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Abstract Multimedia streaming of three-dimensional (3-D) stereoscopic
videos over last-generation networks subject to bandwidth limitations is an
open problem. The development and spread of communication networks and
devices that accept 3-D videos is not supported by proper scheduling strategies.
Namely, the high variability of streams should be considered to reduce effects
of network delays, packet losses, shortage of bandwidth resources, and shared
use by multiple clients. Then, it is important to improve the characterization
of 3-D videos for more effective streaming. To this aim, this paper proposes
a fractional exponential reduction moments approach (FERMA) based on the
statistics of the so-called fractional moments. Each random sequence of frames
in 3-D videos can be analyzed and reduced to a finite set of parameters, that
allow fitting to the sequence by exponential functions and then a characteriza-
tion and classification of the video by a sort of fingerprint. The method does
not depend on the format and the encoding technique of the video. Finally,
the approach will allow comparing real streams and numerical data output
from fractional dynamical models by means of the reduced parameters: statis-
tical proximity between time series and a fractional model or between different
models simplifies formalization and classification of fractional models.
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1 Introduction

Research on multimedia streaming over wired/wireless last-generation mobile
networks is motivated by complex problems posed by technology advances.
Namely, developments are fast, multimedia services on advanced mobile ter-
minals continuously grow, and structure and operation of networks become
complex [8]. Moreover, multimedia reproduction requires high Quality of Ser-
vice (QoS) performance indices and a reduced impact of the permanent prob-
lems in a classical client-server architecture (delays, packet losses, shortage of
bandwidth resources, contemporaneous use by multiple users, etc.).

These problems are emphasized by three-dimensional (3-D) stereoscopic
videos that are very important for entertainment, medicine and surgery, in-
dustrial processes, etc. Effective streaming on fixed (T'V sets) or mobile (smart-
phones, tablets) terminals requires to properly process the available informa-
tion and to choose an adequate scheduling algorithm. Namely, the amount
of data for 3-D video frames is higher than for two-dimensional (2-D) ones.
In addition, more bandwidth is required from resources on the network links,
and video compression and formats generate highly Variable Bit Rate (VBR)
streams [19,29]. VBR and bandwidth limitations were considered [9], but few
works focused on the specific topic regarding 3-D videos [5,6].

To develop simple theoretical models and to properly assign bandwidth
resources so that an efficient VBR 3-D video streaming achieves a high QoS, a
statistical characterization of the 3-D frames sequence can be of great help [2].
Moreover, it is helpful for reducing complexity of the schedulers that control
data transmission. However, few works analyze the statistical properties of
3-D data flows. Long memory properties, or Long Range Dependence, of com-
pressed 3-D flows were characterized by estimating the Hurst parameter: the
drawback is that the empirical computation methods assume asymptotic con-
vergence of the sample size and, hence, a stationary process [27]. There exist
also several methods that analyze long time series when there is no mathemat-
ical model of the process generating the data. For example, computation of
Lyapunov exponents from time series [32]. But some limiting assumptions are
often required. In other cases, algorithms extract useful hidden information
and parameters from biological signals [23], signals related to delivery of drugs
[24], and signals for other biomedical applications [25].

Moreover, the state-of-the-art literature proposes the detrended fluctua-
tion analysis (DFA) [26,27] for reducing long time series. DFA was applied to
different kinds of data [4,11,12,16,28,1] and can be considered as an exten-
sion of the Hurst analysis in [27], then it suffers from the same drawbacks of
the Hurst parameter computation. Moreover, it is suitable to catch only the
correlation properties on large time scales, i.e. if the trends of the time series
are slowly varying. However, this is a specific property of a time series. So, it
substantially differs from the goal herein to capture all the statistical trends
of the considered 3-D videos. Then, the idea behind this work is to develop a
totally new approach that is free from the drawbacks and limitations of DFA.
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A novel method is developed by exploiting the idea underlying the statistics
of the fractional moments [20] to provide a more reliable fitting and a robust
set of the reduced parameters. The purpose is twofold. Firstly, the analysis
should help to identify a fractional behavior in absence of a process model.
Secondly, the aim is to reduce each sequence of 3-D video frames to a finite and
stable set of parameters that encapsulate the statistical properties of the 3-D
video. Then, the method is named Fractional Exponential Reduction Moments
Approach (FERMA). It is straightforward and robust, and aims at generating
a “fingerprint” for each 3-D video. A small number of parameters represent the
statistical properties, whichever are the video and the length of the time series
associated to the sequence of frames. This result is very important because:

a) the fingerprint allows to identify the main features of the stream, depending
on the compression degree, the format, and the type of represented scenes;

b) different kinds of streams can be identified according to the ranges of vari-
ation of the fingerprint parameters, then a classification of streams is pos-
sible;

¢) scheduling of 3-D video streams and bitrate control can benefit from fin-
gerprint identification and classification, i.e. a feedback system can regu-
late the transmission bitrate to obtain the same statistical properties at
receiver’s side as those that characterize the video at transmission side.
Then a fingerprint-based strategy can increase the user QoS.

It is also remarkable the relationship between the FERMA approach and
fractional dynamics models that can describe some phenomenon under anal-
ysis. Namely, assume to obtain numerical data from a known model, say a
fractional model, and to compare them with other data available from real
experiments (or from a different model). Assume also that the dynamic equa-
tions of the fractional model for the second set of data are unknown. Then,
the generality of FERMA provides the unique possibility to compare one set
of data (generated from the known fractional equations) with another set. The
comparison between large sets of data is possible because the final set of the
reduced parameters is relatively small. If the parameters obtained for the two
sets are close to each other, then one conclude about the closeness of the an-
alyzed data/models, then the second set has the same fractional behavior as
in the first set. In the opposite case, data are not similar and can be rejected.
Here the flexibility of the new approach is also stressed. If some set of stable
parameters are not sufficient for model identification of the compared data,
then the cumulative data obtained by integration or differentiation of initial
data can be used to receive an additional set of parameters. The advantages of
these options are illustrated below in the paper. It can be concluded that this
paper sets the basis of a methodology, even if well formalized fractional order
models of 3-D video streaming are not available yet, as far as the authors are
aware. However, it is intuitive to conjecture about the fractional nature of the
process if one considers several studies and results [3], [10].

The rest of the paper is organized as follows. Sections 2.1 and 2.2 describe
the reduction procedure to identify the set of fingerprint parameters and the
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classification method to group similar data sequences, respectively. Section 2.3
shows how to obtain further statistically different sequences. Section 3 shows
simulation results with different compression techniques and formats of 3-D
videos. Remarks are also made on relevant points for future developments
related to the streaming control. Finally, Section 4 concludes the paper.

2 Reduction and classification of random 3-D video streams

In this section, the reduction of a random 3-D video sequence of frames to
a finite set of stable parameters is synthesized by an effective procedure and
used to classify videos by a clusterization method. The reduction must face the
fact that modern technologies and terminals allow receiving and reproducing
long sequences of data (video frames) that constitute a long time series which
is available for statistical analysis. On the other hand, the existing statistical
methods are not capable of easily managing large amounts of data: typically,
random sequences of 10° — 10% data points and more must be processed to ex-
tract the useful information. Therefore, new approaches are required to reduce
the data to a finite reduced and stable set of few fitting parameters (say, 10
to 20 parameters), that allow us to establish properties of the stream. In this
way, different streams can be compared to find the “qualitative” presence of an
external factor that affects some streams (maybe the altered ones with respect
to the original video frame sequence) and to quantitatively express this factor
by means of the identified parameters. Moreover, after reduction, a problem
of clusterization originates. Namely, if distinct identified sets of reduced pa-
rameters are strongly-correlated one with another, then it is necessary to form
clusters between these sets and hence further reduce the complexity of the
representation of distinct streams.

2.1 The reduction procedure

The proposed method is based on the statistics of the fractional moments,
based on the idea originally presented in [20]. Consider a sequence of N data
points with or without a clearly expressed trend. The matter is to find &
points in the sequence, so that the k£ moments taken from this new set of
points coincide with the & moments derived from the NN initial points. This
occurs if the following condition holds true [20]:

N

YI)P+ (Yo)P + ...+ (Yi)P 1

(Y1) (Q)k (Yk) :A%):NZ(%V p=1,2 ...,k (1)
j=1

The set {Y;,s = 1, 2,..., k} represents the reduced set of k& < N unknown
points, while {y;,7 =1, 2,..., N} is the set of points in the initial sequence.
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Obviously, for the simplest case k = 2, it follows:
Y1) +(Ya) 1 N
O = AR = 350 (5)  (forp=1)

2 (2)
Y1) (Y, 2

CUSRE = AR = & 35 (u)? (for p=2)
that easily leads to AS\%) - (A&”) = (Y1 —Y3)?/4. Since V12 = (Y1 +Y2)/2+
(Y7 —Y5)/2, the analytical solution is:

2
Vo= A+ /2@ - (a)) ®

Instead, the analytical solution of (1) for k > 2 is not always possible. For k =
3,4, the Cardano and Ferrari formulas can be used. For k£ > 4, only numerical
solutions can be provided. If & is sufficiently large (k > 10), any procedure
for calculating the roots of a k-th order polynomial represents an ill-posed
problem and therefore is numerically unstable [15]. However, the numerical
solution to system (1) can be determined by a different formulation of the
problem. Namely, restate (1) more generally as:

wy (Y1)” +ws (Y2)” + ...+ wy (V) Zws
~ L =Ayx(z) 2=0,1,2,...,k
N Z (ymaw) w(@)
j=1
k
with A\, = In(Y;) and Z ws = 1, where w, are normalized statistical weights
s=1

and Ag exponents, for s = 1,2,... k. In this way, (4) establishes the problem
of determining a reduced set of 2k unknown parameters (ws, \s), for s =
1,2,...,k, by using the normalized initial sequence of values (V;/Ymaaz), for
j=1,2,...,N, that define Ay (z) and the moments z, with 0 < z < k. Note
that system (4) provides an approximate solution by employing the total set
of the moments z from [0, k], including the fractional ones.

The main benefit of the proposed algorithm is that the unknown exponents
can be easily computed in a linear way. Namely, it is possible to redefine (4)
as follows:

k
An(z) = fo(x) + Eo(2) = w, e + Z weer® x=0,1,2,....k (5)

q=1,q9#s

where the s-th Weight and exponent are separated from the other ones. Given
that fs(x ) = wS e?s? it follows de(x) = X; fs(x) so that one integration gives
fs(x) = )+ As fo fs(u)du and expression (5) gives:

An(@) _/\/AN Vdu + Z By +C, (6)

q=1,q#s
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k k
As
with Bye = w, (1- ) and Cy = £,0) + wt=1- Y By
q=1,q7s 1 q=1,q%#s

fors=1,2,...,k.

The previous formulas can then be used to iteratively compute the un-
known fitting parameters {As,s = 1,2,...,k} by applying the linear least
square method (LLSM). Namely, (6) can be explicitly written as:

Ay(z) — 1= )\1/ Ay (u)du
)

AN(J?) — 1= AQ / AN(U)CZU,—}- B172 (e>\1.’c — 1)

0 (7)

w k—1
AN(as)flz)\k/ AN(u)dquZB%k (ekqul)
0 ot

that is solved by LLSM to find the exponents {As,s = 1,2,...,k} and the
coefficients By, (¢ = 1,2,...,k—1). Moreover, to correct the computed values
and further adjust the approximate values of the exponents, the normalized
statistical weights can be considered and the LLSM is again applied by using
the following expression:

k
Ay(r) =M+ 3wy (M — M) (8)
q=2

The unknown value of k£ can be found by considering all positive statistical
weights and by minimizing the percentage relative fitting error:

k
stddev (AN(:L‘) — Z Wy e)‘qm>
min F(k) = min =1

wy>0 wg>0 mean (An(x))

100% (9)

To synthesize, the reduction procedure is defined by (7)-(9) and solves (4) to
determine the reduced set of parameters {(ws, As),s =1,2,...,k}, k < N.

2.2 The clusterization method

The similar time series of 3-D video frames can be grouped together by using
a complete correlation factor, based on an accurate selection that takes into
account internal correlation between sequences. To this aim, the generalized
Pearson correlation function (GPCF) is used [21,22] based on generalized mean
value (GMV) functions:

GMVP(Sl, 82)

GPCEFE, = 10
r \/GMV})(sl,sl)GM%(82732) (10)
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where the GMV function of K-th order is

1
N momyp

1
GMV,(s1,82,...,5k) = N Z |nrm;(s1)nrm;(sa) -+ - nrm;(sk)

Jj=1

|momp

(11)

that employs normalized sequences nrm;(y), with 0 < nrm;(y) < 1, and the

current value of the moment, i.e. mom,,. More specifically, for j =1,2,..., N,
it holds:
Lo~ D
T _ max‘yj—i-.yj ' min(y; —|y, 12
i) LY (for initial positive sequence) (12)
max (y; —min(y;))

where y; denotes the initial random sequence that can contain a trend or
that is to be compared with another trendless sequence. The initial sequences
are chosen like follows. The minimum of the GMV function is zero, while the
maximum coincides with the maximum of the normalized sequence. Moreover,
the set of moments is computed as follows:

momp:eL"p,an:mn—!—%(mx—mn) p=0,1,...,P (13)
so that L, takes values between (mn) and (mz) that define the limits of the
moments in the uniform logarithmic scale. Usually, mn = —15, ma = 15, and
50 < P < 100. This choice is because the transition region of the random
sequences that are expressed in the form of GMV-functions is usually concen-
trated in the interval [—10,10]. The extension to [—15,15] is considered for
the accurate calculation of the limit values of the functions in the space of
fractional moments. Finally note that GPCF, determined by (10)-(11) coin-
cides with the conventional definition of the Pearson correlation coefficient at
mom,, = 1.

If the limits (mn) and (mz) have the opposite signs and take sufficiently
large values, then the GPCF has two plateaus (with GPCFE,,,, = 1 for small
values of mn) and another limiting value GPCF,,, that depends on the degree
of internal correlation between the two compared random sequences. This
right-hand limit, say Lm, satisfies the following condition:

M = min(GPCF,) < Lm = GPCF,,; <1 (14)

The appearance of two plateaus implies that all information about possible
correlations is complete and a further increase of (mn) and (mz) is useless.
Several tests showed that the highest degree of correlation between two ran-
dom sequences is achieved when Lm = 1, while the lowest when Lm = M.
This remark holds for all random sequences and allows us to introduce a new
correlation parameter C'C, the so-called complete correlation factor:

(15)

Lm—-—M
:M _—
co <1M)
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Note that C'C is determined by using the total set of the fractional moments
in [e™", e™*]. Putting (mn) = —15 and (mx) = 15, CC tends to M for high
correlation, and to 0 for the lowest (remnant) degree of correlations. Moreover,
CC does not depend on the amplitudes of two compared random sequences.
Since 0 < |y;| < 1 must hold for both sequences, (15) gives indication of
the internal correlation between sequences that is based on the similarity of
probability distribution functions of the sequences, even if the last are usually
not known.

Recently the statistics of the fractional moments was applied with promis-
ing results [22], that gave the idea to use the C'C factor for clusterization of
the significant parameters. Namely, for a set of significant parameters referring
to one qualitative factor, it holds:

where ¢f,,in is determined by the sampling volume and the practical conditions
of random sequences, that should be almost the same when comparing two
different sequences, e.g. the first affected by a qualitative factor, the second
by another factor like a control action.

Then, the clusterization method is based on comparing the values of the
CC factor, by making a sort of extension of the conventional method based
on the Pearson correlation coefficient (PCC) that is instead not proper for the
purpose of this paper.

To synthesize, the clusterization of S different sequences by their correla-
tion follows a step procedure:

i. For each sequence r, determine the set of the 2k reduced parameters
P, = {wg, 14}, for ¢ = 1,2,...,k, and for r = 1,2,...,5. Moreover,
compute the fitting error (9) and other parameters that are important for
the structuring.

ii. Obtain the normalized sequences according to (12) by the set of reduced
parameters P .

ili. Compute GPCF),(s1,s2) for each pair (s1, s2), with s; and s =1,2,...,.5,
find the limits, and apply (15) to get the symmetrical matrix CC(s1, s2)
of size S x S.

iv. Realize the clusterization by taking into account (16) and defining the
whole correlation interval [¢fin, 1.0] on subset of other intervals.

The previously defined clusterization procedure has a relative character
because it depends on the number of correlation subintervals that are defined
in [¢fmin, 1.0]. Then an absolute clusterization cannot be realized.

2.3 Integration and differentiation pre-processing
To stress the power of the proposed approach, a further processing of the orig-

inally available data is added. Namely, an integration and a differentiation is
applied to the sequence of frames, so that two additional and different random
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sequences of frames are obtained that are characterized by totally different
statistical properties. By processing data in this way, it is expected that dif-
ferentiation creates high-frequency fluctuations. On the contrary, integration
is particularly suitable for restoring the long-term trend of video sequences and
analyzing their fluctuations on longer time scales. This is a very important con-
sideration, since it is known by literature that the low-frequency part of the
spectrum of compressed VBR video data is utilized for managing bandwidth
and QoS [7,18,33]. The very simple numerical integration by the trapezoidal
rule filters the high-frequency components of the video data.

More specifically, integration is performed on the initial video sequence of
frames by the following numerical approximation [30]:

Jy; = Jyj1 + 5(x; — xj-1)(Dy; + Dy; 1)
N

. 17
Dyj=yj—<y><y>=x> v,j=12...,N (17)
j=1

where Jy; is the integrated sample, Dy; is the original sample y;, but trans-
lated in its value with respect to the mean < y >. By this operation, a low-pass
filtering is performed, that cuts off the high frequency components. The low
complexity of this filter is guaranteed by the trapezoidal rule, which is a par-

ticularization of the Simpson’s rule method for numerical integration [30].
Nevertheless, the 3-D video statistical characterization in the high fre-
quency domain can still be useful. It is known, in fact, that high-frequency
components in compressed VBR videos allow to study the amount of buffer-
ing needed to reduce frame losses in video transmission [13,18]. To this aim,

data are also differentiated by a discrete approximation of the derivative:
d =Y Y-

v; = J

.Y 18
o (18)

Both the integrated and differentiated sequences are treated and represented
by the same FERMA approach. Then, the same reduction procedure and the
clusterization method are applied to the integrated and differentiated curves.
This helps to find and recognize common features of random sequences without
a specific trend (i.e. the sequences obtained by differentiation), besides those
that are proper of sequences that may be characterized by a certain weakly
expressed trend (i.e. the original sequences).

3 Simulation results

The reduction and clusterization method is tested on data taken from real 3-D
stereoscopic videos. The formats are: side-by-side (SBS) and frame-sequential
(FS). SBS combines left and right views into standard 2-D format so that the
resolution of a given 3-D frame is the same as a regular 2-D frame. The left and
right frames are subsampled along the horizontal axis and put side by side.
FS creates a single frame sequence by temporally interlacing left and right
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images. Each image preserves its original resolution, but the transmission rate
is doubled with respect to SBS.

All videos last about 35 minutes at the constant rate of 24 frames per
second, with resolution of 1920 x 1080 pixels. The well-known H.264/MPEG-
4 Advanced Video Coding standard [14] is used to encode them. The com-
pressed streams are defined by Group of Pictures (GoP) [31], i.e. a peri-
odic sequence of three types of frames: Intracoded (I), Predictive-encoded
(P) and Bidirectionally-encoded (B). I-frames are coded independently from
other frames, whereas the P-frames take into account the dependencies with I-
frames, and B-frames the dependencies with both I and P-frames. The GoP se-
quence is defined by the total number of frames and by the number of B-frames
between successive I and P-frames. Moreover, each trace is characterized by
a Quantization Parameter (QP) that indicates the degree of compression of
video frames [31]: a high QP corresponds to a coarse resolution.

To test the proposed reduction and clusterization algorithm, three 3-D
movies are considered with different dynamic characteristics: Alice in Won-
derland, a mix of animations and real characters (Movl); Monsters vs Aliens,
a computer-graphics animation (Mov2); IMAX Space Station, a documentary
(Mov3). All videos have left and right views, each composed by 51200 3-D
frames (pictures), and are encoded with three different values (24, 28 and 34)
of QP (each value is used for all I, P, and B-frames) and two different types
of GoP, called Bl and B7 (one or seven B-frames between successive I and
P-frames). Tests are made for the formats FS and SBS. All data points in the
sequences are positive, then the normalization follows the second case in (12).

Finally, to further analyze the statistical properties of the 3-D video se-
quences, the initial data sets are integrated and differentiated, so that two
more random sequences are obtained from the original one but with com-
pletely different statistical properties. Then, the reduced set of parameters is
computed both for the original video data (O) and for the sequences that are
obtained from integration (I) and differentiation (D). Tables 1 and 2 summa-
rize the results for FS (GoP = 32) and SBS (GoP = 16) videos, respectively.

As an illustration example, Mov1 is considered in SBS format with GoP
= B7 and QP = 34 (see column “Movl O” of Table 2). Similar results are
obtained in other cases. An initial monotone curve of the normalized fractional
moments in (4) is obtained by linear combination of exponential functions with
A1 = —2.4526, Ao = —0.2546. An exponential fit is obtained and the reduced
parameters provide the fingerprint. The exponentially decaying curve in Figure
1 shows the normalized function of the moments Ay (x).

Then the separation procedure improves the exponents \; = —2.4526, Ay =
—0.2546 fitting the initial function. The function is preliminarily multiplied by
e“ser® with aep > 0, in order to increase artificially the contribution of small
exponents (see Figure 1). To this aim, as.p is set by the condition that the
limiting heights of the separated curve should coincide one with another. Then,
the separated curve is fitted by linear combination of two exponential functions
With Agepr = —1.5546, Aepo = 0.6434.
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& SepF
— At of SepF
o InF
Asgp1 = —1.5546 —— At of InF
104 o Asp2=0.6434 .

0.5 4

Exponential functions and their fit

0.0
T T T
0 5 10
Number of moments
Fig. 1 Fitting of the function Ay (x): initial curve (A\; = —2.4526, A2 = —0.2546) and

exponential separated curve (Asep1 = —1.5546, Agep2 = 0.6434)

However, this fit is not sufficient. The requirements on the weighting con-
stants w, and the iteration formula (7) show that only three exponents are
enough. A higher number of exponents is avoided because it leads to negative
values of weighting factors. The final fit of the initial function Ay (z) with
three exponents is shown in Figure 2. Three exponents allow to reduce the rel-
ative fitting error with respect to Figure 1, which showed the fit of the initial
function and of the separated function by two exponential functions only.

O  InF
— Fit of InF

A1 =0.2546, w; = 0.0039
1ol A2 =2.4526,wy =0.5609
A3 =5.3273, w3 =0.4376
Osep = 0.898, e,% = 2.2556%

The final fit of the intial curve
o
(4]
1

0.0

T T T T T
0 5 10

x = number of moments

Fig. 2 The final fit of the initial function Ay (z) with 8 fingerprint significant parameters



12 Raoul R. Nigmatullin et al.

For the the final comparison, eight reduced parameters are obtained, in-
cluding the modulus of the exponents (|\s|, s = 1,2, 3), their weights (ws, s =
1,2,3), the value of the separation exponent (asep), and the value of the per-
centage relative error (e,%). Note that the values specified in Tables 1-2 are
slightly different because the final comparison is based on 50 moments instead
of 10, as used in Figures 1-2 for clarity of illustration. All the other files, also
for the other movies, are processed in the same way. The resulting reduced
parameters are collected in Tables 1-2. The clusterization procedure applied
to these reduced parameters shows that they are statistically close to each
other. The minimal value of the correlation matrix lies between 0.95 and 0.97.

Table 1 Set of the reduced parameters from each 3-D movie data set in F'S format

Reduced Mov1l Mov1l Mov1l Mov2 Mov2 Mov2 Mov3 Mov3 Mov3
Param. o I D o 1 D o 1 D
A1 0.2915 0.0316 0.3665 0.2501 0.0324  0.4247  0.5560 0.0409 0.4215
Ao 2.5780 0.2120 0.6950 1.9186 0.1603 0.7337 2.9713 0.1160 0.6948
3 A3 4.6776 0.3554 1.7556  4.9103 0.2022 1.9858 4.6538 0.3285 1.7080
I Ay — 1.0589 — — 1.2312 — — 1.3935 —
2 wy 0.0024 0.0789 0.0200 0.0089 0.1177  0.1318 0.0132 0.0541 0.0218
o wo 0.6754 0.2267 0.9739 0.6859 0.3891 0.8541 0.8313 0.0623 0.9745
. w3 0.3238 0.0705 0.0062 0.3072 0.0649 0.0144 0.1528 0.3692 0.0037
3 wy — 0.6191 — — 0.4221 — — 0.5123 —
asep 0.9920 0.0811 0.6544 0.7560 0.0730  0.6016 0.5120 0.0951 0.6720
er% 1.2656 1.6902 0.0201 1.7800 1.4566 0.0573 2.4862 2.0412 0.0107
X1 0.2760 0.02898 0.3633 0.2142 0.0328 0.4612 0.2167  0.0352 0.4083
Ao 2.7511 0.2491 0.6915 1.9913 0.1303 0.7336 2.7347  0.1686 0.6944
5 A3 4.9206 0.3617 1.7432 5.0235 0.2002 1.9413 4.9806 0.3730 1.7067
I X4 0.9537 1.3101 1.4092
2 w1y 0.0019 0.0816 0.0157 0.0062 0.1021 0.1518 0.0012 0.0443 0.0167
o wo 0.6762 0.3914 0.9793 0.6467 0.1742 0.8383 0.6968 0.0893 0.9799
A w3 0.3234 0.1392 0.0051 0.3493 0.3119 0.0100 0.3029 0.3222 0.0035
5 wy — 0.6601 — — 0.4081 — — 0.5407 —
asep 1.0030 0.0779 0.6600 0.7705 0.0767  0.6200 1.0100 0.0951 0.6708
er% 1.2985 1.8638 0.0160 2.0730 1.1956 0.0362 1.0775 2.1689 0.0102
X1 0.2298 0.0238 0.3789 0.1640 0.0322 0.4606 0.2491 0.0311 0.3716
Ao 2.6900 0.3022 0.6959 2.0288 0.1437  0.7331 2.5371 0.2649 0.6881
3 A3 4.8851 0.3524 1.7574 5.2534 0.2238 1.9577  4.8340 0.4682 1.7670
I g — 0.8606 — — 1.2808 — — 1.5195 —
2 wy 0.0016 0.0813 0.0182 0.0042 0.0850  0.1685 0.0019 0.0367 0.0207
o wo 0.6757 1.4377 0.9768 0.6276 0.1665 0.8217  0.7351 0.1699 0.9737
. w3 0.3242 1.3220 0.0051 0.3710 0.3366 0.0100 0.2639 0.1560 0.0057
3 wy 0.7945 0.4084 0.6319
asep 0.9800 0.0733 0.6615 0.7745 0.0790  0.6120 0.9530 0.0963 0.6505
er% 1.3092 2.3365 0.0161 2.5222 1.1965 0.0373 1.0137  3.6050 0.0185
X1 0.2310 0.0300 0.3180 0.2493 0.0324  0.3429 0.2401 0.0400 0.4205
Ao 2.4929 0.2614 0.6844 1.9236 0.1435 0.6598 2.6109 0.1113 0.6917
N A3 4.7370 0.3700 1.7477 5.0274 0.1973 2.0080 4.8911 0.3314 1.7478
i A4 — 0.9930 — — 1.2699 — — 1.4246 —
A, wy 0.0026 0.0838 0.0148 0.0089 0.1132 0.0687  0.0016 0.0457  0.0217
o wo 0.6753 0.4552 0.9790 0.6521 0.2567  0.9204  0.6412 0.0560 0.9751
A w3 0.3241 0.2485 0.0063 0.3412 0.2135 0.0110 0.3581 0.3895 0.0033
E wy — 0.7023 — — 0.4118 — — 0.5070 —
asep 0.9005 0.0779 0.6395 0.7640 0.0744  0.5680 0.9950 0.0974 0.6670
er% 1.6737 2.2887 0.0220 2.0082 1.2658 0.0509 1.2421 2.1661 0.0096
X1 0.2204 0.0278 0.3316 0.2129 0.0328 0.3834  0.2402 0.0349 0.4131
Ao 2.6522 0.2861 0.6877 1.9951 0.9056 0.6795 2.7514 0.1733 0.6907
2 A3 4.9765 0.3720 1.7457 5.1592 0.1990 2.0243 5.0830 0.3871 1.7370
I A4 — 0.9136 — — 1.3073 — — 1.4502 —
2 wy 0.0021 0.0848 0.0131 0.0062 0.1000  0.0720 0.0013 0.0403 0.0177
o wo 0.6612 0.7215 0.9817 0.6226 0.1769 0.9189 0.6682 0.0841 0.9793
. w3 0.3386 0.5793 0.0053 0.3738 0.3136 0.0093 0.3313 0.3405 0.0031
P wy 0.7652 0.4059 0.5320
asep 0.9320 0.0756 0.6503 5.3785 0.0767  0.5980 1.0265 0.0974 0.6680
er% 1.6733 2.3122 0.0176 2.2973 1.1731 0.0374 1.1282 2.0765 0.0090
X1 0.2305 0.0230 0.3522 0.1602 0.0316 0.4110 0.2564 0.0317  0.3821
Ao 2.6463 0.3358 0.7118 2.0426 0.1413 0.6747 2.5395 0.2748 0.7128
3 A3 5.0137 0.3671 1.7513 5.4260 0.2234 2.1007  4.9164 0.4890 1.7939
I Ay — 0.8425 — — 1.2792 — — 1.5586 —
o wy 0.0019 0.0829 0.0142 0.0041 0.0865 0.0965 0.0021 0.0344 0.0184
o wo 0.6523 3.1163 0.9797 0.6175 0.1594  0.8961 0.7051 0.1670 0.9761
. wg 0.3474 3.1444 0.0061 0.3813 0.3425 0.0075 0.2940 0.1583 0.0056
P wy — 0.9354 — — 0.4082 — — 0.6350 —
asep 0.9635 0.0721 0.6750 0.7745 0.0790  0.5910 0.9635 0.0974 0.6750
er% 1.4996 2.7509 0.0183 2.6902 1.1818 0.0302 1.1359 3.7291 0.0166
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Table 2 Set of the reduced parameters from each 3-D movie data set in SBS format

Reduced Mov1 Mov1l Mov1 Mov2 Mov2 Mov2 Mov3 Mov3 Mov3
Param. (0] I D [} I D (@) I D

A1 0.2251 0.0321 0.3195 0.1268 0.0275 0.2481 0.2925 0.0366 0.3553

Ao 2.3050 0.3253 0.6946 2.2048 0.1238 0.6942 2.2101 0.1472 0.7040

§ A3 4.9748 0.3858 1.8736 5.3091 0.2556 2.0350 4.8429 0.4074 1.8886
I Ay — 0.9647 — — 1.0830 — — 1.6091 —

o w1 0.0045  0.1119  0.0294  0.0054  0.0642  0.0307  0.0052  0.0310  0.0417

> wo 0.6354  1.3266  0.9589  0.6076  0.1020  0.9489  0.6092  0.0548  0.9465

. w3 0.3629  1.2826  0.0119  0.3904  0.3821  0.0207  0.3874  0.3635  0.0120
5 wy — 0.8322 — — 0.4499 — — 0.5490 —

asep 0.8275 0.0748 0.6190 0.6960 0.0802 0.5700 0.8860 0.1032 0.6190

er% 2.3362 3.3505 0.0463 3.5130 1.3471 0.1012 1.7592 1.8162 0.0458

bYY 0.2184  0.0288  0.3116 _ 0.1863  0.0247 _ 0.2282 _ 0.2626 _ 0.0346 __ 0.3153

Ao 2.4210 0.3019 0.6911 2.3598 0.1333 0.6907 2.2573 0.1518 0.6976

% A3 5.2454 0.3871 1.8707 5.5871 0.2655 2.0433 5.0199 0.4214 1.8992
Il Aq — 1.1063 — — 1.0525 — — 1.5369 —

o wq 0.0040 0.0762 0.0250 0.0054 0.0536 0.0247 0.0050 0.0305 0.0323

c wo 0.6180 0.7450 0.9644 0.5811 0.1064 0.9562 0.6195 0.0544 0.9545

- w3 0.3807 0.6062 0.0108 0.4167 0.3941 0.0194 0.3776 0.3732 0.0135
A wy — 0.7737 — — 0.4442 — — 0.5407 —

asep 0.8385  0.0793  0.6190  0.7055  0.0804  0.5700  0.8575  0.1024  0.6120

er % 2.4898 3.9972 0.0421 3.7521 1.3032 0.0950 1.9797 1.4198 0.0540

A1 0.2570 0.0230 0.2984 0.1729 0.0185 0.2337 0.3096 0.0333 0.3263

Ao 2.4497 0.4146 0.6929 2.4391 0.1673 0.6899 2.3374 0.1484 0.7000

3 A3 5.3139  0.4183  1.8913  5.7523  0.3094  2.0790  5.1224  0.4250  1.9045
I Ay — 0.9538 — — 1.0169 — — 1.4892 —

o wy 0.0040  0.0731  0.0240  0.0065  0.0370  0.0253  0.0053  0.0289  0.0321

o wo 0.5865  0.1186  0.9645  0.5368  0.1169  0.9578  0.6195  0.0532  0.9561

- wg 0.4118 0.1211 0.0117 0.4598 0.4142 0.0172 0.3769 0.3657 0.0119
5 wy — 1.1616 — — 0.4297 — — 0.5512 —

Aasep 0.8860 0.0741 0.6180 0.7245 0.0825 0.5700 0.9050 0.1014 0.6180

er% 2.2297  5.3285  0.0460  3.7331  1.1336__ 0.0850  1.7445  1.4471 _ 0.0470

A1 0.2365 0.0296 0.3010 0.1330 0.0263 0.2393 0.3057 0.0364 0.3198

Ao 2.3517 0.2740 0.7296 2.2887 0.1238 0.7449 2.2527 0.1356 0.7282

§ A3 4.9444 0.3591 1.8267 5.3136 0.2568 1.9977 4.7955 0.4036 1.8411

Il Aq 0.9994 1.0622 1.6005

o wq 0.0047 0.1038 0.0185 0.0055 0.0576 0.0215 0.0053 0.0278 0.0244

c wo 0.6211 0.6650 0.9708 0.5868 0.0986 0.9584 0.5880 0.0477 0.9643

. w3 0.3770  0.5255  0.0108  0.4109  0.4039  0.0204  0.4084  0.3897  0.0114
5 wy — 0.7450 — — 0.4386 — — 0.5335 —

asep 0.8385  0.0741  0.6480  0.6960  0.0804  0.6000  0.9050  0.1045  0.6420

er% 2.3255 3.2264 0.0381 3.6374 1.3309 0.0918 1.7196 1.7840 0.0407

1 0.2270  0.0248  0.2092 _ 0.1412 _ 0.0225 _ 0.2178 _ 0.2633 _ 0.0344 _ 0.2064

Ao 2.4533 0.3264 0.7171 2.4224 0.1281 0.7194 2.2889 0.1458 0.7052

x A3 5.2161  0.3825  1.8181  5.5949  0.2694  2.0066  4.9994  0.4209  1.8393
Il Aq — 1.0113 — — 1.0421 — — 1.5302 —

o wq 0.0041 0.0772 0.0175 0.0056 0.0470 0.0200 0.0049 0.0280 0.0228

o wo 0.6029 1.4660 0.9731 0.5572 0.0907 0.9615 0.6024 0.0497 0.9665

. wg 0.3958 1.4239 0.0095 0.4404 0.4331 0.0188 0.3947 0.3952 0.0108
E wy — 0.8676 — — 0.4281 — — 0.5262 —

asep 0.8480 0.0751 0.6420 0.7055 0.0814 0.5820 0.8670 0.1035 0.6240

er% 2.5092  4.2570  0.0342  3.9266 _ 1.3110 _ 0.0905 _ 2.0068 _ 1.3927  0.0417

A1 0.2554 0.0257 0.2912 0.1754 0.0182 0.2271 0.3006 0.0329 0.3164

Ao 2.4576 0.3462 0.7359 2.4713 0.1707 0.7208 2.3505 0.1373 0.7331

§ A3 5.3436 0.4152 1.8429 5.7844 0.3178 2.0445 5.1572 0.4234 1.8452

Il Aq 1.0627 0.9943 1.4873

o wq 0.0039 0.0721 0.0171 0.0066 0.0366 0.0215 0.0051 0.0261 0.0222

o wy 0.5638  1.2771  0.9715  0.5158  0.1146  0.9605  0.6053  0.0456  0.9665

. w3 0.4346  1.2564  0.0116  0.4807  0.4215  0.0182  0.3916  0.3966  0.0114
P wy — 0.8940 — — 0.4249 — — 0.5312 —

asep 0.8955  0.0772  0.6480  0.7245  0.0825  0.5880  0.9050  0.1035  0.6480

er% 2.3017 4.8101 0.0410 3.9367 1.1382 0.0846 1.8634 1.4504 0.0399

The previous results lead to two very interesting conclusions. The first is
that, since these parameters verify the condition of statistical stability, it
possible to reduce the statistical properties of each of the different considered
3-D video movies to a subset of parameters, whichever is the 3-D video format
(FS or SBS) and whichever is the encoding technique as defined by the specific
grouping of frames, according to the GoP parameter, and by the quantization
parameter QP. The identified reduced parameters constitute the stream finger-
print that can be fruitfully adopted to mark the stream sequence and possibly
regulate the streaming process. Moreover, this kind of result occurs even when
the reduction method is applied to completely new and statistically different
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Fig. 3 Mean values and confidence intervals of the parameters for the original data of the
three considered videos, with SBS format (left) and F'S format (right)
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Fig. 4 Mean values and confidence intervals of the parameters for the differentiated data
of the three considered videos, with SBS format (left) and FS format (right)

sequences that are determined by integration and differentiation that com-
pletely change the original sequence. Then, this remarkable fact is observed
for the first time here and can be exploited in future investigations.

Finally, Figures 3—5 show the average values and the confidence intervals
for the reduced parameters, for each analyzed movie, format and data type
(original, differentiated and integrated data). All the values of the reduced set
of parameters have been averaged on both the quantization parameter (24,
28 and 34) and the GoP structure (G16B1 and G16B7 for SBS, and G32B1
and G32B7 for FS). More in details, the results provided in Figures 3 and
4 are very interesting: for each considered movie, the original and differenti-
ated data show very small variations of all the parameters around the mean.
This means that the reduced set of parameters can be fruitfully exploited to
accurately characterize an original, or differentiated, 3-D flow regardless its
compression degree (the QP) and GoP structure, providing in this way an
effective “fingerprint” of the 3-D flow.

Regarding the analysis of integral data provided in Figure 5, the streams
characterization is a bit less accurate. This is testified by two different as-
pects: an increased number of parameters that constitute the set (ten in total,
against the eight of the two previous cases), and a larger variation around the
mean of some parameters. For this reason, the integral data are less suitable
for providing a 3-D video fingerprint independent of the encoding properties.
Nevertheless, the previously illustrated general procedure keeps its validity.
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Fig. 5 Mean values and confidence intervals of the parameters for the integrated data of
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Finally, it is worthy to note that the proposed method can be developed
and used to evaluate the statistical effect the communication network has onto
the reduced and stable set of parameters that characterize the streamed video
sequence of frames. Since the video fingerprint in general does not depend
on the encoding and compression properties, the existence and influence of
external factors from the network can be detected and expressed quantita-
tively. This could be of great help for updating the streaming process and
changing the transmission bitrate in order to obtain a better quality of video
reproduction on the client’s terminal.

4 Concluding remarks

This paper proposed and described a novel approach to analyze and character-
ize a random sequence that is associated to the streaming of 3-D stereoscopic
videos. The statistics approach is based on the reduction of the available data
points to a reduced set of parameters, so that each sequence can be character-
ized in the space of few fractional moments. Typically, six to eight parameters
are sufficient to characterize each video random sequence and consequently
to define a sort of fingerprint that is specific to the considered video. The
powerful effectiveness of the approach is demonstrated by considering also a
perturbation of the original sequence that is obtained by differentiating or
integrating the initial sequence. It is remarkable that the derivative and in-
tegral sequences have totally different statistical properties, but the proposed
approach is capable to identify the stream fingerprint. Then it is stressed that
the method is rather general and can be applied to sequences with or with-
out trend. It can differentiate the statistical peculiarities for integrated (with
trend) and differentiated (when possible trend is removed) sequences, without
any knowledge of the probability distribution function (PDF), which is not
known in many cases. Then the PDF can be replaced by the parameters in
the space of the fractional moments. As far as the authors’ are aware, this is
a novel result obtained for the first time in the literature.

Moreover, the efficiency of the approach is shown by applying the method-
ology to videos that differ by the format or the encoding parameters. Finally,
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we it is remarked that the approach may detect the influence of external factors
that affect the fingerprint of the streamed video sequences (communication de-
lays, errors, specific actions, etc.) and that can not be quantitatively measured
by other methods. Therefore, the statistics of fractional moments and FERMA
can be an opportunity to find new effective solutions in communication and
control problems in which the complexity of the networks, the multiple users,
and the shortages of bandwidth resources represent a major issue.

Finally, the novel FERMA approach enables to compare different data
extracted from fractional models having different dynamics. If the fractional
dynamics of one set of data is unknown, the comparison by the reduced pa-
rameters computed in the frame of FERMA helps to evaluate the statistical
proximity of two compared models and judge upon the fractional nature of
the unknown model. This “language” is very common and helps to classify
different fractional models in one unified scheme.
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