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ABSTRACT

Mobile robots designed for planetary exploration are essential for advancing our

understanding of celestial bodies, enabling scientists to collect valuable data and

explore areas beyond the reach of human astronauts. These robots are equipped

with advanced sensors, cameras, scientific instruments, and communication systems,

allowing them to navigate autonomously, analyze the environment, and transmit

data back to Earth. This thesis focuses on increasing the degree of autonomy of

planetary exploration robots. The research objectives are divided into three main

topics:

• Terrain Awareness: This research leverages machine learning algorithms

to classify terrain types using proprioceptive data modulated by rover-

environment interactions. By selecting informative subsets of this data,

the aim is to improve terrain classification for both generalization and extrap-

olation, crucial for long-range navigation and safety.

• Innovative Suspension Systems: a novel o↵-road tracked robot is introduced

in this study, and its suspension system is evaluated through analytical and

multibody models. By analyzing its performance on challenging terrains this

research contributes to improving the design of robotic systems for planetary

exploration.

• Path Planning: This work delves into reactive computing path planning,

focusing on the use of Harmonic Artificial Potential Fields (HAPF). The

aim is to enhance local and global planning while addressing typical reactive

computing limitations, such as local minima and sub-optimality.

By addressing these research objectives, this thesis seeks to advance the capa-

bilities of mobile robots for planetary exploration, contributing to safer and more

e�cient exploration of celestial bodies, such as Mars and the Moon.
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Chapter 1

Introduction

1.1 Mobile robots for planetary exploration

Mobile robots for planetary exploration are designed to operate on the surfaces

of celestial bodies, and they play a crucial role in space exploration by enabling

scientists to gather valuable data, conduct experiments, and explore areas that are

di�cult or unsafe for human astronauts to reach. Mobile robots are equipped with

advanced sensors, cameras, and scientific instruments, allowing them to navigate,

collect samples, and analyze the environment.

The key features of a Planetary Exploration Robot (PER) are:

• Autonomous Decision Making: advanced algorithms allow PERs to plan

a trajectory, move independently, avoid obstacles and make decisions based

on their surroundings;

• Robust Mobility: PERs are designed to navigate challenging terrains such

as rocky surfaces, steep slopes, and sandy dunes;

• Scientific Instruments: PERs are equipped with a variety of scientific

instruments such as spectrometers, cameras, and sensors to analyze the

surrounding environment;

• Communication Systems: Mobile robots are equipped with communication

systems to transmit data back to Earth. These systems are essential for

sending scientific data, images, and status reports to mission control;
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• Energy Sources: PERs rely on various energy sources such as solar panels

or radioisotope thermoelectric generators to power their systems;

• Extreme Environment Adaptability: PERs must withstand extreme

temperatures, radiation, and dust storms prevalent on other planets.

This thesis focuses on the first two key features, i.e. autonomous decision

making and robust mobility.

1.2 Research objectives

As stated in the previous section, this work will focus on autonomous decision

making and robust mobility. During the PhD program, three main topics were

investigated within these two macro research areas:

• terrain awareness;

• study, modeling and validation of an innovative suspension system for mobile

robots in unstructured environments;

• path planning for autonomous vehicles.

These three topics are highly correlated. Terrain awareness and dynamic models

can be used by an autonomous robot to decide the best locomotion strategy in each

moment of the mission. Also, an autonomous path planner can use this information

to plan the optimal path for the rover.

The following sections present the rationale behind the interest for these topics

and the intended outcomes of this work.

1.2.1 Terrain awareness

This section and all those related to this topic are based on the published

paper [1] and it has been developed as part of the research activity for the project

Autonomous DEcision making in very long traverses (ADE) [2], funded by the

European Union’s Horizon 2020 research and innovation programme. The main

goal of ADE was to develop and test a rover system capable to achieve autonomous
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long-range navigation in hostile environments, while guaranteeing consistent data

collection. The mobility range of PERs has been up to date limited to few hundreds

of meters per sol [3, 4, 5]. From a purely technical point of view, this limitation

has both hardware and software sources. The former is the most important and

consists in the finite power storage of a rover locomotion system, that is fixed

given a robot design. The software-related source corresponds to the limited

skills in terms of autonomous decision-making, that can be improved by artificial

intelligence. Improving these capabilities extends the autonomy of the rover across

multiple geographical areas and therefore expands opportunities of data collection.

Directly related to long-range navigation is also the safety issue. The importance

of sensing hazards was highlighted, for example, in April 2005, when the Mars

exploration rover Opportunity embedded itself in a dune of loosely packed drift

material [6]. The terrain geometry as reconstructed from a distance via stereovision

did not indicate any hazard. However, the high compressibility of the loose drift

material caused the wheels to sink deeply into the surface. The combination of

the drift’s low internal friction and the motion resistance due to sinkage prevented

the rover from producing su�cient thrust to travel up the slope. Opportunity’s

progress was delayed for more than a month while engineers worked to find a

way out. A similar embedding event led to the end of operations for the twin

rover Spirit in 2010. Therefore, future generations of PERs will require key

technologies suitable to overcome these limitations, performing long traverses while

guaranteeing fast reaction, mission reliability and safety, and optimal exploitation

of the robot’s resources within reasonable costs. In this context, the ability to

sense and characterize the incoming terrain would represent an enabling technology

towards long-term autonomy and potential hazard avoidance [7]. In this thesis,

the objective is to demonstrate the potential of terrain classification via learning

algorithms that are trained on proprioceptive features. Here, proprioceptive features

refer to statistics that are extracted from the measurement of a physical variable

pertaining to the robot-environment interaction, e.g., wheel velocity, forces, body

linear and angular accelerations. The hypothesis is that, being modulated by the

terrain properties, these features are a rich source of information from which the

specific terrain type can be inferred via learning approaches [8, 9].

One of the contributions of this research refers to the selection of the most
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informative subset of proprioceptive features derived from the sensor suite inte-

grated onboard of PERs. A range of aspects is addressed that includes feature

extraction, feature ranking, multivariate feature selection and e�cient feature

space construction. While feature selection has been largely investigated in other

domains e.g., image processing, text processing and gene expression analysis [10],

it remains largely under investigated for the terrain classification problem of PER,

and rough-terrain robots, in general. In contrast to other areas of applications

where datasets with tens or hundreds of thousands of variables are available form-

ing a statistically significant population, data acquired by a rover driving over

natural terrain present many challenges such as sparseness, presence of unknown

and uncontrolled disturbances, dependence on the specific time and site of the

acquisition. The objectives pursued by feature selection include improvement in

the prediction performance, reduction in training time, computational burden and

memory usage of the algorithm and facilitation of understanding the underlying

process that generated the data.

The other contribution of this research is the adoption of a suitable learning

algorithm to infer the type of terrain from the selected feature set. This algorithm

will have to look for patterns in the data to construct the mapping from the

proprioceptive measurements to the corresponding terrain type. The well-known

Support Vector Machine (SVM) is contrasted with a deep Convolutional Neural

Network (CNN). While SVM requires in input hand-crafted features that are

selected during a pre-processing stage, CNN uses learned features that are extracted

automatically form the signal time histories. An important goal of the proposed

approach is to improve the performance of terrain classifiers for two use cases:

generalization and extrapolation. Generalization is defined as the performance of

an algorithm on previously unseen observations (test set) that is extracted from the

same distribution as the data in the training set, e.g., the same test run. The error

measured on the test set corresponds to the on-line performance of the model and

depends on the operating conditions included in the training set. The second use

case, extrapolation, is even more challenging since, in general, learning algorithms

are known to perform poorly outside the training data population. We compare the

performance of the two terrain classifiers (SVM and CNN) for both generalization

and extrapolation.
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1.2.2 Innovative suspension systems

This section and all those related to this topic are based on the published papers

[11] and [12]. A critical aspect of PERs (and in general for every o↵-road robot)

is locomotion design and, depending on the specific application, researchers can

choose between wheeled, legged, tracked or hybrid robots. The locomotion type

for o↵-road robots is designed according to the required performance in terms of

maximum speed, energetic e�ciency, and mobility in unstructured environments. In

general, wheeled robot excel in speed and energetic e�ciency, while legged platforms

perform better than the others in unstructured environments [13]. Tracked robots

represent a middle point, more e�cient than legged robots, and with better mobility

than wheeled platforms. For this reason, and thanks to their large contact area with

the ground, tracked robots have gained a lot of interest for o↵-road applications,

especially on soft and yielding terrains. Although there are a few concepts of

tracked PER in the literature (e.g. the one presented in [14]), the use of tracks

remains under-investigated in this sector.

The purpose of this part of the thesis is to introduce and study a novel archi-

tecture of an o↵-road tracked robot named Polibot. The robot is shown in Fig.

1.1(a) along with a CAD rendering with the main dimensions (Fig. 1.1(b)). On

each side, the robot features a rubber track wrapped around four independently

suspended road wheels, an idler wheel, and the sprocket. An accurate evaluation

of the performance of the suspension system of a PER allows to understand what

kind of obstacles can be overcome by the robot. This study included a complete

kinematic and dynamic analysis of the Polibot, thanks to the use of two models: a

simple analytical model built in MATLAB®, and a more complex MultiBody (MB)

model built in MSC Adams®. These simulations will then be validated against

experimental tests on the real robot. The analytical model is a tool for the inverse

kinematics of the proposed design and predicts the system configuration given

the terrain geometry. The analytical model can be useful as well to evaluate the

influence of the many design parameters on the robot behaviour.

Moreover, this work presents the development of the Polibot MB model and its

validation against the experimental prototype in both static and dynamic tests and

the performance evaluation on various challenging scenarios, including positive and

negative obstacles, and stochastic uneven terrain. Tracked robots are examples
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(a) (b)

Figure 1.1: The all-terrain rover Polibot: (a) prototype, and (b) isometric CAD
view with the indication of the main dimensions.

of flexible MB system with challenges that include the presence of many friction

contacts, track modeling, and track-terrain interaction. In this research, the Polibot

digital twin is developed within MSC Adams [15] using the toolkit Adams Tracked

Vehicle (ATV) [16] that is under testing and development at the Robotic Mobility

Lab of Politecnico di Bari. Following this approach, many system configurations

can be evaluated from the early design phase and a wide number of operating

conditions can be simulated with high fidelity without performing expensive and

time-consuming field experiments.

1.2.3 Path planning

Path planning plays a vital role in enabling mobile robots to autonomously

navigate and complete tasks in a wide range of environments, such as warehouses,

factories, or outdoor unstructured spaces, such as those commonly found in space

applications [17]. Over the recent years, planetary exploration related projects are

aiming to achieve a rover autonomy of 1000 km per day [2]. For these applications,

path planning involves determining a safe and e�cient path for a robot to traverse

from its current location to a desired destination while avoiding obstacles and

considering other constraints, such as highly deformable terrains and scientific

return requirements. There are several common approaches to path planning

for mobile robots: grid-based and sampling-based approaches, reactive methods,

Voronoi diagrams, optimization methods and machine-learning algorithms [18].

This thesis focuses on reactive computing, because these algorithms are capable



7

of quickly incorporating new information, such as newly discovered obstacles, and

react while moving in unstructured environments, with limited prior information.

The most common approach to reactive computing is Artificial Potential Field

(APF), which was first introduced by Khatib [19]. In Khatib’s work, the APF is a

continuous function with its lowest value in correspondence of the goal location,

simulating a force that attracts the robot to the target. Khatib also included

high values of the APF close to obstacles, simulating a repulsive force that pushes

the robot farther away. By following the gradient descent of the APF, the robot

should be able to reach its final destination [20]. The main features of the APF

approach are the low computational requirements needed to produce the potential

field and find a path and the ability to quickly react to uncertain or dynamic

environments[21]. However, these algorithms are usually not complete, meaning

that they are not always able to find a path to the goal even if one exists, due to

possible local minima in the potential function. Also, the path found via gradient

descent is usually sub-optimal [21], because it is di�cult to include all the criteria

for optimal planning in the definition of the potential function.

One of the strategies to avoid the local minima problem is the use of Harmonic

Artificial Potential Field (HAPF) functions, demonstrated for the first time by

Connolly et al. [22]. Harmoinc functions are those obtained as a solution to

Laplace’s equation:

r2� = 0 (1.1)

where � is the potential function and r2 is the Laplacian operator, which cor-

responds to the divergence of the gradient of the function. This elliptic Partial

Di↵erential Equation (PDE) is important in multiple branches of physics, as its

solution describes potential flows, stady-state heat conduction and other phenom-

ena. To apply these functions to the APF path planning, it is necessary to make a

physical analogy to one of these phenomena, for example to potential flow. If a

mass source and a mass sink are located at the start and goal positions respectively,

the resulting potential field will generate many streamlines flowing between the

two locations following the gradient descent. Each of these streamlines can be

considered as a possible path for the robot. Outer boundaries, inner walls and

obstacles are considered as impenetrable surfaces to which the gradient of the
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potential is parallel.

The purpose of this section of the thesis is to introduce a novel approach to

HAPF with the following objectives:

• exploit the properties of APF for local planning;

• exploit the completeness of harmonic potentials for global planning;

• exploit the multi-path capability of HAPF to set an optimization problem

and limit the sub-optimality of APF approaches;

• consider the terrain estimation capabilities of the robot (Section 1.2.1)

• include aspects related to the dynamics of o↵ road tracked systems, such as

terramechanics, non-holonomic constraints and complex suspensions (Section

1.2.2).

1.3 Thesis outline

• Chapter 2: Literature Review, which presents a survey of related research,

highlighting the novel aspects of this thesis

• Chapter 3: Materials and Methods, which presents the algorithms developed,

the robotic platforms used as test beds and the general methodology for each

step of this work

• Chapter 4: Results and Discussion

• Chapter 5: Conclusions
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Chapter 2

Literature Review

2.1 Machine learning algorithms for terrain

awareness

Solving terrain-related challenges such as soil identification is an important

research area in autonomous robots, alongside trajectory planning, localization and

obstacle avoidance [7]. The latest developments in terrain classification strategies

show that researchers have been focusing on two main categories: visual (or extero-

ceptive) and visual-independent (or proprioceptive) methods. In both approaches,

data collected from sensors are used to train machine or deep learning-based classi-

fiers that enable identification of the traversed terrain. The sensors used for visual

perception include RGB cameras [23, 24], RGB-D cameras [25], LiDARs [23], visual

cameras [26] and monocular cameras [27]. Although visual-based approaches are

more common than proprioceptive-based ones, they have limitations as well. The

performance of RGB cameras is limited by di�cult environmental conditions (e.g.,

low, or direct lighting and surface reflectivity). LiDARs struggle to capture the

fine texture of objects and terrains, and they also perform poorly in compromised

environment conditions (e.g., in presence of dust, hail and smog). Furthermore,

vision-based rovers are not able to navigate in unfamiliar surroundings because

observing distant terrain patches does not provide information about the mechanical

properties that directly impact on vehicle mobility. Therefore, researchers have

investigated methods that use proprioceptive sensing for terrain classification. In
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this case, the sensors used to perceive the incoming terrain include Inertial Mea-

surement Unit (IMU), force-torque sensors, microphones, and wheel encoders. As

an example, Hishikawa et al. [28] used microphones to support an RGB camera in

dark conditions. Brooks and Iagnemma [8] measured vibrations via accelerometers,

analyzed them in the frequency domain and implemented an online classifier that

relies on Principal Component Analysis (PCA) for feature reduction. DuPont

et al. [29] presented a method based on frequency response and vibration-based

transfer function. Giguire and Dudek [30] used a tactile probe combined with

accelerometers to account for inertial e↵ects. Dutta and Dasgupta [31] pursued a

low cost approach using a multi-sensor platform fitted with GPS, IMU and metal

detector. A model-based observer grounded in the Cubature Kalman filter was

also proposed in [32] to predict terrain deformability using vertical acceleration

measurements. The above works based on visual-independent approaches represent

a step forward in the direction of providing a mobile robot with information about

the mechanical properties of the terrain. Although they achieved high confidence

levels, little e↵ort was spent on feature selection as a mean to reduce the compu-

tational burden of the model without penalties in performance. Ultimately, the

objective of researchers that work on robot-terrain interaction is to develop an

accurate algorithm that runs online while the robot is moving. This algorithm must

comply with the limited resources of an autonomous vehicle in terms of processing

power and memory. A reduction in the number of features used to train and test a

machine learning classifier would lead to a lighter computational burden in terms of

feature extraction time, testing time and memory usage. One of the contributions

of this thesis is to develop a feature selection algorithm demonstrating that these

benefits can be achieved without compromising the accuracy of the model. A body

of research has been devoted to the feature extraction process, as the quality of

the feature space directly a↵ects the accuracy of the associated classifier. The

feature extraction strategy depends on the machine learning approach chosen for

terrain classification. Traditionally, for a supervised machine learning algorithm

such as SVM, an extraction stage is required where features are hand-crafted by

experts based on their knowledge in the specific application domain. Attempts

have been made in various research fields to find e↵ective features, for example in

image-processing-related applications [33]. However, this approach is not always
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possible for classifiers and it is often practically di�cult, for instance when the rela-

tionship between input measurements and user-defined classes is extremely complex

or even completely unknown beforehand. Additionally, features that are crafted

manually may be not optimal. For this reason, finding more systematic ways to get

good features has drawn an increasing research interest [34]. Notable progress has

been done recently to find learning techniques that allow models to learn features

automatically from data with minimal manual input. Solutions using deep Neural

Network (NN) have especially attracted much attention. The e↵ectiveness of deep

NNs has been demonstrated in many fields other than image classification, such

as audio and natural language processing or transfer learning. The adoption of

Recurrent and Convolutional NNs was discussed in [35], in the context of terrain

classification using an agricultural robot equipped only with inertial and electrical

current sensors. However, although the promising results, it remains challenging

to evaluate the e↵ectiveness of learned features contrasted with expert-designed

ones. The complexity of this comparison resides in the di�culty of determining the

descriptive power of hand-crafted features. For this reason, this thesis presents a

fair comparison between hand-crafted and learned features through a rigid feature

scoring and selection process. In a previous work by the research group [36], a

preliminary attempt was presented to select a subset of optimal proprioceptive

features to train an SVM-based ground classifier then tested over only two terrain

types, e.g. rock and sand. In this work, several novel additions are made. First, a

whole new signal engineering stage is introduced to improve the overall information

content. The signal selection strategy is formalized and reflected in an explanatory

block diagram. Improved robustness has been achieved by increasing the number

of training repetition for each candidate feature set. Then, the importance of

feature selection for terrain classification is shown by comparing a machine learning

approach (SVM) with a deep Convolutional Neural Network (CNN) in terms of

model complexity, computational burden, and prediction accuracy over a larger

terrain set (3 types of terrain against 2 of the previous work). Finally, the system is

evaluated not only in a standard generalization problem but as well as in two more

challenging extrapolation contexts that are seldom described in the Literature.
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2.2 Innovative suspension systems for mobile

tracked robots in unstructured environments

Tracked locomotion systems can be classified in many di↵erent ways. However,

considering the body architecture only, tracked robots can have a non-articulated

body or an articulated body. The first category includes tracked robots in which the

axes of rotation of the road wheels are fixed with respect to the robot frame. This

architecture is very widespread among commercial tracked robots. An example is

the Trackbot by Inspectorbots [37], a symmetric platform with tracks thicker than

the robot body and without external payload that can also operate after a capsize.

Another example of a commercial non-articulated tracked robot is provided in [38].

Although non-articulated robots are extremely simple mechanically, they o↵er poor

obstacle negotiation capability.

On the other hand, tracked robots with articulated bodies can be actively

articulated, if the degrees of freedom of the body are actuated or passively articu-

lated, when the degrees of freedom of the body are passive. In general, actively

articulated tracked robots are more promising in terms of mobility in unstructured

environments [37]. Examples are snakelike robots [39], modular tracked robots [40],

hybrid wheel-track robots [41], hybrid leg-track robots [42] and hybrid leg-wheel-

track robots [43]. However, the mechanical complexity of these designs and the

requirement for accurate control of the body usually lead to high manufacturing

costs.

Passively articulated tracked robot represent a trade-o↵ between the mechan-

ical simplicity of non-articulated bodies and the mobility of actively articulated

platforms. The architecture proposed in this thesis and described in Section 3.2.1

belongs to this last category.

The simplest passive architecture for tracked rovers usually presents road wheels

connected to the body through torsional or linear spring-damper elements of one

degree of freedom. For example, Tao et al. [44] developed a stair-climbing tracked

robot, in which each side presented four fixed wheels and a suspended wheel with an

elastic cushioning device. To improve mobility and obstacle avoidance capabilities,

more complex passively articulated tracked designs are required. However, limited

work is available in the literature. Kim et al. [45] presented a mobile robot with
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four independent driving tracks that are connected using two rocker links and four

pitch-roll passive joints of two degrees of freedom with the objective of avoiding

incomplete contact between the driving tracks and the ground. Sun and Jing [46]

proposed a tracked robot with passive bio-inspired suspension, with the objective

to improve loading capacity and vibration isolation performance. The bio-inspired

suspension is obtained by connecting each loading wheel to an X-shaped structure

with springs installed horizontally.

The novelty of the architecture proposed in this thesis compared to other existing

passively articulated robots is the use of an articulated suspension system, in which

each road wheel is suspended independently to adapt to terrain irregularities and

distribute pressure evenly in all conditions. The architecture (detailed in Section

3.2.1) provides the robot with improved mobility, with lower mechanical complexity

compared to actively articulated robots. The vehicle passive suspension system

performs multiple tasks such as maintaining the contact between the rubber tracks

and the terrain surface, providing the vehicle stability, and protecting the vehicle

frame from all the shocks generated by the terrain unevenness. This is especially

important for autonomous o↵-road robots that carry vision sensors for localization

or data acquisition. A functional comparison between Polibot and an existing robot

is presented in section 4.2.3. Among the works mentioned above, the suspended

tracked vehicle proposed by Sun and Jing [46] is found to be more similar and

comparable with the architecture proposed in this work. On the contrary, the robot

proposed in [45] is hardly comparable to Polibot, as it comprises four independent

tracks, and each track is rigid, meaning that the relative position of the wheels of

each track does not change.

The second contribution of this section of the thesis consists of the definition

of an inverse kinematic model for the proposed architecture using a quasi-static

force approach. One of the assets available to mobile robots to achieve autonomous

o↵-road mobility is on-board navigation. An e↵ective kinematic model is necessary

to perform real-time computations for autonomous navigation. The literature

presents numerous works on the subject. However, very little e↵ort has been

made to include suspension kinematics into the model, mainly via computationally

expensive multi-body approaches. The reason behind this lack of tracked suspension

analytical models is that, unlike wheeled robots [47], tracked rovers usually present
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mechanically simple suspensions, where the road wheels are fixed to the vehicle

frame or connected through torsional or linear spring-damper elements. Galati

and Reina [48] proposed an approach to model kinematics for tracked vehicles by

obtaining a geometric analogy with a wheeled di↵erential drive model. Sun and

Jing [46] proposed a tracked mobile robot with passive bio-inspired suspension, and

modeled it via a multi-body software. Ata and Salem [49] adapted the half-car

model to tracked vehicles, considering only the pitch and bounce of the vehicle.

Guo et al. [50] developed a universal skid steering model based on terramechanics

for both wheeled and tracked mobile robots. The novelty of the proposed model in

comparison with the limited related research available is that it is capable, given

the shape of the supporting surface, of computing the pose of the rover and the

complete configuration of its suspension system considering the constant-lentgh

constraint imposed by the presence of the track.

The third contribution is the development of the Polibot MB model and its

validation against the experimental prototype in both static and dynamic tests and

the performance evaluation on various challenging scenarios, including positive and

negative obstacles, and stochastic uneven terrain.

Taking advantage of the increasing availability of computational resources, numerical

simulations have become an important tool for predicting the behavior of complex

mechanical systems [51, 52]. Tracked robots are examples of flexible MB system with

challenges that include the presence of many friction contacts, track modeling, and

track-terrain interaction. In this research, the POLIBOT digital twin is developed

within MSC Adams [15] using the toolkit Adams Tracked Vehicle (ATV) [16] that

is under testing and development at the Politecnico of Bari’s Robotic Mobility Lab.

Following this approach, many system configurations can be evaluated from the

early design phase and a wide number of operating conditions can be simulated with

high fidelity without performing expensive and time-consuming field experiments.

2.3 HAPF path planning for autonomous robots

As stated in the Introduction, this thesis deals with Harmonic Artificial Potential

Field (HAPF) for path planning.

Early e↵orts on HAPF ([22], [53], [54]) proved that these potential functions have
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properties that can be useful for robotics applications. They are complete, meaning

that they guarantee to always provide a path to the goal. In fact, the di↵erence to

standard APF methods is that the potential field deriving from Laplace’s equation

does not present any local minima, but only one global minimum in correspondence

of the destination. Therefore, the gradient descent cannot get stuck in any point

other than the final goal. Also, paths derived from HAPF are generally smooth,

meaning that they are free of sharp turns, which cause the robot to slow down.

However, Laplace’s equation can only be solved analytically for only a limited set

of boundary conditions. In general, in path planning applications it is necessary to

obtain numerical solutions, which may be computationally expensive.

To the best of the author’s knowledge, no research work in the literature has

applied HAPF path planning to o↵-road robotics. The interest of the author in

this topic arises from the main features of these algorithms (as described in the

Introduction), but also from their versatility, that allows HAPF path planning to

be easily coupled with recent developments in vehicle dynamics, control [55] and

autonomous terrain estimation [1].

Saudi and Sulaiman [56] applied HAPF to a simulation of path planning for

indoor robots and focused on complexity reduction for the numerical solution of

Laplace’s equation. They proposed a faster iterative method based on the 9-Point

Laplacian discretization scheme but with a four points half-sweep iteration and

managed to speed up the computation of HAPF. Although complexity reduction is

a fondamental aspect of the numerical solution of PDEs, the idea of re-compute

the HAPF every time there is a change in the boundary conditions is impractical

for outdoor dynamic environments. In the work presented in this thesis, Laplace’s

equation is solved only once by the global planner to define the initial optimal path.

To deal with changes in the environment (such as new or dynamic obstacles), the

local planner uses the more classical approach of adding a repulsive force to the

potential. The reader is invited to refer to section 3.3.5 for details.

Falcó et al. [57] applied proper generalized decomposition to obtain parametric

harmonic potential functions, with the main appeal being that the solution is

obtained once per mission, including all the possible parameters. They assumed

that all possible obstacle configurations can be modeled by a single parameter,

therefore the resulting potential function models all of them. Also, they derived
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all of the possible paths obtained from the harmonic potential by considering

various initial orientations of the robot. Although modelling all possible obstacle

configurations cannot easily be applied to o↵-road applications, such as agriculture

and planetary exploration, the idea of considering all the possible paths is an

interesting aspect of their work. However, they choose the optimal path only based

on the initial heading angle of the robot. In this thesis, the multi-path capability

of harmonic potentials is exploited by setting a path optimization problem to limit

the sub-optimality of APFs.

Rousseas et al. [58] combined HAPF and C-space search to infer to their

approach the strong traits of both techniques, that are completeness and optimality

respectively. However, their criterion for optimal planning is related to optimal

and safe control, which might be enough for indoor applications. For unstructured

o↵-road scenarios, other criteria should be considered for optimal planning, such as

terrain characteristics and irregularities.

Based on this literature review and the objectives presented in the Introduction,

the following chapter presents the materials and methods used to conduct this

research.
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Chapter 3

Materials and Methods

3.1 Terrain learning

The first part of this section (3.1.1) briefly presents the experimental planetary

rover used for data gathering, describing the onboard sensor suite and the data-

sets collected during the field trials for developing terrain classification models.

Then, the learning algorithms for terrain classification are presented, providing

insights into the theoretical background. Finally, the signal engineering problem is

addressed, including signal augmentation, feature extraction and feature selection.

3.1.1 The rover SherpaTT

The experimental test bed used in the ADE project is the SherpaTT rover

(Fig. 3.1) built by the Deutsches Forschungszentrum für Künstliche Intelligenz

(DFKI) [59]. SherpaTT is a hybrid four-wheeled-leg rover, where the wheel-on-leg

design constitutes an actively articulated suspension system. Flexible metal wheels

provide a passive ground adaption on a small scale, while the active suspension

fits the wheel positions to larger ground irregularities [60]. Each of the four legs of

SherpaTT’s suspension has five Degrees Of Freedom (DOF): the rotation of the

whole leg about the pan axis with respect to the robot body, the two rotations

of the inner and outer leg parallelograms, the steer and drive angle of the wheel.

A unique feature of Sherpa is a 6-axis Force-Torque Sensor (FTS) mounted on

the flange of each wheel-drive actuator, providing direct measurement of the force
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Figure 3.1: SherpaTT in a sandy trench during the ADE final field tests in spring
2021.

system exchanged with the ground. The rover also features a six-DOF manipulation

arm. The arm is designed to withstand a good portion of the rover’s weight to

support it during locomotion. However, for the experiments described in this thesis,

the arm was not involved in locomotion testing.

The logging system provides data at a rate of 100 Hz and comprises the following

main proprioceptive blocks:

• Inertial Measurement Unit (IMU).

• Wheel-mounted 6-axis Load Cell (LC). In this study, solely the LC mounted

on the front left wheel is adopted.

• Joint Telemetry (JT). Each of the 20 actuated joints of the suspension system

delivers telemetry such as supply voltage, supply current, temperatures, PWM

duty cycle, position (relative and absolute), and velocity.

The main data set used for this work was generated at the DFKI premises in

Bremen, Germany. SherpaTT was remotely controlled to move for approximately

10 m in a straight line over three types of terrain: sand, gravel, and paved ground.

This represents a varied dataset with a high traction, low deformability surface

(paved ground) at one end, and a surface with low traction and high deformability

(sand) on the other end, with gravel in the middle of the two (Fig. 3.2). For each
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Figure 3.2: Types of surfaces traversed by SherpaTT during the test and develop-
ment of the system.

terrain, five runs were repeated in forward and reverse drive, except for gravel

for which only four runs are available. Two di↵erent drive speeds of the rover

were used, namely 0.1 m/s and 0.15 m/s. A second data set was generated in a

sand mine close to Bremen (please refer again to Fig. 3.1, GPS coordinates (DMS

format): 53�18’ 54.9” N, 8�41’ 17.3” E) during the ADE’s final testing in April

2021. This independent data set is used to predict terrain labels for observations

outside the training data population. In this last environment, the surface traversed

was somewhat like the sand case of the previous settings but the terrain was more

compact and wetter. It can be directly observed in Fig. 3.1 how humid sand got

matted to the wheels while traversing, unlike in the previous environments (Fig.

3.2).

3.1.2 Learning algorithms

3.1.2.1 Support Vector Machine

SVM is a well-established machine learning solution for soil classification prob-

lems [9, 61, 62]. This section will present a summary of the theory behind SVM

classification. For a detailed description of SVM algorithm please refer to [63] and

[64]. An SVM problem is composed of two stages: training and testing. Given two

classes A and B (binary classifier), an input training set S composed of p samples

and n features can be defined as:
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S = {(xi, yi) : xi 2 Rn, yi 2 {�1, 1}, i = 1, 2, . . . , p} (3.1)

with 8
<

:
yi = 1 if xi 2 A

yi = �1 if xi 2 B
(3.2)

where xi are referred as predictors and yi represents the response variable. The

purpose of the linear SVM algorithm is to find a decision function D that allows,

in the testing phase, to classify any new sample x 2 Rn according to the sign of

D (x). This is done by finding the hyperplane that maximizes its distance to the

support vectors (i.e., the predictors closest to the hyperplane), while minimizing

the loss due to misclassification. The Lagrangian dual of this optimization problem

can be formulated as:

max
↵

 
pX

i=1

↵i �
pX

i=1

pX

j=1

↵i↵jyiyjx
T
i xj

!
(3.3)

subject to
pX

i=1

yi↵i = 0 (3.4)

0  ↵i  C (3.5)

where ↵i are Lagrangian multipliers and C is a parameter called box constraint.

The dominant approach for multi-class applications is to reduce the single

problem into multiple binary classification problems [65]. One of the most common

methods for such reduction is the Error-Correcting Output Codes model [66].

The most important parameter for this method is the coding design, a matrix

where elements indicate which classes are trained by each binary learner, reducing

the multiclass problem to a series of binary problems. In this research, SVM is

considered as the benchmark approach that is compared against other alternatives

as a deep CNN.
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3.1.2.2 Convolutional neural network

In contrast to SVM that uses handcrafted features manually engineered by data

analysts, CNN derives features automatically from inputs throughout a training

process, searching for those that better characterize each terrain. However, as input,

CNN takes an image-like observation, therefore a first practical issue to solve is

how to derive a 3D object from several signals. One possible solution, proposed in

this research, is to resort to Fast Fourier Transform (FFT) to construct magnitude

spectrograms of the signals then appended into a multichannel object forming the

input for the net. So, sensory data can be assembled in 3D shape, namely height,

width and depth. The height corresponds to the frequencies (nF ) analyzed by the

FFT, the width corresponds to the number of time windows (nW ) adopted in the

spectrogram, and the depth is the number of signals (nCh).

The architecture of the CNN is shown in Fig. 3.3 where the neural dimensions

and the learnable variables of each layer are indicated. The first layer takes as input

the multichannel spectrogram, next, the batch-normalization layer normalizes inside

the mini-batch the value kept by each input neuron. The normalization process

follows equation 3.6, where xn and yn are respectively the input and output values

of neuron n of this layer, batch mean µB and standard deviation �B are computed

during training, while learnable parameters o↵set � and bias � are searched through

optimization across the whole training set. Computational constant ✏ can improve

numerical stability when variance �2
B is small.

Figure 3.3: Architecture of the convolutional neural network.
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yn = �
xn � µBp
�2
B + ✏

+ � 8n = 1, . . . , (nW · nF · nCh) (3.6)

The following 2D convolution layer spans the output across time and frequency

domain convoluting the nW×nF×nFilt batch-normalized spectrograms into nFilt

objects of dimensions nW×nF . A user-specified number of square filters nFilt

with size fsz are here used to perform convolution process briefly described in

equation 3.7 where X is the zero-padded neural grid after batch-normalization and

Y the output of the convolution process. The learnable parameters of this layer

are the weights of matrix m!, kernel of filter m, and m� the corresponding bias.

Yw,f,m =
nChX

c=1

fsz
2X

i,j=� fsz
2

m!i,j,c ·Xw+i,f+j,c + m�

8w = 1, . . . , nW 8f = 1, . . . , nF 8m = 1, . . . , nF ilt (3.7)

The output of the convolution process is passed to the REctified Linear Unit

(RELU) activated neurons in a grid nW×nF×nFilt, fully connected to nCl neurons

where nCl is the number of terrain classes considered. Compared to other activation

functions such as the sigmoidal function, RELU helps in preventing the exponential

growth in the neural network computation and the “vanishing gradient” problem

that is the tendency for the gradient of a neuron to approach zero for high values

of the input [67]. The two following layers SoftMax and Classification are standard

as output layers for classification networks. The function SoftMax is defined in

equation 3.8 where xn is the nth input neuron and yn is the corresponding output

of this layer.

yn =
exp (xn)PnCl
i=1 exp (xi)

8n = 1, . . . , nCl (3.8)

The output layer of this network is the classification layer that computes the

cross-entropy loss for classification among terrains.
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3.1.2.3 Parameters of the learning algorithms

In this section, the values assigned to the parameters of the learning algorithms

are highlighted.

The parameter set of the SVM-based classifier is indicated in Table 3.1. It was

found empirically to give the best balance of sensitivity and specificity [68].

Parameter Value
C (Box Constraint) 1

Standardize True
Coding design one-versus-one

Table 3.1: Parameters of the SVM classifier.

As for CNN, during the training stage the learnable parameters are updated

at each iteration, whereas the hyper-parameters are defined by the user to govern

the training process. In one iteration, the network analyses the samples contained

in the mini-batch. One epoch consists in the number of iterations necessary to

review the entire training dataset. The training stage stops after the network has

passed through the entire dataset the number of times specified as the maximum

number of epochs. It is usually preferred to stop the training before this number has

been reached, not only because it shortens the time required for training, but also

because it prevents overfitting on the training set. Therefore, a percentage of the

training data is kept apart as validation set, and the network evaluates its loss after

the number of iterations specified as validation frequency. The validation patience is

the number of times that this loss can be smaller or equal to the previously smallest

loss before the training stage stops. The initial learning rate drops by a factor

(learn drop factor) after a given number of iterations (learn drop period). Part

of the hyperparameters is set according to the Literature, e.g. the solver and the

gradient threshold follows the value suggested in [67]. The remaining parameters

have been selected empirically through grid-search and they are reported in Table

3.2. Note that for a fair comparison with SVM, the magnitude spectrograms of the

signals used as input to CNN are obtained from a time window ws = 2s (please

refer to Section 3.1.3.2).
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Parameter Value

Filter size (fsz) [5, 5]
Number of filters (nFilt) 9

Mini-batch size 160
Maximum number of epochs 150

Validation percentage 15%
Validation frequency 20
Validation patience 15
Initial learning rate 0.005
Learn drop factor 0.2
Learn drop period 10

Table 3.2: Hyper-parameters of the CNN classifier.

3.1.3 Signal engineering

A list of measurements available from the SherpaTT’s sensor suite is shown in

Table 3.3, with corresponding sensorial group and Signal ID. From a first analysis

of Table 3.3, some of the signals may appear seemingly correlated. However, if we

consider, for example, body acceleration and wheel force, these signals are actually

uncorrelated through the flexibility of the suspension system, and therefore they

are both relevant for the proposed analysis. Signals that are directly derived from

measurements are referred to as direct signals. Conversely, signals engineered with

expert knowledge combining direct signals are referred to as indirect, as explained in

the next section. Figure 3.4 shows a sample time history of the vertical acceleration

(gravity-compensated) and drive torque experienced by SherpaTT on di↵erent

terrains. As seen from this figure, signals show a signature that seems to change

according to the specific surface. The goal of this research is to learn this signature

to gain terrain awareness. To this aim, it is necessary to select the most relevant

signals for building an accurate predictor.

3.1.3.1 Signal augmentation

To improve the information content, an augmentation engine combines multiple

direct measurements based on our understanding of the physical mechanisms

underlying the wheel-terrain interaction. These are few of the many possible

signal combinations that can be implemented, and they are chosen following a



25

Signal Symbol Sensor Signal ID
Longitudinal Force Fx LC S1

Vertical Force Fz LC S2
Drive Torque Td LC S3

Drive electrical current Cd JT S4
Drive PWM duty cycle PWMd JT S5
Longitudinal acceleration ax IMU S6

Lateral acceleration ay IMU S7
Vertical acceleration az IMU S8

Gyro roll rate gyrox IMU S9
Gyro pitch rate gyroy IMU S10
Gyro yaw rate gyroz IMU S11

Table 3.3: List of available proprioceptive signals.

Figure 3.4: Vertical acceleration and drive torque (wheel front left) measured while
SherpaTT driving straight on di↵erent terrains.
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trial-and-error approach to provide the best performance over other alternatives.

In this way, nine more indirect signals can be obtained (Table 3.4). The derivation

of these signals is detailed in this section, and the rationale behind the choice

of these entities is also explained. Two main motivations support the proposed

augmentation stage. First, two or more signals that are not relevant by themselves

can be useful when combined. Then, noise reduction and consequently better class

separation may be achieved by adding variables that are seemingly redundant [10].

This explains why we resort to indirect or combined signals and include redundant

measurements of the same physical quantity.

Signal Symbol Sensors Signal ID
Mechanical Power PM LC, JT S12
Electrical Power PE JT S13

Vertical force o↵set dx LC S14
Friction coe�cient 1 µ1 LC S15
Friction coe�cient 2 µ2 LC S16
Friction coe�cient 3 µ3 LC, JT S17
Speed deviation SD JT S18

Normalised speed deviation SDn JT S19
Sinkage z LC S20

Table 3.4: List of indirect signals.

The first indirect signal is the power loss due to the wheel traction on given

terrain. It can be derived from a “mechanical” or “electrical” analysis. The

mechanical power can be estimated as follows:

PM = Td · ! (3.9)

where ! is the rotational speed of the wheel. Conversely, the electrical power

consumption can be obtained as:

PE = ⌘ · Vd · PWMd · Cd (3.10)

where Vd is the drive voltage, Cd is the wheel drive current, PWMd is the duty

cycle of the wheel drive Pulse Width Modulation, and ⌘ is the e�ciency of the

electric motor, assumed to be constant and approximately equal to 0.85.
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Figure 3.5: Definition of vertical force o↵set (dx).

Due to the rolling resistance, the direction of the resultant vertical force Fz

might not pass through the centre of the wheel, with an o↵set in the direction of

the movement (Fig. 3.5). This is especially true for soft terrain where the impact

of rolling resistance is larger. Therefore, we can define the vertical force o↵set dx

from the equilibrium of moments around the centre of the wheel, neglecting the

contribution of rotational inertia:

dx =
Td � Fx ·R

Fz
(3.11)

where R is the loaded wheel radius defined as:

R = RN � Fz

kz
(3.12)

being RN (=200 mm) the nominal wheel radius, and kz the vertical sti↵ness of the

SherpaTT wheel that was experimentally estimated as 69 N/mm.

The friction coe�cient is an important entity related with the traction ability

over the traversed surface. In this work, it is estimated in three di↵erent ways:

µ1 =
Fx

Fz
(3.13)

µ2 =
Tx

Fz ·R
(3.14)
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µ3 =
Cd · kT
Fz ·R

(3.15)

where kT (17.4 Nm/A in this case) is the scale factor taking into account the torque

constant of the electric motor and the transmission ratio of the motor reducer.

Speed deviation is the di↵erence between the angular speed of each wheel !

and the average angular speed of the four wheels !. In this work, speed deviation

was estimated in two ways:

SD = |! � !| (3.16)

SDnormalized =
! � !

!
(3.17)

Wheel sinkage is another critical parameter related to rough terrain mobility

that can be approximated as suggested in [69]:

z = R

✓
1� cos

✓
2 · dx
R

◆◆
(3.18)

One important aspect is the general data consistency. As an example, Fig.

3.6 shows the drive torque delivered by the left wheel drive motor, measured by

three di↵erent sensors. Direct torque measurement from the wheel-mounted LC is

denoted by a solid grey line, whereas indirect estimation via the associated electric

current drawn by the motor is marked by a black solid line. Finally, an alternative

indirect measurement via the LC-derived longitudinal force is also plotted using

a dashed black line. As seen in this figure, all three measurements show a good

agreement. Similar results were observed on di↵erent surfaces.

3.1.3.2 Feature extraction

First, each sensory signal is divided in time windows, and then, for each window

features are extracted as the four main statistical moments. The size of the window,

ws is a design parameter. It is set as ws = 2s corresponding to a traversed terrain

patch of about 20 cm (comparable with the wheel radius) at an average travel

speed of 0.1 m/s. In previous works by the resarch group [35], it was found that

this value of window size represents a good trade-o↵ between informative content

and spatial resolution.

The four statistical moments are mean E, variance �, skewness Sk and kurtosis
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Figure 3.6: Torque applied by the left front wheel of SherpaTT as obtained from:
direct measurement of the load cell (solid grey line), indirect measurement via
the electric current drawn by the motor (solid black line), or alternatively via the
longitudinal force provided by the load cell (dashed black line).

Ku and are defined as follows:

Ei =
1

N

NX

n=1

xn (3.19)

�2
i =

1

N

NX

n=1

(xn � Ei)
2 (3.20)

Ski =
1

N

PN
n=1 (xn � Ei)

3

⇣p
�2
i

⌘3 (3.21)

Kui =
1

N

PN
n=1 (xn � Ei)

4

⇣p
�2
i

⌘4 (3.22)

where xn is the value of the signal at the nth time step and N is the total number

of time-steps for the ith window. The extraction of the statistical features brings

the size of the SVM-feature space to 80 (20 signals multiplied by their 4 statistical

moments). The generic feature will be indicated as SiMj, where i represents the

signal ID (i = 1, . . . , 20), whereas j represents the statistical moment (j = 1, . . . , 4).
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3.1.3.3 Feature selection

Retaining only the features with the highest information content reduces the

computational cost while preserving the accuracy of the model. The selection

process can be performed via feature scoring using appropriate validity indices.

Then, an iterative search algorithm can be followed to select a reduced best feature

space.

A validity index can be assigned to each feature. This index represents a measure

of the information content of the feature. In this work, two validity indices are

considered: the Pearson Coe�cient (PC) [63], and the WB index [70]. The PC

index can be computed through linear regression of a feature against the 3 classes

of terrain, e.g., sand, gravel, and paved ground. The higher the PC, the larger

the information content of the feature. Although this index can be successfully

used for 2-class classification problems [36], it might be di�cult to implement

it for multi-class cases like the one presented in this work, because the number

assigned to each type of terrain is arbitrary. To overcome this issue, first, the PC

index is computed for each terrain pair (e.g., sand-gravel, gravel-paved ground, and

sand-paved ground), and then averaged. For example, the PC index of the feature

SiMj against the classes 1 and 2 (sand and gravel) can be calculated as [10]:

1
2PCSiMj =

cov
�
1
2F SiMj , 12y

�
q

var
�
1
2F SiMj

�
var (12y)

(3.23)

where 1
2F SiMj is a vector containing all values of the feature SiMj for terrains

1 and 2, whereas 1
2y contains class values (1 or 2) for each element of 1

2F SiMj.

Similarly, 2
3PCSiMj (PC index of feature SiMj against the classes gravel and paved

ground) and 1
3PCSiMj (PC index of feature SiMj against the classes sand and

paved ground) follow the same principle. The overall PC index for feature SiMj

can be now computed as follows:

PCSiMj =
1
2PCSiMj +

2
3PCSiMj +

1
3PCSiMj

3
(3.24)
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In addition, the WB index can be computed for feature SiMj:

WBSiMj = m
SSWSiMj

SSBSiMj
(3.25)

where SSW is the sum of square within classes and SSB is the sum of squares

between classes, computed as follows:

SSWSiMj =
nClX

k=1

nkX

s=1

(xs � µk)
2 (3.26)

SSBSiMj =
nClX

k=1

nk (µk � µ)2 (3.27)

where xs is the sth sample of feature SiMj, µk is the class k centroid value, µ

is the overall dataset centroid value, nk is the number of samples in class k and

nCl (=3) is the number of classes. A low value of WBSiMj indicates that classes

form compact and distant clusters relatively to feature SiMj. Therefore, the score

assigned to each feature will be WB�1: the higher the WB�1, the better the feature

for classification purposes.

The rationale behind using two validity indices is that the WB and PC have

two di↵erent statistical meanings: the former describes the compactness of classes,

the latter shows the correlation between a given feature and the type of terrain. One

may think that a feature with a low value of PC index will also have a relatively

low value of WB�1 index. However, this is not always true, and exceptions do

occur. For example, Fig. 3.7 shows the distribution of PC and WB indices for the

25 features with the highest scores. S6M2 is the feature with the third highest

value of PC index, but it is only the 21st feature in terms of WB�1. Similarly,

S16M2 is the feature with the second highest value of WB�1 index, but it is only

the 14th in terms of PC. This shows that the two indices rank the features in

di↵erent ways, therefore they complement each other very well.

The proposed feature selection approach is based on the iterative search scheme

presented in the block diagram of Fig. 3.8. The input to the algorithm is the full

set of nfeat (=80) features. These features are then ranked using the output of

one of the two validity indices (PC or WB) as a score. The best feature set is
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Figure 3.7: PC and WB indices distribution for the most relevant features.

initialized with the first nmin � 1 (=2) features of the ranking. At this point, the

objective is to iterate on all the remaining features to find those which provide

better classification performance. In each iteration, identified with the index i that

varies from nmin to nfeat, the ith feature in the ranking is added provisionally to the

best feature set. Then, an SVM-based classifier is trained and evaluated in terms of

F1 score via 5-fold cross validation. The k-fold cross validation process partitions

data into k randomly chosen subsets (or folds) of roughly equal size. Therefore,

to improve the robustness of the feature selection algorithm, the training phase is

repeated ntrain (=10) times and the final F1 score is computed as the average of the

scores obtained at each training phase. If the final F1 score is su�ciently higher

than the best F1 score obtained so far, the ith feature is kept in the best feature

set, and the best F1 score is updated. Otherwise, the ith feature is discarded from

the best set and not considered for training purposes.

In order to facilitate the reading of the block diagram in Fig. 3.8, the meaning

and the numerical values of the parameters involved in the selection process are

collected in Table 3.5.

The selection process discussed in Fig. 3.8 can be repeated for each one of the

two validity indices. Eventually, two best reduced feature spaces will be obtained:
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Figure 3.8: PC and WB indices distribution for the most relevant features.
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Parameter Description Value

nmin Minimum number of features 3
F1min Minimum F1 score 60%
th Accepted improvement (threshold) in the F1 score 5%

ntrain Number of trainings for each new best feature set 5
nfeat Number of features in the initial full feature set 80

Table 3.5: List of parameters involved in the feature selection approach.

one associated with the PC and the other with the WB index. To further improve

the robustness of the selection algorithm, the union of these two sets is chosen as

the best for SVM training purposes. The 18 selected features are listed in Table 3.6.

It is worth noting that three features extracted from indirect signals are included

as well, thus, proving the utility of the signal augmentation phase. A 3D plot of

the three most relevant features in terms of WB index is shown in Fig. 3.9 to help

the reader to easily visualize the result of the whole selection process. As shown in

this figure, the sand data form a quite compact cluster, with relatively low values

of all three features. Conversely, gravel and paved ground data show higher values

of S7M2 (variance of ay) than sand and mainly di↵erentiate in values of S17M2

(variance of µ3).

Figure 3.9: 3D plot of the first three features with the highest score of WB�1.
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Signal Moment Signal type Feature ID WB�1/WB�1

max PC
µ3 Variance Indirect S17M2 1.00 0.345
ay Variance Direct S7M2 0.691 0.449
Td Variance Direct S3M2 0.685 0.308

gyroz Variance Direct S11M2 0.561 0.450
gyrox Kurtosis Direct S9M4 0.549 0.317
Fx Mean Direct S1M1 0.428 0.366
az Variance Direct S8M2 0.371 0.350

gyrox Skewness Direct S9M3 0.364 0.307
gyrox Variance Direct S9M2 0.348 0.356
µ1 Mean Indirect S15M1 0.342 0.275
z Kurtosis Indirect S20M4 0.327 0.177
ax Variance Direct S6M2 0.192 0.385
Fz Variance Direct S2M2 0.192 0.267

gyroy Variance Direct S10M2 0.164 0.295
Fx Variance Direct S1M2 0.143 0.253
ay Kurtosis Direct S7M4 0.048 0.115

PWMd Mean Direct S5M1 0.013 0.062
gyroz Mean Direct S11M1 0.011 0.064

Table 3.6: Best feature set.

3.2 Analysis of an all-terrain tracked robot with

innovative suspension system

3.2.1 Polibot

The fully functioning prototype of the all-terrain rover Polibot is shown in Fig.

1.1(a) along with a CAD rendering with indication of the overall dimensions (Fig.

1.1(b)). A side view of the real robot is shown in Fig. 3.10. The name derives

from an acronym for Politecnico of Bari robot. It comprises a central body and two

side tracks. A rubber track is wrapped around the drive sprocket (W1), the idler

wheel W2, and the four ground wheels (Wi, i = 3, . . . , 6). What is unique about

this tracked locomotion system is the presence of an articulated passive suspension

system on either side that allows each ground wheel to move independently with

respect to the vehicle body providing remarkable adaptability to irregular terrain.

Referring to the left track suspension (Fig. 3.10), a detailed numbered schematic

of the system is shown in Fig. 3.11. The meaning of the numbers is explained in
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Figure 3.10: Detailed left side view of Polibot.

Table 3.7. One can note that the vehicle weight is distributed over the contact

patch via the four road wheels. Each wheel is suspended with respect to the mid

subframe SF , attached to the robot body and accommodating the drive sprocket

W1, using a dedicated swing arm and a spring-damper element. For example, the

front (FSA) and rear (RSA) swing arm allow, respectively, W3 and W6 to rotate

about the hinges D and E in order to conform to the given terrain geometry. In

addition, the two swing arms bringing W4 and W5 are hinged in F to form a middle

bogie-like sub-suspension. The track tension can be adjusted by controlling the

length of the FSA using a male screw rod and a nut-shaped rotation element. The

tension adjustment unit is not visible in Fig. 3.10. The FSA also brings the idler

wheel W2 forming an attack angle with the road wheel W3 that facilitates the climb

of obstacles.

Polibot is a ROS-based skid steer vehicle equipped with two 350W 24VDC

brush motors, each of which is coupled with an angular gearbox with a ratio ⌧ = 30.

The tracked undercarriage is made of two track assemblies rigidly attached to the

main body frame by two brackets. All powertrain components are installed inside

the body frame while the drive sprocket is directly coupled to the gearbox output

shaft. The belts are made of fiberglass reinforced bands and an inner steel cord

all embedded in melted natural rubber. The drive sprockets and the idle wheels

are made of UHMW, which is a high density polyethylene with very high wear

resistance. Each belt has a length of about 2000 mm and a width of about 127
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Figure 3.11: Suspension components

Item number Description Symbol
1 Sprocket W1 (wheel 1)
2 Idler wheel W2

3 Ground wheel W3

4 Ground wheel W4

5 Ground wheel W5

6 Ground wheel W6

7 Track -
8 Subframe SF
9 Bogie rear arm BRA
10 Bogie front arm BFA
11 Rear swing arm RSA
12 Front swing arm FSA
13 Spring-damper S1

14 Spring-damper S2

15 Spring-damper S3

Table 3.7: List of components.
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mm while the height of the treads is 20 mm placed on a support base having a

thickness of 8 mm. It should be noted that the tread height has been designed to

be 20 mm to provide better grip on agricultural terrain and to prevent the rubber

track from slipping when in contact with soft ground or unpaved surfaces. The

sprockets have a total of 17 teeth and a diameter of 200 mm with a thickness of 20

mm and engage the rubber tracks around their bushings that have a pitch of 26

mm to provide traction. In the proposed design, the drive sprocket is placed on top

to prevent the power transmission elements to wear out faster due to environmental

contamination from dust, mud and granular terrain or get damaged as a result of

collisions with rocks and obstacles. This solution partially limits the extension of

the wrapping angle. However, attention has been paid that at least three teeth are

simultaneously engaged, which guarantee a correct power transmission. To further

mitigate system sensitivity to detracking issues, higher teeth have been cut for the

sprocket that exceed the rubber belt thickness.

The electronics installed on board the robot integrate current and voltage sensors

to measure the power drawn by the motors in addition to two quadrature optical

encoders with 1024 pulses that are mounted on the rear shaft of both motors in

order to implement a closed-loop speed control. The vehicle has been designed

to provide an upper flat surface that can be used to place additional devices and

sensors like laptops, LiDARS, IMUs or cameras. Polibot features an embedded

industrial computer with Intel i7 CPU, 16GB RAM DDR and 256GB SSD providing

wireless connectivity with Wi-Fi and Bluetooth interfaces. The main operating

system installed on the computer is Ubuntu and it is used to run ROS and to

generate locomotion commands over a RS232 serial port directly connected to the

motors controller. The main power supply consists of a 24VDC 30Ah LiPo battery

package providing 30Ah with an overall standard autonomy of about 3 hours.

The rover Polibot was designed and developed within the collaboration between

the Robotic Mobility Lab of Politecnico di Bari and the start-up Robodyne. This

thesis work focuses instead on the development of an analytical quasi-static model

of the inverse kinematics of Polibot and on a multi-body digital twin in MSC

Adams environment.
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3.2.2 Polibot analytical modeling

This section presents the inverse kinematic model that involves computing the

pose of the rover and the configuration of its suspension system, given the shape of

the supporting surface. To this aim, a contact model must be first defined. For

tracked vehicles, a contact model may be di�cult to define. In first approximation,

it is assumed that the track has negligible thickness and conforms perfectly to

the terrain geometry. Then, each road wheel is in contact with the supporting

surface at its lowest point, denoted by CPi, i = 3, . . . , 6 to match the numbering

of the road wheel, as explained in Fig. 3.12. This is a reasonable assumption

when moving over firm terrain. For vehicles moving on soft terrain, distributed

track-terrain contact stresses should be considered and resolved to resultant forces

at a single point. In the case of negotiation of a rock, the contact point depends

on the obstacle geometry and can be defined referring to the wheel-terrain contact

plane, as detailed, for example, in [47].

The input to the analytical model is the geometric properties of the robot and

the elevation map of the terrain. The outputs are the position and tilt of the vehicle

body (i.e., mid subframe SF ) along with the suspension configuration.

In the remainder of this Section, the Polibot model is developed as follows:

Section 3.2.2.1 deals with the degrees of freedom of the system, while Sections

3.2.2.2 and 3.2.2.3 describe the equations required to solve the inverse kinematic

problem.

3.2.2.1 Degrees of freedom

By referring again to the left suspension of Polibot (Fig. 3.11), and considering

only the points of the rigid bodies that interact with other components, the system

can be further schematised as shown in Fig. 3.13. For clarification, the rigid bodies

that compose the kinematic scheme (wheels and spring excluded) are listed in Table

3.8, and their geometry is detailed in Appendix A. It is important to highlight

that the dimension d11 (shown in Fig. A.1 in Appendix A) can be changed by the

tension adjustment unit and therefore it is considered as an input parameter.

To study the motion of the suspension system, a global reference frame XY Z

is defined in Fig. 3.12. Please note that for simplicity sake, a half-symmetry model
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Figure 3.12: Polibot coordinate frames
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Figure 3.13: Left suspension schematics

Body number Points Color
1 ABDFEC Black
2 HFI Magenta
3 JFK Blue
4 ELM Green
5 DNOSP Cyan

Table 3.8: List of rigid bodies.

is assumed, i.e., the vehicle center of mass is constrained to the X-Z plane and the

chassis can only pitch (✓) whereas roll and yaw rotations (� and  ) are not taken

into account.

Under this assumption, the system of Fig. 3.13 consists of five rigid bodies

connected by three revolute joints (D, E, F). The seven resulting degrees of freedom

are listed in Table 3.9.

3.2.2.2 Constraints

The terrain elevation map that is assumed to be known in this analysis can be

represented by the following expression:

Z = fte(X) (3.28)

where fte is the terrain elevation function, that gives the height of the terrain (Z)

for any value of X. For example, the terrain elevation function for a flat horizontal
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Number Symbol Description

1 XA SF vertical position
2 ZA SF horizontal position
3 ✓ SF Pitch
4 ✓1 BRA orientation
5 ✓2 BFA orientation
6 ✓3 RSA orientation
7 ✓4 FSA orientation

Table 3.9: List of degrees of freedom as shown in Fig. 3.13.

surface is Z = h0, with h0 a constant.

Referring to Fig. 3.13, given the X-coordinate of the first contact point XCP3

and assuming that wheels 3 to 6 make contact with the ground with their lowest

point, the following constraint equations can be written:

XP = XCP3 (3.29)

ZP � r3 = fte(XP ) (3.30)

ZK � r4 = fte(XK) (3.31)

ZI � r5 = fte(XI) (3.32)

ZM � r6 = fte(XM) (3.33)

where ri is the radius of wheel i. Given the geometry of the suspension (please

refer to Fig. A.1 in Appendix A), the Z-coordinate of the wheel centers (P, K, I

and M) can be expressed as a function of the degrees of freedom of Table 3.9 via

loop closure equations. For conciseness, these expressions are omitted here and

reported in Appendix B.1.

Another constraint equation is derived from the adoption of a steel-core rubber

track, whose length can be considered reasonably constant, thus imposing the

following geometric condition that must be satisfied during the relative motion of

the suspension elements:

Ltrack = Lnom (3.34)

where Lnom is the nominal length of the track. The derivation of Ltrack as a function
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of the degrees of freedom is reported in Appendix B.3.

The system of non linear equations (3.29)-(3.34) consist of six equations in

seven unknowns, which are the seven degrees of freedom. Thus, at this stage the

inverse kinematic problem is under constrained and there exists an infinite set of

solutions. For this reason, it is necessary to consider the quasi-static equilibrium

equations, as explained in the next section.

3.2.2.3 Quasi-static analysis

If a vehicle has more than two contact points as Polibot, it will be dynamically

indeterminate and the normal forces under the wheels cannot be obtained by global

equilibrium equations. For these two reasons it is necessary to consider the elastic

element deflection. To do so, the equilibrium of moments acting on the BRA, BFA,

RSA and FSA around joints D, F and E should be added to the problem. The

rover weight and the position of the center of gravity in the vehicle coordinate

frame (XvG,ZvG) have been experimentally estimated with the use of scales (Refer

to section 4.2.4.1).

The robot is assumed to move at a constant speed, therefore the only external

forces acting in the longitudinal direction are the tangential forces under each

wheel (Fi, for i = 3, . . . , 6) and the motion resistance of the running gear (Fv), as

indicated in Fig. 3.14. The motion resistance of the running gear accounts for

obstacle resistance, internal resistance of the running gear and the resistance due to

interaction with the terrain. Figures 3.15 and 3.16 show the internal forces acting

on Polibot suspension system.
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Figure 3.14: Global free body diagram of Polibot.

Figure 3.15: Internal forces acting on Polibot suspension system: left half.
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Figure 3.16: Internal forces acting on Polibot suspension system: right half.
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The required equilibrium equations can be easily derived from Figures 3.14,

3.15 and 3.16 and they can be written in matrix form as follows:
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(3.35)

which in compact form can be written as:

Gc · fc +Gint · fint = fs (3.36)

where fc includes all the forces arising from wheel-ground interaction (i.e. normal

and tangential forces), fint represents the internal forces (i.e. track tension and
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elastic forces), fs includes the summed e↵ects of gravitational forces, inertial forces,

and forces due to interaction with the environment. The geometric parameters a, b,

c and d are indicated in Figures 3.15 and 3.16. The system (3.36) consists in a set

of 12 equations in 14 unknowns. The twelve equations include, in order:

• global force balance along X

• global force balance along Z

• global torque balance around the center of gravity

• torque balance on BFA around point F

• torque balance on BRA around point F

• torque balance on RSA around point E

• torque balance on FSA around point D

• longitudinal force balance of the track element that exchanges forces with the

ground

• proportionality between Fi and Ni, one equation per wheel (i.e. for i =

3, . . . , 6)

The last four equations (proportionality between Fi and Ni) are required to

distribute the tractive e↵ort to each wheel proportionally to the terrain normal

reaction.

The 14 unknown parameters are described in Table 3.10, and they also include

the proportionality constant between tangential and normal wheel-terrain forces kc

defined as follows:

kc =
Fi

Ni
, for i = 3, . . . , 6 (3.37)

To close the system of equations, it is necessary to consider the deflection of the

elastic elements. Each spring has a pre-load and behaves as a rigid body if any force

lower than the pre-load is applied. For example, the force-length characteristic of a

spring with sti↵ness 12 N/mm, pre-load 50 N and maximum length 150 mm is shown
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Unknown force Description

T1 Tension of the track, tight side
T2 Tension of the track, slack side
F3 Tangential traction force for W3

F4 Tangential traction force for W4

F5 Tangential traction force for W5

F6 Tangential traction force for W6

N3 Normal reaction force for W3

N4 Normal reaction force for W4

N5 Normal reaction force for W5

N6 Normal reaction force for W6

kc Proportionality constant between Fi and Ni

Fel,1 Force applied to S1

Fel,2 Force applied to S2

Fel,3 Force applied to S3

Table 3.10: List of force parameters.

in Fig. 3.17, where the force applied to the spring is considered in compression.

If a traction force is applied to the spring, the elastic element behaves as a rigid

body and the length is equal to its maximum length. This characteristic can be

generalised and applied to the three elastic elements of the suspension:

Li =

8
<

:
Lmax,i, if Fel,i < Fpre,i

Lmax,i � Fel,i�Fpre,i

k , otherwise
i = 1, 2, 3 (3.38)

where Li is the length of spring i when a force Fel,i is applied to its ends, Fpre,i

and Lmax,i are the pre-load and the maximum length of spring i respectively, k is

the elastic sti↵ness. The length of the elastic elements (Li for i = 1, 2, 3) is derived

as a function of the degrees of freedom in B.2. Pre-loads and maximum lengths are

input parameters.

The system of equations (3.36) and (3.38) consists of 15 equations in 14 un-

knowns. However, it cannot be solved independently of the constraint equations

shown in section 3.2.2.2. In fact, the matrices Gc and Gint are functions of the

seven degrees of freedom of the system, as shown in C. For these reasons, the force

analysis conducted in this section must be coupled with the constraint equations

3.29-3.34, resulting in a system of 21 equations in 21 unknowns. The unknowns are
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Figure 3.17: Force-length characteristic of a spring with 12 N/mm sti↵ness, 50 N
pre-load, and maximum length of 150 mm.

the seven degrees of freedom of Table 3.9 plus the fourteen unknown parameters of

Table 3.10.

3.2.3 Polibot multibody model

3.2.3.1 Multibody modeling

In this work, the robot Polibot is considered as a MB system. The position

problem corresponds to solving the constraint equations:

�(q, t) = 0 (3.39)

where q is the vector of generalised system coordinates and t is the time. By di↵er-

entiating Equation 3.39, it is possible to obtain the velocity kinematic constraint:

�q q̇ = 0 (3.40)

where �q is the Jacobian matrix of the constraint equations with respect to q, and

q̇ is the vector of generalised velocities. By taking the first derivative again, the

acceleration kinematic equations are obtained:
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�q q̈ = ��̇q q̇ = c (3.41)

where q̈ is the vector of generalised accelerations. For a consistent time evolution

of the modeled system, the genaralised coordinates q must satisfy the kinematic

Equations 3.39 to 3.41.

Dynamics must be included in the model by applying Newton’s law and by

taking into account constraints, leading to the following set of di↵erential equations:

Mq̈ + �T
q � = Q (3.42)

where M is the mass matrix, Q is the vector of external forces and � is the vector

of Lagrangian multipliers. The objective of a multibody simulation software is to

solve Equations 3.41 and 3.42 simultaneously. If n and m refer, respectively, to the

dimension of the generalised coordinates and constraint equations, Equation 3.42

represents a set of n equations in n +m variables. By adding the m Equations

3.41, the following system can be obtained and solved for simultaneous solution of

the accelerations and Lagrange multipliers [71]:

"
M �q

>

�q 0

#"
q̈

�

#
=

"
Q

c

#
(3.43)

3.2.3.2 POLIBOT digital twin

In this work, the multibody model of POLIBOT was built with a methodology

based on templates, which is the standard design methodology of MSC Adams/ATV:

the vehicle is considered as a set of interacting subsystems, and each subsystem

is modeled independently and later integrated to form the assembly to simulate.

Figure 3.18 shows the vehicle model that comprises six subsystems: the body, the

drive sprocket, the suspension units (front, middle and rear, each with one or two

road wheels) and the track belt. The geometry of all the parts of the robot are

imported into MSC Adams as Parasolid files extracted from 3D CAD elements.

This strategy is preferred to using the elementary geometries provided by the ATV

toolkit to improve fidelity.

The robot main body is represented by the subsystem hull, and its inertial
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Figure 3.18: The multibody model of POLIBOT

properties are consistent with those of the real prototype. A hull property file

provides the software with the coordinates of the lower and upper profiles of the

body. To place the other subsystems (shown in Fig. 3.18) correctly in the final

assembly with respect to the body, the hull template needs output communicators.

The total mass of the tracked vehicle assembly and the position of the center of

gravity are derived with static tests and compared against experimental data in

Section 4.2.4.1. The powertrain engages with the track belts through shafts, gears

and sprockets on each side. A revolute joint connects each sprocket to the hull to

achieve purely rotational relative motion about the drive axle. To impose motion,

the user can provide to the powertrain subsystem either a prescribed angular

velocity or torque.

Each of the four road wheels of the tracked vehicle are suspended to the robot

chassis using a trailing arm suspension type. The templates of the central and front

suspension units are generated especially to include features that are not available

in the ATV default databases. The subsystem of the front suspension unit, shown
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on the top left corner of Fig. 3.18, is made up of four rigid bodies: two road wheels

and two components that constitute the swing arm. The first part of the swing arm

is attached to the robot body through a revolute joint, allowing it to rotate about

the hinge point. This pivoting motion is resisted by the action of a spring-damper

element designed to emulate the shock absorber used in the prototype between

the chassis and the arm. The second rigid body forming the front trailing arm is

connected to the first one through a translational joint that allows it to change

the overall length of the arm and adjust the track belt tension to an optimal value

for better traction performance, similarly to the screw-nut tensioning unit of the

actual robot. For this reason, the tensioner, which is an important entity of the

ATV toolkit, is defined between the two sliding bodies that constitute the front

trailing arm. The front suspension unit carries two road wheels that are connected

via revolute joints to the terminal part of the swing arm.

The central suspension unit is shown at the bottom of Fig. 3.18. It comprises

two swing arms that carry a road wheel each and that are connected to the hull

through revolute joints. The relative rotation between the two swing arms is

opposed by the action of another linear spring-damper force. In such way, when one

wheel travels upwards because of the terrain geometry, the other is pushed against

the ground, with consequent high adaptability to uneven terrains and obstacles.

The POLIBOT prototype features rubber tracks reinforced with steel cables.

In the model, based on the ATV toolkit design methodology, the single track

is divided into 56 discrete segments, wrapped around the road wheels and the

sprocket. Each one of these segments consists of a segment part and a box-shaped

connector part that are linked to one another through a 6⇥6 force field element,

modeled as a Timoshenko beam. The elastic and damping forces and torques at

the segment interfaces therefore depend on the relative displacement and velocity

of the local segment frames [72], as well as on the coe�cients in the sti↵ness and

damping matrices: these are calculated by referring to the Young modulus and

shear modulus of the rubber of which the track is made, i.e., E = 5.5 MPa and G

= 20 MPa respectively, together with the dimensions of the cross section, namely

120 mm width and 9 mm height. A multiplier equal to 100 is applied to account

for the sti↵ening along the longitudinal direction of the track due to the presence

of the steel cables. The values obtained are summarized in Table 3.11. As for
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x y z

Translational sti↵ness (N/mm) 3.24⇥104 72.45 917.57
Translational damping (Ns/mm) 324.20 0.72 9.17
Rotational sti↵ness (Nmm/deg) 2.48⇥104 8.13⇥105 144.32
Rotational damping (Nmms/deg) 248.29 8.13⇥103 1.44

Table 3.11: Properties of the rubber field used for the track segment connections

the damping matrix, this is calculated as a fraction of the sti↵ness matrix. The

damping coe�cients reported in Table 3.11 correspond to a damping ratio equal

to 0.01: such ratio is chosen by performing a drop simulation of the belt model

alone and comparing its oscillations and final deformed shape with that of the real

rubber track, as suggested in [73].

3.3 HAPF path planning algorithms for tracked

robots

Simulations have been carried out with a model of the all-terrain rover Polibot.

More details on Polibot’s design and its suspension modelling can be found in

section 3.2.

3.3.1 Realistic scenarios

To test the algorithms developed in this thesis, it was decided to use realistic

planetary exploration scenarios. For example, Fig. 3.19 shows a Digital Terrain

Model (DTM) of a zone of Mars (latitude 76.2�, longitude 95.44�), which is one

of the many made available on the High Resolution Imaging Science Experiment

(HiRISE) website by The University of Arizona [74]. HiRISE is a powerful camera

onboard the Mars Reconnaissance Orbiter, launched in 2005, arrived at Mars in

2006 and been imaging ever since. HiRISE DTMs are made from two images of

the same area on the ground, taken from di↵erent look angles. For a detailed

explanation of the process used to create HiRISE DTMs, the reader is invited to

refer to [75]. The map scale of the DTM of Fig. 3.19 is 0.98 m per pixel, and the

vertical precision is in the tens of centimeters.
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Figure 3.19: HiRISE Digital Terrain Model of a zone of Mars (latitude 76.2�,
longitude 95.44�).

To use such a DTM for HAPF path planning, it is necessary to extract an

obstacle map from it. To do so, first, a smaller 2000 m x 2000 m square section

of the original DTM is selected and it is shown in Fig. 3.20. As indicated in the

contour plot, X and Y represent the global coordinates used for this study, and

their origin is in the bottom left corner of the DTM of Fig. 3.19. Also, Z is the

elevation as obtained from the DTM.

Next, a down-sample of the original DTM is performed, tripling its scale from

0.98 per pixel to 2.94 per pixel. There are two advantages to start with a coarser

map: first, it is a way to simulate a realistic planetary exploration scenario in which

a detailed map is not available at the beginning of the mission, and second, it speeds

up the numerical solution of Laplace’s equation as the size of the computational

domain is reduced by a factor of 9. At this point, the sectioned and down-sampled

DTM is ready to be converted into an obstacle map. The approach used in this

work is to calculate the absolute slope in each point of the DTM and mark as
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Figure 3.20: Section of the original DTM of Fig. 3.19 considered for path planning.

obstacles all the points that have a value greater than the maximum safe slope that

can be overcome by the robot. For each point (i, j) in the computational grid, the

absolute slope can be calculated as combination of the two components along X

and Y :

Sli,j =
q
(SlXi,j)

2 + (SlYi,j)
2 (3.44)

SlXi,j =
Zi+1,j � Zi�1,j

a
(3.45)

SlYi,j =
Zi,j+1 � Zi,j�1

a
(3.46)

where a is the grid spacing. All the points that satisfy the following condition are

marked as obstacles:

Sli,j > tan�1 ↵ (3.47)



56

Figure 3.21: Obstacle map correspondent to the DTM of Fig. 3.20.

where tan�1 is the inverse tangent function and ↵ is the maximum safe slope angle

for the robot. By setting ↵ = 20�, the resulting obstacle map is shown in Fig. 3.21.

3.3.2 Numerical solution of Laplace’s equation

The 2D version of Laplace’s equation is:

r2� =
@2�

@X2
+
@2�

@Y 2
= 0 (3.48)

where � is the harmonic potential function, X and Y are the 2D coordinates. To

solve it numerically, it is necessary to choose a discretization scheme. The most

common approximation of the 2D laplacian is the 9-point laplacian [76]. Following

this scheme, the 2D Laplace’s equation discretized on a squared uniform grid (i.e.

with equal constant grid spacing along the two directions) becomes:
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�i+1,j+1 + �i�1,j+1 + �i+1,j�1 + �i�1,j�1+

+4 (�i+1,j + �i�1,j + �i,j+1 + �i,j�1)� 20�i,j = 0 (3.49)

where the coe�cients are obtained analytically as shown in [76]. Equation 3.49 can

be used to set up an iterative algorithm in which the value of the potential in each

point (i, j) at the iteration k is given by:

�k
i,j =

1

20
(�k�1

i+1,j+1 + �k�1
i�1,j+1 + �k�1

i+1,j�1 + �k�1
i�1,j�1+

+4
�
�k�1
i+1,j + �k�1

i�1,j + �k�1
i,j+1 + �k�1

i,j�1

�
) (3.50)

where k = 1, 2, 3, . . . is the iteration number. The iterative algorithm of Eq. 3.50

requires an initial guess �0. When the residuals are low enough, that is when the

di↵erence between the potential at two consecutive iterations is lower then a certain

threshold, the iterative algorithm can be stopped and the final �k is the numerical

solution of the 2D Laplace’s equation.

To apply Eq. 3.50 to the computational grid of Fig. 3.21, it is necessary

to define the boundary conditions first. Boundary conditions are required for

the start position, the goal position, obstacles and outer limits of the grid. A

Dirichlet condition (prescribed value of potential) is applied to the start and goal

to represent a mass source and a mass sink. Usually, the potential has an infinite

value (positive and negative respectively) for these two conditions. For numerical

purposes, prescribing a high (and low) value is enough, for example:

�start = 103 (3.51)

�goal = �103 (3.52)

A Neumann condition (prescribed value of derivative of potential) is applied to

obstacles and outer boundaries as they have to act as an impenetrable wall. Thus,

the normal velocity at the wall is set to zero as follows:
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✓
@�

@n

◆

wall

= 0 (3.53)

where n is the wall normal. In this research, obstacles are constructed as an irregular

set of squares. Therefore, the ”walls” of the obstacle are locally parallel to the X

or Y axis. Equation 3.53 can be discretized using a two-point scheme. For brevity,

in this document only the discetization in case of a wall parallel to the X axis with

free space below (Fig. 3.22) is presented. The other cases are similar. For any

pair of points (i, j) and (i, j + 1) that are next to a wall parallel to the X axis and

located in point (i, j + 2), the discretized Neumann condition (Eq. 3.53) is:

�i,j+1 = �i,j (3.54)

Figure 3.22: Representation of a wall parallel to the X axis in the computational
grid with free space below.

The accuracy and speed of the numerical solution of Laplace’s equation depends

on the chosen type of discretization and iterative schemes. There are other iterative

schemes proposed in the literature that have much faster convergence. However,

this is outside the scope of this work, as Laplace’s equation is only solved once at

the beginning of the mission. The solution obtained with equations 3.50, 3.51, 3.52

and 3.53 is accurate enough to produce smooth and collision-free paths, as shown

in the results section 4.3.
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3.3.3 Path optimization problem

After the computation of the HAPF by numerically solving Laplace’s equation,

many paths can be derived starting from the start location and following the

gradient descent. The gradient of the potential is not defined at the start position,

because it is a point on the boundary of the computational domain. Therefore,

the initial direction can be arbitrarily chosen, as tracked robots can easily rotate

on the spot. For any di↵erent initial direction, a di↵erent path can be derived via

gradient descent. The purpose of this section is to describe the path optimization

problem used in this research to choose the optimal path and, consequently, the

optimum initial direction.

Let P be a set of N suitable paths found via gradient descent, and pj a generic

path of this set, with j = 1, . . . , N . The optimum path is chosen by minimizing a

cost function C(pj) given by a weighted sum of four di↵erent costs:

C(pj) =
4X

i=1

wici(pj) (3.55)

4X

i=1

wi = 1 (3.56)

0  wi  1 (3.57)

where wi are the weights. Each cost ci is a function of the generic path pj and

represents a specific optimality criterion. The costs are normalized to have always

values between 0 and 1.

The first cost is related to the distance to obstacles. Let d(pj) be a function that

calculates the minimum distance between any point of path pj and any obstacle.

For this criterion, the optimum path is the one with the highest value of d, and c1

can be calculated as follows:

c1(pj) =
max(d)� d(pj)

max(d)�min(d)
(3.58)

The second cost is related to path length. Let L(pj) be a function that calculates

the length of path pj. For this criterion, the optimum path is the one with the

lowest value of L, and c2 can be calculated as follows:
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c2(pj) =
L(pj)�min(L)

max(L)�min(L)
(3.59)

The third cost is related to the absolute slope (Eq. 3.44) of the terrain encoun-

tered along the path. Let sl(pj) be a function that gives the average absolute slope

encountered along path pj. For this criterion, the optimum path is the one with

the lowest value of sl, and c3 is given by:

c3(pj) =
sl(pj)�min(sl)

max(sl)�min(sl)
(3.60)

The fourth and final cost is related to the sinkage of the robot over deformable

terrain. Let Za(pj) be a function that gives the average sinkage of the robot along

path pj. For this criterion, the optimum path is the one with the lowest value of

Za, and c4 is given by:

c4(pj) =
Za(pj)�min(Za)

max(Za)�min(Za)
(3.61)

For details about sinkage estimation, please refer to the following section.

3.3.4 Sinkage estimation

A nonholonomic skid-steering tracked vehicle with independently driven tracks

is represented in Fig. 3.23, along with the global and local reference systems OXY

and Gxy, respectively. XG and YG are the global coordinates of the center of gravity

G. The heading angle ✓ is the rotation angle between the two reference systems.

XG, YG and ✓ are the generalized coordinates of the robot. In general, the velocity

v of the center of gravity G has two components in the local reference system:

vx = v cos � (3.62)

vy = �v sin � (3.63)

where � is the sideslip angle, which is not zero every time the vehicle steers, because

the center of gravity and the center of turn are not aligned on the same transversal

line [77].

The velocity of the vehicle, its rate of turn r and the curvature radius Rc are
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Figure 3.23: Representation of a tracked vehicle with global and local reference
systems.

related by:

v = Rcr (3.64)

The kinematic model of the tracked robot of Fig. 3.23 is:

Ẋ = vx cos ✓ � vy sin ✓ (3.65)

Ẏ = vx sin ✓ + vy cos ✓ (3.66)

✓̇ = r (3.67)

The longitudinal speed of the vehicle vx and its rate of turn r can be expressed

as a function of the longitudinal speed of the two tracks vxl and vxr:
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vx =
vxr + vxl

2
(3.68)

r =
vxr � vxl

B
(3.69)

vxr =
R!r

⌧
(1� Sr) (3.70)

vxl =
R!l

⌧
(1� Sl) (3.71)

where R is the sprocket radius, ! is the rotational speed of the motors (right and

left), ⌧ is the transmission ratio between the motor and the sprocket, S is the

slippage of the tracks (right and left) and B is the distance between the two tracks.

The load acting on each track of the vehicle is influenced by the slope of the

terrain. The slope angle in the transversal direction � causes a load transfer across

the tracks. The slope angle in the longitudinal direction �, a↵ects the pressure

distribution below each track. Referring to the slopes calculated along X and Y

(Eq. 3.45 and 3.46), these angles can be derived as follows:

� = tan�1 (SlX cos ✓ + SlY sin ✓) (3.72)

� = tan�1 (�SlX sin ✓ + SlY cos ✓) (3.73)

The forces acting in the transversal plane are shown in Fig. 3.24. For simplicity,

the e↵ect of the slope angle in the transversal direction (�) is represented by

changing the direction of the weight.

From the equilibrium of forces along the z axis and the equilibrium of moments

around the x axis, it is possible to derive an expression for the two loads:

W r = m


1

2
g cos � +

h

B
(rvx + v̇y � g sin �)

�
(3.74)

W l = m


1

2
g cos � � h

B
(rvx + v̇y � g sin �)

�
(3.75)

where m is the robot mass, g is the gravitational acceleration, h is the height of

the center of gravity. From the two equations above, it is easy to verify that the

two loads are equal when the transversal slope is null (� = 0) and the vehicle is not
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Figure 3.24: Forces acting on the robot on the xy (top) and yz (bottom) planes
when steering.

turning (r = 0) and not starting to turn (v̇y = 0).

After the loads are known, it is necessary to consider how the suspension

distributes the load across the four road wheels. The analytical model of the

suspension described in section 3.2.2 is used for this scope. Referring to the

schematics of the suspension shown in Fig. 3.25, the inputs to the model are the

load acting on the track W and the slope angle in the longitudinal direction �, while

the outputs are the four loads acting on the road wheels Ni (with i = 1, . . . , 4).

Finally, it is possible to compute the pressure distribution below the track.

In reality, pressure distribution below a track depends on many factors, and the

most important are the pressure-sinkage relationship, the response of the terrain to

repetitive loads and the deformation of the flexible track due to terrain pressure [78].

However, it is time consuming to perform pressure calculations that include all these

aspects for every position in the path. In this work, a simpler approach is chosen,

where the track is considered as rigid and the pressure depends only on the load on

each wheel. One of the possible idealized normal pressure distribution types is the

sinusoidal [79], in which the pressure varies from peak values in correspondence of

each road wheel and zero at the mid-points between each pair of road wheels, as

shown in Fig. 3.26. The values of the peaks are chosen to satisfy the condition that
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Figure 3.25: Schematics of the suspension with indication of the loads acting on
each road wheel.

the integral of the normal pressure between two consecutive zero-pressure points is

equal to the load of the correspondent road wheel.

This pressure distribution can now be used to estimate the sinkage used in Eq.

3.61 via Bekker’s pressure-sinkage equation [80]:

z =

 
p

kc
b + k�

! 1
n

(3.76)

where z is the sinkage, p is the pressure, b is the width of the contact patch, n, kc,

and k� are terrain-specific pressure-sinkage parameters.

3.3.5 Global and local planning

The objective of this section is to wrap up the path planning methodology

presented in this thesis. The planning framework is summarized in the flow chart

of Fig. 3.27. The initial obstacle map (Fig. 3.21) is provided to the global planner,

together with the robot start position and the goal location. The global planner

solves Laplace’s equation as described in section 3.3.2 and choses the optimal path

(section 3.3.3). At this stage, the motion is imposed to the robot, and the kynematic

model of section 3.3.4 is used to calculate rate of turn and heading angle at each

point of the path. If a change in the environment requires a deviation from the

global optimal path, the local planner kicks in.
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Figure 3.26: Pressure distribution below each track.

The strategy adopted by the local planner to avoid new detected obstacles is

based on adding a provisional local potential source to the existing potential field

which acts as a repulsive force that pushes the robot away. After the obstacle is

avoided, the local planner tries to return to the global optimal path, by provisionally

adding a local sink in correspondence of the closest and safest point of the optimal

path, which acts as an attractive force. Results obtained with the proposed path

planning framework are presented and discussed in the next chapter. The function

used to add these provisional potential sources and sinks is the following:

�local =

8
<

:
⌫ log

�
d0
d

�
if d < d0

0 if d � d0
(3.77)

where �local is the potential associated with every provisional source or sink, ⌫ is a

constant (positive for sources and negative for sinks), d is the distance from the

source (or sink), d0 is a constant that defines how big is the area influenced by the

new local potential, to ensure that the new disturbance does not a↵ect zones of the

potential that are far from the new obstacles.
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Figure 3.27: Path planning framework.
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Chapter 4

Results

4.1 Role of feature and signal selection for terrain

learning

In this section, the results of the proposed terrain algorithms are presented.

First the generalization problem is applied to the main dataset. Next, results for

two extrapolation cases are presented.

4.1.1 Generalization

In the generalization problem, only the main data set is used (i.e., experiments

on paved ground, gravel, and sand). The algorithms are tested via 5-fold cross

validation. The data set comprises of 1204 samples, where a sample corresponds to

a 2-second time window. Of these 1204 samples, 443 are collected on paved ground,

338 on gravel and 423 on sand.

One of the objectives of this thesis is to demonstrate how a proper feature

selection algorithm can reduce the computational and memory cost of the model,

while maintaining a similar accuracy in prediction. Table 4.1 shows comparison be-

tween the two machine learning algorithms in terms of accuracy and computational

burden. Moreover, SVM is tested with three di↵erent feature sets:

• Direct feature set (44 features)

• Full feature set (80 features)
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• Best feature set (18 features)

while CNN is tested with three di↵erent signal sets:

• Direct signal set (11 signals)

• Full signal set (20 signals)

• Best signal set (13 signals)

SVM CNN
Feature and signal sets Direct Full Best Direct Full Best

Accuracy [%] 89.8 90.8 90.9 95.6 96.4 96.2
Model memory usage [kB] 547.6 996.9 228.0 44.9 53.2 45.8

Training time [ms] 118.9 157.7 148.0 1.07 e4 1.46 e4 1.06 e4
Testing time [ms] 17.4 29.8 21.2 153.0 119.4 114.7

Feature extraction time [ms] 0.6 0.9 0.6 2.6 4.6 2.7

Table 4.1: Performance comparison between terrain classifiers trained on di↵erent
feature sets: direct, full, best feature set.

The signals used for training CNN correspond to those used to compute SVM

features. In fact, the 44 direct features are the 4 statistical moments of the 11

direct signals and the full 80-feature set is composed by the 4 statistical moments

of the full 20-signal set. Furthermore, the training set for CNN includes the signals

used to derive the features in the best feature set. Namely, the 13 best signals are:

friction coe�cients 1 and 3, longitudinal, lateral and vertical accelerations, drive

torque, yaw, pitch and roll rates, longitudinal and vertical forces, sinkage, drive

PWM.

The accuracy of the SVM model trained with the direct and full feature sets

is 89.8% and 90.8%, respectively. With the full feature set, more samples are

correctly classified by SVM, but memory usage has increased by 82%, training time

by 32%, testing time by 71% and feature extraction time by 50%. This proves

the e↵ectiveness of the signal augmentation in terms of accuracy and shows the

drawbacks in terms of computational burden. The purpose of feature selection

is to reduce the computational cost, without losing classification accuracy. The

results presented for SVM trained with the best feature set, prove that the feature

selection algorithm proposed in this work is e↵ective. In fact, the accuracy reaches
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90.9% and, when compared to the SVM trained on the full feature set, the model

memory usage is reduced by 77%, training time by 6%, testing time by 29%, feature

extraction time by 33%.

The e↵ectiveness of both input signal augmentation and feature selection is

also confirmed by the results presented for CNN. This deep learning algorithm

gains in terms of accuracy from signal augmentation reaching 96.4%. Using the full

signal set still results for CNN in the same drawbacks presented for SVM: model

memory usage increased by 18%, training time by 36%, feature extraction time by

77%. In contrast with SVM, testing time for CNN with full signal set is reduced

by 22%. Training CNN with the best signals resulting from feature selection leads

to an accuracy of 96.2% and when compared to the full-signal CNN, the model

memory usage is reduced by 14%, training time by 27%, testing time by 4%, feature

extraction time by 41%. Feature extraction times presented in the last row of Table

4.1 are suitable for online application for both SVM and CNN, even if construction

of multichannel spectrograms from best signals for CNN takes about 2.1 ms more

than construction of best features for SVM. It should also be noted that feature

extraction time for both SVM and CNN can be further improved by optimizing

the current MATLAB code using vectorization or processing the data directly with

a C++ code. Note that at the time of writing of the thesis, the algorithms and

the dataset are under revision in a private Github repository that will be made

available to the interested readers upon publication.

Confusion matrices for both SVM and CNN are shown in Fig. 4.1 only for

best feature and best signal sets. Sensitivity results for each class are contained in

the diagonal elements of each confusion matrix. The performance of both models

in terms of precision, recall and F1 score are shown in Table 4.2. Both models

perform good in generalization of data, with CNN being slower but significantly

more accurate. This increase in classification accuracy is not the main advantage

for CNN classification model with respect to SVM. Where the two models show the

greatest di↵erence in classification performance is indeed extrapolation, as shown

in the following section.
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Figure 4.1: Generalization Results for best features SVM and best signals CNN.

SVM CNN
Class Gravel Paved Ground Sand Gravel Paved Ground Sand

Precision [%] 89.1 82.4 100 80.3 82.2 100
Recall [%] 81.0 90.1 99.8 92.3 95.7 100

F1 score [%] 84.9 86.1 99.9 85.9 88.4 100

Table 4.2: Accuracy, Precision, Recall and F1 score for SVM and CNN in general-
ization.
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4.1.2 Extrapolation

In the extrapolation problem, the operating conditions of training and testing

sets are di↵erent, therefore these sets do not come from the same population. In

this work two extrapolation cases are presented. The first one deals with varying

rover speed, whereas the second one assesses the performance of the algorithms on

a terrain unseen in the training phase.

4.1.2.1 Testing on a new vehicle velocity

During the experiments with SherpaTT, the rover was controlled at two di↵erent

speeds: 0.1 m/s and 0.15 m/s. Of the 14 runs, 7 were conducted at low speed (0.1

m/s) and 7 at high speed (0.15 m/s). Data collected at low-speed form the low-

speed distribution, whereas data collected at high-speed belong to the high-speed

distribution. In the extrapolation problem presented here, low-speed data are used

as training set, while high-speed data are used as testing set. Both sets belong to

the main dataset (paved ground, gravel, and sand). Proprioceptive data are very

useful for terrain classification but also show a strong dependency from traversing

speed [81]. Most terrain classification algorithms analyse and classify proprioceptive

data acquired at constant traversing velocity on di↵erent terrains. Studies have

been also conducted to show dependency of terrain classification performances from

rover’s traversing speed, searching for the velocity that maximizes classification

performance. To be able to classify the traversed terrain at any travelling speed,

a rover should be equipped with a model trained on a vast variety of possible

traversing speeds or could only use speed-independent features that are di�cult

to construct and may not be well suited for terrain classification. Another way of

achieving the goal of sensing and classifying the terrain at any travelling speed is

using a model that shows good results when tested on data acquired at a traversing

velocity di↵erent from the one used for training. Figure 4.2 contains the confusion

matrices for both SVM and CNN when trained on low-speed data and tested on

high-speed ones. As can be seen, despite both models showed good results in

generalization only CNN is also capable of extrapolating the information of the

traversed terrain from data acquired at a di↵erent speed. The two models were still

trained and tested using only best feature set for SVM and corresponding signal
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Figure 4.2: Extrapolation results for best features SVM and corresponding signals
CNN.

set for CNN. While CNN keeps classification accuracy as high as 89.5%, SVM

becomes unreliable achieving only 55.7% of correctly classified data samples. The

performances of both models in terms of precision, recall and F1 score are shown

in Table 4.3.

SVM CNN
Class Gravel Paved Ground Sand Gravel Paved Ground Sand

Precision [%] 54.8 46.8 100 80.3 82.2 100
Recall [%] 40.3 83.9 47.5 82.1 81.0 99.5

F1 score [%] 46.4 60.1 64.4 81.2 81.6 99.7

Table 4.3: Precision, Recall and F1 score for SVM and CNN in extrapolation using
varying velocity.

It should also be pointed out that high-speed data used as testing constitute

50% of available data, representing therefore a testing set larger than the ones

usually used (20-30%). The robustness of the classification performance of CNN on

a large testing set composed by data acquired at a di↵erent speed suggests that

this model is well suited for terrain classification purposes. Moreover, the features

automatically learned from signal spectrograms appear to be more reliable than

statistic ones and represent a better choice to be able to classify the traversed

terrain at various travelling velocities.

Similar results are obtained when trained on high-speed data and tested on
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low-speed data, and they are omitted for brevity sake.

4.1.2.2 Testing on an independent dataset

The second extrapolation use case aims to evaluate the system response when

labeling observations collected on a terrain di↵erent from those used in training

(independent dataset). To this aim, the ground classifier previously trained on

the main data set (formed by paved ground, gravel, and sand) is further validated

on a representative dataset gathered from a second field test campaign run in a

planetary-analogue terrain in a sand mine near Bremen (Fig. 4.3).

Figure 4.3: Sherpa TT during the sand mine testing.

For this extrapolation challenge, we have tried to solve the classification problem

at hand by referring to terrain di�culty labels rather than specific terrain classes,

as explained in Table 4.4. Adopting the proposed terrain di�culty scale, paved

ground and sand can be seen as the opposite extremes. Firm ground o↵ers better

traction and less compressibility, therefore a low di�culty label can be assigned to it.

Conversely, soft ground poses more challenges, and it is scored as a highly di�cult

surface. Then, the di�culty degree associated with an unknown observation can

be considered as inversely proportional to the distance from the class sand. One

should note that such a generalization e↵ort can be useful or necessary for the

practical implementation of planetary exploration terrain classifiers that can be

only trained on Earth using representative analogue surfaces, and then applied to

unknown planetary surfaces via extrapolation.
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Terrain type Equivalent Category of Terrain di�culty

Sand High
Gravel Medium

Paved Ground Low

Table 4.4: Category of di�culty assigned to each terrain type of the training set.

The sand mine independent dataset consists of 302 samples, where, again, a

sample corresponds to a 2-second window. It should be also underlined that,

although ground-truth data is not available for this extrapolation problem, the

terrain in the sand mine can be expected as a surface with medium-high di�culty,

like the sand type of the main dataset (Fig. 3.2) but somewhat more compact and

humid. As an indicative measure, sample tracks left by the wheels on the sand

mine terrain are shown in Fig. 4.4.

Figure 4.4: Close up of the tracks left by the wheels of SherpaTT during the sand
mine testing.

The classification results obtained from SVM and CNN are collected in Table

4.5 showing predicted labels of terrain di�culty. Out of the 302 samples, the

SVM-based algorithm classifies 71.2% as high di�cult terrain, 17.2% as medium

and 11.6% as low. CNN performs similarly, classifying 69.9% of the new terrain

samples as highly di�cult, 24.2% as medium and 5.9% as low. A relatively low
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Terrain Di�culty labels SVM CNN

High 215 211
Medium 52 73
Low 35 18

Table 4.5: Terrain di�culty predictions as obtained from SVM and CNN in the
sand mine test.

percentage of the test samples (about 12% for SVM and 6% for CNN) is classified

as hard soil.

For an easier visualization, the results obtained from the CNN-based classifier

are presented in Fig. 4.5 during a sample straight run using a semantic labelling

where the successive terrain patches traversed by the rover are marked according

to a color map that reflects the terrain di�culty scale of Table 4.4 (see also to the

inset of Fig. 4.5(b)). We recall that three discrete levels of terrain di�culty are

considered: low, medium, and high.

Figure 4.5(a) shows the 3D stereo-generated map of the environment with

overlaid a CAD model of SherpaTT and the path followed by the rover denoted

with a dashed white line, whereas in Fig. 4.5(b) the corresponding terrain labeling

is reported with terrain patches marked respectively in red, yellow, and green,

for high, medium, and low di�culty. In this test that was performed on fairly

homogeneous terrain, the system mostly classifies the sand mine surface as of

medium-high di�culty with two erroneous predictions (low di�culty) between 2

and 3 m.
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Figure 4.5: Semantic labeling using discrete terrain di�culty categories: (a) 3D
stereo-generated map of the environment with overlaid the path (dashed white line)
followed by the rover, (b) corresponding terrain di�culty visualization. Terrain
patches are marked respectively in red, yellow, and green, for high, medium, and
low di�culty.
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4.2 Assessment of Polibot suspension system

4.2.1 Analytical model validation

The ability of the proposed analytical model to predict the configuration of

the real Polibot is evaluated in various scenarios. First, the static or baseline

configuration of Polibot is considered. Then, the influence of the weight change on

the system configuration is investigated. Finally, two conditions of obstacle climb

are evaluated. In all tests, the robot configuration as predicted by the quasi-static

kinamatic model is compared with that of the real prototype.

4.2.1.1 Static configuration and impact of payload

The static or baseline configuration refers to the robot at rest on a flat surface

(see, for example, Fig. 3.10). The actual robot parameters are used in the analytical

model, as shown in Table 4.6.

Parameter Description Value
XCP3 X-coordinate of contact point for W3 0
fte Terrain elevation function Z = 0
Lnom Nominal track length 2026 mm
mnom Robot’s mass 96.2 kg

(Xv
G, Z

v
G) Center of gravity in vehicle coordinates (50, -100) mm

Fres Motion resistance 0 N
Lmax,1 Maximum length of spring 1 150 mm
Lmax,2 Maximum length of spring 2 150 mm
Lmax,3 Maximum length of spring 3 130 mm
Fpre,1 Pre-load of spring 1 60 N
Fpre,2 Pre-load of spring 2 0 N
Fpre,3 Pre-load of spring 3 120 N
d11 Length of FSA (Fig. A.1) 198 mm

Table 4.6: Input parameters for the static configuration

The results obtained from the analytical model compared with the experimental

measurements taken manually using a measuring tape and a digital inclinometer

are collated in Table 4.7. The average relative percentage error in predicting the

real robot configuration resulted in about 4% with a worst case scenario of 10% for

the chassis pitch angle estimation.
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Variable Analytical Model Real robot Relative error [%]
XA [mm] 311.0 303.9 2.3
ZA [mm] 303.3 309.4 -1.9
✓ [deg] 4.41 4.02 10.0
✓1 [deg] 61.6 59.1 4.3
✓2 [deg] 38.3 40.8 -6.1
✓3 [deg] 71.6 72.2 -0.9
✓4 [deg] 52.2 53.5 -2.5

Table 4.7: Polibot configuration expressed in the global reference frame as obtained
from the quasi-static model and measured from the real robot in the static configu-
ration

It should be noted that a nominal pitch angle is required for the system: the

payload will be added to the robot in such a way that the chassis will tend to

rotate clockwise. In addition, a positive nodding angle is sought to keep the line of

sight and look-ahead distance in a range of about 1-3 meters away from the robot.

Therefore, a positive pitch angle is generally considered positive and a requirement

of the robot.

When the robot weight increases by 83% simulating the addition of a 80 kg

payload, all suspension elements are compressed, leading to a decrease of the center

of mass height of 12 mm and a rotation of the chassis of 1 degree, as shown in Fig.

4.6. The comparison of the analytical model with the real robot configuration is

reported in Table 4.8. Again, the largest error results in the picth angle prediction

(13%), whereas the center of mass height is estimated with a 3% accuracy.

Configuration Variable Analytical
Model

Measurement Relative
error [%]

Added mass ZA [mm] 291.2 300.5 -3.1
(80 kg) ✓ [deg] 2.61 3.04 -13.3

Table 4.8: Results of 80 kg payload configuration.
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Figure 4.6: Comparison of baseline (a) and 80 kg payload (b) configurations.
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4.2.1.2 Obstacle negotiation

Two configurations are evaluated for the case of a 55-millimeter-high obstacle

below the front and rear wheels respectively. The comparison between simulated

and real suspension for each of these scenarios is shown in Fig. 4.7, and the

numerical results are collected in Table 4.9. When the robot is negotiating the

obstacle with its front wheel, the chassis rotates clockwise, resulting in a negative

pitch angle (-2.98 deg). When the obstacle is moved below W6, the pitch angle

increases of 3.3 degrees when compared to the baseline static configuration. In both

cases, the error in the estimation of the pitch angle via the analytical model is not

higher than 10%, while the maximum error for the center of gravity height is 3%.

Configuration Variable Analytical
Model

Measurement Relative
error [%]

Obstacle W3 ZA [mm] 307.9 318 -3.2
(55 mm) ✓ [deg] -2.69 -2.98 10.0

Obstacle W6 ZA [mm] 307.8 313 -1.7
(55 mm) ✓ [deg] 7.31 8.07 -8.8

Table 4.9: Results of obstacle negotiation configurations.

To further validate the model, a second obstacle negotiation scenario is consid-

ered, in which the robot negotiates a vertical wall. The real robot is commanded

to move against a wall, Fig. 4.8 (b), and the manoeuvre is stopped at di↵erent

checkpoints to take manual measurements used for comparison with the model.

The results are shown in Fig. 4.9, where the simulated and real robot pitch is

plotted against the vertical displacement of the idler wheel (W2) along the wall.

Each black dot represents a measurement checkpoint during the experiment. For

safety reasons, the experiment is stopped when the pitch angle reaches -40 degrees,

to avoid damage to the prototype. The simulation, however, carries on up to almost

-90 degrees, where the only wheel in contact with the ground is the rear road wheel

(W6) and the simulated robot is about to turn over. In the range covered by the

experiments, the average relative error between the simulated and measured pitch

angle is 4.7%.
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Figure 4.7: Comparison between simulated (a) and real (b) obstacle negotiation for
the front wheel W3 and between simulated (c) and real (d) obstacle negotiation for
the rear wheel W6. The obstacle is 55-mm high in all cases.
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Figure 4.8: Comparison between the analytical model (a) and the real robot (b) in
a wall climbing scenario.

Figure 4.9: Robot pitch as a function of the vertical displacement of the idler wheel
(W2) in a wall climbing scenario: experimental measurements taken from the real
robot (black dots) compared with the analytical model (red line)
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4.2.2 Polibot setup analysis

Once the analytical model has been validated, it can be used in a number of

ways. For example, to analyse the system behaviour in the neighborhood of the

baseline configuration. In this context, three Key Performance Indicators (KPIs)

are defined in this work and listed in Table 4.10. The first KPI is the pitch of the

robot ✓. It can be considered as a performance indicator because the objective

of a suspension is to keep the sprung mass stable and as close as possible to its

initial configuration. Moreover, a mobile robot might carry instrumentation for

data collection that need the robot frame to be aligned with the gravity field.

The second and third KPIs are related to the capability of the suspension to

distribute the robot weight across the four ground wheels. The KPI indicated

with ncont represents the number of wheels that make contact with the ground

simultaneously. This is an important parameter to evaluate, because the suspension

implemented in Polibot was designed to guarantee contact with the ground for all

four road wheels to improve traction performance on all kind of terrains. Ideally,

ncont should always be equal to 4, but changes in design parameters or operating

conditions can cause it to drop to 3. Finally, the third KPI (�N ) is the normalised

standard deviation of ground normal forces. A low value of �N indicates that the

weight of the robot is well distributed across the four road wheels, with beneficial

e↵ects in terms of lower terrain compaction and better traction. This final KPI

can be computed as follows:

�N =

q
1
4

P6
i=3(Ni �N)2

N
(4.1)

with:

N =
1

4

4X

i=1

Ni (4.2)

where Ni (i = 3, . . . , 6) is the normal reaction force below each road wheel.

First, the e↵ect of adding mass to the system is analyzed, assuming that the

position of the center of gravity is not a↵ected. The results are shown in Fig. 4.10.

As the robot mass increases, the pitch (✓) decreases slightly. For example, an

increase of 20% in robot mass causes a reduction of only half a degree in pitch
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KPI Description
✓ Robot pitch

ncont Number of wheels that make contact with the ground
�N Normalised standard deviation of ground normal forces

Table 4.10: Key Performance Indicators

Figure 4.10: E↵ect of robot mass on KPIs: robot pitch (top), number of wheels in
contact with ground (middle) and normalised standard deviation of ground normal
forces (bottom).
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angle. This result is important for the repeatability of the experiments, because the

look-ahead distance of exteroceptive sensors will not be influenced by fluctuations

of the robot mass that can be caused by di↵erent test setups. However, although

all four wheels are always in contact with the ground, Nstd initially increases with

the robot mass, reaches a maximum, and then starts to decrease. This can be

explained by the middle elastic element being more a↵ected by the reduced robot

body height associated with the increase in mass. An increase in robot mass also

causes a reduction of track tension, as shown in Fig. 4.11. For a robot mass 65%

higher than the baseline value, the track tension drops almost to zero, which is

detrimental for traction. However, in this case, the track tension can be brought

back up with the tension adjustment unit, as explained in the remainder of this

section.

Figure 4.11: E↵ect of robot mass on track tension.

Two other strictly related design parameters are analyzed in this section: the

track length (Lnom) and the length of the Front Swing Arm (FSA), indicated with

d11 (as show in Fig. A.1 in A). The length of the FSA can be changed by the tension

adjustment unit. A reduction of track length and an increase in FSA length have

the same common e↵ect to increase the tension of the track, as shown in Figures

4.12 and 4.13. Usually, the track tension is adjusted to the minimum possible to

avoid power loss due to friction. However, in o↵-road applications the track tension

should be high enough to maximize the tractive force. The baseline values of d11

and Lnom for Polibot are chosen to achieve an even weight distribution across the

road wheels while keeping an adequate level of tension. Figures 4.14 and 4.15 shows

the e↵ect on the KPIs of changing track length and FSA length, respectively. As
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Figure 4.12: E↵ect of track length on track tension.

Figure 4.13: E↵ect of FSA length on track tension.

expected, the behaviour of the KPIs when increasing the track length is the same

obtained by reducing the length of the FSA: Nstd decreases, indicating a more

uniform distribution of the normal forces below the road wheels. However, this

benefit comes to the cost of reducing the track tension (Figures 4.12 and 4.13),

which a↵ects the performance of the vehicle. On the other hand, reducing the track

length (or increasing the length of the FSA) has the negative e↵ect of a less uniform

weight distribution across the four road wheels. When the track length is reduced

by 0.15% (or the length of the FSA increased by 0.7%) the rear wheel (W6) is lifted

from the ground due to the increased track tension, making ncont drop from 4 to 3.
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Figure 4.14: E↵ect of track length on KPIs: robot pitch (top), number of wheels in
contact with ground (middle) and normalised standard deviation of ground normal
forces (bottom).
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Figure 4.15: E↵ect of FSA length on KPIs: robot pitch (top), number of wheels in
contact with ground (middle) and normalised standard deviation of ground normal
forces (bottom).
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4.2.3 Comparison with existing platforms

In this section, the robot proposed in [46] is considered for comparison. The

suspension schematics using a bio-inspired X-shaped architecture is shown in Fig.

4.16(a) along with the corresponding kinematically equivalent model (Fig. 4.16(b)).

For a fair comparision, the distance between the first and last road wheel is set to

630 mm (to match Polibot longitudinal wheelbase) and the radius of all wheels is

assumed equal to the radius of Polibot first road wheel. In addition, the parameters

of the springs and the track length are chosen to match Polibot initial track tension.

Both types of suspension adopt an equal constant-length tensioner. The analytical

model for the X-shaped suspension is discussed in D.

The two suspensions are compared in a scenario of obstacle negotiation. A

step-like object is positioned below the first road wheel and its height is changed

from zero to 65 mm (equal to the wheel radius). The results in terms of KPIs

are shown in Fig. 4.17. As seen form this figure, the black dashed curves that

represent the response of the X-shaped robot interrupt when the step height reaches

approximately 35% of the wheel radius. This is because the track tension nulls out

at that point, as shown in Fig. 4.18. Conversely, the tension in Polibot track is

well above zero, even when overcoming an obstacle whose height matches the size

of the radius of the first road wheel.

Referring again to the KPIs of Fig. 4.17, it can be noted in the middle graph

(ncont) that Polibot is able to keep all four wheels pushed against the ground, even

for high obstacles. This is also visible in the bottom graph that shows how the

two architectures distribute the vertical forces acting on the road wheels. For low

obstacles (lower than about 28% of the wheel radius) the X-shaped suspension

performs better, with a lower �N . However, for more challenging and higher

obstacles, Polibot outperforms its counterpart.

As a final remark, it should be noted that Polibot o↵ers greater mechanical

simplicity. In fact, the bioinspired suspension requires seven revolute joints and six

rigid links per road wheel, which means that overall the robot of Fig. 4.16 would

require twenty eight revolute joints and thirty links per track, against the nine

joints and five links used by Polibot.



90

Figure 4.16: The existing X-shaped passive suspension proposed by Sun et al. used
for comparison with Polibot: (a) original scheme, (b) kinemetically equivalent
model.
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Figure 4.17: E↵ect of obstacle height below the first road wheel on KPIs: Polibot
(black line) and X-shaped robot (black dashed line).
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Figure 4.18: E↵ect of obstacle height below the first road wheel on track tension:
Polibot (black line) and X-shaped robot (black dashed line).

4.2.4 Multibody model validation

The simulations to validate the MB model and the comparison against exper-

iments on the actual prototype are presented in this section. First, static tests

are performed to evaluate the inertial properties of Polibot. Then, the dynamic

response of the model in di↵erent tests is compared against the experimental data

gathered in the field.

4.2.4.1 Static tests

This section describes the procedure followed to identify the position of the

center of gravity with respect to a reference system located at the center point

of an imaginary line connecting the centers of the two sprockets, as indicated in

Figures 4.19(a) and 4.20(a).

A first test is designed to estimate xG, that represents the x coordinate of the

center of gravity, using the suspension and ground reaction method. Note that

the procedure here described is usually applied to wheeled vehicles, while being

controversial for tracked vehicles, for which the ISO Standard 789-6 prescribes the

use of decking and knife edges. The objective is to suspend the robot in such a way

that only the four front and rear wheels are exchanging forces with the ground, to
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Figure 4.19: Procedure for the determination of the x coordinate of the center of
gravity: model (a) and real robot (b).

Figure 4.20: Procedure for the determination of the y coordinate of the center of
gravity: model (a) and real robot (b).
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measure FF and FR, that indicate the fractions of the rover weight that loads the

front and rear wheels respectively, as shown in Fig. 4.19(a).

To achieve this result, after locking the suspension to avoid internal configuration

variations, the rover is lifted onto two bars, with the front (left and right) wheels

resting on the first bar and the rear wheels on the second one, to emulate the front

and rear axle of a vehicle. Each bar is placed on a scale, and once FF and FR are

known, xG can be estimated as follows:

xG = b0 � FF · l
FF + FR

(4.3)

where W is the robot weight, b0 and l are geometric parameters as indicated in Fig.

4.19(a).

A similar procedure is implemented for the estimation of the y coordinate of

the center of gravity, yG. The robot is settled onto two bars, but in this case the

bars are placed parallel and underneath each track, to measure Fleft and Fright,

that represent the fractions of the rover weight that loads the left and right tracks

respectively, as shown in Fig. 4.20(a). Each bar is placed on a scale, and once Fleft

and Fright are known, yG can be estimated as follows:

yG =

✓
1

2
� Fleft

Fleft + Fright

◆
t (4.4)

where t is the distance between the tracks, as shown in Fig. 4.20(a).

A final procedure is designed to estimate zG, that represents the z coordinate

of the center of gravity. With the suspension motion locked up, the robot front

axle is jacked up so that the lower parts of the tracks are at an angle, ↵, with the

horizontal. The rear wheels are positioned on scales, while the front axle is raised

as shown in Fig. 4.21. Once the load on the rear wheels is measured, zG can be

measured as follows:

zG = RF +
Fr·l1
cos↵ �W · a
W tan↵

� hO (4.5)

where W is the rover weight previously measured, FR is the weight on the rear

wheels with front elevated, hO is the distance between the center of the sprocket

and the bottom part of the track, while a and l1 are geometric parameters, as
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Figure 4.21: Procedure for the determination of the z coordinate of the center of
gravity: model (a) and real robot (b).

indicated in Fig. 4.21(a).

The procedures described in this section have been applied to Polibot prototype,

leading to the results shown in the second column of Table 4.11. Also, the overall

robot weight is 97 kg. The resulting y coordinate is not equal to zero, implying a

slight asymmetry of the system with respect to the xz plane. However, 8 millimeters

correspond to only 1.3% of the distance between the tracks, and it could be justified

with manufacturing tolerances and inaccuracy of the measurements of the scales.

Coordinate Empirical value [mm] Simulated value [mm] Error [%]
xG -52 -56 7
yG 8 0 -
zG -100 -99 1

Table 4.11: Empirically estimated and simulated position of the center of gravity
of Polibot.

Similar tests are now performed on the MB model of Polibot as shown in Figs.

4.19(b), 4.20(b) and 4.21(b). Note that each subsystem has been designed to

closely match the prototype counterpart in terms of geometry and materials. This

modelling e↵ort leads to the results shown in the third column of Table 4.11. As

expected, the simulated y coordinate of the center of gravity is zero, as the model

is perfectly symmetric. The x and y coordinates di↵er by 7% and 1% respectively
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between the empirical and simulated values. The overall mass of the modeled rover

is 97 kg, which exactly matches the actual weight of the prototype.

To complete the set of inertial properties, the MB model is used to compute the

mass inertia tensor. These values are not validated against experimental estimations

because of the di�culty of measuring moments of inertia. However, as illustrated

in Fig. 3.18, special care has been devoted to importing into MSC Adams the

Parasolid files of the real CAD geometries and assigning them to the corresponding

rigid parts of the di↵erent subsystems: this not just for visualization purposes, but

also, most importantly, as a way to place the parts, together with their material

and density, in the correct relative position between each other. Consequently, not

only the model mass and position of the center of gravity are, as experimentally

observed, close to those of the real prototype, but also the mass inertia tensor is

expected to be by only a few percentage points separated from the true one. The

simulated moments of inertia are shown in Table 4.12.

The results presented in this section demonstrate that the inertial properties of

the modeled robot are satisfactory, and the validation of the MB model can move

to the next phase with dynamic tests.

Moment of inertia Value [kg m2]
Ixx 8.1
Iyy 6.3
Izz 10.1

Table 4.12: Empirically estimated and simulated position of the center of gravity
of Polibot

4.2.4.2 Dynamic tests

Field tests were conducted in Candiolo, close to Turin in the North of Italy, to

validate the dynamics of the MB model of Polibot. The prototype was fitted with

a sensor frame that mounted GPS receivers, IMU, and stereocameras, as shown

in Fig. 4.22. Sensory data are recorded and stored by the robot. During field

tests, the robot was teleoperated to move across di↵erent types of surface. It is

commanded by means of PWM signals that modulate the torque delivered by the

two electric motors (one per each sprocket). The actual rotational speed of the
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Figure 4.22: Polibot in action in the test site of Candiolo, Italy.

motors is then measured during the tests with the use of encoders. The measured

rotational speeds are finally provided as input to the multibody model for the

simulation, while the rest of the data gathered is used for validation purposes.

It should be noted that the virtual shock absorbers of the digital twin are set

to replicate the exact properties of the real devices. Therfore, the linear sti↵ness

coe�cient is set to 12 N/mm, while the linear damping coe�cient is equal to 0.8

Ns/mm. The preloads of the front, middle and rear shock absorbers are, respectively,

180 N, 130 N and 0 N.

The first surface considered for validation is a track of rigid strips, shown in

Fig. 4.23. It was chosen to evaluate the vertical dynamic response of the robot.

The simulation is run on a hard soil that matches the geometry of the actual strips,

which are of di↵erent heights, ranging between 65 and 125 mm. The strips are

60 mm wide (in the direction of motion), and the space between two consecutive

strips is 100 mm. Figure 4.23 describes the geometry of the first five strips. In

the case of hard soil simulation, the forces that arise from the contact between the

track segments and the soil are calculated according to a penalty-based method as:

Fn = K · �e � STEP (0, 0, �max, cmax) · �̇ (4.6)
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Figure 4.23: Track of strips used for dynamic validation of the model: detail of the
first five strips with dimensions in millimeters.

whereK is the sti↵ness modeling the elasticity of the surfaces of contact, � represents

the penetration between the colliding bodies, e is a positive real value denoting

the force exponent. The second addend of the right hand side of Eq. 4.6 accounts

for the energy dissipation that is a function of penetration velocity �̇. The step

function is defined as follows:

STEP (0, 0, �max, cmax) =

8
>>>><

>>>>:

0 if �  0

cmax

✓
�

�max

◆2✓
3� 2�

�max

◆
if 0 < � < �max

cmax if � � �max

(4.7)

and serves to smoothly ramp up the damping coe�cient from zero, when the

penetration is zero, to cmax when the penetration reaches the boundary value

�max, thus preventing the damping force from being discontinuous at the onset

of the contact. A high sti↵ness K for the contact between the track segments

and the ground allows excessive interpenetration to be avoided between the road

and the robot, but at the same time can lead to integrator convergence issues.

This parameter usually ranges from 200 N/mm up to 2.0 ⇥ 108N/mm: a value

K = 2.0⇥ 105 N/mm is chosen as a satisfactory trade-o↵ between accuracy and

simulation time. It is advisable the force exponent to be di↵erent from 1.0, preferably

higher than 1.5: e = 2.0 is set to have a su�ciently smooth function that is with a

continuous first-order derivative. The damping coe�cient is assumed to be equal

to one percent of the sti↵ness coe�cient, i.e., cmax = 2.0⇥ 103 Ns/mm, while the

reasonable value �max = 1 mm is assumed for the penetration depth at which full

damping is applied.

For the tangential interaction between the track segments and the ground a
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modified Coulomb friction model [82] is adopted that requires to specify the static

and the dynamic friction coe�cients, µs and µd, together with the stiction and

friction transition velocities, vs and vd. The static friction coe�cient is set to 0.9,

while the dynamic one is equal to 0.7. These values have been shown to minimize

the error between experimental testing and numerical simulation, thus confirming

the expected high adherence of the rubber track on dry concrete and asphalt on

which the test campaign was conducted. To avoid integrator di�culties, the stiction

transition velocity should preferably be higher than the integrator error used for

the solution, while the friction transition velocity should be higher than five times

the error. As reducing both parameters shows to have negligible impact on the

results in the face of a considerable increase in computation e↵ort, the default

values vs=0.1 m/s and vd=0.5 m/s are adopted.

The results of the simulation are compared against the corresponding field test

and discussed in this section. Fig. 4.24 shows the angular velocities of the motors

measured by the encoders while Polibot was moving over the track of rigid strips.

The test was repeated twice at two di↵erent speeds (0.1 m/s and 0.2 m/s). The

results are presented in terms of measured and simulated vertical acceleration in

Fig. 4.25. It can be noted that the simulated vertical acceleration is qualitatively

similar to the real one for both speeds. Quantitatively, the Root Mean Square

(RMS) of the simulated and experimental vertical accelerations is shown in Fig.

4.26. In the low-speed case, the simulated acceleration has an RMS of 0.049 m/s2,

against a measured value of 0.052 m/s2, with an error of 5.7%. In the high-speed

case, the root mean square of the simulated vertical acceleration is 0.100 m/s2,

while the measured value is 0.103 m/s2, with an error of only 3%.

The second test considered for validation is a manoeuvre on asphalt. It should

be noted that in practice the motion primitives of Polibot are limited to straight line

driving and turn-on-the-spot steering. This choice was made considering the large

amount of slippage incurred by the robot during steering that makes its control

extremely di�cult for general turning maneuvers. Therefore, the test manouvre

consists in a straight line movement followed by two 90-degree turns. Due to the

nature of the terrain traversed, it was chosen to run the simulation of the model on

flat, hard soil. Figure 4.27 shows the angular velocities of the motors measured by

the encoders during the test. The Polibot prototype is not fitted with a load cell
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Figure 4.24: Angular velocities measured by the encoders of the two motors while
Polibot is moving over the track of rigid strips at 0.1 m/s (a) and 0.2 m/s (b).

Figure 4.25: Vertical acceleration measured and simulated while Polibot is moving
over the track of rigid strips at 0.1 m/s (a) and 0.2 m/s (b).
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Figure 4.26: Comparison of root mean square of simulated and experimental vertical
accelerations of Polibot while moving over the track of rigid strips.

to measure the drive torque of the two motors. However, for validation purposes,

the sum of the two driving torques during the straight line manoeuvre is estimated

from the measured overall battery drain current as follows:

Tsum = ⌘
C · V
!mean

(4.8)

where C is the measured overall battery drain current, V is the battery voltage,

!mean is the average between left and right motor speeds, ⌘ is the average motor

e�ciency provided by the manufacturer. This estimated overall torque is compared

against the sum of the simulated right and left motor torques in Fig. 4.28, showing

good agreement with a RMS error of 0.0684 Nm and a RMS percentage error of

8.02%.

The corresponding trajectory, as measured by the GPS, is shown by the red

line in Fig. 4.29 and it is compared against the simulated trajectory, in blue. The

initial absolute heading is measured by the IMU and it is also provided as input to

the model. The overall distance covered by the robot during the test on asphalt,

taken from the origin of the frame of Fig. 4.29, is dmea = 23.88 m. The percentage

deviation of the simulation from the measured data, in terms of final position, is

calculated as:
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Figure 4.27: Angular velocities measured by the encoders of the two motors while
Polibot is moving on asphalt.

Figure 4.28: Comparison between estimated and simulated overall motor torque
during straight line.
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Figure 4.29: Comparison between measured and simulated path followed by the
robot during the validation test on asphalt.

E = 100
d

dmea
(4.9)

where d is the distance between the final position of the real and the simulated path.

Similarly, the following metric is adopted to evaluate the average local position

relative percentage error between the real and the simulated robot:

Ep = 100

vuut 1

nt

ntX

k=1

|rmea,k � rsim,k|2
|rmea,k|2

(4.10)

where rmea,k is the measured position vector at time step k, rsim,k the simulated

position vector at time step k, nt the number of time steps, and | · | represents the
magnitude of the corresponding vector.

The final metric considered for validation is the root-mean-square error of the

simulation from the measured data in terms of absolute heading of the robot,

calculated as:
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E =

vuut 1

nt

ntX

k=1

( mea,k �  sim,k)
2 (4.11)

where  mea,k is k-th absolute heading angle measured by the real robot and  sim,k

is the corresponding simulated value. The resulting value for the final position

deviation is E = 3.25%, while the average local position relative error is Ep =

6.23%. The heading deviation is E = 2.30�.

Finally, a curved path on asphalt is considered where Polibot is commanded to

follow a circular path of 30 m radius with a travel speed of about 0.65 m/s. The

experimental path as obtained from the GPS is overlaid over the Google Earth®

map of the test track in Fig. 4.30 as a dashed red line. Again, the experimental

angular speed of the two drive sprockets is used as input to the MB model. The

corresponding simulated path is marked with a solid blue line. As seen from this

figure, the experimental and virtual paths are in good agreement with an average

local position relative error and heading RMS error, respectively, of Ep = 7.41%

over 65 m of total travel distance and E = 5.66�.

As a final remark, Fig. 4.31 clarifies how the contact forces are estimated in

the MB model. For a given integration step, forces are calculated at each contact

point. Individual contributions distributed over the contact area are then summed

up to compute the net normal and tangential force originated by the contact event,

as shown in Fig. 4.31.

The results presented in this section demonstrate that the behavior of Polibot

can be replicated by the MB model with a good level of accuracy. This terminates

the validation phase of the model, that can now be used to simulate challenging

scenarios, avoiding wear of the real Polibot and costly and time-consuming field

experiments.
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Figure 4.30: Comparison between measured (dashed red line) and simulated path
(solid blue line) followed by the robot during the validation test on a curved path.
GPS coordinates of the test site (DMS format): 44� 57’ 24.5988” N, 7� 33’ 25.956”
E).
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Figure 4.31: Contact forces between track belt elements and ground: (a) schematic
of a single track belt segment, (b) calculation example of contact forces (expressed
in N) under the left bogie wheel.
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4.2.5 Simulation of highly challenging environments

In this section, the validated MB model is used to simulate four challenging

environments and to test the e↵ectiveness of the innovative suspension of Polibot.

In the challenging scenarios shown in Table 4.13, the robot will try to negotiate a

sinusoidal bump (Section 4.2.5.1), overcome a ditch (Section 4.2.5.2), fall from a

step (Section 4.2.5.3) and traverse uneven terrain (Section 4.2.5.4).

Environment Sketch

Sinusoidal bump negotiation

Ditch negotiation

Falling from a step

Stochastic uneven

Table 4.13: Environments considered for testing the multibody model.

Each environment is simulated in half vehicle mode to take advantage of the

longitudinal symmetry and reduce the computational time.

For each scenario, the simulation is repeated in two conditions: one in which

the robot is not suspended and the road wheels are fixed with respect to the chassis

(locked suspension case); the second, in contrast, with the passive suspension

regularly in operation. To make a fair comparison between the two cases of

activated and deactivated suspension, the dynamic simulations are preceded by a

static analysis to evaluate the tensioner setup length that achieves an initial track

tension of 150 N which is considered optimal for traction and similar to the real

initial track tension of the prototype.

4.2.5.1 Sinusoidal bump

It is simulated the negotiation of a sinusoidal bump, whose profile is defined as:

z(x) =
H

2


1 + cos

✓
2⇡

x� x0

W

◆�
(4.12)
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where H = 35 mm and W = 70 mm refer, respectively, to the width and height of

the obstacle, and xO locates the position of the center of the obstruction along the

direction of travel x. The 3D geometry of the bump is provided to the software

through a Road Data File (.rdf) that contains the points and nodes of the road

profile (see Fig. 4.32).

Figure 4.32: Bump negotiation: (a) simulated Polibot, (b) real prototype.

As an initial test, the results obtained from the real robot and the multibody

model are compared as shown in Fig. 4.33 considering a constant speed of 0.25 m/s.

The agreement of the two curves is fairly good. When looking at the acceleration

root-mean-square values, the relative error results of 4.9%, further attesting to

the validation of the digital twin. Afterwards, a simulation is performed with the

vehicle that moves at a constant velocity of 0.55 m/s, corresponding to an imposed

angular velocity to the sprocket of 376 deg/s. The simulation starts with the robot

and the obstacle separated by 900 mm of flat road; the impact happens after about

1.5 s and the vehicle starts its climb.

Figure 4.34 depicts the displacement and acceleration of the hull in the bounce

(vertical) direction with unlocked and locked suspension for the case of forward speed

of 0.55 m/s. In Table 4.14, it can be clearly seen that, when the suspension is locked,

the vehicle experiences higher bounce vibrations, as highlighted by the acceleration

root-mean-square values of 2.67 m/s2 and 1.36 m/s2 for the configurations with
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Figure 4.33: Comparison between measured and simulated bounce response for the
bump negotiation test with a travel speed of 0.25 m/s.

locked and active suspension, respectively. In Fig. 4.35 the pitch motion is

analyzed, from which we see that the chassis experiences significantly reduced

angular acceleration when the suspension system is unlocked: the peak-to-peak and

root-mean-square values are 2.52E+03 deg/s2 and 211.80 deg/s2 respectively, as

opposed to 7.27E+03 deg/s2 and 385.73 deg/s2 obtained from the ride simulation

with locked suspension (see Table 4.14).

Peak-to-peak
Suspension BV [m/s] BA [m/s2] AV [°/s] AA [°/s2]
Locked 0.41 35.81 91.79 7.27E+03
Unlocked 0.40 21.30 93.54 2.52E+03

Root-mean-square
Suspension BV [m/s] BA [m/s2] AV [°/s] AA [°/s2]
Locked 5.07E-02 2.67 11.22 385.73
Unlocked 4.66E-02 1.36 10.94 211.80

Table 4.14: Results obtained from the bump negotiation simulation (0.55 m/s).
BV = Bounce Velocity, BA = Bounce Acceleration, AV = Angular Velocity, AA =
Angular Acceleration.
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Figure 4.34: Results obtained from the bump negotiation simulation (0.55 m/s):
(top) bounce displacement, (bottom) bounce acceleration.
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Figure 4.35: Results obtained from the bump negotiation simulation (0.55 m/s):
(top) pitch angle, (bottom) angular acceleration.
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4.2.5.2 Ditch

In this section a negative obstacle (i.e. a ditch) is considered. The geometry

of the ditch is shown in Fig. 4.36. The height of the ditch is chosen to match

the radius of the first road wheel, while its length is shorter than the longitudinal

wheelbase of the robot. In this way, the robot must start climbing out of the ditch

while the last road wheel is still on top of the first edge. In the simulated scenario,

the robot is moving from left to right with a speed of 0.1 m/s.

Figure 4.36: Geometry of the ditch with dimension in millimeters.

The results of the simulation are shown in Figs. 4.37 and 4.38 in terms of

vertical and longitudinal acceleration respectively. Although the accelerations show

a similar pattern in both cases of unlocked and locked suspension, the locked case

presents bigger spikes, which reflects on the peak-to-peak root-mean-square values,

as shown in Table 4.15. When the suspension is active, the peak-to-peak value

of the vertical acceleration is 55% lower than the locked case (4.055 m/s2 against

9.040 m/s2), while the root-mean-square is 30% lower (0.559 m/s2 against 0.799

m/s2). Similarly the peak-to-peak value of the longitudinal acceleration is 47%

lower (7.830 m/s2 against 14.690 m/s2), while the root-mean-square is 32% lower

(0.772 m/s2 against 1.137 m/s2).
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Figure 4.37: Vertical acceleration, negotiation of a ditch.

Figure 4.38: Longitudinal acceleration, negotiation of a ditch.

Peak-to-peak
Suspension VA [m/s2] LA [m/s2]
Locked 9.040 14.690
Unlocked 4.055 7.830

Root-mean-square
Suspension VA [m/s2] LA [m/s2]
Locked 0.799 1.137
Unlocked 0.559 0.772

Table 4.15: Results obtained from the ditch negotiation simulation. VA = Vertical
Acceleration, LA = Longitudinal Acceleration.
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4.2.5.3 Falling from a step

The scenario considered in this subsection is a fall from a step. The geometry

of the step is shown in Fig. 4.39. The height of the step is chosen to match the

diameter of the first road wheel. In the simulation, the robot is moving from left to

right with a speed of 0.5 m/s.

Figure 4.39: Geometry of the step with dimension in millimeters.

The results of the simulation are shown in Fig. 4.40 in terms of vertical

acceleration and in Table 4.16 in terms of peak-to-peak and root-mean square

values. When the suspension is active, the peak-to-peak value of the vertical

acceleration is 25% lower than the locked case (8.294 m/s2 against 11.074 m/s2),

while the root-mean-square is 32% lower (1.756 m/s2 against 2.600 m/s2).
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Figure 4.40: Vertical acceleration, falling from a step.

Peak-to-peak
Suspension VA [m/s2]
Locked 11.074
Unlocked 8.294
Root-mean-square

Suspension VA [m/s2]
Locked 2.600
Unlocked 1.756

Table 4.16: Results obtained from the step simulation. VA = Vertical Acceleration.
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4.2.5.4 Stochastic uneven

The last scenario considered for testing the multibody model is the negotiation

of a stochastic uneven surface modeled according to International Organization

for Standardization [83] as an ISO F-profile, corresponding to a very poor surface

profile with an RMS of 0.0383 m [84]. The surface is shown in Fig. 4.41. In the

simulation, the robot moves from left to right with a speed of 0.5 m/s.

Figure 4.41: Representation of the stochastic uneven surface, ISO F-profile.

The results of the simulation are shown in Fig. 4.42 in terms of vertical

acceleration and in Table 4.17 in terms of peak-to-peak and root-mean square

values. When the suspension is active, the peak-to-peak value of the vertical

acceleration is 16% lower than the locked case (30.166 m/s2 against 35.901 m/s2),

while the root-mean-square is 30% lower (2.609 m/s2 against 3.753 m/s2).

Figure 4.42: Vertical acceleration, stochastic uneven ISO F-profile.
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Peak-to-peak

Suspension VA [m/s2]
Locked 35.901
Unlocked 30.166
Root-mean-square

Suspension VA [m/s2]
Locked 3.753
Unlocked 2.609

Table 4.17: Results obtained from the stochastic uneven simulation. VA = Vertical
Acceleration.

4.3 Application of HAPF path planning to a plan-

etary exploration scenario

Given the obstacle map of Fig. 3.21, a starting point located at coordinates

(3200, 8000) and a goal located at coordinates (4600, 9400), the resulting potential

field obtained with the iterative scheme described in section 3.3.2 is shown in

Figures 4.43 and 4.44. The global maximum and minimum correspond to the start

and goal positions respectively, and their values depend on the boundary conditions

(Eq. 3.51 and 3.52). In the computational domain, the potential varies smoothly

between these two values. The black lines of Fig. 4.43 are iso-potential lines and

the gradient of the potential is always perpendicular to these lines. Because of the

Neumann boundary conditions (Eq. 3.53), the iso-potential lines are perpendicular

to obstacles and outer boundaries, which guarantees obstacle avoidance.

For demonstration purposes, it is assumed that the terrain presents a patch of

regolith at the center of the map, as shown in Fig. 4.45, while all the rest of the

surface is hard ground. For sinkage calculation (Eq. 3.76), the properties of the

regolith terrain are assumed n = 1, kc = 1.4 kN/m(n�1) and k� = 820 kN/m(n�2)

[85]. The results of the path optimization problem described in section 3.3.3 are

shown in Fig. 4.46 and Table 4.18. By varying the initial heading angle and

following the gradient descent, twelve di↵erent paths are found. The best paths for

each individual cost are highlighted in Fig. 4.46 in white (best c1), black (best c2),

gray (best c3) and yellow (best c4), while the best overall path (assuming equal

weights wi = 0.25, for i = 1, . . . , 4) is blue. All the other paths are in red. The
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Figure 4.43: Contour plot of the initial potential field.

Figure 4.44: 3D surface plot of the initial potential field.
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Figure 4.45: Obstacle map with a patch of regolith yellow.

gray path (number 11 in Table 4.18) is not visible because it coincides with the

blue path (best overall). The white path (number 10) is the path that optimizes

the distance from the obstacles, the black path (number 8) is the shortest, while

the yellow path (number 7) is the best in terms of terramechanics (c4) and indeed

it avoids the central portion of the map, where the robot would find the patch of

regolith. The blue path (number 11) is the best overall, with a minimum distance to

obstacles of 78.45 m, a lenght of 2160 m, an average slope of 0.0528 (corresponding

to about 3 degrees) and an average sinkage of 0.019 mm.

After the optimal path is selected, the robot can start following it. In this work,

it assumed that the robot follows perfectly the gradient of the potential. Path

tracking will be addressed in future works. During the motion, new obstacles are

detected. For brevity, obstacle detection is addressed in the following way: it is

assumed that the robot is able to perfectly reconstruct the terrain in a squared

area of 40 m x 40 m centered on itself. This reconstruction is actually taken from

the original DTM (note that the original DTM was down-sampled before feeding

it to the path planner). Therefore this new map has a resolution of 0.98 m, and

new high-slope areas may appear because of this. Note that robot localization

and mapping is out of the scope of this work. Therefore, the new refined map is
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Figure 4.46: Results of the path optimization problem.

Path number C1 C2 C3 C4 Total cost
1 0.73996 0.26628 0.76059 8.4858e-05 0.44173
2 0.66189 1 0.14748 3.7877e-05 0.45235
3 0.67495 0.98542 0.21135 4.2432e-05 0.46794
4 0.70102 0.96696 0.096677 4.0192e-05 0.44117
5 0.72414 0.94266 0.14817 4.4251e-05 0.45375
6 0.77247 0.90671 0.094264 4.865e-05 0.44337
7 1 0.80175 1 0 0.70044
8 0.88714 0 0.51367 0.86357 0.5661
9 0.41921 0.00097182 0.53514 1 0.48883
10 0 0.016521 0.43395 0.90589 0.33909
11 0.16517 0.047619 0 0.73455 0.23683
12 0.57628 0.17784 0.18603 0.19723 0.28435

Table 4.18: Costs of each path found.
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automatically overlapped to the existing low-resolution map.

The resulting trajectory is plotted with a blue dashed line in Fig. 4.47 and

compared against the original optimal path (in red). Every time a new obstacle

is detected, the local planner generates a local source potential (Eq. 3.77). The

location of these repulsive potential sources is indicated with red dots in Fig. 4.47.

On the other hand, every time the robot deviates too much from the initial optimal

path, the planner generates temporary sink (attractive) potentials, which location

is indicated with blue dots. In the zoomed detail of Fig. 4.48 it is possible to

appreciate how the robot avoids the newly encountered obstacles (red dots) and

tries to converge to the optimal path when the danger is overcome.

Figure 4.47: Resulting trajectory.
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Figure 4.48: Detail of the resulting trajectory highlighting the obstacle avoidance
capability of the algorithm.
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Chapter 5

Conclusions

In conclusion, this thesis has delved into the realm of mobile robots for plane-

tary exploration, focusing on two key features: autonomous decision making and

robust mobility. These attributes are fundamental in extending the horizons of

space exploration, allowing for extended mobility, increased safety, and improved

data collection capabilities. Throughout this work, three interrelated research

objectives were addressed: machine learning algorithms for terrain awareness based

on proprioceptive sensing, the validation of an innovative suspension system, and a

novel approach to HAPF path planning for autonomous vehicles.

The following sections draw the conclusions for each research objective, high-

lighting main results, limitations and future works.

5.1 Proprioceptive sensing and feature engineer-

ing for terrain learning

This work presented an approach to soil classification that relies on propriocep-

tive sensing only, e.g. accelerations, forces, torques, and electrical currents. The

algorithms developed are validated on data collected during tests performed with

the hybrid wheeled-legged rover SherpaTT. The physics-based signal augmentation

process presented in this paper uses 11 proprioceptive measurements to produce

a large set of 80 features for SVM and 20 signals for CNN. This improved the

information content as proved by the high classification accuracy obtained in gen-
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eralization (90.8% for SVM and 96.4% for CNN). The proposed feature selection

algorithm allows SVM to retain a high classification accuracy with only a portion

of the full set (18 features), with successful reductions in memory usage (-77%) and

required time for training (-6%), testing (-29%) and feature extraction (-33%). The

same benefits also apply to CNN when using a reduced set of 13 signals related to

the 18 best SVM features, improving memory usage (-14%), training time (-27%),

testing time (-4%) and feature extraction time (-41%). The comparison between

SVM and CNN shows good capabilities of both models in generalization, with

accuracy higher than 90%. More challenging extrapolation problems have been

tackled as well to evaluate the impact of varying operating conditions and site of

the acquisition. In these tests, CNN outperformed the SVM counterpart. When

tested on a new vehicle velocity, CNN reached an accuracy of 89.5%, against 55.7%

held by SVM. When tested on a new terrain, CNN recognized its deformability

class more frequently than SVM, correctly classifying 6% more of the available

samples. Based on these results, the proposed CNN qualifies as a good algorithm

for soil classification even in the presence of disturbances and unknown conditions.

This thesis proved that is possible to use only proprioceptive features to infer the

signature of a particular surface via learning algorithms. Moreover, the presented

promising results suggest the possibility to extend rover travelling distance thanks

to on-board integration of the developed learning algorithms.

Future developments of this research refer to:

• continuous training of the system by incorporating instances of “new terrain”

classes during normal operations, therefore making the system adaptive;

• augmenting the classifier with new special classes; for example, instances of

excessive wheel slippage (close to 100%) can be used to train a hazard class

to inform the rover of impending immobilization conditions;

• combining the proposed framework using proprioceptive signals with extero-

ceptive signals.

The latter would enable the vehicle to predict hazards or trapping conditions

before driving through the ground, e.g., based on non-contact information coming

from vision sensors. An initial attempt was proposed in [86].
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5.2 Polibot and its innovative suspension system

This thesis presented a novel o↵-road tracked robot named Polibot with an

innovative passively articulated suspension system, in which each road wheel is

independently suspended to adapt to terrain irregularities and distribute pressure

evenly in all conditions. The proposed architecture has greater mobility when

compared with non-articulated robots or other passively articulated solutions, but

it is still mechanically simpler then actively articulated suspensions.

An analytical modeling tool for the inverse kinematics of the proposed design is

also presented. The model is represented by a system of 21 equations that includes

constraints and a quasi-static analysis. The unknowns of the problem are the seven

degrees of freedom of the suspension and the fourteen unknown forces, including

contact and internal forces. The validation against experimental results shows

good agreement with the results of the model, which is able to predict the system

configuration given the terrain geometry. The model is also used to evaluate the

impact of suspension design parameters and operating conditions, proving that it

is a useful tool to optimize the current prototype of Polibot, or to design the future

generations of the rover. The current model will be further developed in future

work to include a full dynamic analysis of the suspension and to account for the

terramechanics at the track-ground interface. This tool can be implemented in

the real robot for model-based control and estimation. As a further research, a

model-based optimization of Polibot design parameters can be developed.

This thesis also presented the MultiBody model of the tracked robot Polibot.

The performance of the suspension in various challenging scenarios was evaluated

with both active and locked modes. The multibody model was design using MSC

Adams and its ATV (Adams Tracked Vehicle) toolkit. Specific templates were

developed for the middle and front units of the innovative passive suspension

implemented on the prototype of Polibot. The simulations results proved that the

suspension system is capable to mitigate the vibrations of the chassis in response

to various surfaces. In case of bump negotiation, the RMS value of the bounce

(vertical) acceleration and of the pitch acceleration are reduced by 49% and 45%,

respectively. While overcoming a ditch, the RMS of the vertical acceleration and

longitudinal acceleration are reduced by 30% and 32% respectively. In the case of

the robot falling from a step, the RMS of the vertical acceleration is 32% lower
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than in the locked suspension case. Finally, also for the test on the irregular surface

with an ISO F profile, the suspension performs well, with a reduction of 30% in the

RMS of vertical acceleration.

Experimental tests and simulations have been performed on hard terrain. This

is one limitation of the proposed research. Future e↵orts will be devoted to extend

the analysis to deformable and loose soils drawing on Terramechanics theory. As

additional developments, the authors will focus on the fine-tuning of the model

parameters, with the objective to replicate more closely the data gathered from

the real prototype during tests in the field and in the laboratory. In addition, an

investigation of novel suspension architectures can be carried out thanks to the

novel MultiBody model.

5.3 A novel HAPF path planning approach for

planetary exploration

This thesis e↵ectively demonstrated the application of HAPF to planetary ex-

ploration robots. A path planning approach based on Harmonic Artificial Potential

Field was applied to a real-case planetary exploration scenario. A DTM of a

portion of Mars was used as input map and converted to an obstacle map, which is

then used as a computational domain to solve Laplace’s equation. The resulting

potential is then used to generate various suitable paths, among which the optimal

path is chosen via a path-optimization problem. The proposed algorithm was

able to generate an optimal path according to four criteria: distance to obstacles,

length, average slope and average sinkage. Also, the local planner was able to avoid

unexpected hazards encountered by the robot along the path.

The proposed algorithm preserves the same features of traditional APF ap-

proaches, while eliminating the typical local minima issue. The local planning

strategy is able to cope with new information about the surrounding environment.

Therefore, the proposed HAPF algorithm can be easily coupled with a terrain

classifier such as the ones developed in this thesis.

One of the limitations of this research is that only the vertical (quasi-static)

dynamics of the robot is considered, with the use of the analytical model of Polibot

developed in this thesis. Future e↵orts will focus on including longitudinal and
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lateral dynamics, slippage estimation and other terramechanics-related phenomena.
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Appendix A

Geometric parameters of Polibot

suspension

Figure A.1 presents a summary of the main geometric parameters of the bodies

that make up the suspension.
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Figure A.1: Geometry of the suspension bodies: a) SF , b) BRA and BFA, c)
FSA, d) RSA.
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Appendix B

Analytical derivation of geometric

entities of Polibot suspension

B.1 Derivation of wheel centers coordinates as

a function of the degrees of freedom of the

suspension

Given the geometry of the suspension (Figures 3.13 and A.1), the X and Z

coordinates of the wheel centers (P, K, I and M) can be expressed as a function of

the degrees of freedom of Table 3.9 as follows:

XP = XA + (d3 + d4) · sin ✓ � (d1 + d2) · cos ✓ � d11 · sin (✓4 + ↵3)+

+d13 · sin (✓4 + ↵3 � ↵4) (B.1)

XK = XA + (d3 + d4 + d5) · sin ✓ � d6 · sin (✓2 + ↵1) (B.2)

XI = XA + (d3 + d4 + d5) · sin ✓ + d6 · sin ✓1 (B.3)

XM = XA + (d3 + d4) · sin ✓ + (d14 + d15) · cos ✓ + d9 · sin ✓3 (B.4)
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ZP = ZA � (d3 + d4) · cos ✓ � (d1 + d2) · sin ✓ + d11 · cos (✓4 + ↵3)+

�d13 · cos (✓4 + ↵3 � ↵4) (B.5)

ZK = ZA � (d3 + d4 + d5) · cos ✓ + d6 · cos (✓2 + ↵1) (B.6)

ZI = ZA � (d3 + d4 + d5) · cos ✓ � d6 · cos ✓1 (B.7)

ZM = ZA � (d3 + d4) · cos ✓ + (d14 + d15) · sin ✓ � d9 · cos ✓3 (B.8)

B.2 Derivation of length and direction of springs

as a function of the degrees of freedom

The length of the three springs (S1, S2 and S3) can be obtained as a function

of the degrees of freedom of Table 3.9 as follows:

L1 = d7 · [sin ✓2 + sin (✓1 + ↵1)] (B.9)

L2 =
p
(XL �XC)2 + (ZL � ZC)2 (B.10)

L3 =
p

(XB �XN)2 + (ZB � ZN)2 (B.11)

where:

XL �XC = d4 · sin ✓ + d15 · cos ✓ + d8 · sin (✓3 + ↵2) (B.12)

ZL � ZC = �d4 · cos ✓ + d15 · sin ✓ � d8 · cos (✓3 + ↵2) (B.13)

XB �XN = d2 · cos ✓ � d4 · sin ✓ + d10 · sin ✓4 (B.14)

ZB � ZN = d2 · sin ✓ + d4 · cos ✓ � d10 · cos ✓4 (B.15)
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For springs 2 and 3 it is also necessary to define their directions, indicated with

�2 and �3 in Figures 3.15 and 3.16:

�2 = atan2 (ZC � ZL, XC �XL) (B.16)

�3 = atan2 (ZN � ZB, XN �XB) (B.17)

where atan2 is the four-quadrant inverse tangent.

B.3 Derivation of track length as a function of

the degrees of freedom of the suspension

In this appendix, the expression of the length of the track as a function of the

degrees of freedom of Table 3.9 is derived. The length can be calculated as the sum

of line segments and arcs, where the track wraps around the wheels. For each wheel,

the extension of the arc of contact with the track can be expressed as a function

of the relative position of the following and precedent wheels. For example, the

length of the section of the track that wraps around wheel 1 (Fig. B.1) delimited

by the points Q12 and Q16 can be calculated as follows:

_
Q12Q16 = R1 · (2⇡ + �fol � �fol � �pre � �pre) (B.18)

where R1 is the radius of wheel 1, �fol is the orientation of the line AO that

points to the center of the following wheel, �pre is the orientation of the line AM

that points to the center of the precedent wheel, �fol is the angle that defines the

position of the tangency point Q12 with respect to AO, �pre is the angle that defines

the position of the tangency point Q16 with respect to AM . These angles can be

computed as follows:

�fol = atan2(ZO � ZA, XO �XA) (B.19)

�pre = atan2(ZM � ZA, XM �XA) (B.20)

�fol = arccos
R1 �R2

AO
(B.21)
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�pre = arccos
R1 �R6

AM
(B.22)

where atan2 is the four-quadrant inverse tangent, R2 and R6 are the radii of

wheels 2 and 6 respectively, AO and AM represent the length of the segment of

the correspondent line.

The next entity required for the calculation of the track length is the line

segment delimited by the two tangency points Q12 and Q21. Its length can be

computed as follows:

Q12Q21 =

q
AO

2 � (R1 �R2)2 (B.23)

Figure B.1: Geometric construction for the calculation of the length of the contact
arc between track and wheel 1.

Finally, an expression for the overall track length can be derived from the

generalisation of equations B.18 and B.23:
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Ltrack =
6X

i=1

Ri · (2⇡ + �fol,i � �fol,i � �pre,i∗ � �pre,i) +

q
CiCi+1

2 � (Ri �Ri+1
†)2

(B.24)

where Ci is the center of the wheel i and Ri is the radius of the wheel i.

Given the geometry of the suspension, all the terms in B.24 can be expressed as

a function of the degrees of freedom of Table 3.9. The final track length expression

is omitted for brevity. A numerical approach is adopted for the solution of the

equation set (1)-(8), using the trust region algorithm. To this end, the problem

can be formulated as:

F (x) = 0 (B.25)

where x is the array of unknowns and F is the array of equations. The trust region

algorithm is based on Newton’s method, with improved robustness in the case of

starting point far from the solution or in case of singular Jacobian. It can be proved

that the trust region sub-problem is given by:

min
d
[
1

2
F (xk)

TF (xk) + dTJ(xk)
TF (xk) +

1

2
dTJ(xk)

TJ(xk)d] (B.26)

where xk is the array of variables at iteration k, J is the Jacobian of equation B.25

and d is the search direction (i.e. the quantity to add to xk to obtain xk+1). For

more details on trust region methods, the interested readers can refer to [87].

Finally, in the case of concave track profile, the formulas for the wheel on the

outside of the track should be updated as follows, with respect to the same geometry

of Fig. B.1:

�fol = � arccos
R1 +R2

AO
(B.27)

�pre = � arccos
R1 +R6

AM
(B.28)

∗For the formula of equation B.24 to work, �pre must be numerically grater than �fol for all
wheels. It may happen that this condition is not verified for some wheels. In those situations, it
is su�cient to add 2⇡ to �pre.

†For wheel 6, Ri+1 is replaced by R1
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Appendix C

Equilibrium equations for the

analytical model of Polibot

Referring to Figures 3.14, 3.15 and 3.16, seven equilibrium equations can be

obtained (global vertical forces, global moments around point P, moments on BRA

around F, moments on BFA around F, moments on RSA around E and moments

on FSA around D):

Ftra = Fres (C.1)

W = N3 +N4 +N5 +N6 (C.2)

N4 · (XK �XP ) +N5 · (XI �XP ) +N6 · (XM �XP ) = W · (XG �XP ) (C.3)

N5 · d6 · sin ✓1 + Fel,1 · d7 · cos (✓1 + ↵1) = 0 (C.4)

N4 · d6 · sin (✓2 + ↵1) + Fel,1 · d7 · cos ✓2 = 0 (C.5)
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N6 · d9 · sin ✓3 � T1 · (d9 · cos ✓3 + r6)� Fel,2 · d8 · cos (✓3 � �2 + ↵2)+

�T1 · cos ✏61 · (ZQ61 � ZE) + T1 · sin ✏61 · (xQ61 � xE) = 0 (C.6)

N3 · [d11 · sin (✓4 + ↵3)� d13 · sin (✓4 + ↵3 � ↵4)]+

�Fel3 · d10 · cos (✓4 � �3)+

+T2 · [d13 · cos (✓4 + ↵3 � ↵4)� d11 · cos (✓4 + ↵3) + r3]+

�T2 · cos ✏21 · (ZQ21 � ZD)� T2 · sin ✏21 · (xD � xQ21) = 0 (C.7)

The directions of the elastic forces (indicated in Figures 3.15 and 3.16 with �2

and �3), are derived as a function of the degrees of freedom of Table 3.9 in B.2.

The directions of the track tensions (✏21 and ✏61) are derived in B.3.

Finally, the last equation is given by the longitudinal equilibrium of the track

element that exchanges forces with the ground:

Ftra = T1 � T2 (C.8)
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Appendix D

Analytical model for the X-shaped

suspended robot

Referring to the suspension proposed by Sun et al. [46] and to the corresponding

scheme of Fig. 4.16(b), the following equations can be written:

XB = XCP3 (D.1)

ZB � r = 0 (D.2)

ZC � r = 0 (D.3)

ZD � r = 0 (D.4)

ZE � r = 0 (D.5)

Ltrack = Lnom (D.6)

Fz1 · cos(✓)� Fel,1 + T · [cos(✏21 � ✓ � ⇡/2)� sin(✓)] = 0 (D.7)

Fz2 · cos(✓)� Fel,2 = 0 (D.8)

Fz3 · cos(✓)� Fel,3 = 0 (D.9)

Fz4 · cos(✓)� Fel,4 + T · [cos(⇡/2� ✏56 + ✓) + sin(✓)] = 0 (D.10)

Fz1 + Fz2 + Fz3 + Fz4 �Mg = 0 (D.11)

Fz2 · (XC �XB)+Fz3 · (XD�XB)+Fz4 · (XE �XB)�Mg · (XG�XB) = 0 (D.12)
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where D.1 to D.6 represent the constraint equations, which are the same used

for Polibot model (Section 3.2.2.2), D.7 to D.10 are the equilibrium equations

for each suspended wheel, D.11 is the global equilibrium of external forces in the

Z direction, D.12 is the global equilibrium of external moments around point B.

These 12 equations constitute a system in 12 unknowns: the position of the central

frame (XG, ZG and ✓), the length of each elastic element (Li, with i = 1, . . . , 4),

the normal reaction forces below each road wheel (Fz,j, with j = 1, . . . , 4) and the

average track tension T .
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