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David Gertsvolf , Miljana Horvat , Danesh Aslam , April Khademi , Umberto Berardi * 

Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada   

H I G H L I G H T S  

• Deep Learning potential in the construction sector is explored. 
• Infrared imaging processing and interpretation is combined with the potential of AI. 
• Convolution Neural Networks are used for finding deficiencies in building envelopes. 
• Biomedical imaging techniques are applied to aerial infrared images of buildings.  
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A B S T R A C T   

The possibility of obtaining large data set of infrared images during building and urban envelope surveys require 
the development of fast and effective ways to process their content. This study presents a novel U-NET convo-
lution neural network (CNN) deep learning (DL) model for the identification of envelope deficiencies on a data 
set of infrared (IR) thermographic images of building envelopes. A data set of images acquired with an unmanned 
aerial vehicle (UAV) were used with supplementary segmentation masks created for appropriate U-NET 
modelling application. This data preparation process is presented followed by an in-depth review of the CNN 
architecture used for the segmentation process. The Python3 code developed for this study is simplified for easier 
application by non-data-science researchers. The results of this research show high accuracy. However, large 
data set are needed to better train the CNN-DL model.   

1. Introduction 

The building sector accounts for roughly 30–40% of global energy 
usage which in turn contributes to over a third of the world's greenhouse 
gas emissions [1]. The worldwide growing awareness of building energy 
consumption and the resulting negative environmental impact have 
urged policymakers to focus on energy conservation [2]. 

Building energy performance is mainly impacted by defects such as 
poor envelope design, and construction, particularly dominated by air 
leakages and inadequate insulation. With energy loss through the 
building envelope being the leading contributor to poor building energy 
efficiency, the identification of inadequately envelope performance is 
required prior to the implementation of appropriate rehabilitation ac-
tions [3]. While intrusive building envelope investigations are costly and 
time consuming, infrared (IR) thermography has become a common 
practice for default detection. In addition, advancements in infrared and 

digital imaging technologies coupled with the substantial price drop of 
IR cameras has increased the use of this non-intrusive inspection method 
[4]. 

The use of unmanned aerial vehicles (UAVs) has recently become a 
contributor to the thermographic analysis granting more accessible and 
more accurate imaging collecting methods. As the collection of infrared 
thermal images has evolved, the evaluation techniques of the imageries 
still require extensive developments. Current methods typically require 
an expert in building science and thermography to manually and indi-
vidually evaluate the imagery and develop qualitative conclusions based 
on thermal patterns and knowledge of construction methods and ma-
terials in the assembly. This technique is inefficient as it is quite time 
consuming; in addition, this process is increasingly augmented when 
examining high-rise building envelopes as they require a considerably 
larger number of images. 

Artificial intelligence (AI) and more specifically, machine learning 
(ML), is an intelligence system performed through machines where with 
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minimal human intervention and supplied data, patterns and decisions 
can be developed. ML is able to analyze extensive amounts of data 
through the construction of automated analytical models. Depending on 
the type of collected information, as well as the intended objectives, 
there are various approaches and ML algorithms that can be employed. 
Deep Learning (DL) is a subset of ML that structures algorithms in layers 
to create an Artificial Neural Network (ANN) that can learn and make 
intelligent decisions on its own. DL uses structures similar to neurons to 
perform its learning system. A type of DL model is a Convolution Neural 
Network (CNN), that uses algorithms specifically designed for image 
processing. This DL model has become a key player in powering com-
puter vision and has become a powerful tool in various fields including, 
biomedical engineering, self-driving automation and many others. With 
limited studies showing CNN applications in building envelope IR as-
sessments, this research aims to answer the following question if CNN DL 
analytical models be applied to IR exterior building envelope images. 

This study presents a development of a novel U-NET CNN, DL model, 
developed in a Python environment for the identification of deficient 
areas resulting in potential energy loss on a data set of IR thermographic 
images of building envelopes. First, a comprehensive review of existing 
state of the art building envelope assessment methods, with the use of 
thermography, ML and UAVs will be discussed in order to grasp an 
understanding of possibilities and limitations in this field. Following, the 
U-NET model that was programmed and adapted for assistance in the 
review process of building envelope IR images is presented. The aim is to 
segment and accurately identify energy loss on any given thermographic 
exterior wall system. The methodology consists of the image acquisition 
and data preparation procedures followed by a breakdown of the U-NET 
structure and development. The results section is broken down into two 
portions. First the development of the model throughout the research 
processed is presented for non-data-science personnel, followed by the 
accuracy and performance of the results. 

2. Literature review 

Building envelope is the physical separator between the conditioned 
and unconditioned environment and controls the air, water, heat, light, 
and noise transfer. When the air control and thermal control of an en-
velope is compromised, unwanted energy loss occurs through the en-
velope which increases the energy demand of a building. There are many 
factors that may affect the condition of a building envelope system 

starting from design to life cycle loads. 
Infrared thermography (IR) has expanded as a mean of building 

energy auditing since the early 2000s, when portable IR cameras 
became affordable and available. The non-destructive testing method 
functions by producing a sequence of two-dimensional, temperature 
distributed, images. The IR camera captures the radiation emitted by 
objects at temperatures above absolute zero which are then converted to 
digital images that can be viewed by the human eye. IR covers a portion 
of the electromagnetic spectrum from approximately 0.9 to 14 μm. An IR 
detector cooling digitization device is a focal plane array (FPA) of 
micrometer size pixels made of various materials sensitive to IR wave-
lengths. The FPA detects photons and generates an electrical charge in 
relation to the number of photons detected at each pixel which is then 
measured, digitized, and used to construct a temperature image. These 
images are displayed through a colour palette. 

Over the past two decades, IR thermography has evolved into a 
common building energy auditing tactic, both qualitative and quanti-
tative. The qualitative testing approach identifies anomalies in the 
building envelope without defining temperature values and without 
translating to energy loss metrics. Qualitative IR assessments include: 
thermal characterization of walls, glazing and windows; thermal 
bridging and excessive heat loss areas detection; thermal insulation 
examination; air leakage inspection; moisture and water detection; 
HVAC and electrical systems characterization; indoor temperature 
measurements for human comfort assessment. 

Quantitative analysis on the other hand, is used to quantify the 
thermal performance of a building envelope by presenting thermal 
transmittance values (U-values) based on the known interior and exte-
rior temperatures. These calculations are performed on top of the IR 
images and require extensive building information. Quantitative build-
ing auditing methods include: determination of the percentage of areas 
with thermal anomalies; insulation levels detection; U-value measure-
ments; dynamic characterization of walls, and moisture content deter-
mination [5]. 

IR analysis can be passive or active. Passive analysis measure the 
temperature difference under normal in-situ conditions while active 
thermography requires exerting an external source of heat on a wall 
element to induce an effect within a material that will emphasize any 
defects within the system [4,5,6]. Active analysis methods that incor-
porate thermal stimulation are typically used in laboratory testing, 
historic buildings or product characterization. 

Abbreviations 

Acronym Definitions 
CNN Convolution Neural Network 
DL Deep Learning 
IR Infrared 
ASTM American Society for Testing and Materials 
ISO International Organization for Standardization 
NMS Canadian National Master Construction Standard 
SCC Standards Council of Canada 
UAV Unmanned Aerial Vehicle 
GHG Green House Gas 
AI Artificial Intelligence 
ML Machine Learning 
ANN Artificial Neural Network 
FPA Focal Plane Array 
SVM Support Vector Machine 
KNN k-Nearest Neighbour 
NB Naïve Bayes 
DT Decision Trees 
RF Random Forest 

ROI Regions of Interest 
AEC Architecture, Engineering and Construction 
RGB Red, Green, Blue 
GPU Compute Engine backend 
1D One Dimensional 
2D Two Dimensional 
3D Three Dimensional 
Acronym Definitions 
BCE Binary Cross Entropy 
MSE Mean Squared Error 
SCC Sparse Categorical Cross-Entropy 
Symbol Definitions 
y Normalized greyscale data 
x Original greyscale data 
α alpha 
β beta 
TI Tversky Index 
TP True Positive 
FN False Negative 
FP False Positive  
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Originally, IR imaging began with the use of handheld photographic 
cameras which was a limitation for the capturability and accessibility of 
entire building envelopes. The use of UAVs, i.e. drones, has pushed the 
limits of data capturing in the building fault detection field, enabling IR 
imaging on otherwise hard to reach areas of building envelopes. The 
majority of commercial photogrammetry and remote sensing (PaRS) is 
performed with UAV cameras. Supported software for flight planning, 
flight navigation, guidance and control, and data post-processing exists 
[7]. IR imaging has also helped with the development of 3D model 
generation. 3D model generation is a post image processing tool that 
develops models for groups of buildings (geoclusters) or a single 
building. There are different software that exist for 3D model develop-
ment which vary in workflow, model production time and quality of 
output [8]. Current 3D modelling using building images is typically 
performed using LiDAR and RGB formats where IR images are overlaid 
onto the model. 

A drone flight path will determine the image capturability through 
its distance from the test surface, bearing angle and altitude. These as-
pects are important to consider when developing a flight trajectory for 
the UAV system. Any adjacent buildings to the site under assessment 
may also hinder the image capturing process. Image processing is an 
important part of the drone analysis technique in order to create a 
comprehensive and complete image. Segmentation or photogrammetry 
is performed using either direct geo-referencing, ground control points, 
manual tie-in points or a combination thereof. The segmentation process 
can be affected based on-site elements and conditions (See Fig. 1). 

In recent years, and especially with the technological development 
and price reduction in sensors and data acquisition systems, there has 
been a tremendous leap in all sorts of measurement activities within the 
built environment. The most common approach applicable in the built 
environment includes a group of algorithms known as Machine 
Learning, where data is analyzed through the construction of automated 
analytical models implemented in software. 

More specifically, the types of ML algorithms used for anomaly 
detection in the building sector can be subdivided as supervised 
learning, and unsupervised learning. On top of the two main sub-
divisions of ML there are also more complex combinations of models 
including, ensemble methods, hybrid learning (Fig. 2). 

Unsupervised Learning can be a number of approaches, but most 
notably, in this type of analysis only unlabeled data is used to make 
decisions on the data. Unsupervised techniques can include machine 
learning models that learn patterns and trends from unlabeled data, 
cluster analysis and other grouping methods that finds patterns and 
underlying features that describe groups to predict consumption ob-
servations. Several techniques of Unsupervised Learning include: 

• Clustering: algorithms group a set of objects in such a way that ob-
jects in the same group are more similar to each other than to those in 
other groups. Data in each cluster has similar statistical character-
istics [14,15].  

• One-Class Learning also known as unary classification or class- 
modelling, attempts to identify data points of a specific class 
among all data points, by primarily learning from a training set 
containing only the objects of that class. The task of fault detection is 
to detect whether the monitoring data belong to the normal class. 
Similarly, the task of fault diagnosis is to find which fault class the 
data belongs to [16].  

• Dimensionality Reductions is the process of reducing the number of 
feature variables under consideration, by obtaining a (reduced) set of 
principal variables that describe the data optimally. Dimensionality 
reduction can be divided into feature selection and feature projec-
tion. Feature selection is usually based on ranking of features and is 
used to find a smaller subset the original set of variables which can be 
used to model problems more robustly. On the other hand, future 
projection methods are used to reduce the data in a high dimensional 

Fig. 1. Various uses of IR with UAVs: (a) LiDAR and 3D point cloud of Washington DC [11]; (b) Seaports are seen using thermography technology with aerial drone 
cameras [12]; (c) Thermal scanning of new multi-story buildings [13]. 

Fig. 2. Machine learning algorithms in the building sector.  
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space to a lower dimension space usually through projection onto 
basis vectors-[17]. 

On the other hand, supervised learning is a machine learning para-
digm for problems where the available data consists of labeled exam-
ples, meaning that each data point contains features and an associated 
label. Given a large sum of annotated data points, relationships can be 
learnt between input and output, features and targets respectively. 
Techniques of supervised learning include:  

• Artificial Neural Networks (ANN) are an approach that attempts to 
mimic the capability of the human brain neurons. Each ANN consists 
of multi-layers (minimum two layers) of neurons and activation 
functions that form the connections between neurons [18]. Deep 
learning (DL) is the application of really large ANN networks, that 
are created by training with large datasets, and many model pa-
rameters. By including more layers of neurons, the number of pa-
rameters increases and lends to modelling more complex tasks. Over 
the last several years, convolutional neural networks have evolved 
and have been changing the landscape of computer vision. Such 
models solve for optimal filter (convolution) parameters, which are 
solved using gradient descent. The benefit of CNNs is that it in-
corporates neighbouring pixel information, which can lend to better 
image understanding. 

• Traditional machine learning and classification refers to the devel-
opment of a predictive model of previously developed classifiers such 
as Regression, Support Vector Machines and Random forest. As per 
supervised learning, this modelling problem where a class label is 
predicted for a given example of input data [19].  

• Regression analysis is a tool for building statistical models that 
characterize relationships among a dependent variable. The machine 
learning method allows for the predicting of a continuous outcome 
variable [20].  

• Support Vector Machine (SVM) is a supervised machine learning 
algorithm used for classification that plots data in a n-dimensional 
space. The SVM method aims to determine a separating hyperplane 
that distinguishes positive examples from negative examples. Given a 
set of labeled training data, it generates input-output mapping 
functions which are used for classification [21]. 

In addition, Ensemble Methods are techniques that create multiple 
models which are then combined to produce improved results. Boosting, 

Bagging and Stacking are types of meta-algorithms used mainly for 
regression and classification by reducing bias and variance to boost the 
accuracy. Feature extraction is a machine learning method which selects 
and/or combines variables into features, effectively reducing the 
amount of data that must be processed, while still accurately and 
completely describing the original data set. 

A recent study from North Dakota, USA, used a Mask R–CNN algo-
rithm to detect various objects of a façade from IR images [22]. Kar-
aaslan et al. [23] performed a study for crack detection and 
segmentation on concrete using a modified SegNet architecture CNN 
model that however IR was not used. Barahona et al. [24] used a mea-
surement system mounted on a vehicle, that acquired geotagged optical 
and infrared images from the street-side of buildings. Their research 
performed a binary classification CNN model that trained on 2000 
labeled IR images and identified anomalies with a precision score of 
around 89.2% and 75.6% recall on a test dataset of 1184 images. Finally, 
Mayer et al. [25] used a k-means clustering model on 40,000 buildings 
captured using maps street view and aerial view, coupled with other 
input metrics to rank energy efficiency of buildings. 

A recent study by Thrampoulidis et al. [26] describes a machine 
learning-based surrogate model to approximate optimal building retrofit 
solutions. In 2019, [27], published a comprehensive review of papers 
published between 2004 and 2019 on the implementation of AI in the 
fault detection and diagnostics of building systems, all focusing on 
mechanical, electrical and control systems in buildings. 

While the building sector has just recently begun to implement ML 
into the auditing field, other disciplines have much further advanced 
with the use of these analysis tools. The field of medicine for example, 
has been using IR thermography and ML applications for breast cancer 
detection, diabetic foot disease, skin cancer, carpal tunnel syndrome, 
dry eye disease, back pain, to name only some [28]. The main ML al-
gorithms used for these applications include:  

• Artificial Neural Networks are an approach that attempts to mimic 
the capability of the human brain neurons to process and handle 
large amounts of data so as to perform specific complex tasks. Each 
ANN consists of multi-layers (minimum two layers) of neurons and 
activation functions that form the connections between neurons 
[18].  

• k-Nearest Neighbour (KNN) is a supervised, traditional classification, 
machine learning technique which has no explicit training phase. 
KNN's purpose is to use a database in which the data points are 

Fig. 3. Overview of a CNN architecture and training process. [9].  
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separated into several classes to predict the classification of a new 
sample point. KNN algorithm is based on feature similarity. How 
closely out-of-sample features resemble the training set, determines 
how closely a given datapoint is classified.  

• Support Vector Machine (SVM) is a supervised machine learning 
algorithm used for classification that plots data in a n-dimensional 
space. The SVM method aims to determine a separating hyperplane 
that distinguishes positive examples from negative examples. Given a 
set of labeled training data, it generates input-output mapping 
functions which are used for classification [21]. 

2.1. Convolution neural networks 

Deep Learning which has emerged as an effective tool for analyzing 
big data, uses complex algorithms and ANN's to train machines/com-
puters, classify and recognize data similar to a human brain. In partic-
ular, a CNN is a type of ANN, which is widely used for image/object 
recognition and classification [29]. Deep Learning thus recognizes ob-
jects in an image by using a CNN. 

CNN is a mathematical construct, inspired by the organization of 
animal visual cortex, [30,31] intended to automatically and adaptively 
learn spatial hierarchies of features, from low- to high-level patterns. 
CNNs are typically composed of three types of layers also known as 
building blocks: convolution, pooling, and fully connected layers 
(Fig. 3). Convolution and pooling layers perform feature extraction, 
whereas the fully connected layers map the extracted features into final 
outputs such as classification. A convolution layer plays a major role in 
CNN models, which is composed of a stack of mathematical operations. 
An example is a convolution which is a specialized type of linear oper-
ation. In digital images, pixel values are stored in a two-dimensional 
(2D) grid or mathematically, an array of numbers and a small grid of 
parameters called a kernel. An optimizable feature extractor is applied at 
each image position, which makes CNNs highly efficient for image 

processing, since a feature may occur anywhere in the image. As one 
layer feeds its output into the next layer, extracted features can hierar-
chically and progressively become more complex. The process of opti-
mizing parameters such as kernels is called training, which is performed 
in order to minimize the difference between outputs and ground truth 
labels through an optimization algorithm called backpropagation and 
gradient descent. 

The convolutional layer is a filter that passes over the input image, 
scanning a few pixels at a time and creating a feature map that is used to 
predict the class to which each feature belongs. The main task of the 
convolutional layer is to detect local conjunctions of features from the 
previous layer and map their appearance to a feature map. As a result of 
convolution in neuronal networks, the image is split into perceptrons, 
creating local receptive fields and finally compressing the perceptrons 
into feature maps., This map stores the information where the feature 
occurs in the image and how well it corresponds to the filter. Each filter 
is trained in regard to the position in the image it is applied to. 

The Pooling layer also known as down sampling, reduces the amount 
of information in each feature obtained in the convolutional layer. The 
pooling layers are responsible for reducing the spatial size of the acti-
vation maps. In general, they are used after multiple stages of other 
layers like convolutional and non-linearity layers in order to reduce the 
computational requirements progressively through the network as well 
as minimizing the likelihood of overfitting. The key concept of the 
pooling layer is to provide translational invariance since particularly in 
image recognition tasks, the feature detection is more important 
compared to the feature's exact location. 

The fully connected layer is usually the last building block in a CNN 
model and is comprised of several fully-connected neurons. The output 
feature maps of the layer before the fully connected layer are flattened, 
meaning they are transformed into a one-dimension (1D) array of 
numbers. The fully connected layer maps the extracted features from the 
convolution and pooling layers onto the final output. The hyper- 
parameters and architecture of the building blocks can all be 

Fig. 4. U-NET Architecture [10].  
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manipulated and adjusted to improve performance of a model however, 
these three aforementioned steps are the building blocks of CNN models. 

Region-Based Convolutional Neural Network or R-CNN is a type of 
machine learning model that is used for computer vision tasks, specif-
ically for object detection [32]. This approach utilizes bounding boxes 
across the object regions, which then evaluates convolutional networks 
independently on all the Regions of Interest (ROI) to classify multiple 
image regions into proposed classes. 

Mask R-CNN is another CNN developed on top of Faster R-CNN and is 
a state-of-the-art in terms of image segmentation and instance segmen-
tation. The computer vision task Image Segmentation, is the process of 
partitioning a digital image into multiple segments or sets of pixels. This 
segmentation is used to locate objects and boundaries. There are two 
main types of image segmentation that fall under Mask R-CNN which 
include Semantic Segmentation and Instance Segmentation. Semantic 
segmentation classifies each pixel into a fixed set of categories without 
differentiating object instances meaning it deals with the identification/ 
classification of similar objects as a single class from the pixel level. 
Instance segmentation or instance recognition on the other hand deals 
with the correct detection of all objects in an image while also precisely 
segmenting each instance. Mask R-CNN models have shown exceptional 
computational speeds which allows for real time results of the two 
segmentation processes. 

2.2. U-NET 

The research presented in this paper falls under the semantic seg-
mentation portion and uses a specific CNN model called U-NET to 
perform the operations. U-NET is an architecture that was designed for 
fast and precise image segmentation by Ronneberger et al. [10]. The 
reason that U-NET was selected for this paper is because the model has 
shown success with limited input data over other CNN algorithms. U- 
NET is a U-shaped encoder-decoder network architecture, which con-
sists of four encoder blocks and four decoder blocks that are connected 
via a bridge (Fig. 4). 

The encoder network also called the contracting path, cuts the spatial 
dimensions by two and doubles the number of filters, or feature chan-
nels, at each encoder block. Similarly, the decoder network doubles the 
spatial dimensions and half's the number of feature channels. The ar-
chitecture's U-shaped visual representation is where its name come 
originates from. The encoder network acts as the feature extractor of the 
model and learns an abstract representation of the input image through 
a sequence of the encoder blocks. 

Each encoder block consists of two 3 × 3 convolutions, where each 
convolution is followed by a ReLU (Rectified Linear Unit) activation 
function. The ReLU activation function adds non-linearity into the sys-
tem, which aids in the enhanced generalization of the training data. The 
output of the ReLU acts as a skip connection for the corresponding 
decoder block. Next, follows a 2 × 2 max-pooling, where the spatial 
dimensions, height and width, of the feature maps are reduced by half. 
This reduces the computational requirements by decreasing the number 

of trainable parameters. Skip connections provide additional informa-
tion that helps the decoder to generate better semantic features. They 
also act as a shortcut connection that helps the indirect flow of gradients 
to the earlier layers without any degradation. Simply stated, the skip 
connection helps in improving the flow of gradient while back-
propagation helps the network learn better representation. The bridge 
connects the encoder and the decoder network and completes the flow of 
information. It consists of two 3 × 3 convolutions, where each convo-
lution is followed by a ReLU activation function. The decoder network is 
used to take the abstract representation and generate a semantic seg-
mentation mask. 

While a data set of images are required as input into a U-NET model, 
ground truth, masks are also required. These are 2 dimensional images 
of the same dimensions as the input data that accompany each image in 
the training set of the model. These masked images are binary and 
manually created where the 1's show the areas of interest and the 0's 
show all the remaining background pixels. Similar to the masks, the 
outputs of a U-NET model are predicted binary segmented masks that 
show areas of interest to unobserved data. The accuracy and results of 
the U-NET model are then observed and evaluated through the testing 
set for optimal performance and enhancements. 

3. Methodology 

3.1. Image acquisition 

The data set selected for the U-NET application process performed in 
this research was acquired through in-kind contributions with an 
existing repository of jpg. File type IR images. Because the images were 
originally acquired for another purpose by an industry partner, the 
research team had not had any input in the process which was later 
addressed in the limitations. For the purpose of this study, the team 
selected images according to the following criteria from the much larger 
database: opaque façade systems (no glazed buildings); all vertical fa-
cades; some images with no façade deficiencies detected and all 
remaining images with defects; limited noise/interferences; captured 
using same camera for consistent colour palette. 

The images were obtained with limited wind (below 0.5 m/s at 10 m 
height), which was needed for the UAV operation. Lateral radiation 
patterns and re-reflections of energy losses were avoided by selecting 
isolated buildings, limiting the inter-building radiation effect. 

The images had a 512 × 640 resolution, where each pixel represents 
three values, RGB, ranging from 0 to 255. These images were attained 
using an Intel Falcom 8+ UAV coupled with a DJI ZENMUSE H20T 
camera (Fig. 5). The radiometric thermal camera outputs images set to 
an Ironbow colour pallet. Ironbow uses colours that run from black 
through blue for cooler temperatures to magenta, orange, yellow to 
bright white for warmer temperatures. The buildings were all assessed 
under regular operating conditions when the indoor and outdoor tem-
perature differences were a minimum of 10◦ Celsius. A total of 142 
images were selected from a data base of images, comprising of 14 

Fig. 5. UAV & Camera: Falcom 8+ UAV (left), DJI ZENMUSE H20T Camera (right) (Product Brief: Intel® FalconTM 8.  
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buildings having various images showing energy loss and additionally. 

3.2. Data preparation 

The data preparation process included creation of masks and seg-
mentations, as it is a requirement for providing ground truth to the 
analytical model to learn from. The following two approaches were 
used: Temperature Threshold and Manually Created using Paint.exe 
[33]. 

The approach that was used to create the binary masks for the input 
images was performed using an application called FIJI using the Labkit 
plugin [34]. The user interface allowed the manual drawing process for 
each image to be much faster than Paint.exe. Using the FIJI software, 
each IR image was imported and a mask, highlighting areas of concern, 
were created. Locations where detailing and assembly design original to 
construction were considered poor, were avoided to focus on de-
teriorations and inconsistencies. Once the masks were imported into the 
model, it was observed that the images were not binary. Therefore, the 
following function was required to convert the masks into binary images 
where 127 (the halfway point between 0 and 255) was used as the split 
value: def mask_to_binary(x):if x < 127: return 0. return 1.0. 

Once all the masks were created, the directory organization and file 
naming conventions were addressed in order to avoid errors. Fig. 6 
presents examples of IR images and accompanying binary images as well 

as file naming conventions. 
There are several elements and preprocessing procedures that must 

be performed in order to prepare the input data. Once all the IR images 
and accompanying masks are loaded into the model, they are made into 
their own lists and sorted so that both lists are matching with corre-
sponding names. If a manually created directory of test set or validation 
set images has been made, this function is similarly applied and saved 
with their appropriate list names. These are performed using the Load-
Data function as found in appendix A. 

The IR images and binary masks are converted into an array of 1 
channel where the binary image colour values remain 0 or 1 but the IR 
images are greyscaled. This is called dimensionality reduction. In this 
case RGB channels are collapsed into a single greyscale channel. Where 
RGB images are three channels and greyscale images are 1 channel, this 
function is performed to reduce computational requirements while 
preserving the information of the building components and surrounding 
elements in the image. On top of the channel reduction, the image size 
(Height x Width) values are adjusted as well to create a square image 
with aspect ratio 1:1. The 512 × 640 images are resized to either 128 ×
128 or 256 × 256 or 512 × 512. For the purpose of this research, the 
image size was kept at 128 × 128. The greyscale images are then scaled 
down, meaning that the value of each pixel is divided by 255 to set the 
colour range between 0 and 1. Scaling image inputs is an important step 
which ensures that each input parameter (pixel, in this case) has a 

Mydrive/IR/shefford_2.jpg Mydrive/Mask/shefford_2.jpg

Mydrive/IR/LondonU_2.jpg Mydrive/Mask/LondonU_2.jpg

Fig. 6. IR and Mask Image: IR Image (left) with accompanying binary mask (right) examples and file directory/naming convention.  

D. Gertsvolf et al.                                                                                                                                                                                                                               



Applied Energy 360 (2024) 122696

8

similar data distribution. This makes convergence faster while training 
the network. Data normalization is done by subtracting the mean from 
each pixel and then dividing the result by the standard deviation. The 
distribution of such data would resemble a Gaussian curve centered at 
zero. 

Another data preprocessing step that can be applied is data 
augmentation. This technique involves augmenting the existing data-set 
with perturbed versions of the existing images. Scaling, rotations and 
other affine transformations are typical. This is done to expose the 
neural network to a wide variety of variations and can increase the 
training data by 2 or 4-fold. This makes it less likely that the neural 
network recognizes unwanted characteristics in the data-set. 

3.3. U-NET architecture 

The architecture used in this research was designed based off of 
Harshall Lamba's Salt Identification Case study and adjusted for appli-
cation to this specific research [35]. The U-NET architecture is created 
using two functions: U-NET encoder mini block and U-NET model 
construct. These two functions are then used to build the U-NET model 
and are summarized to visualize all the layers and parameters. 

First, the U-NET encoder mini block function is scripted. This is the 
“Conv 3x3 ReLu” operation depicted as the blue lines in fig. 6 and 
similarly defined as the “2 @ Conv Layers” in Fig. 7. This function ap-
plies 2 consecutive convolution layers with the following parameters 
that are defined and passed to it: Input tensor, number of filters, dropout 
probability, max pooling, kernel size and batch normalization. 

The second function, U-NET model construct is then scripted. This 
function performs the remainder of the operations. This function ulti-
mately defines the U-NET model and creates the contracting and 
expansion paths of the model with the following definitions for each 
notation:  

- c1, c2, c3, c4, c5, c6, c7, c8, and c9 are the output tensors of the 
convolutional layers.  

- p1, p2, p3 and p4 are the output tensors of max pooling layers.  
- u6, u7, u8 and u9 are the output tensors of up-sampling also known 

as the transposed convolutional layers. 

To summarize, the left-hand side is the contraction path or encoder 
where regular convolutions and max pooling layers are applied. In the 
Encoder, the size of the image gradually reduces while the depth grad-
ually increases, starting from 128x128x3 to 8x8x256. This basically 
means that the network learns the “what” information in the image, 
however it has lost the “where” information. The right-hand side is the 
expansion path or, decoder, where transposed convolutions along with 
regular convolutions are applied. In the decoder, the size of the image 
gradually increases, and the depth gradually decreases, starting from 
8x8x256 to 128x128x1. Intuitively, the Decoder recovers the “where” 
information (precise localization) by gradually applying up-sampling. 
To get better precise locations, at every step of the decoder, skip con-
nections are used by concatenating the output of the transposed 
convolution layers with the feature maps from the encoder at the same 
level which in the code appear as: u6 = u6 + c4, u7 = u7 + c3, u8 = u8 
+ c2, u9 = u9 + c1. After every concatenation two consecutive regular 
convolutions are applied so that the model can learn to assemble a more 
precise output. On a high level, the following relationship is created: 
Input (128x128x1) ≥ Encoder ≥ (8x8x256) ≥ Decoder ≥ Output 
(128x128x1). 

The output of the U-NET model construct function is the model itself, 
which is defined using the tf.keras.model function which is from the pre- 
set Tensorflow package. Keras is a DL application programming inter-
face (API) written in Python, running on top of the ML platform Ten-
sorFlow [36]. While TensorFlow is an open-sourced end-to-end platform 
with a library for multiple ML tasks, Keras is a high-level neural network 
library that runs on top of TensorFlow. Both provide high level APIs used 

Fig. 7. Model 22 Results.  
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for easily building and training models. This function specifically, 
groups layers into an object with training and inference features. The 
Python3 scripted U-NET model construct function can be seen in ap-
pendix A as function name; UNetCompiled. 

Finally, now that the two functions are created, the U-NET model is 
built. This U-NET build command calls the helper functions for defining 
the layers for the model, given the input image size. The U-NET model is 
assigned to a name and is written as follows: 

unet = UNetCompiled(input_size=(resize_shape_x, resize_shape_y, 1), 
n_filters=32, n_classes=num_classes, batchnorm=True) 

3.4. Training, validation & testing 

Now that the U-NET model is ready, the training, validation and 
testing must be addressed. These are three sets of data that are used in 
ML practice. The training is the largest set of data, that is teaching the 
algorithm. It helps the model create and refine the rules using this data. 
It is a set of data samples used to fit the parameters of a machine learning 
model to training it by example. The model analyzes the dataset 
repeatedly to deeply understand its characteristics and adjust itself for 
better performance. The validation set is used in conjunction with 
training and helps understand how the model is performing throughout 
the training portion. The model does not learn from the validation set. 
Moreover, the validation is not required but is typically used to provide 
further insight for adjustments to hyper-parameters in the model and for 
tweaking the model structure. Finally, the testing set, is applied to the 
trained model and creates its own outputs to the new data based on how 
it has learned to perform. 

In order to execute the model and apply the training and validation, 
the model must be compiled and then trained. Compiling the model 
requires taking the U-NET model and applying an optimizer, loss func-
tion and metrics. In order to train the model, the training data, batch 
size, number of epochs, and validation data (if applicable) must me be 
defined. These commands can be executed using the following Python3 
code: 

The .compile() function, as seen above, returns a specified source as a 
code object that is ready to be executed. In this case, U-NET is the model 
that is compiled with the specified parameters within the brackets. 
Optimizers update the model in response to the output of the loss 
function. Optimizers assist in minimizing the loss function. A loss 
function, also referred as cost function or error function, quantifies the 
error between the output of the algorithm and the given target value. In 
this case it will be the predicted masks and the manually created masks. 
Finally, metrics are used to monitor and measure the performance of a 
model during training, validation, and testing. Metric functions are 
similar to loss functions, except that the results from evaluating a metric 
are not used when training the model. Comparing training and valida-
tion metrics are important for understanding how the model is learning 
and performing. 

There is a list of Keras optimizers that can be selected when creating 
a DL model. For the purpose of this research, ‘sgd’, ‘adam’, and 
‘rmsprop’ optimizers were used during the simulations. These were 
selected based off of the example models. The hyperparameters and 
algorithms of these models are beyond the purpose of this research. 

Several loss functions were used throughout this research endeavour. 

First, Keras' Sparse Categorical Cross-Entropy (SCC) and Mean Squared 
Error (MSE) were used. SCC computes the cross-entropy loss between 
the labels and predictions while MSE computes the mean of squares of 
errors between labels and predictions. Binary Cross Entropy (BCE), Dice 
Loss, and the two combined (BCE_Dice Loss) were also evaluated in this 
research. BCE computes the cross-entropy loss between true labels and 
predicted labels. Dice loss is 1 minus the dice coefficient where dice 
coefficient is two times (x2) the area of overlap divided by the total 
number of pixels in both images (predicted and ground truth mask). 
BCE_Dice is BCE plus dice loss. Finally, Tversky loss or generalized dice 
loss was used, which controls the contribution that each class makes to 
the loss by weighting classes by the inverse size of the expected region. 
A. 

The unet.fit() function was used to train the model after it had been 
compiled. The batch size defines the number of samples in the batch. 
The batch is propagated through the network before updating the model 
parameters. After each batch, the model parameters are updated and a 
batch of samples go through one full forward and backward 
propagation. 

3.5. Evaluating the model 

The evaluation process is comprised of several elements. First, 
applying the trained model to the test set. This process provides new 
input data to the constructed model and using solely the IR images, 
predict binary masks are created. A model.evaluate() function is used to 
execute this process and once assigned to a variable the results can be 
viewed and evaluated. These predicted masks, similar to the validation 
metrics, as mentioned above, can be compared to the corresponding 
manually created masks to assess the accuracy of the model. Where 
validation and test set differ, is that validation is performed after each 
epoch, while testing is executed once the model has finished training. 

4. Model development 

This section presents an overview of the key developments made 
throughout this study. Each model discusses the hyperparameters that 
were used for model creation and clarify the reasons for the changes 
made. 

Models 1–4. The first four models created were a trial-and-error 
approach to compiling some sort of successful results in the predicted 
masked images. The optimizers, loss functions and metrics were 
manipulated along with the batch size and number of epochs. 

Models 5–13. In this batch of models, the following parameters were 
adjusted: new loss functions were added, the batch size and epoch sizes 
were manipulated. The data sets were also changed from a randomized 
set to a manually created training and testing set. However, Models 5 
through 13 showed similar bias results as model 4. For that reason, these 
outcomes can also be disregarded. It was only after model 14 that the 
data sets were adjusted to avoid any overlap between training and 
testing sets. Mirroring was also added as a data augmentation function 
to the training set. Similar to the previous models, the graphs and pre-
dicted results all appeared to have strong results however, these can be 
ignored due to bias from overlap. 

Models 14–22. It was after model 13 that the bias caused from 
overlap between training and testing sets was addressed. Therefore, the 
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Fig. 8. Model 24 Results.  

Fig. 9. Model 31 Results.  
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Fig. 10. – Final Model 36 Results.  
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28 selected images were reselected. This time, it was ensured that there 
were no building elements that appeared in both the training set and 
testing set. This avoided any sort of cheating and bias of the testing 
results. Once the overlap between data sets was removed, it was noted 
that the results and accuracy of the model was significantly worse. 
Models 14, 15, and 16, were using an input image size of 128 × 128. An 
adjustment was made to increase the input sizes in order for the model to 
retain more information and data from each image. 256 × 256 and 512 
× 512 input image sizes were tried. The results improved slightly as the 
input image sizes increased. The following model parameters were used 
for model 22 which was noted to have the best results out of the nine as 
seen below: 

Optimizer: Kera's Adam Batch Size: 5 
Loss Function: BCE_dice_loss Epochs: 80 
Metrcs: Dice_coefficient, Mean IOU, Precision, Recall Training: 

228 
Testing: 28 Validation: N/A 
Other: Mirroring applied, 512 × 512 input size. 
Models 23–25. While the current model was showing results of 

roughly 38% based on the average testing coefficient, it was important 
to understand more about the training process of the model. For that 
reason, a validation set of images was created to review the model's 
training process. Ten images were taken from the training set and put 
into its own directory for validation. This reduced the number of 
training images by 20, due to mirroring. The validation set when applied 
to the same three loss functions, BCE, Dice, and BCE_Dice combined, 
showed serious issues of overfitting. The parameters and results of these 
cases are as follows: 

Optimizer: Kera's Adam Batch Size: 5 
Loss Function: Dice_Loss Epochs: 150 
Metrcs: Dice_coefficient, Mean IOU, Precision, Recall Training: 

208 
Testing: 28 Validation: 10 
Other: Mirroring applied, 512 × 512 input size. 
Models Cats & 26. In order to understand whether the poor accu-

racy of the model is due to the model hyperparameters or the data, a new 
dataset was presented. The Oxford Pets Dataset with annotations as used 
by Vidushi Bhatia was used for a comparison. Similar to the IR images, 
three directories were created with a matching number of images in 
each. The results of the Oxfords Pets Dataset’ Cats images comparison 
demonstrated that the model functions well and presents high accuracy 
results when applied to a new, simpler, data set. To address this, the 
alternative model was created and executed on both the IR image 
dataset and the Cats data set for comparison. 

Models 27–29. Coming back to the original model, another method 
that was explored is patching as described in section 3.2.3 Preprocess-
ing. The patching data augmentation steps were executed using the 
original U-NET model with the same three loss functions. It was noted 
that with patching being used for data augmentation, the model was 
producing blank predicted segmentations for the majority of the results. 
This illustrates that the patching was confusing the model and making it 
more challenging to learn and understand the ground truth. 

Models 30–31. The next approach that was made, was applying 
Tversky loss as the loss function. However, it was further noted that 
when α and β values are equal to 0.5 in eq. 2 below, it simplifies into the 
dice coefficient. For that reason, models 30, 31, and 32 were continuing 
to use dice loss as the loss functions. These three models are actually the 
same as model 24 above except for the number of epochs. It was noted 
that increasing the number of epochs resulted in less predictions when 
evaluating the 28 testing images. Since increasing the epochs resulted in 
increased FN, generalized dice loss or Tversky loss, was then actually 
introduced. This was done in order to balance the ratio of false negatives 
and false positive for more consistent and accurate results. The param-
eters of model 32 and results are as follows: 

Optimizer: Kera's Adam Batch Size: 5 
Loss Function: Dice_Loss Epochs: 50 

Metrcs: Dice_coefficient, Mean IOU, Precision, Recall Training: 
208 

Testing: 28 Validation: 10 
Other: Mirroring applied, 512 × 512 input size. 
Models 32–35. These four models were the trial-and-error process of 

finding the perfect balance between Tversky loss values and the number 
of epochs. Different approaches were used. Since it was noted previously 
that increasing the number of epochs results in less segmentations, the 
number of epochs was increased. The results were presenting higher 
accuracy when the false negatives were increased as well, meaning that 
beta was increased, and alpha was decreased in the following equation: 

TI =
TP

TP + βFN + αFP
(2) 

Models 36. This model is the final and most accurate model devel-
oped during this research process. In this model, the alpha value and 
beta value were increased to 0.1 and 0.9 respectively. This was done to 
increase the sensitivity of the model and present a finer level of control 
for the model to learn. Therefore, the loss function used for this model 
was the Tversky loss alpha = 0.1 and Beta = 0.9. The optimizer used for 
this model is the Kera's Adam optimizer. The metrics used to evaluate 
the model is the Tversky coefficient which is 1 minus the Tversky loss. 
The batch size selected for the model is 5 and the number of epochs used 
is 200. The training dataset is 104 images but then doubled using the 
vertical mirroring augmentation function. The validation set used was 
10 images and the testing set used was 28 images. The input image size 
used for this model was 512 × 512. The results of the final model are as 
follows. 

5. Discussion 

As previously mentioned, each model, when tested, developed a 
predicted mask for every image in the testing dataset. For clarity, only 
selected images were presented in order to better understand the accu-
racy and development and therefore, some assumptions were made 
based off all predicted images collectively. The following section dis-
cusses the pros and cons of each model and how the specific charac-
teristics affected the development process. The final paragraph of this 
section presents the key take always from this research process while 
each model discusses the learning process through development. 

Model 1 – The first model developed presented blank predicted 
segmentations on the test set and therefore, did not work. The graphs 
also did not show any sort of training from the model. This was due to 
the hyperparameters requiring adjustments as well as the 3rd channel 
displaying the borders which was causing issues. 

Model 2 – Using temperature threshold as the input region seg-
mentation on the same model proved that the U-NET model was in fact 
working, but just needed to be tweaked. The Graphs in this simulation 
showed that the model was managing to learn however predicted results 
showed challenges. This was determined to be due to the loss function 
being used, Sparse Categorical Cross Entropy is best used for 
distribution-based models whereas this is research is a region-based 
model. 

Model 3 – For model 3, the loss function was updated to a Binary 
Cross Entropy and Dice Loss combined function. This showed a lot of 
improvement with the predicted segmentation results. The images were 
showing some sort of consistency but were very inaccurate. The training 
loss was also noted to be trending in the right direction, meaning the 
model was beginning to learn. 

Model 4 – This model, the graphs were looking strong when the 
batch size was reduced to 5 and the epochs were increased to 80. The 
predicted results were also accurate however this was due to the 
randomization and bias results. The accuracy of this model is irrelevant 
due to overlap of images. 

Model 5–7 – Binary Cross Entropy and Dice Loss were added as loss 
functions for this model. Increasing the epochs showed similar results, 
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however due to randomization of the training and testing sets plus the 
overlap, the results between models are not accurately comparable. 
These models can also be considered irrelevant due to overlap of images. 

Model 8–10 – Mirroring as a method of data augmentation was 
added in these models. Mirroring the training data set along the vertical 
access showed some minor improvements and was not making the 
model worse, therefore, the function was kept for the remainder of the 
models when applicable. These datasets are again randomized every 
time and are therefore not accurate for comparison. These models can 
also be considered irrelevant due to overlap of images. 

Model 11–13 – In these models, the randomization was removed, 
however, overlap was still noted after viewing the results meaning that 
bias of the results is still present. Due to the overlap between training 
and testing images the graphs and predicted masks are accurate and are 
to be considered irrelevant. 

Model 14–16 – For these models, the overlap between training and 
testing sets was removed, meaning all results are unbiased and valid for 
the remained of the models. Average testing loss and testing coefficient 
values were also implemented for added accuracy values. The loss needs 
to be low (close to 0) and coefficient needs to be high (close to 1), since 
coefficient is 1 – loss. Coefficient can be considered the accuracy and 
should therefore, ideally be close to 1 (100% accuracy). The graphs from 
the models were decent however without validation curves it is difficult 
to tell how the model will predict unseen data. For that reason, looking 
at the average testing loss and coefficient values, it is clear that they are 
very inaccurate. 

Model 17–19 – For these three models, the input image data sizes 
were increased from 128 × 128 to 256 × 256. The average losses and 
coefficients were noted to be better with 128 × 128, however that is 
most likely due to the pixel sizes losing information, but when looking at 
the predicted images, they show slightly more consistent ground truth 
results. 

Model 20–22 – For these three models, the input image data sizes 
were increased from 256 × 256 to 512 × 512. The computational time 
increases significantly, but the model appears to be learning the ground 
truth better and more consistently, even though the values say testing 
values indicate otherwise. 

Model 23–25 – Since it was challenging to understand how the 
model was functioning based on the standing assessment methods, a 
validation set was added. While the loss comparison graphs for BCE and 
BCE & Dice Loss appear to be skewed, the reason for such a large initial 
drop is due to the first epoch initialization being very high. The vali-
dation trends are showing overfitting and are not trending in the same 
fashion as the training loss. Overfitting is noted when the validation loss 
remains high and presents a large gap between the training and vali-
dation. Overfitting occurs when a model fits too well to the training set. 
It then becomes difficult for the model to generalize to new examples 
that were not in the training set. This means that the model recognizes 
specific images in the training set instead of learning general patterns. 

Model 26 – The alternative U-NET model was used for this case. The 
results were similar to the original U-NET model therefore, the focus 
remained with the original model. 

Model 27–29 – Patching was applied to these models as a data 
augmentation strategy. The results noted were poor and the predicted 
masks were all blank. This strategy would require further exploration 
however the results from the patching test cases that were done did not 
show any sign of success. 

Model 30 – This model was an accidental rerun of the dice loss 
function; however, 200 epochs were used where are 150 were used in 
model 24. It was noted that the average loss and average coefficients of 
the testing sets were better with less epochs. 

Model 31–50 epochs were used for this model run with the same dice 
loss function. The average testing loss and coefficient values were noted 
to be better however the model was over predicting when reviewing the 
predicted segmentations. Therefore, increasing the epochs resulted in 
less predictions however that is incorrect and there for a false negative. 

The model is generalizing better with more epochs which is good but 
underpredicting which is bad. Theoretically with a large data set, and 
introduction of new buildings, the segmentations would be better with 
higher epochs. However, since no increase in data is possible, the 
Tversky loss must be used. To account for the increased false negatives, 
alpha and beta are to be changed to help balance the loss function 
equation. Looking at eq. 2, beta account for the percentage of false 
negatives, and alpha for the percentage of false positives. For that 
reason, the beta and alpha values are adjusted to create a more gener-
alized dice loss also known as Tversky loss. 

Model 32 – Tversky loss was applied in this model. Alpha was set to 
0.3 and Beta was set to 0.7. The epochs were kept at 50 to observe the 
results. It was noted that with dice loss generalization, the model was 
managing to learn better and provide better accuracy for the testing set. 
The validation graphs continued to show overfitting. 

Model 33 – When the epochs were increased to 200 for this model, 
the model was noted to predict less, more false negatives. However, with 
the Tversky loss, the false negatives are penalized which together bal-
ances out to a more accurate model with better segmentation results. 

Model 34 – When alpha and beta were changes to 0.4 and 0.6 
respectively, the average loss and coefficients of the testing set were 
noted to be worse. This means that the generalization was accounting in 
the wrong direction and needed to be adjusted. 

Model 35 – When alpha was adjusted to 0.2 and beta to 0.8, the 
averages were noted to be better for the testing set. While the graphs are 
still showing significant signs of overfitting, the predicted results were 
noted to be as a majority better. 

Model 36 –In this case with the same hyperparameters as before, 
the generalization of the Tversky loss was again adjusted to alpha being 
0.1 and beta 0.9. The average testing loss and coefficient values were 
noted to be the best values achieved from this entire research, providing 
a roughly 42.5 accuracy. The predicted testing segmentations were 
observed to be excellent in some cases and very poor in others. This is 
most likely due to the overfitting as seen in the graphs. Overfitting 
mainly due to a dataset issue. This was also similarly noted when the 
Cats comparisons were used and showed much greater results with 
20,000 images compared to the 144. Further fine tuning could have been 
performed to find even more optimal alpha and beta values, however 
computational resources were a limitation and without an updated 
dataset. 

This model development process was determined to very successful 
and promising as a novel study and shows a lot of promise for future 
work. First and foremost, the results of the later models presented that 
the training process was managing to find patterns and learn to a certain 
extent. It was the challenging ground truth/noise accompanied by the 
limited data that was the main setback for the accuracy. The ground 
truth was determined to be too general. A more defined and process 
ground truth needs to be developed for the model to be able to learn and 
properly predict. For example, CATs, is a very distinguishable region to 
segment and differs so much from other items on a 2D image. There is 
much less noise in a Cats image that will trouble a CNN model to learn 
and predict accurately. For that reason, the ground truth and its level of 
difficulty must be reduced for future work. 

First and foremost, the dataset that was used and available for this 
research was collected from an existing repository made accessible to 
this research team through in-kind contributions. Noise causes more 
pattern difficulties and affects the abilities of the model to learn. Less 
noise will result in easier learnability and ultimately better results. This 
criterion greatly limited the amount of IR images deemed suitable for 
this research. On top of that, although the selected facades appeared 
similar and of the similar age and style of construction, it was impossible 
to verify the assembly design and construction type, which could, vary 
significantly. A more appropriate approach to this application, to reduce 
variables, would be to collect datasets and build models based on 
architypes. This would allow for greater constancy between images. 

Another important factor that was not considered because the 
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information was not available, is the data on pressurizing of the build-
ings during assessments. The interior pressure of a building will drasti-
cally affect the thermal results captured by an IR camera. 

The Cats dataset for example, as seen in two of the models presented 
in the Results chapter, demonstrate excellent accuracy when applied to 
the same models created for the purpose of IR. It was also noted that 
having a significantly larger dataset of Cats for the model to learn from, 
that the accuracy became even better. This establishes that the limited 
dataset of IR images caused a serious issue for model training in this 
research. The main reason that the models developed in this research 
were not accurate were most probably due to the challenging ground 
truth. This must be consistent for each instance, which would be simpler 
to execute with similar building architypes. Defining the ground truth 
also translates to defining the noise. 

Another element to consider with regards to image quality, is the 
resolution and scope of view. The dataset that was used, provided im-
ages of very close buildings and others where most of the building was in 
the field of view. Prior to capturing the images, it is important to set a 
flight path and define the image capturing distance from the building 
under assessment. When evaluating the image capturing processes of 
other industries like biomedical engineering, the CNN models are 
trained using body imaging with specifically the same fields of view. 
This demonstrates the importance of flight path and angle of assessment, 
when capturing building envelope conditions. 

The following items were determined as limitations that affected the 
results of this research.  

• The available IR images that matched the scope of this investigation 
were limited due to the lack of involvement in the acquisition process 
and set criteria;  

• Resolution and scope of view of the IR images was a limitation and 
inconsistency for this study;  

• Verifying the assembly design and construction type was impossible, 
which, varies significantly from one building to another;  

• U-NET was the only CNN model that was investigated;  
• U-NET in-depth adjustments to architecture and hyperparameters 

were not performed due to a limitation in computer science 
background;  

• Computational power was a minor limitation during this study which 
limited the number of simulations that can be performed, quickly. 

6. Conclusions 

For years, IR imaging has been used as a non-destructive building 
envelope testing method. Coupled with UAVs plus advancements in 
drone and image capturing technologies, has boosted the building 
enclosure IR image capturing industry. With image procurement stra-
tegies increasing, the assessment process has remained unchanged. This 
means that all images are manually reviewed by building science ex-
perts, which is time consuming and inefficient. The importance of 
evaluating and rehabilitant existing high energy consuming buildings is 
imperative for the worldwide fight against climate change. For that 
reason, a more strategic and effective method for identifying and clas-
sifying building envelope deficiencies is imperative. With AI and ML 
becoming an ever so evolving and powerful means in the world of 
technology, there are extensive tools that can be applied to this IR 
assessment strategy. 

The model development process demonstrated the potential that this 
DL strategy has on defect detection. With such a limited dataset used in 
this research, the trained model managed to, in some cases, very accu-
rately segment areas of interest. While there were many testing pre-
dicted segmentation images that were inaccurate, the model still 
demonstrated a lot of potential. Adjustments of the hyperparameters 
presented an increase in accuracy demonstrating that the model can 
learn and increase in precision. For that reason, yes CNN DL analytical 
models can be applied to the review process of IR exterior building 

envelope images, however, significant further work is required. 
With a data set of 144 IR images, the trained model managed to 

acquire an average testing loss of 0.575 and average testing coefficient 
of 0.425. The testing coefficient translates to roughly a 43% accuracy 
rate for region segmentation when compared to the manually created 
masks. This high average for initial research is strong and shows the 
potential that DL has to offer for this assessment strategy. These values 
were acquired with the Tversky loss function being used where alpha =
0.1 and Beta = 0.9. The optimizer used for this final model is the Kera's 
Adam optimizer. The metrics used to evaluate the model is the Tversky 
coefficient which is 1 minus the Tversky loss. The batch size selected for 
the model is 5 and the number of epochs used is 200. The training 
dataset is 104 images but then doubled using the vertical mirroring 
augmentation function. The validation set used was 10 images and the 
testing set used was 28 images. The input image size used for this model 
was 512 × 512. These hyperparameters used with the original U-NET 
model presented the best results (See Figs. 8-10). 

The main contributor to the inaccuracy of the model was determined 
to be the dataset and ground truth consistency. Collecting and devel-
oping a more established dataset of IR building envelope images could 
drastically improve the accuracy and performance of the DL model 
developed in this research and as found in the appendix of this paper. 
With extensive future research opportunities, the future of this effective 
and non-intrusive building envelope assessment strategy is promising 
and will be a great contributor for global reduction of energy demands. 
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