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Abstract

An (r,M, 2δ; k)q constant–dimension subspace code, δ > 1, is a
collection C of (k−1)–dimensional projective subspaces of PG(r−1, q)
such that every (k−δ)–dimensional projective subspace of PG(r−1, q)
is contained in at most a member of C. Constant–dimension subspace
codes gained recently lot of interest due to the work by Koetter and
Kschischang [20], where they presented an application of such codes
for error–correction in random network coding. Here a (2n,M, 4;n)q
constant–dimension subspace code is constructed, for every n ≥ 4. The
size of our codes is considerably larger than all known constructions so
far, whenever n > 4. When n = 4 a further improvement is provided by
constructing an (8,M, 4; 4)q constant–dimension subspace code, with
M = q12 + q2(q2 + 1)2(q2 + q + 1) + 1.

KEYWORDS: hyperbolic quadric; subspace code; Segre variety; rank dis-
tance codes.
AMS MSC: 51E20, 05B25, 94B27, 94B60, 94B65.

1 Introduction

Let V be an r–dimensional vector space over GF(q), q any prime power.
The set S(V ) of all subspaces of V , or subspaces of the projective space
PG(V ), forms a metric space with respect to the subspace distance defined
by ds(U,U

′) = dim(U + U ′) − dim(U ∩ U ′). In the context of subspace
coding theory, the main problem asks for the determination of the larger
size of codes in the space (S(V ), ds) (subspace codes) with given minimum
distance and of course the classification of the corresponding optimal codes.
Codes in the projective space and codes in the Grassmannian over a finite
field referred to as subspace codes and constant–dimension codes (CDCs),
respectively, have been proposed for error control in random linear network
coding, see [20]. An (r,M, d; k)q constant–dimension subspace code is a set
C of k–subspaces of V , where |C| = M and minimum subspace distance
ds(C) = min{ds(U,U ′) | U,U ′ ∈ C, U 6= U ′} = d. The maximum size of an
(r,M, d; k)q constant–dimension subspace code is denoted by Aq(r, d; k).

The upper bounds on Aq(r, d; k) are usually the q–analog of the bounds
obtained for the well studied constant weight codes. In particular the fol-
lowing upper bound has been proved in [27] and [9].

Aq(r, d; k) ≤
⌊
qr − 1

qk − 1

⌊
qr−1 − 1

qk−1 − 1
· · ·
⌊
qr−k+d − 1

qd − 1

⌋
· · ·
⌋⌋

. (1)
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For general results on bounds and constructions of subspaces codes, see
[17]. More recent constructions and results can be found in [7], [8], [9], [11],
[15], [26]. For a geometric approach to subspace codes see also [3], where
a connection between certain subspace codes and particular combinatorial
structures is highlighted.

From a combinatorial point of view an (r,M, 2δ; k)q constant–dimension
subspace code, δ > 1, is a collection C of (k − 1)–dimensional projective
subspaces of PG(r − 1, q) such that every (k − δ)–dimensional projective
subspace of PG(r − 1, q) is contained in at most a member of C.

The set Mm×n(q) of m × n matrices over the finite field GF(q) forms
a metric space with respect to the rank distance defined by dr(A,B) =
rk(A − B). The maximum size of a code of minimum distance d, 1 ≤ d ≤
min{m,n}, in (Mm×n(q), dr) is qn(m−d+1) for m ≤ n and qm(n−d+1) for
m ≥ n. A code A ⊂ Mm×n(q) attaining this bound is said to be a q–ary
(m,n, k) maximum rank distance code (MRD), where k = m − d + 1 for
m ≤ n and k = n − d + 1 for m ≥ n. A rank code A is called GF(q)–
linear if A is a subspace of Mm×n(q). Rank metric codes were introduced
by Delsarte [5] and rediscovered in [10] and [23]. For the construction of
non–linear maximum rank distance codes, see also [4].

Recently, these codes have found a new application in the construction
of error–correcting codes for random network coding [25]. Indeed, as regard
as lower bounds on Aq(r, d; k), in [25] there is a construction of CDC based
on maximum rank distance codes, which yields the bound Aq(r, d; k) ≥
q(r−k)(k−d+1). Athough the size of the code C constructed from an MRD
code equals the highest power of q in the upper bound (1), it is known that
C is not maximal and that can be extended.

A constant–rank code (CRC) of constant rank r in Mm×n(q) is a non–
empty subset of Mm×n(q) such that all elements have rank r. We denote a
constant–rank code with length n, minimum rank distance d, and constant–
rank r by (m,n, d, r). The term A(m,n, d, r) denotes the maximum cardinal-
ity of an (m,n, d, r) constant–rank code inMm×n(q). From [11, Proposition
8] we have that A(m,n, d, r) ≤

[
n
r

]
q

∏r−d
i=0 (qm − qi) and if this upper bound

is attained the CRC is said to be optimal. Here
[
n
r

]
q

:= (qn−1)·...·(qn−r+1−1)
(qr−1)·...·(q−1) .

In this paper we will construct a (2n,M, 4;n)q constant–dimension sub-
space code, for every n ≥ 4. The size of our codes is considerably larger
than all known constructions so far whenever n > 4 (Theorem 3.8, Theorem
3.11). Our approach is completely geometric and relies on the geometry of
Segre varieties. This point of view enabled us to improve the construction
of CDC arising from an MRD code by means of certain CRCs and the ge-
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ometry of a non–degenerate hyperbolic quadric of the ambient projective
space.

When n = 4, by exploring in more details the geometry of the hyperbolic
quadric Q+(7, q), a further improvement is provided by constructing an
(8,M, 4; 4)q constant–dimension subspace code, with M = q12 + q2(q2 +
1)2(q2 +q+1)+1. A (8,M, 4; 4)q, with M = q12 +q2(q2 +1)2(q2 +q+1)+1
has also been constructed in [7] with a completely different technique. We
do not know if the two constructions are equivalent but certainly both codes
contain a lifted MRD code.

In the sequel θn,q :=
[
n+1
1

]
q

= qn + . . .+ q + 1 .

2 The geometric setting

2.1 Segre variety and Veronese variety

The Segre map may be defined as the map

σ : PG(n− 1, q)× PG(m− 1, q)→ PG(nm− 1, q),

taking a pair of points x = (x1, . . . xn) of PG(n − 1, q), y = (y1, . . . ym) of
PG(m− 1, q) to their product (x1y1, x1y2, . . . , xnym) (the xiyj are taken in
lexicographical order). The image of the Segre map is an algebraic variety
called the Segre variety and denoted by Sn−1,m−1 [14]. The Segre variety
Sn−1,m−1 has two families of projective subspaces called rulings: a family of
projective (n− 1)–dimensional subspaces, say R1 and a family of projective
(m − 1)–dimensional subspaces, say R2. Two members in the same ruling
are disjoint, a member of R1 meets an element of R2 in exactly one point,
and each point of Sn−1,m−1 is contained in exactly one member of each
ruling. The smallest example of Segre variety is S1,1, the hyperbolic quadric
Q+(3, q) of PG(3, q). Here, the two rulings are the two reguli of Q+(3, q).
From [14, Theorem 25.5.14] certain linear sections of dimension n(n+1)/2−1
of Sn−1,n−1 are Veronese varieties.

The Veronese variety of all quadrics of PG(n− 1, q), is the variety V of
PG(n(n+ 1)/2− 1, q), with parametric equations

(x21, x
2
2, . . . , x

2
n, x1x2, x1x3, . . . , xn−1xn) (2)

where (x1, x2, x3, . . . , xn) ∈ PG(n− 1, q). The mapping

µ : PG(n− 1, q)→ PG(n(n+ 1)/2− 1, q)

(x1, x2, . . . , xn) 7→ (x21, x
2
2, . . . , x

2
n, x1x2, x1x3, . . . , xn−1xn)
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is called the Veronese embedding of PG(n− 1, q). The variety V consists of
θn−1,q points. For more details on Segre varieties and Veronese varieties, see
[14].

2.2 Finite classical polar spaces

The finite classical polar spaces are the geometries that are associated with
non–degenerate reflexive sesquilinear and non–singular quadratic forms on
vector spaces of finite dimension over a finite field. A polar space P in a
projective space PG(d, q) consists of the projective subspaces of PG(d, q)
that are totally isotropic with relation to a given non–degenerate reflexive
sesquilinear form or that are totally singular with relation to a given non–
singular quadratic form. The projective space PG(d, q) is called the ambient
projective space of P. Here, the term polar space always refers to a finite
classical polar space. A polar space P is a member of one of the following
classes: a symplectic space W(2n+ 1, q), a quadric Q(2n, q), Q+(2n+ 1, q),
Q−(2n+ 1, q) or a Hermitian variety H(n, q2). A projective subspace M of
maximal dimension contained in P is called a generator or a maximal of P.
The projective dimension of M is said to be the rank of P.

A hyperbolic quadric Q+(2n−1, q) of PG(2n−1, q), is the set of singular
points for some non–degenerate quadratic form of hyperbolic type defined
on the underlying vector space. The hyperbolic quadric Q+(2n − 1, q) has
the following number of points:

(qn − 1)(qn−1 + 1)

q − 1
.

The generators of Q+(2n − 1, q) are (n − 1)–dimensional projective spaces
and the number of generators of Q+(2n− 1, q) is equal to

2

n−1∏
i=1

(qi + 1).

The set of all generators of the hyperbolic quadric Q+(2n− 1, q) is divided
in two distinct subsets of the same size, called systems of generators and
denoted by M1 and M2, respectively.

Lemma 2.1. Let A and A′ two distinct generators of Q+(2n− 1, q). Then
their possible intersections are projective spaces of dimension{

0, 2, 4, . . . , n− 3 if A,A′ ∈Mi, i = 1, 2
−1, 1, 3, . . . , n− 2 if A ∈Mi, A

′ ∈Mj , i, j ∈ {1, 2}, i 6= j
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if n is odd or{
0, 2, 4, . . . , n− 2 if A ∈Mi, A

′ ∈Mj , i, j ∈ {1, 2}, i 6= j
−1, 1, 3, . . . , n− 3 if A,A′ ∈Mi, i = 1, 2

if n is even.

We recall the following results, which have been proved in [19, Lemma
3, Corollary 5].

Lemma 2.2. Let X be a generator of Q+(2n − 1, q) and let D(X) denote
the set of generators of Q+(2n− 1, q) disjoint from X. Then

|D(X)| = q
n(n−1)

2 .

If X and X ′ are disjoint generators of Q+(2n− 1, q), then

|D(X) ∩D(X ′)| =


0 if n is odd,

q
n(n−2)

4

n/2∏
i=1

(q2i−1 − 1) if n is even.

For further details on hyperbolic quadrics we refer to [14].

2.3 Linear representations

Let (V, k) be a non–degenerate formed space with associated polar space
P where V is a (d + 1)–dimensional vector space over GF(qe) and k is a
sesquilinear (quadratic) form. The vector space V can be considered as
an (e(d + 1))–dimensional vector space V ′ over GF(q) via the inclusion
GF(q) ⊂ GF(qe). Composition of k with the trace map T : z ∈ GF(qe) 7→∑e

i=1 z
qi ∈ GF(q) provides a new form k′ on V ′ and so we obtain a new

formed space (V ′, k′). If our new formed space (V ′, k′) is non–degenerate,
then it has an associated polar space P ′. The isomorphism types together
with various conditions are presented in [18], [21], [12]. Now each point
in PG(d, qe) corresponds to a 1–dimensional vector space in V , which in
turn corresponds to an e–dimensional vector space in V ′, that is an (e− 1)–
dimensional projective space of PG(e(d + 1) − 1, q). Extending this map
from points of PG(d, qe) to subspaces of PG(d, qe), we obtain an injective
map from subspaces of PG(d, qe) to certain subspaces of PG(e(d+1)−1, q):

φ : PG(d, qe)→ PG(e(d+ 1)− 1, q).
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The map φ is called the GF(q)–linear representation of PG(d, qe).
A partial t–spread of a projective space P is a collection S of mutually

disjoint t–dimensional projective subspaces of P. A partial t–spread of P is
said to be a t–spread if each point of P is contained in an element of P. The
partial t–spread S of P is said to be maximal, if there is no partial t–spread
S ′ of P containing S as a proper subset.

The set D = {φ(P ) | P ∈ PG(d, qe)} is an example of (e − 1)–spread
of PG(e(d + 1) − 1, q), called a Desarguesian spread (see [24, Section 25]).
The incidence structure whose points are the elements of D and whose lines
are the (2e− 1)–dimensional projective spaces of PG(e(d+ 1)− 1, q) joining
two distinct elements of D, is isomorphic to PG(d, qe). One immediate
consequence of the definitions is that the image of the pointset of the original
polar space P is contained in the new polar space P ′ (but is not necessarily
equal to it).

2.4 A pencil of hyperbolic quadrics in PG(2n− 1, q), n even

The pencil of quadrics of PG(d, q) generated by the quadrics X, X ′ is the
set of quadrics defined by λX + µX ′, where λ, µ ∈ GF(q), (λ, µ) 6= (0, 0).

Remark 2.3. If a point P ∈ PG(d, q) belongs to two distinct quadrics of a
pencil P, then P belongs to every quadric of P. On the other hand, every
point of PG(d, q) is contained in a quadric of P.

Let Q+(n−1, q2) be the hyperbolic quadric of PG(n−1, q2), n ≥ 4 even,
with equation

X1Xn+2
2

+ . . .+Xn
2
Xn = 0.

From [18, Table 4.3.A], φ(Q+(n − 1, q2)) is contained in a hyperbolic
quadric Q of PG(2n− 1, q). Also, from [18, Proposition 4.3.3 i)] the group
K := PGO+(n, q2) ≤ PGO+(2n − 1, q) acts irreducibly in PG(2n − 1, q),
i.e., it does not fix any non–trivial subspace of PG(2n− 1, q). In particular,
points of the quadric Q+(n − 1, q2) are mapped, under the GF(q)–linear
representation map, to mutually disjoint lines contained in the hyperbolic
quadric Q.

Let ω be a primitive element of GF(q2) over GF(q) such that ω2−ω−γ =
0, with γ ∈ GF(q) \ {0}. Then the polynomial x2− x− γ is irreducible over
GF(q) and {1, ω} is a basis of GF(q2) as a vector space over GF(q). Hence,
if xi ∈ GF(q2) then

xi = yi + ωzi, (3)

and X = Y+ωZ, where X = (x1, . . . , xn), Y = (y1, . . . , yn), Z = (z1, . . . , zn).

8



Set
φ : X ∈ PG(n− 1, q2) 7→ (Y,Z) ∈ PG(2n− 1, q).

With this notation, taking into account (3), φ(Q+(n − 1, q2)) is contained
in two distinct hyperbolic quadrics of PG(2n− 1, q), say Q1 and Q2, where

Q1 : Y1Yn+2
2

+ . . .+ Yn
2
Yn + γ(Z1Zn+2

2
+ . . .+ Zn

2
Zn) = 0,

Q2 : Y1Zn+2
2

+ . . .+Yn
2
Zn +Z1Yn+2

2
+ . . .+Zn

2
Yn +Z1Zn+2

2
+ . . .+Zn

2
Zn = 0

The hyperbolic quadricsQ1, Q2 generate a pencil of PG(2n−1, q), say F ,
containing other q−1 distinct quadrics, say Qi, 3 ≤ i ≤ q+1, none of which
is degenerate. Indeed, assume that Qi is degenerate for some i, then Qi is a
cone having a distinguished projective subspace of PG(2n−1, q) as a vertex.
Thus K is embedded as a subgroup in the stabilizer of Qi in PGL(2n, q).
On the other hand, since any projectivity of PGL(2n, q) fixing Qi has to
fix its vertex, we should have that K fixes the vertex of Qi, contradicting
the irreducibility of K. Let ⊥ be the polarity of PG(n− 1, q2) associated to
Q+(n− 1, q2) and let ⊥i be the polarity of PG(2n− 1, q) associated to Qi,
1 ≤ i ≤ q + 1. We need the following lemma.

Lemma 2.4. Let S be a projective subspace of PG(n−1, q2). Then φ(S⊥) =
φ(S)⊥i, 1 ≤ i ≤ q + 1.

Proof. Let B denote the bilinear form of the n–dimensional GF(q2)–vector
space V underlying PG(n− 1, q2) associated to Q+(n− 1, q2). Let X,X′ ∈
V \{0}. Then B(X,X′) = B(Y+ωZ,Y′+ωZ′) = B(Y,Y′)+ω(B(Z,Y′)+
B(Y,Z′)) +w2B(Z,Z′) = B(Y,Y′) +γB(Z,Z′) +ω(B(Z,Y′) +B(Y,Z′) +
B(Z,Z′)). Let

B1((Y,Z), (Y′,Z′)) := B(Y,Y′) + γB(Z,Z′)

and
B2((Y,Z), (Y′,Z′)) := B(Z,Y′) +B(Y,Z′) +B(Z,Z′).

A straightforward computation shows that Bi is the bilinear form of the
2n–dimensional GF(q)–vector space underlying PG(2n− 1, q) associated to
Qi, i = 1, 2. Moreover, B(X,X′) = 0 if and only if B1((Y,Z), (Y′,Z′)) = 0
and B2((Y,Z), (Y′,Z′)) = 0, as required.

From Lemma 2.4, if g is a generator of Q+(n − 1, q2), then φ(g) is a
generator of Qi, 1 ≤ i ≤ q + 1. Hence Qi is a non–degenerate quadric of
PG(2n− 1, q) of rank n− 1. Thus Qi, 1 ≤ i ≤ q+ 1 is a hyperbolic quadric.
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Let X be the base locus of F . Since the hyperbolic quadrics of F cover all
the points of PG(2n − 1, q), and any two distinct quadrics in F intersect
precisely in X , we have that the following equation holds true:

(q + 1)(|Q1| − |X |) + |X | = θ2n−1,q.

It follows that X consists of

(qn−2 + 1)(qn − 1)

q − 1

points covered by the lines of φ(Q+(n− 1, q2)).

Lemma 2.5. Let L be a line–spread of PG(2n− 1, q) and let α be a projec-
tivity fixing each line of L. If α fixes a point, then α is the identity.

Proof. Assume that α fixes the point P . Let ` be the unique line of L
containing P . Let Π be a hyperplane containing P and not containing `.
Let Σ be the (unique) (2n − 3)–dimensional projective subspace contained
in Π such that {r ∈ L | r ⊂ Σ} is a line–spread of Σ. Then P /∈ Σ.
Since Σ is fixed by α and P is fixed by α, we have that Π is fixed by α.
Thus every hyperplane through P and not containing ` is fixed by α. Let
r be a line through P distinct from `. Then there exist n − 2 distinct
hyperplanes Πi, 1 ≤ i ≤ n − 2, passing through P , not containing `, such
that

⋂n−2
i=1 Πi = r. We have α(r) = α(

⋂
i Πi) =

⋂
i α(Πi) =

⋂
i(Πi) = r and

hence every line through P is fixed by α. Let A be a point not in `, let
m = PA and let s be the unique line of L containing A. Then A = s ∩m
and α(A) = α(s∩m) = α(s)∩α(m) = s∩m = A and hence every point not
in ` is fixed by α. Also, since α fixes the line s ∈ L and the point A ∈ s, a
similar argument proves that every point not in s is fixed by α. Then every
point in ` is fixed by α. Since α fixes every point, α is the identity.

Corollary 2.6. Let L be a line–spread of PG(2n−1, q). Let G be the group
of projectivities fixing each line of L. Then |G| ≤ q + 1.

Proof. Suppose that α1, α2 ∈ G and α1(P ) = α2(P ), for some point P .
Then α1α

−1
2 (P ) = P . From Lemma 2.5 we have that α1α

−1
2 is the identity

and so α1 = α2. Let P ∈ ` ∈ L. Since every projectivity in G fixes ` and
no two distinct projectivities in G send P to the same point, we have that
|G| ≤ |`| = q + 1.

Lemma 2.7. |G| = q + 1 and G = {⊥1⊥i | 1 ≤ i ≤ q + 1}.
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Proof. The map ⊥1⊥i is a projectivity fixing each line of L. Indeed, if P ∈
` ∈ L, then from Lemma 2.4 `⊥i = `⊥j . Hence `⊥i ⊂ P⊥i and `⊥1 ⊂ P⊥i .
It follows that (P⊥i)⊥1 ∈ `, i.e. P⊥1⊥i ∈ `.

Finally, ⊥1⊥i=⊥1⊥j if and only if i = j. Thus the set {⊥1⊥i | 1 ≤
i ≤ q + 1} gives rise to q + 1 distinct projectivities fixing each line of L.
By Corollary 2.6, this is the maximum number of such projectivities, so
G = {⊥1⊥i | 1 ≤ i ≤ q + 1}.

Proposition 2.8. There are

2

n/2−1∏
i=1

(q2i + 1)

generators belonging to each hyperbolic quadric of the pencil F .

Proof. Let g be a generator belonging to each hyperbolic quadric of the
pencil F . Then g⊥i = g, 1 ≤ i ≤ q + 1 and g⊥1⊥i = g, 1 ≤ i ≤ q + 1. It
follows that {r ∈ L | r ⊂ g} is a line–spread of g and therefore there exists
a generator m of the quadric Q+(n− 1, q2) such that φ(m) = g. Hence, the
number of generators belonging to each hyperbolic quadric of the pencil F
equals the number of generators of Q+(n− 1, q2).

Remark 2.9. From the proof of Proposition 2.8, two distinct generators
belonging to each hyperbolic quadric of the pencil F meet in an odd di-
mensional projective space. Therefore they all belong to the same system
of generators with respect to each of the quadrics in F .

Let Σ,Σ′ be two disjoint generators of the quadric Q(n − 1, q2) and let
S, S′ be their images under the map φ, respectively. Hence S and S′ are
disjoint subspaces belonging to the same system of generators, say Mi

1 of
Qi, 1 ≤ i ≤ q+ 1. Let G be the set of generators meeting non–trivially both
S and S′ and belonging to each hyperbolic quadric of the pencil F . We have
that G ⊂Mi

1, for every 1 ≤ i ≤ q + 1 and

|G| =


2

n/2−1∏
i=1

(q2i + 1)− 2q
n(n−2)

4 if n
2 is odd,

2

n/2−1∏
i=1

(q2i + 1)− 2q
n(n−2)

4 + q
n(n−4)

8

n/4∏
i=1

(q4i−2 − 1) if n
2 is even.

Lemma 2.10. Every (n − 2)–dimensional projective space contained in X
is contained in a generator belonging to each hyperbolic quadric of the pencil
F .
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Proof. Let A be an (n − 2)–dimensional projective space contained in X
and assume by way of contradiction that there is no generator belonging
to each hyperbolic quadric of the pencil F containing A. Then A⊥1 is an
n–dimensional projective space containing two distinct generators, say g1
and g2, of Q1. In particular gi ∈M1

i , i = 1, 2, and g1 ∩ g2 = A.
Since g1 ⊂ Q1 and g1 ∩ X = g1 ∩ Q2, we have that g1 ∩ X is a quadric,

say Q, (possibly degenerate) of g1. Then Q is a quadric of the (n − 1)–
dimensional projective space g1 containing the (n−2)–dimensional projective
space A. It follows that either Q coincide with A or Q consists of two
distinct (n−2)–dimensional projective spaces A, A′ and A∩A′ is an (n−3)–
dimensional projective space.

Let g be a generator belonging to each hyperbolic quadric of the pencil
F such that g ∩ A is an r–dimensional projective space. It follows that
g and g1 lie in the same system of generators M1

1 of Q1. Then, if r is
even, we have that g ∩ g1 is an r–dimensional vector space, a contradiction.
Analogously, if r is odd, we have that g∩g2 is an r–dimensional vector space,
a contradiction.

3 The construction

LetMn×n(q), n ≥ 4, be the vector space of all n×n matrices over the finite
field GF(q). Let PG(n2− 1, q) be the (n2− 1)–dimensional projective space
over GF(q) where (X1, . . . , Xn2) are homogeneous projective coordinates.
With the identification ai+1,j = ain+j , 0 ≤ i ≤ (n − 1), 1 ≤ j ≤ n, we may
associate, up to a non-zero scalar factor, to a matrix A = (ai,j) ∈Mn×n(q)
a unique point P = (a1, . . . , an2) ∈ PG(n2 − 1, q), and viceversa. In this
setting, from [14, Theorem 25.5.7], the Segre variety Sn−1,n−1 can be repre-
sented by all n×n matrices of rank 1. Let G′ be the subgroup of PGL(n2, q)
fixing Sn−1,n−1. Then |G′| = 2|PGL(n, q)|. The group G′ contains a sub-
group of index two, say G, isomorphic to PGL(n, q) × PGL(n, q) and ev-
ery element in G has a matrix representation of the form A ⊗ B, where
A,B ∈ GL(n, q) [14, Theorem 25.5.13]. Here ⊗ denotes the Kronecker
product. In this context the subspace of all symmetric matrices ofMn×n(q)
is represented by the (n(n+ 1)/2− 1)–dimensional projective subspace Γ of
PG(n2 − 1, q) defined by the following equations:

Xin+j = X(j−1)n+i+1, 0 ≤ i ≤ n− 2, i+ 2 ≤ j ≤ n.

In particular Γ meets the Segre variety Sn−1,n−1 in a Veronese variety V [14,
Theorem 25.5.8].
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Remark 3.1. The subgroup of G′ fixing V contains a subgroup, say H,
isomorphic to PGL(n, q) and every element in H has a matrix representation
of the form A ⊗ A, where A ∈ GL(n, q). The group H leaves invariant an
(n(n− 1)/2− 1)–dimensional projective subspace Γ′, which corresponds to
the subspace of all skew–symmetric matrices of Mn×n(q). In particular,
Γ′ is either contained in or disjoint to Γ according as q is even or odd,
respectively. In any case Γ′ is disjoint from Sn−1,n−1.

In PG(n− 1, qn) consider a q–order subgeometry Σ := PG(n− 1, q). Let
C̄ a Singer cycle of GL(n, q) and let C ∈ PGL(n, q) be the corresponding
collineation of PG(n − 1, q). Then 〈C〉 is a Singer cyclic group of order
θn−1,q = (qn−1)/(q−1). The group 〈C〉 fixes n points in general position, say
P1, . . . , Pn and the hyperplanes Π̄i := 〈P1, . . . , Pi−1, Pi+1, . . . , Pn〉. Also it
partitions PG(n−1, qn)\

⋃
i Π̄i into (q−1)(qn−1)n−2 q–order subgeometries,

see [2].
By considering the GF(q)–linear representation of PG(n−1, qn), a point

of PG(n−1, qn) becomes an (n−1)–dimensional projective subspace π which
is a member of a Desarguesian spread of a PG(n2 − 1, q). In particular
points of a q–order subgeometry of PG(n − 1, qn) become maximal spaces
of a ruling of a Segre variety Sn−1,n−1 of PG(n2 − 1, q), see [22]. From the
discussion above, it follows that in PG(n2−1, q) we see a set consisting of n
(n2−n− 1)–dimensional projective subspaces Πi := φ(Π̄i), i = 1, . . . , n and
a partition, say P, of PG(n2 − 1, q) \

⋃
i(Πi) into (q − 1)(qn − 1)n−2 Segre

varieties Sn−1,n−1.

Proposition 3.2. There exists an (n2−n−1)–dimensional projective space
that is disjoint from Sn−1,n−1 and contains Γ′.

Proof. From [16], C̄ is conjugate in GL(n, qn) to a diagonal matrix D

D = diag(ω, ωq, . . . ωqn−1
),

for some primitive element ω of GF(qn), i.e., there exists a matrix E ∈
GL(n, qn) with E−1C̄E = D. Then D ⊗D is the block diagonal matrix

diag(ωD,ωqD, . . . , ωqn−1
D)

and since ωqn = ω, it has exactly n(n+ 1)/2 distinct entries. It follows that
D⊗D has exactly n(n+1)/2 distinct eigenvalues. The projectivity induced
by C̄ ⊗ C̄ has order θn−1,q, is contained in G and fixes V, see Remark (3.1).
Since

(E ⊗ E)−1(C̄ ⊗ C̄)(E ⊗ E) = D ⊗D,
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the projectivity induced by D ⊗ D stabilizes the Segre variety Ŝn−1,n−1
corresponding to Sn−1,n−1. The collineation group, say J , associated to
〈D ⊗D〉, has order θn−1,q. It fixes the q–order subgeometry Π of PG(n2 −
1, qn) whose points are:

(α1, . . . , αn, α
q
n, α

q
1, . . . , α

q
n−1, α

q2

n−1, α
q2

n , . . . , α
q2

n−2, . . . , α
qn−1

2 , . . . , αqn−1

1 ),

where αi ∈ GF(qn), 1 ≤ i ≤ n, (α1, . . . , αn) 6= (0, . . . , 0), the Segre variety
Ŝn−1,n−1 and the Veronese variety V̂ = Γ̂∩Ŝn−1,n−1. Furthermore the group
J fixes the following n (n− 1)–dimensional projective subspaces of Π:

X1 = 〈U(a−1)n+a〉, 1 ≤ a ≤ n,

Xk = 〈U(a1−k)n+a1 , U(n−k)n+a2(n+1)〉, k ≤ a1 ≤ n, 1 ≤ a2 ≤ k−1, 2 ≤ k ≤ n,

where Ui denotes the point with coordinates (0, . . . , 0, 1, 0, . . . , 0), with 1 in
the i−th position.

Since D⊗D has n(n+1)/2 distinct eigenvalues, every J–orbit of a point
of Π whose coordinates are all non–zero generates an (n(n + 1)/2 − 1)–
projective subspace of Π. As a consequence, since Γ̂′ is an (n(n− 1)/2− 1)–
dimensional projective subspace fixed by J , Γ̂′ is contained in

⋃
i Π̂i. By way

of contradiction, assume that Γ̂′ is not contained in Π̂i for every i. Then,
since Γ̂′ ∩

⋃
i Π̂i =

⋃
i(Γ̂
′ ∩ Π̂i), we can find P,Q ∈ Γ̂′ such that P ∈ Π̂i and

P 6∈ Π̂k for every k 6= i, Q ∈ Π̂j and Q 6∈ Π̂k for every k 6= j, with i 6= j. It
follows that the line PQ ⊂ Γ̂′ but PQ 6∈

⋃
i Π̂i. A contradiction.

Let Y denote the (n2 − n − 1)–dimensional projective subspace that is
disjoint from Sn−1,n−1 and contains Γ′.

We denote byA the set consisting of the qn(n−1)/2 matrices corresponding
to the points of Γ′ (together with the zero matrix). Since the Segre variety
Sn−1,n−1 can be represented by all n × n matrices of rank 1 [14, Theorem
25.5.7] and Y is disjoint from Sn−1,n−1, we have that the set M, consisting

of the qn
2−n matrices corresponding to the points of Y (together with the

zero matrix), form a linear (n, n, n − 1) MRD code. Indeed, any matrix in
M has rank at least two.

From [25] we recall the following lifting process for MRD codes. Let A be
an n×n matrix over GF(q), and let In be the n×n identity matrix. The rows
of the n×2n matrix (In|A) can be viewed as coordinates of points in general
position of an (n − 1)–dimensional projective space of PG(2n − 1, q). This
subspace is denoted by L(A). Hence the matrix A can be lifted to a subspace
L(A). From [25], a q-ary (n, n, n− 1) MRD lifts to a q-ary (2n, qn

2−n, 4;n)
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constant–dimension subspace code. A constant–dimension code such that
all its codewords are lifted codewords of an MRD code is called a lifted
MRD code. Let L1 = {L(A) | A ∈ M} be the constant–dimension code
obtained by lifting the (n, n, n − 1) MRD code contructed above. Then L1
consists of (n− 1)–dimensional projective spaces mutually intersecting in at
most an (n − 3)–dimensional projective space. In particular, members of
L1 are disjoint from the special (n − 1)–dimensional projective space S =
〈Un+1, . . . , U2n〉 and therefore every (n − 2)–dimensional projective space
covered by an element of L1 is disjoint from S. Moreover, from [15, Lemma
6], every (n−2)–dimensional projective space in PG(2n−1, q) disjoint from
S is covered by a member of L1 exactly once. We denote by S′ the special
(n− 1)–dimensional projective space 〈U1, . . . , Un〉.

From [10] it is known that a linear (n, n, n − 1) MRD code contains an
(n, n, 2, r) CRC of size[

n

r

]
q

r∑
j=2

(−1)(r−j)
[
r

j

]
q

q(
r−j
2 )(qn(j−1) − 1), (4)

consisting of all matrices of the linear (n, n, n − 1) MRD code having rank
r.

Let Cr denote the (n, n, 2, r) CRC of size (4) contained in Y. Let A
be an element of Cr, 2 ≤ r ≤ (n − 2). As in the discussion above, the
rows of the n× 2n matrix (A|In) can be viewed as coordinates of points in
general position of an (n−1)–dimensional projective space of PG(2n−1, q).
This subspace is denoted by L′(A). The subspace L′(A) is disjoint from
S′ and meets S in an (n − r − 1)–dimensional projective space. Let Lr =
{L′(A) | A ∈ Cr} be the constant–dimension code obtained by lifting the
(n, n, 2, r) CRC codes Cr, 2 ≤ r ≤ (n− 2) constructed above.

Lemma 3.3. The set
⋃n−2

i=1 Li is a (2n,M, 4;n)q constant–dimension sub-
space code, where

M = qn
2−n +

n−2∑
r=2

[
n

r

]
q

r∑
j=2

(−1)(r−j)
[
r

j

]
q

q(
r−j
2 )(qn(j−1) − 1).

Proof. By construction, every (n − 2)–dimensional projective space con-
tained in L′(A) meets S in at least a point and is disjoint from S′. If

A1 ∈ Cr1 , A2 ∈ Cr2 , then rg(A1−A2) ≥ 2 and rg

(
A1 In
A2 In

)
= n+rg(A1−

A2) ≥ n + 2. It follows that L′(A1) meets L′(A2) in at most an (n − 3)–
dimensional projective space. We may conclude by observing that every
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(n−2)–dimensional projective space covered by a member of L1∪(
⋃n−2

i=2 Li)
is covered by exactly one element of L1 ∪ (

⋃n−2
i=2 Li), as required.

Now, we introduce the non–degenerate hyperbolic quadric Q of PG(2n−
1, q) having the following equation:

X1Xn+1 +X2Xn+2 + . . .+XnX2n = 0.

The subspaces S and S′ are maximals of Q. They belong either to the same
system of maximals of Q or to different systems, according as n is even or
odd, respectively. Let M1 be the system of maximals of Q containing S
and let D(X) and I(X) denote the set of maximals inM1 disjoint from the
maximal X or meeting non–trivially X, respectively.

Lemma 3.4. Let A be a skew–symmetric matrix in Mn×n(q). Then L(A)
(resp. L′(A)) is a maximal of Q disjoint from S (resp. S′).

Proof. From the definitions of L(A) and S, we have that L(A) = 〈(I|A)〉

and S = 〈(0n|In)〉. Since the rank of the matrix

(
In A
0n In

)
is 2n, it follows

that L(A) is disjoint from S. The matrix of the bilinear form associated to

the quadric Q is

(
0n In
In 0n

)
. Then L(A) is contained in Q if and only if

(In|A)

(
0n In
In 0n

)
(In|A)t = 0,

if and only if A+At = 0.

Remark 3.5. Since the number of maximals of Q disjoint from S equals
|A| = qn(n−1)/2 [19, Lemma 3], we have that each such a maximal is of the
form L(A), for some A ∈ A. Notice that, if A ∈ A, then L(A) belongs either
to M1 or to M2, according as n is even or odd, respectively.

3.1 n even

Assume that n is even. In this case we have that

M1 = D(S) ∪ (D(S′) ∩ I(S)) ∪ (I(S) ∩ I(S′)),

where D(S), D(S′) ∩ I(S) and I(S) ∩ I(S′) are trivially intersecting sets.
On the other hand, a maximal L′(A) in D(S′) is disjoint from S if and
only if A is a skew–symmetric matrix of rank n. Therefore, the number of
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skew–symmetric matrices of rank n is equal to |D(S) ∩ D(S′)|. It follows
that

|D(S′) ∩ I(S)| = |D(S)| − |D(S) ∩D(S′)| = q
n(n−1)

2 − q
n(n−2)

4

n/2∏
i=1

(q2i−1 − 1)

and

|I(S) ∩ I(S′)| = |M1| − 2q
n(n−1)

2 + q
n(n−2)

4

n/2∏
i=1

(q2i−1 − 1).

Since A ⊂ M, we have that D(S) ⊂ L1. Moreover, every element
g ∈ D(S′) ∩ I(S) is of the form L′(A) for some skew–symmetric matrix A
having rank r, with 2 ≤ r ≤ n− 2. Hence g ∈ Lr.

Lemma 3.6. The set
⋃n−2

i=1 Li ∪ (I(S)∩ I(S′)) is a (2n,M, 4;n)q constant–
dimension subspace code, where

M = qn
2−n +

n−2∑
r=2

[
n

r

]
q

r∑
j=2

(−1)(r−j)
[
r

j

]
q

q(
r−j
2 )(qn(j−1) − 1)

+
n−1∏
i=1

(qi + 1)− 2q
n(n−1)

2 + q
n(n−2)

4

n/2∏
i=1

(q2i−1 − 1).

Proof. Notice that each member of L1 (resp. Lr, 2 ≤ r ≤ n− 2) is disjoint
from S (resp. S′), whereas each member of I(S)∩I(S′) has at least a line in
common with both S and S′. Hence I(S) ∩ I(S′) is disjoint from

⋃n−2
i=1 Li.

On the other hand, each (n − 2)–dimensional projective space covered by
a member of L1 (resp. Lr, 2 ≤ r ≤ n − 2) is disjoint from S (resp. S′),
whereas each (n− 2)–dimensional projective space covered by a member of
I(S) ∩ I(S′) has at least a point in common with both S and S′. Then
(
⋃n−2

i=1 Li) ∪ (I(S) ∩ I(S′)) is a set of (n− 1)–dimensional projective spaces
mutually intersecting in at most an (n−3)–dimensional projective space.

From Section 2.4, there exists a pencil F comprising q + 1 hyperbolic
quadrics Qi, 1 ≤ i ≤ q+1 of PG(2n−1, q) distinct from Q = Q1. Let Ii(X)
denote the set of maximals in Mi

1 meeting non–trivially X, 2 ≤ i ≤ (q + 1)
and, according to the notation of Remark 2.9, let G =

⋂q+1
i=2 (Ii(S)∩Ii(S′))∩

(I(S) ∩ I(S′)).
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Lemma 3.7. The set (
⋃n−2

i=1 Li)∪ (
⋃q+1

i=2 (Ii(S)∩ Ii(S′)))∪ (I(S)∩ I(S′)) is
a (2n,M, 4;n)q constant–dimension subspace code, where

M = qn
2−n +

n−2∑
r=2

[
n

r

]
q

r∑
j=2

(−1)(r−j)
[
r

j

]
q

q(
r−j
2 )(qn(j−1) − 1)

+(q + 1)

n−1∏
i=1

(qi + 1)− 2q
n(n−1)

2 + q
n(n−2)

4

n/2∏
i=1

(q2i−1 − 1)

− q|G|.
Proof. From Remark (2.3), a maximal of a quadric of the pencil F belongs
either to one or to all quadrics of the pencil F . Then, from Section (2.4),
we have that

|
q+1⋃
i=2

(Ii(S) ∩ Ii(S′))| = q(|I(S) ∩ I(S′)| − |G|)

= q

|M1| − 2q
n(n−1)

2 + q
n(n−2)

4

n/2∏
i=1

(q2i−1 − 1)− |G|

 .

Each (n−2)–dimensional projective space covered by a member of L1 (resp.
Lr, 2 ≤ r ≤ n − 2) is disjoint from S (resp. S′), whereas each (n − 2)–
dimensional projective space covered by a member of

⋃q+1
i=2 (Ii(S)∩ Ii(S′))∪

(I(S) ∩ I(S′)) has at least a point in common with both S and S′. Also,
since two distinct elements of Ii(S)∩ Ii(S′) are maximals of a distinguished
quadric of the pencil F contained in the same system, they have at most
an (n − 3)–dimensional projective space in common. On the other hand,
let gi ∈ Ii(S) ∩ Ii(S′) and gj ∈ Ij(S) ∩ Ij(S′), i 6= j, and assume that
gi ∩ gj = A, where A is an (n− 2)–dimensional projective space. Then A is
contained in the base locus X of the pencil F and, from Lemma 2.10, there
exists a maximal g belonging to each quadric of the pencil F containing A.
Hence g, gi ∈Mi

1 and g∩gi = A, a contradiction. It follows that (
⋃n−2

i=1 Li)∪
(
⋃q+1

i=2 (Ii(S)∩Ii(S′)))∪(I(S)∩I(S′)) is a set of (n−1)–dimensional projective
spaces mutually intersecting in at most an (n − 3)–dimensional projective
space, as required.

We are ready to prove the main theorem of this Section.

Theorem 3.8. If n is even, there exists a (2n,M, 4;n)q constant–dimension
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subspace code, where

M = qn
2−n +

n−2∑
r=2

[
n

r

]
q

r∑
j=2

(−1)(r−j)
[
r

j

]
q

q(
r−j
2 )(qn(j−1) − 1)

+(q + 1)

n−1∏
i=1

(qi + 1)− 2q
n(n−1)

2 + q
n(n−2)

4

n/2∏
i=1

(q2i−1 − 1)


−q|G|+

[n
2

1

]
q2

([n
2

1

]
q2
− 1

)
+ 1.

Proof. The set G contains a subset D consisting of θ(n−2)/2,q2 generators
belonging to each hyperbolic quadric of the pencil F such that every ele-
ment in D meets S in a line and S′ in an (n − 3)–dimensional projective
space and the set DS = {A ∩ S | A ∈ D} is a Desarguesian line–spread
of S. In other words DS = {φ(P ) | P ∈ Σ}. On the other hand, the
set DS′ = {A ∩ S′ | A ∈ D} is a set of (n − 3)–dimensional projective
space mutually intersecting in an (n − 5)–dimensional projective space. In
particular for a fixed line ` ∈ DS there exists a unique element in DS′ ,
say A`, such that 〈`, A`〉 is in D, and viceversa. Furthermore, if ` ∈ DS

and B ∈ DS′ \ {A`}, then 〈`, B〉 is an (n− 1)–dimensional projective space
meeting a hyperbolic quadric of the pencil F in a cone having as vertex
A` ∩B and as base a Q+(3, q) containing `. Notice that such a cone meets
a generator of a hyperbolic quadric of the pencil F in at most an (n − 3)–
dimensional projective space. Let D′ be the set of (n − 1)–dimensional
projective spaces of the form 〈`, B〉, where ` ∈ DS and B ∈ DS′ \ {A`}.
Then D′ is disjoint from D. Also |D′| = θ(n−2)/2,q2(θ(n−2)/2,q2 − 1). From
the discussion above, taking into account Lemma 3.6 and Lemma 3.7, we
have that (

⋃n−2
i=1 Li)∪ (

⋃q+1
i=2 (Ii(S)∩ Ii(S′)))∪ (I(S)∩ I(S′))∪D′ ∪ {S} is a

set of (n−1)–dimensional projective spaces mutually intersecting in at most
an (n− 3)–dimensional projective space, as required.

3.2 n odd

Assume that n is odd. In this case |D(S)| = 0, then

M1 = (D(S′) ∩ I(S)) ∪ (I(S) ∩ I(S′)),

where D(S′)∩I(S), D(S′) are trivially intersecting sets and |D(S′)∩I(S)| =
|D(S′)| = q

n(n−1)
2 . It follows that |I(S) ∩ I(S′)| = |M1| − q

n(n−1)
2 .
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If we denote by I the subset of I(S) ∩ I(S′) consisting of maximals
intersecting S in exactly a point, we have the following.

Lemma 3.9.

|I| = θn−1,q

q (n−1)(n−2)
2 − q

(n−1)(n−3)
4

n−1/2∏
i=1

(q2i−1 − 1)


Proof. Let P be a point of S. If ⊥ is the polarity of PG(2n−1, q) associated
with Q, then P⊥ is a hyperplane meeting Q in a cone having as vertex the
point P and as base a hyperbolic quadric Q+(2n− 3, q). Both S ∩Q+(2n−
3, q) and S′ ∩ Q+(2n− 3, q) are maximals of Q+(2n− 3, q). It follows that
the number of maximals of I(S) ∩ I(S′) intersecting S exactly in P equals
the number of maximals of Q+(2n − 3, q) disjoint from S and meeting S′

non–trivially.

Lemma 3.10. The set (
⋃n−2

i=1 Li)∪(I(S)∩I(S′)\I)∪{S} is a (2n,M, 4;n)q
constant–dimension subspace code, where

M = qn
2−n +

n−2∑
r=2

[
n

r

]
q

r∑
j=2

(−1)(r−j)
[
r

j

]
q

q(
r−j
2 )(qn(j−1) − 1) +

n−1∏
i=1

(qi + 1)

−q
n(n−1)

2 − θn−1,q

q (n−1)(n−2)
2 − q

(n−1)(n−3)
4

n−1/2∏
i=1

(q2i−1 − 1)

+ 1.

Proof. From Lemma 3.3,
⋃n−2

i=1 Li has the required property. Moreover, each
member of L1 (resp. Lr, 2 ≤ r ≤ n−2) is disjoint from S (resp. S′), whereas,
by construction, each member of I(S)∩I(S′)\I has at least a line in common
with S′ and at least a plane in common with S. Hence I(S) ∩ I(S′) \ I
is disjoint from

⋃n−2
i=1 Li. On the other hand, each (n − 2)–dimensional

projective space covered by a member of L1 (resp. Lr, 2 ≤ r ≤ n − 2)
is disjoint from S (resp. S′), whereas each (n − 2)–dimensional projective
space covered by a member of I(S)∩I(S′)\I has at least a point in common
with S′ and a line in common with S. Also, since two distinct elements of
(I(S) ∩ I(S′) \ I) ∪ {S} are maximals of Q contained in the same system,
they have at most an (n − 3)–dimensional projective space in common. It
follows that (

⋃n−2
i=1 Li)∪(I(S)∩I(S′)\I)∪{S} is a set of (n−1)–dimensional

projective spaces mutually intersecting in at most an (n − 3)–dimensional
projective space, as required.
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From [1, Theorem 4.6] a partial line–spread of PG(n− 1, q), n ≥ 5 odd,
has size at most y := qn−2 + qn−4 + . . . + q3 + 1 and actually examples of
this size exist. We are ready to prove the main theorem of this Section.

Theorem 3.11. If n is odd, there exists a (2n,M, 4;n)q constant–dimension
subspace code, where

M = qn
2−n +

n−2∑
r=2

[
n

r

]
q

r∑
j=2

(−1)(r−j)
[
r

j

]
q

q(
r−j
2 )(qn(j−1) − 1) +

n−1∏
i=1

(qi + 1)

−q
n(n−1)

2 − θn−1,q

q (n−1)(n−2)
2 − q

(n−1)(n−3)
4

n−1/2∏
i=1

(q2i−1 − 1)


+y(y − 1) + 1.

Proof. Let S be a partial line–spread of S such that |S| = y. Consider the set
D consisting of y generators of Q, such that every element in D is generated
by a line ` of S and S′ and the (n−3)–dimensional projective space `⊥∩S′.
The set DS′ = {A ∩ S′ | A ∈ D} is a set of (n − 3)–dimensional projective
space of S′ mutually intersecting in an (n−5)–dimensional projective space.
In particular for a fixed line ` ∈ S there exists a unique element in DS′ ,
say A`, such that 〈`, A`〉 is in D, and viceversa. Furthermore, if ` ∈ S and
B ∈ DS′\{A`}, then 〈`, B〉 is an (n−1)–dimensional projective space meeting
Q in a cone having as vertex A` ∩ B and as base a Q+(3, q) containing `.
Notice that such a cone meets a generator of Q in at most an (n − 3)–
dimensional projective space. Let D′ be the set of (n − 1)–dimensional
projective spaces of the form 〈`, B〉, where ` ∈ S and B ∈ DS′ \ {A`}. Then
|D′| = y(y − 1). From the discussion above, taking into account Lemma
3.10, we have that (

⋃n−2
i=1 Li) ∪ (I(S) ∩ Ii(S′) \ I) ∪ D′ ∪ {S} is a set of

(n − 1)–dimensional projective spaces mutually intersecting in at most an
(n− 3)–dimensional projective space, as required.

4 The case of PG(7, q)

In this section we specialize to the case of the triality quadric Q+(7, q). We
will denote by ⊥ the polarity of PG(7, q) induced by Q+(7, q).

Let us denote byM1 andM2 the two systems of generators of Q+(7, q),
by L the set of lines of Q+(7, q) and by P the set of points of Q+(7, q).
Then the rank 4 incidence geometry Ω = (P,L,M1,M2) can be attached
to Q+(7, q) as follows. An element G1 ∈ M1 is said to be incident with
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an element G2 ∈ M2 if and only if the intersection G1 ∩ G2 is a plane
of Q+(7, q). Incidence between other elements is symmetrized containment.
Every permutation of the set {P,M1,M2} defines a geometry Ω′ isomorphic
to Ω and hence the automorphism groups of Ω and Ω′ are isomorphic.

A triality of the geometry Ω is a map τ :

τ : L → L,P →M1,M1 →M2,M2 → P

preserving the incidence in Ω and such that τ3 is the identity.
Here, we will improve, in the case n = 4, the result established in Theo-

rem 3.8, which yields an (8,M, 4; 4)q CDC, say Z, where

M = q12 + (q2 − 1)(q2 + 1)2(q2 + q + 1) + (q3 + 3q2 + q + 1)(q2 + 1) + 1,

by considering some more suitable projective 3–spaces (solids). Recall, from
Section 3.1, that the solids of Z meeting both S and S′ are generators
of some hyperbolic quadric of the pencil F . In this case S and S′ are
generators of Q+(7, q) belonging to the same system. Here, D consists of
q2 + 1 generators belonging to each hyperbolic quadric of the pencil F such
that every element in D meets S and S′ in a projective line. It follows that
DS = {A∩ S | A ∈ D} and DS′ = {A∩ S′ | A ∈ D} are both Desarguesian
line–spreads of S and S′, respectively. In other words DS = {φ(P ) | P ∈ Σ}
and DS′ = {φ(P ) | P ∈ Σ′}.

Lemma 4.1. There exists a group H in the orthogonal group PGO+(8, q),
stabilizing Q+(7, q), fixing both S, S′, their line–spreads D(S), D(S′) and
permuting in a single orbit the remaining lines of S (respectively S′).

Proof. Let r′ be a line of S′. Then, r′⊥ meets S in a line r. If r′ belongs
to DS′ , then r belongs to DS . Assume that r′ does not belong to DS′ .
Of course, r′ meets q + 1 lines l′1, . . . , l

′
q+1 of DS′ and r meets q + 1 lines

l1, . . . , lq+1 of DS . The subgroup of the orthogonal group PGO+(8, q) fixing
Q+(7, q) and stabilizing both S and S′ (but that does not interchange them)
is isomorphic to PGL(4, q) (which in turn is isomorphic to a subgroup of
index two of PGO+(6, q)). Under the Klein correspondence between lines
of S and points of the Klein quadric K = Q+(5, q), the lines of DS are
mapped to a 3–dimensional elliptic quadric E embedded in K and the lines
l1, . . . , lq+1 are mapped to a conic section C of E , see [13]. Also, there
exists a subgroup H ′ of the orthogonal group PGO+(6, q) fixing K, having
order (q + 1)|PGL(2, q2)|, stabilizing E and permuting in a single orbit the
remaining points of K, see also [6, Proposition 3]. It follows that there
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exists a group H in the orthogonal group PGO+(8, q) corresponding to H ′,
stabilizing Q+(7, q), fixing both S, S′, their line–spreads D(S), D(S′) and
permuting in a single orbit the remaining lines of S (respectively S′), as
required.

In the setting described in the proof of the previous Lemma, the line r
corresponds, under the Klein correspondence, to a point P contained in the
conic C′ := 〈C〉⊥K ∩K (here ⊥K denotes the orthogonal polarity of PG(5, q)
induced by K). The stabilizer of C in H ′ contains a subgroup, say H ′′,
isomorphic to PGL(2, q). Every projectivity of H ′′ acts identically on the
plane 〈C〉⊥K . Hence H ′′ fixes pointwise each of the q(q − 1)/2 external lines
E to the conic C′ lying in the plane 〈C〉⊥K . Moreover, the group H ′′ has
q(q− 1)/2 orbits of size q2− q. Each of them, together with C, is the elliptic
quadric l⊥K ∩ K, for some l ∈ E. Also, these are all the elliptic quadrics of
K on C. Let E ′ be one of the above orbits of H ′C of size q2 − q disjoint from
E . Let LE ′ be the set of lines of S corresponding to E ′. Let Y denote the
solid generated by r′ and a line of LE ′ .

Lemma 4.2. Y H is a set of q6 − q2 solids mutually intersecting in at most
a line.

Proof. Consider the orbit Y H of Y under the action of the group H. Since
the lines in LE ′ are mutually disjoint, then two distinct solids in Y H contain-
ing r′ have in common exactly the line r′. Let l be a line of LE ′ . Under the
Klein correspondence, the line l corresponds to a point P ′ ∈ E ′. Notice that
P ′⊥K meets E in a conic, say C′′, that is necessarily disjoint from C. Assume
on the contrary that there exists a point in common between C and C′′, sayQ.
Then the line P ′Q is entirely contained in K. Also, P ′Q ⊂ E ′ = 〈P ′, C′′〉∩K,
contradicting the fact that E ′ is a 3–dimensional elliptic quadric (and so
does not contain lines). Now, we claim that the solid 〈P, C′′〉 meets K in
a 3–dimensional elliptic quadric. Indeed, otherwise, there would be a line
entirely contained in K and passing through P . But such a line would con-
tain a point of C′′, that clearly is a contradiction, since P ∈ C⊥K and C′′ is
disjoint from C. It follows that if Hl denotes the stabilizer of l in H, then rHl

contain q2−q mutually disjoint lines. Therefore r′Hl contain q2−q mutually
disjoint lines and two solids in Y H containing l have in common exactly the
line l. Then Y H is a set of solids mutually intersecting in at most a line.
Finally, the set Y H contains (q2 − q)(q2 + q)(q2 + 1) = q6 − q2 solids.

We are ready to prove the main theorem of this Section.
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Theorem 4.3. There exists an (8,M, 4; 4)q constant–dimension subspace
code, where

M = q12 + q2(q2 + 1)2(q2 + q + 1) + 1.

Proof. Notice that none of the solids in Y H is a generator of Q+(7, q) or of
a quadric of the pencil F . Finally, assume that a solid T in Y H generated
by a line l ∈ S and a line r ∈ S′ contains a plane π that is entirely contained
in Q+(7, q) or in a quadric of the pencil F . Then, π would meet l′ in a point
U and hence T would meet S′ in a line through U that is not the case.

Corollary 4.4.

Aq(8, 4; 4) ≥ q12 + q2(q2 + 1)2(q2 + q + 1) + 1.

Remark 4.5. The result of Theorem 4.3 was obtained with different tech-
niques in [7], where the authors, among other interesting results, proved that
q12 + q2(q2 + 1)2(q2 + q+ 1) + 1 is also the maximum size of an (8,M, 4; 4)q
constant–dimension subspace code containing a lifted MRD code.
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