequencies at the Hopf point (fHopf ) for the nonlinear flame model of Eq. (7) for

different time delays τ . Time delays are expressed in milliseconds. Frequencies in Hertz

(Hz).

τ=8 τ=9 τ=10 τ=11 τ=12 τ=13

fHopf 74.8 73.6 72.7 71.5 69.5 66

Figure 7: Normalized absolute pressure of the first longitudinal mode of the combustion

chamber considering a time delay equal to 11 ms.

A different behaviour is registered when the nonlinear flame model of388

Eq. 9, in which the fifth-power term is the highest order, is introduced into389

the model. In this case, the system undergoes a subcritical bifurcation as390

is shown in Fig. 9. The continuous black lines indicate the stable branch of391

the diagram, while the unstable branch is reported with dashed lines. Both392

the Hopf bifurcation point and the fold bifurcation point are indicated with393
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(a)

(b)

Figure 8: Bifurcation surfaces when the nonlinear flame model of Eq. (7) is considered.

(a) influence of the damping coefficient ζ with a time delay τ=11 ms; (b) influence of the

time delay τ with ζ=0.1.

rectangular marks. Starting from the Hopf bifurcation point, the proposed394

numerical technique is able to converge also in the unstable zone of the395

diagram. Also for this case a sensitivity analysis to the damping coefficient396

ζ and the time delay τ is performed. Similar to the previous case, in Fig. 9a397

for a fixed value of time delay of 11 ms, the damping coefficient ζ is varied398
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from zero to 0.3. If no damping is considered, the system results always399

unstable except for the case with n=0 (dashed line in Fig. 9a). Differently400

from the previous flame model, the saturation of the NFTF function occurs401

at a higher amplitude value equals to 1.19 as it is possible to observe from402

Fig. 4. Increasing the damping level results in a shift towards higher values403

of the control parameter n of both the Hopf bifurcation point and the fold404

point. On the contrary, the velocity amplitude |û/u| corresponding to the405

fold bifurcation point is not influenced by the level of the damping. This406

behaviour is typical of systems that manifest a subcritical bifurcation as407

shown in Subramanian et al. [5] where similar results are found for a different408

flame model and with a different methodology. As noticed with the first409

nonlinear flame model, the amplitude of the stable limit cycle solution tends410

to be the same for all the cases at high values of n. In Fig. 9b for a fixed411

value of ζ=0.1 the time delay is varied from 8 ms to 13 ms. Again, starting412

from the more unstable condition at τ=11 ms, a variation of the time delay413

induces a shift of the Hopf point and the fold point towards higher level of414

n. The amplitude of the fold bifurcations remains constant.415

To verify these results, the two flame models of Eq. (7) and Eq. (9) are416

considered in the Low-order code “OSCILOS” [52]. Only the bifurcations417

diagrams with ζ=0.1 and τ=11 ms are computed in the analytic framework418

assuming similar for the other configurations. Since in the low-order code the419

acoustic waves are modelled as 1-D plane waves without the possibility to420

add the damping term of Eq.(11), the eigenvalue procedure is reiterated for421

different amplitude levels starting from |û/u|=0 and incrementing this value422

until a limit cycle condition which is reached when α=δ with the damping423
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(a)

(b)

Figure 9: Bifurcation surfaces when the nonlinear flame model of Eq. (9) is considered.

(a) influence of the damping coefficient ζ with time delay τ=11 ms; (b) influence of the

time delay τ with a damping coefficient ζ=0.1.

rate δ=2.22 s−1 computed by means of simulations in the Helmholtz solver424

under “passive flame” conditions, i.e., considering only the steady combus-425

tion process with ˆ̇q=0 in Eq. (11). Figure 10 shows that there is a perfect426

overlap between the analytical results and the results of the Helmholtz solver427

calculations, for the supercritical and the subcritical case.428
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(a) (b)

Figure 10: Comparison between the supercritical (a) and subcritical (b) bifurcation dia-

grams assuming τ=11 ms and ζ=0.1 computed with the Helmholtz solver (red line) and

the analytical low-order code “OSCILOS” (black line).

4.2. Annular Combustion Chamber429

The Helmholtz solver approach allows the nonlinear analysis on complex430

geometries that can be also characterized by the presence of multiple flames.431

In this section, the nonlinear behaviour of an annular combustor character-432

ized by a plenum and an annular combustion chamber connected by a ring433

of twelve straight ducts (representing the burners) is analysed. The geo-434

metrical configuration is similar to the one introduced by Pankiewitz and435

Sattelmayer [39]. The mean diameter is 0.437 m, the external diameter of436

the plenum is 0.540 m and of the combustion chamber is 0.480 m. The length437

of the plenum is 0.200 m and of the combustion chamber is 0.300 m. Each438

burner has a diameter of 0.026 m and a length of 0.030 m. Temperature in the439

combustion chamber is 2.89 times the temperature on the plenum. Flame is440

assumed to be concentrated in a narrow zone at the entrance of the combus-441
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(a)

(b)

Figure 11: (a) Sketch of the annular combustion chamber. (b) Computational grid and

flame zone highlighted in red. One of the twelve sectors, in which the flame zone is divided,

is highlighted in blue.

tion chamber, as shown in Fig. 11, it is composed of twelve equal parts, one442

corresponding to each burner and, differently from what is done with other443

approaches [34, 35, 36] in each of them the flame model is defined. In so444

doing the heat release rate fluctuations are coupled to the velocity fluctua-445

tions of the corresponding burner, following the ISAAC (Independence Sector446

Assumption in Annular Combustors) assumption, introduced by Sensiau et447

al. [53]. This assumption states that the heat release rate fluctuations in a448

given sector [of the combustion chamber] are only driven by the fluctuating449

mass flow rates due to the velocity perturbations through its own swirler. Fur-450

thermore, following Wolf et al. [54] only the axial component of the velocity451

fluctuations is assumed to influence the flame dynamics. In the model, the452
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reference point for the velocity fluctuations is considered in the middle of the453

burner, where the injection of the premixed mixture is usually located. In454

this work all burner are assumed to undergo the same velocity fluctuations455

level feature that is proper of a spinning mode [36]. Annular combustors can456

feature also standing and mixed azimuthal instabilities [14, 35] in which the457

burners operate with different amplitude of velocity fluctuations depending458

on the relative position with respect to the nodal line. Once the distribution459

of the velocity fluctuations is accounted, the numerical procedure to track the460

limit cycle conditions is identical to the one proposed in this article. In the461

analysed configuration, closed-end inlet and outlet are assumed as boundary462

conditions (u′=0). Losses due to viscous and thermal boundary layers are463

considered in the entire computational domain. In the plenum and in the464

combustion chamber a characteristic length (L) of 0.212 m and 0.137 m, re-465

spectively, is used in the damping term of Eq. (11). Mean flow is neglected

Table 2: Frequencies of the first four modes of the annular combustor. Subscript “p”

stands for plenum and “cc” for the combustion chamber

Mode Shape (1,0,0) (0,1p,0) (0,1cc,0) (0,2,0)

Frequency Hz 309.4 446.5 734.8 839.3

466

also in this case. Table 2 shows the first four modes of the system without467

heat release rate fluctuations. Eigenmodes are denoted with the nomencla-468

ture (l,m, n), where l, m and n are, respectively, the orders of the pure axial,469

circumferential and radial modes.470

For such configuration the most interesting mode is the first azimuthal471
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Figure 12: Wave shapes shifted of π/2 of the first azimuthal degenerate mode of the

combustion chamber (mode (1,1,0) in Tab. 2) reported in terms of normalized acoustic

pressure.

(a) (b)

Figure 13: Frequency (a) and growth rate (α) (b) of the azimuthal mode in the combustion

chamber for |û/u| →0.

mode in the combustion chamber (mode (0,1cc,0) in Tab. 2), since it is the472

most prone mode to experience instabilities in practical machines [40]. Fig-473

ure 13 shows the results frequencies and growth rates of the linear stability474
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analysis (|û/u| →0) considering a damping coefficient ζ=0.02 and two differ-475

ent values for the combustion-acoustic interaction index n. The time delay476

is varied from τ/T=0 to τ/T=2. In order to analyse the results of Fig. 13,477

following Lieuwen et al. [55], if the inlet section of the injector connected478

to a large plenum can be approximated as a pressure node, in the linear479

case without damping the regions of instability is predicted in bands where480

Ck − 1/4 < τ/T < Ck + 1/4, being Ck=k-1/4 (k=1,2,...). In Fig. 13, due481

to the presence of the damping, results are different. With n=0.25, the482

mode is unstable only for 0.65< τ/T <0.9 and 1.65< τ/T <1.9 (dashed483

lines in Fig. 13). Increasing the interaction index results a shift towards484

more unstable conditions. Assuming an interaction index n=0.5 the regions485

of instabilities predicted by Lieuwen et al. [55] are obtained (solid lines in486

Fig. 13). So, in this configuration, the system passes from stable to unsta-487

ble conditions for τ/T = k − 1/2 (k=1,2,...), while from unstable to stable488

conditions for τ/T=k (k =1,2,...). It means that each of these conditions489

can be identified as bifurcation points in the nonlinear case. With the as-490

sumption of considering the same amplitude of velocity fluctuations for each491

burner the circumferential symmetry of the system is conserved. For each492

level of velocity fluctuations |û/u|, the eigenvalue analysis for the first az-493

imuthal mode is degenerate. Combining the two mode structures shifted of494

π/2 shown in Fig. 12, a spinning mode is obtained [38]. Two conditions are495

taken into account: τ/T=0.74 and τ/T=0.91. The bifurcation diagrams for496

these two cases are tracked and shown in Fig. 14 considering both the flame497

models of Eq. (7) and Eq. (9). Again, a supercritical and a subcritical bifur-498

cation occurs. The limit cycle for the two configurations occurs at different499
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frequency which remain constant increasing of the control parameter: in the500

case of τ/T=0.74, it occurs at 735.9 Hz; in the case of τ/T=0.91, it occurs501

at 713.6 Hz. The influence of the time delay is again on the position of the502

Hopf point and fold point: a shift towards high value of n is observed with a503

higher τ/T is considered. In the subcritical bifurcation case, as for the longi-504

tudinal configuration, the amplitude of the fold point remains constant. Also505

in this configuration, the influence of the time delay decreases increasing the506

acoustic-combustion interaction index n. Both curves tends asymptotically507

to the value, which saturates the NFTF.508

(a) (b)

Figure 14: Bifurcation diagrams of the first azimuthal mode in the combustion chamber of

the annular combustion chamber in Fig. 11 with: (a) the nonlinear flame model of Eq. (9);

(b) the nonlinear flame model of Eq. (7).
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5. Conclusions509

A numerical approach based on the use of the Helmholtz solver in order510

to study the limit cycles of longitudinal and azimuthal modes is presented511

in this article. The numerical procedure has been implemented in a FEM512

code able to treat any kind of three-dimensional geometries, with single and513

multiple burners. At first on a simple longitudinal combustor has been ex-514

amined considering two nonlinear flame models consisting of a time delayed515

third-order polynomial and fifth-order polynomial saturation law. For this516

case, the bifurcation diagrams have been tracked evaluating the amplitude of517

the limit cycles at assuming the acoustic-combustion interaction index n as518

control variable. Two kinds of bifurcation have been found, depending on the519

nonlinear flame model. The third-order polynomial law features a supercrit-520

ical bifurcation, whereas, the fifth-order polynomial nonlinear flame model521

features a subcritical bifurcation. The numerical approaches have been val-522

idating comparing the results against bifurcation diagrams obtained in the523

same configuration with an analytical tool. In a second step, an annular524

combustor equipped with twelve independent burners have been considered525

proving the ability of the proposed numerical technique to study the limit526

cycles occurring also in multiple flames configurations. The influence on the527

bifurcation of the time delay of the flame model and of the amount of damp-528

ing considered in the system have been, subsequently, investigated in both529

configurations. As expected, increasing the damping coefficient, the ampli-530

tude of |û/u| at limit cycles decreases. The time delay mainly influences the531

position of the Hopf bifurcation point and, in case of a subcritical bifurca-532

tion, of the fold point. On the contrary, the amplitude of the limit cycle at533
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the fold point are not influenced by variations of the time delay. In both bi-534

furcation behaviours at high values of the control parameter, the influence of535

the time delay and of the damping coefficient is low. The amplitude of limit536

cycles tends asymptotically to the value which nullifies the heat release rate537

fluctuations due to the saturation process induced by the nonlinear terms.538

The proposed approach proves to be able to treat nonlinear problems with539

simple configurations and, differently from other approaches described in the540

literature, more complex multi-burner configurations can be analysed mak-541

ing the described numerical approach to be also employed in an industrial542

environment. Numerical and experimental data can be introduced into the543

simulation model, performing parametric analyses which can be helpful both544

in the design and in the check stage of a burner.545

Appendix 1: Nonlinear flame model derivation546

Let consider the nonlinear flame model in Eq. (7) where the third-powered547

term is the highest order. The flame model is converted into the frequency548

domain assuming the flame response to a harmonic input549

u′(t) = Re(ûeiωt) = |û| cos(ωt). (16)

For finite disturbances, the flame model q̇′(t) may not be pure harmonic but550

is still periodic and hence it can be described by a Fourier series:551

q̇′(t) = Re

( ∞∑
m=0

ˆ̇qmeimωt
)
, (17)

where m is the order of the harmonics. Let now consider the first harmonic552

ˆ̇q(1). The nonlinear flame transfer function NFTF to be derived is a function553
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of frequency and amplitude |û/u|. The first Fourier coefficient is written as554

ˆ̇q(1) =
ω

π

∫ 2π/ω

0

q̇′eiωtdt. (18)

Introducing Eq. (16), Eq. (17) and the nonlinear flame model in Eq. (7),555

and considering the property of the Fourier transform that F (u′(t − τ)) =556

F (u′(t))e−iωτ it is shown that557

ˆ̇q(1) =
ω

π

∫ 2π/ω

0

−nq̇e−iωτ
(
µ2

∣∣∣∣ ûu
∣∣∣∣2 cos2(ωt) + µ0

) ∣∣∣∣ ûu
∣∣∣∣ cos(ωt)

(
cos(ωt)+

+ i sin(ωt)

)
dt = −nq̇

∣∣∣∣ ûu
∣∣∣∣ e−iωτ(ωπ

∫ 2π/ω

0

µ2 cos4(ωt)

∣∣∣∣ ûu
∣∣∣∣2 dt+

+
ω

π

∫ 2π/ω

0

µ0 cos2(ωt)dt

)
,

(19)

where the imaginary term disappears because the integral from 0 to 2π of558

the product of cosine and sine is null. Additionally, it can be observed that559

even-powered polynomial terms are not mathematically admissible, because560

the cosine function is an even function and so the integral of its even-powered561

terms between 0 and 2π is null. Solving the integrals in Eq. (19) and consid-562

ering that ˆ̇qL=−nq̇|û/u|e−iωτ563

ˆ̇q(1) = ˆ̇qL
(

3

4
µ2

∣∣∣∣ ûu
∣∣∣∣2 + µ0

)
, (20)

which is the nonlinear flame model T NLflame(ω, |û/u|) of Eq. (6). Hence the564

function NFTF shown in Eq. (8) is obtained.565

For the nonlinear flame model in Eq. (9) where the fifth-powered term566

is the highest order, considering the same assumption made for the first567

nonlinear flame model, the first Fourier coefficient for the second nonlinear568

34



flame model is written as569

ˆ̇q(1) =
ω

π

∫ 2π/ω

0

−nq̇e−iωτ
(
µ4

∣∣∣∣ ûu
∣∣∣∣4 cos4(ωt) + µ2

∣∣∣∣ ûu
∣∣∣∣2 cos2(ωt) + µ0

)
∣∣∣∣ ûu
∣∣∣∣ cos(ωt)

(
cos(ωt) + i sin(ωt)

)
dt = −nq̇

∣∣∣∣ ûu
∣∣∣∣ e−iωτ(ωπ

∫ 2π/ω

0

µ4

cos6(ωt)

∣∣∣∣ ûu
∣∣∣∣4 dt+

ω

π

∫ 2π/ω

0

µ2 cos4(ωt)

∣∣∣∣ ûu
∣∣∣∣2 dt+

ω

π

∫ 2π/ω

0

µ0 cos2(ωt)dt

)
,

(21)

where the imaginary term disappears because the integral from 0 to 2π of the570

product of cosine and sine is null. Again, solving the integrals and considering571

that ˆ̇qL=−nq̇|û/u|e−iωτ572

ˆ̇q(1) = ˆ̇qL
(

5

8
µ4

∣∣∣∣ ûu
∣∣∣∣4 +

3

4
µ2

∣∣∣∣ ûu
∣∣∣∣2 + µ0

)
, (22)

which is the (nonlinear) flame transfer function T NLflame(ω, |û/u|) of Eq .(6).573

Hence the function NFTF shown in Eq. (8) is obtained.574
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