
Citation: Suglia, V.; Palazzo, L.;

Bevilacqua, V.; Passantino, A.; Pagano,

G.; D’Addio, G. A Novel Framework

Based on Deep Learning Architecture

for Continuous Human Activity

Recognition with Inertial Sensors.

Sensors 2024, 24, 2199. https://

doi.org/10.3390/s24072199

Received: 14 February 2024

Revised: 26 February 2024

Accepted: 8 March 2024

Published: 29 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Novel Framework Based on Deep Learning Architecture for
Continuous Human Activity Recognition with Inertial Sensors
Vladimiro Suglia 1,† , Lucia Palazzo 1,2,† , Vitoantonio Bevilacqua 1 , Andrea Passantino 2 , Gaetano Pagano 2,*
and Giovanni D’Addio 2

1 Department of Electrical and Information Engineering (DEI), Polytechnic University of Bari, 70126 Bari, Italy;
vladimiro.suglia@poliba.it (V.S.); lucia.palazzo@icsmaugeri.it (L.P.); vitoantonio.bevilacqua@poliba.it (V.B.)

2 Scientific Clinical Institutes Maugeri SPA SB IRCCS, 70125 Bari, Italy; andrea.passantino@icsmaugeri.it (A.P.);
gianni.daddio@icsmaugeri.it (G.D.)

* Correspondence: gaetano.pagano@icsmaugeri.it
† These authors contributed equally to this work.

Abstract: Frameworks for human activity recognition (HAR) can be applied in the clinical environ-
ment for monitoring patients’ motor and functional abilities either remotely or within a rehabilitation
program. Deep Learning (DL) models can be exploited to perform HAR by means of raw data,
thus avoiding time-demanding feature engineering operations. Most works targeting HAR with
DL-based architectures have tested the workflow performance on data related to a separate execution
of the tasks. Hence, a paucity in the literature has been found with regard to frameworks aimed
at recognizing continuously executed motor actions. In this article, the authors present the design,
development, and testing of a DL-based workflow targeting continuous human activity recognition
(CHAR). The model was trained on the data recorded from ten healthy subjects and tested on eight
different subjects. Despite the limited sample size, the authors claim the capability of the proposed
framework to accurately classify motor actions within a feasible time, thus making it potentially
useful in a clinical scenario.

Keywords: human activity recognition; activities of daily living; inertial measurement units; time-
series; artificial intelligence; deep learning; convolutional neural networks; data augmentation;
motion analysis; rehabilitation; bioengineering

1. Introduction

The recent advances in medicine have improved life conditions and increased life ex-
pectancy so that healthcare systems have to cope with the aging of the global population [1,2].
In addition, there are multiple categories of people experiencing motor disorders, from
Parkinson’s patients [3] to post-stroke individuals [4]. The psycho-motor frailty of these
subjects can result in sedentary lifestyle choices that may aggravate their condition, thus
raising the impact on the health system [5]. On the contrary, to pursue safety and well-being,
the degeneration of their motor skills ought to be prevented by stimulating beneficial motor
behaviors like an active lifestyle; therefore, recognizing activities of daily living (ADLs) can
help monitor human habits and assess motor actions [6].

The scientific literature has given more and more attention to the field of human
activity recognition (HAR), which aims to classify human actions by exploiting sensor
data [7]. HAR has covered various contexts, from industry [8,9] to sport [10], but a wider
application lies in the medical field [7,10–14]: in this realm, subjects’ activities can be re-
motely registered outside the clinic [15] and clinicians can evaluate their functional abilities
after treatment [16,17]. HAR can also enhance a rehabilitative program inside the clinic for
the sake of an assist-as-needed approach: in particular, recognizing the motor actions per-
formed by patients (e.g., post-stroke individuals or people with psychomotor dysfunction)
can allow for correcting motions or encouraging further exercise when required [18].
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In addition, even patients with mental disorders (e.g., children with autism spectrum
disorder) can be continuously monitored so that stereotypical actions (e.g., arm flapping)
that are symptoms of anxiety may be identified and promptly counteracted [19].

A typical HAR experimental protocol encompasses a set of activities that the subject is
asked to perform. These motor tasks may involve mainly upper body [9,20], or lower body
(e.g., walking or climbing/descending stairs) [15,17,21,22], or even require the individual
to drive upper- and lower-extremities in a proper combination (e.g., lying in bed) [23–29].
Furthermore, the protocol to collect data for HAR purposes tends to be designed such
that ADLs are performed separately, i.e., a batch of repetitions of one of the activities to be
recognized is asked to be executed by every subject [30]. However, this separate execution
does not account for the continuous nature of human activities, which are more likely made
successively [31]; therefore, the data collection should entail the recognition of uninter-
ruptedly performed ADLs, namely continuous human activity recognition (CHAR) [32].
Such workflow can address the natural transition from one activity to another that humans
execute in daily life, thus making the recognition system more spendable in the field of
remote health monitoring [31].

A framework targeting HAR comprises two main components: the acquisition system,
which collects several signals that are descriptive of the movement performed by the
subject, and the classification pipeline, which processes the collected data and returns the
type of activity [29].

The acquisition system may differ in the type of adopted sensors and the modality em-
ployed to acquire the signal describing human movement. There exist two main categories
in which to classify the type of sensors: fixed sensors (e.g., videocameras, proximity and
light sensors) are installed at specific locations of the environment and monitor activities in
a confined area, whereas wearable sensors are directly worn by the subject, as in the case
of inertial measurement units (IMUs), pressure and heart rate sensors [5]. Though being
previously utilized to accurately label activities [6,15], fixed sensors like cameras are not
very suitable when ADLs execution requires subjects to move outside the area covered
by them [24]; besides, cameras suffer from variable illumination, occlusion occurrence,
presence of shadows, and time-varying contrast, especially in outdoor environments; such
disadvantages, together with privacy issues and their lack of portability prevent them
from continuously monitoring human activities [33]. In light of these limitations, most of
the research in the HAR field, especially for remote monitoring, has preferably adopted
wearable sensors because of their low cost and higher flexibility in providing continuous
monitoring [34].

The number of types of sensors comprised in a HAR-oriented setup leads to distinguish-
ing two approaches for data acquisition, which are unimodal and multimodal approaches.
The unimodal approach refers to the use of only one modality (i.e., type of sensor) [8,26–28,35],
whereas the multimodal approach aims to integrate data from different sources by using
multiple types of sensors, e.g., wearables like electromyography (EMG) sensors [22]. However,
EMG signals are not widely used in HAR frameworks since their measurement are affected
by electrical noise and motion artifacts due to human sweat [36]. Therefore, most of the frame-
works addressing HAR have focused on the unimodal approach, thanks to which information
from different sensors of the same type (e.g., IMU sensors) can be integrated [2,37–39].

Ultimately, the acquisition paradigm of a HAR system exploiting IMUs may change
according to the configuration of the sensors, which is given by both their number and their
location on the human body. The amount of sensors in a HAR-targeting setup depends
on the activities to be recognized: the exploitation of a single sensor may be enough
when ADLs require to drive only one degree of freedom of one human joint (e.g., wrist
flexion/extension in case of upper-limb driven actions [20] or leg extension from sitting
position and leg flexion from standing position for lower-limb tasks [40]); on the other
hand, a higher number of sensors is needed in case of more complex ADLs that target
multiple joints (e.g., walking, sitting on a chair, lying-down on a surface). The activities to
be classified have an impact on the sensor placement, which may be determined starting
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from anatomical landmarks which are body areas that are close to anatomical points of
interest (e.g., lower-limb joints for recording human locomotion).

The recognition of human actions in a workflow targeting HAR requires a pipeline
entailing a sequence of steps that may include data processing, feature extraction and artifi-
cial intelligence (AI) techniques to perform classification: at first, the signals acquired from
sensors are processed to reduce noise [41], cope with missing values and remove possible
artifacts [9,42]; secondly, data are segmented to identify the portion of the preprocessed sig-
nals that are informative of the executed activities [43]; signals can be optionally converted
into images as well [15,17,20,28,44,45]; afterward, features are extracted for each segment
from either images or time-series data [1,2,38,46] to capture meaningful characteristics of
the performed activities; ultimately, these features and their corresponding ground truth
labels are used as input to train a classifier, whose performance is evaluated based on
quantitative criteria, such as accuracy [47].

The HAR-oriented pipeline may differ according to the AI model used to discriminate
ADLs. On the one hand, Machine Learning (ML) procedures are trained on hand-crafted
features [24,29], but implies a manual extraction based on domain knowledge that can be
increasingly time-consuming as the dataset dimensionality enlarges due to the need for the
high amount of repetitions and subjects for the sake of generalizability [28]. On the other
side, Deep Learning (DL) architectures can be directly fed by raw data and automatically
learn patterns through the process of backpropagation without any prior knowledge of the
signals [47].

Convolutional Neural Networks (CNNs) are the most widely employed among the
DL architectures proposed in the studies addressing HAR [8,22,23,27,32,38,43,46]. CNNs
usually work on images by means of two-dimensional convolutions for practical problems
as defect detection [47,48]; notwithstanding, their one-dimensional variant is preferred
because it allows working directly on time-series signals instead of their corresponding
images, thus reducing the computational cost [32]. Furthermore, CNNs employed in HAR
frameworks may have either a sequential or a multi-branch structure: in the former case,
layers process all the IMU signals of the input dataset [23], whereas in the latter case
each branch, which may be fed by one of the IMUs included in the experimental setup, is
computed in parallel with the others [8,27].

The majority of DL-based HAR-oriented workflows test classifiers on inertial data that
are related to a separate execution of ADLs. Only a few works test the DL architecture on data
that come from an uninterrupted sequence of activities and are previously trained on IMU
signals corresponding to stand-alone activities [30–32,49,50]. Most related works proposed a
CHAR-oriented approach with a setup based only on radar sensors [30,31,49,50]; however, their
applicability to outdoor environments is limited by their measurement area [30]. Furthermore,
to the best of our knowledge, there is only one work that performs CHAR with DL methods
based only on kinematic data: Jaramillo et al. measured the evolution of the hip joint angle by
means of IMU sensors and encoders integrated in an exoskeleton, and included both separate
and continuous acquisition protocols [32].

In view of the above-mentioned works, a paucity in the literature has been noticed
regarding the implementation of a DL algorithm that is fed by inertial measures and is
capable of recognizing ADLs executed in a continuous way. Hence, the goal of this article
is to present the design, development, and test of a framework that aims to perform CHAR
by training a custom 1D-CNN with IMU signals that are related to a separate execution
of ADLs and testing it on inertial data recorded during an uninterrupted execution of
those activities. For this purpose, one experimental protocol with interrupted execution of
tasks by ten healthy subjects is used to train the DL-based architecture, whereas another
protocol involving a seamless execution of those motor actions is employed to test the
CHAR workflow on eight healthy individuals (different from the first ten ones). Further, a
classification strategy is proposed to enhance accuracy without increasing significantly the
time needed to recognize the activity. The model performance is evaluated for different
combinations of the adopted sensors in order to determine the optimal configuration.
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This paper is organized as follows: Section 2 describes materials, which includes the
system for collecting inertial data during the execution of ADLs, and the methodology
adopted in this work, which comprises a preprocessing phase, a DL architecture based
on a custom CNN, and statistical analysis. The outcomes of the ADLs classification are
provided and discussed in Section 3 and discussed in Section 4. Ultimately, Section 5 draws
the final remarks about the conducted study and delineates ideas for future works.

2. Materials and Methods

The framework that is proposed to address continuous human activity recognition is
comprised of two main stages, which are a data collection stage explained in Section 2.1,
and a classification pipeline reported in Section 2.2.

The acquisition of inertial data is accomplished by means of four IMU sensors, whose
components are given in input to a DL-based model. For the sake of performing CHAR,
this architecture is trained on IMU signals coming from multiple separate executions of four
ADLs before being tested on the inertial data that are related to a multiple uninterrupted
execution of motor tasks. This framework targeting CHAR is depicted in Figure 1.
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Figure 1. The framework oriented to CHAR: inertial data are collected from four sensors placed
on the human body; each component of the IMU sensors is used to feed a multi-branch DL-based
architecture; this model is trained on the data related to a separate execution of four ADLs that are
Lying-down (LD), Sit-to-stand (S2S), Walking (W), and Turning (TN); then, it is tested on the signals
coming from motor actions that are performed uninterruptedly.

2.1. Data Collection
2.1.1. Participants

Eighteen healthy subjects (34.94 ± 11.58 years old, eight males) are recruited from the
staff of the IRCCS Maugeri (Bari, Italy). These participants differ in age, weight, height,
and anthropometric characteristics (e.g., length of body segments) for the sake of higher
data heterogeneity.

All subjects are right-handed with no motor or cognitive pathologies. Each subject is
informed about the execution of the required activities prior to the experimental session.
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Besides, they were asked to perform tasks freely (i.e., with no restrictions on their body
movements) to resemble a daily life situation.

2.1.2. Activities

The activities to be executed were defined in accordance with the clinical staff of the
IRCCS Maugeri. Four ADLs were selected among the ones identified as the most frequently
performed in everyday life in a survey about ADL occurrence in HAR datasets [51].

The ADLs of this study differ in their biomechanical characteristics and can be de-
scribed as follows.

- Walking on a surface with no asperities mainly requires alternating flexion-extension
movements of the three lower limb joints (i.e., hip, knee, ankle) and may be combined
with arm swinging. Note, that leg motion during walking is often associated with
arm swinging to provide increased balance.

- Turning while walking typically requires the coordination of various movements, in-
cluding the intra- and extra-rotation of both lower-limb joints (mainly hips) and trunk.

- Sit-to-stand transition, i.e., rising from a chair, principally entails hip and knee exten-
sion, as well as trunk rotation to bend/straighten the torso for keeping balance; it
possibly involves additional leverage on arms or hands when the individual needs
them for a lift that is both greater and safer.

- Lying-down on a surface (e.g., a couch), consists of two phases: the subject first reaches
a sitting position, and then moves to the lying position through motor actions that
mostly include hip and knee flexion/extension, trunk rotation and hip and knee
abduction/adduction. In addition, this transition from the standing to the lying
position can be supported by recruiting the wrist to lean hands on the couch for the
sake of either a safer or a more comfortable motion. Subsequently, this motor action is
completed by fully relaxing the body with the flexion/extension of the hip, knee, and
trunk, as well as by resting their hands and arms on the bed.

2.1.3. IMU Sensors

The number and placement of IMUs must be properly designed since they can have
an impact on the performance of a HAR pipeline.

Hence, four sensors have been chosen and placed on the two sides of the human
pelvis, the right wrist (i.e., the wrist of the dominant arm), and the sternum (see Figure 2),
since they are anatomically close to the human joints that are driven during the execution
of the selected ADLs. More in detail, the bilateral placement on the pelvis enables accurate
monitoring of the pelvis movements; the sensor on the right wrist is essential for recording
the arm swing that assists walking, as well as the use of hands to support lying-down
action; the sensor placed on the sternum is useful to monitor the trunk, which mainly
contributes in sit-to-stand and lying-down activities.

These sensors are attached to the subjects by straps because they are easy to wear and
adaptable to the different body sizes of the subjects.

The experimental data are collected with the Motion Studio system by APDM (APDM
Inc, Portland, OR, USA, https://apdm.com (accessed on 15 January 2024)). The system
(see Figure 3) consists of the following three main components:

- a set of wireless body-worn IMUs, called OpalTM sensors, measuring 43.7 × 39.7 ×
13.7 mm (L × W × H), each with a docking station;

- an Access Point for wireless data transmission and synchronization of the independent
sensors;

- the Motion Studio software to manage the acquisitions of the recorded data.

https://apdm.com
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Figure 2. The placement chosen for the sensor in the proposed framework: two IMUs are located on
the two sides of the human pelvis to monitor motor actions driving the lower limbs (e.g., walking,
sit-to-stand, lying-down); one sensor on the sternum serves to register the trunk contribution to
accomplishing sit-to-stand and lying-down activities; the sensor on the right wrist (i.e., the wrist of
the dominant arm) aims at acquiring the possible use of hands during lying-down, as well as the arm
swing while walking.

Figure 3. Motion Studio system with IMU sensors, Access Point, Docking Station, and PC.

Each Opal sensor is wireless connected by Bluetooth communication protocol to a
remote PC, and includes a 3-axis 14-bit accelerometer to measure linear acceleration, a
3-axis 16-bit gyroscope to record angular velocity, and a 3-axis 16-bit magnetometer for
magnetic field intensity [52].

The Motion Studio software was used to record data in real time with a sampling
rate of 128 Hz. Each recording session returns signals from the accelerometer, gyroscope,
and magnetometer, whose combination has already proven to outperform a subset of IMU
components in related works about HAR [53].

2.1.4. Experimental Protocol

The experimental sessions are performed in the MARLab—Movement Analysis and
Robotic Lab—of the IRCCS Maugeri in Bari (Italy). The protocol took approximately
40 min to be completed by each subject. The authors have proposed a twofold experimental
protocol in order to entail the separate execution of ADLs for training and seamless ADLs
for testing the proposed model. As a result, two datasets have been acquired to accomplish
CHAR with the DL-based classifier.

One dataset, which is used for training the model, used 10 subjects (four males and
six females) who performed each activity multiple times and separately, i.e., each subject
repeated the three previously defined tasks one by one and repeated each of them 10 times.
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This dataset contains a total of 300 acquisitions, each corresponding to a specific activity.
The experimental protocol for the training dataset has included three tasks (see Figure 4a)
that are aimed at acquiring data related to the chosen ADLs. These motor actions have
been conducted as follows.

- Walking+Turning task: the subject stands quietly for 30 s, walks for 7 m, turns 180 degrees
counterclockwise around a pin, and walks back to the start point. In the end, the
subject has to stand quietly for 5 s [52].

- Sit-to-Stand task: the subject sits on a chair with their heels at a reasonable distance for
a comfortable execution of the task and keeps this position for 5 s. Next, the subject
rises from the chair to reach a standing position, which they keep for another 5 s.

- Lying-down task: the subject keeps standing with heels at a reasonable distance from
the bed for a comfortable execution of the task and keeps this pose for 5 s. After that,
the subject lies down such that he/she feels comfortable, and keeps this lying position
for 5 s.

A reasonable waiting time was allowed between two subsequent repetitions of each
activity to prevent the subject’s fatigue, which can alter the results [54,55].

On the other hand, the other dataset, which is employed for testing the model used
eight subjects (four males) who executed the above-mentioned activities continuously in
a specific order, i.e., each subject performed tasks with no interruption in a predefined
circuitry resembling a daily life scenario. Therefore, the experimental protocol for the test
dataset is made up of the same ADLs as those of the training dataset, but such motor
actions have been conducted in order to follow a predefined circuit (see Figure 4b): each
participant starts from a sitting position and stands quite for 5 s; next, he/she gets up from
the sitting position, walks for 7 m, turns clockwise 180 degrees, and then walks back for 7 m
to reach the couch; after that, he/she turns in the preferred direction, lies down and keeps
lying for about 5 s. After completing one execution of the circuit, subjects were instructed
to wait a fair amount of time before the next repetition to prevent fatigue [54,55]. Each
recording of the test dataset is repeated five times per subject, for a total of 40 acquisitions.

TRAINING PROTOCOL

WALKING + TURNING

(a)

LYING-DOWN SIT-TO-STAND

TEST PROTOCOL

(b)

Figure 4. The two experimental protocols encompassed in the study with the aim of continuous HAR:
(a) the protocol for acquiring the training dataset encompasses an interrupted execution of motor
tasks, which are Lying-down, Sit-to-stand, and Walking+Turning; (b) the protocol for collecting the
test dataset requires subject to perform the same tasks without interruptions on a predefined path.

2.2. Classification Pipeline

This Section elucidates the CHAR-addressing pipeline, which includes a preprocessing
stage (Section 2.2.1), the details about the architecture and the training of the custom
CNN classifying ADLs (Section 2.2.2). Furthermore, the strategy for achieving the final
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prediction of activities is described in Section 2.2.3, whereas the metrics used to evaluate
the classification performance for all sensor combinations are reported in Section 2.2.4 and
compared in Section 2.2.5.

2.2.1. Preprocessing
Normalization

The physical variable measured by the IMUs (see Section 2.1.3) makes the values of
one IMU component stay within a different range with respect to the values of the other
components. This may result in extreme differences among input data and can worsen the
capability of recognizing ADLs, as it is more complex to detect patterns in the data [56].
Therefore, a normalization operation is needed to achieve a uniform representation of the
data. More specifically, the data of each IMU component have been normalized to lie in the
range [−1,1], as conducted in other related works about CHAR [31].

Segmentation

Signals coming from the IMUs used in a HAR workflow may comprise data that
are not related to the motor tasks of interest, especially when some static periods (e.g.,
keeping a standing/standing/lying position) or transitions between two ADLs (e.g., stand-
to-walk and walk-to-stand) are included in the dataset. Therefore, a data segmentation
phase is needed to identify the time frames in which data streams might contain relevant
information about the target ADLs. Indeed, data were manually segmented by means of a
signal inspection both for training and test datasets. These segments are then associated
with a label representing the ground truth for the recorded activity for the sake of a
supervised learning strategy [47].

Windowing

A windowing procedure is applied both for training and test datasets to obtain an
even higher amount of data to feed the proposed CHAR model. The window width must
be informative enough to capture the performed activity [17]; nonetheless, an excessively
wide window must be avoided to prevent a high computational cost and a classification
delay that is not apt for the specific application [43]. As a consequence, it has been decided
to adopt a step size of 128 samples, corresponding to 1 s, and an overlap of 64 samples,
corresponding to 0.5 s. Such windows may be part of a longer window for which to classify
ADLs [57].

Resampling

The duration of one activity execution may change depending on the subject’s char-
acteristics, considering that an individual with motor disorders needs more time than a
healthy one to accomplish the same task [58–60]; this results in a different number of win-
dows that could not cover the entire length of the signal, thus causing a loss of information
for the network. Therefore, IMU data are resampled such that the new signal length is an
integer multiple of the window width to ensure that the windowing procedure keeps the
whole signal.

Data Augmentation

Several factors can influence inertial data recorded for a CHAR experiment, thus
making the ones related to a continuous protocol—i.e., related to a seamless execution of
human activities—differ from those of a discontinuous protocol, i.e., related to a separate
execution of ADLs. For instance, the structural characteristics of the environment may lead
to rearranging the starting point of one motor action in order to keep the continuous nature
of the protocol. As an instance, the starting point may swap with the ending point, thus
changing the motion direction of the path related to the continuous protocol with respect
to that of the discontinuous protocol, i.e., the subject turns counterclockwise in the former,
but clockwise in the latter one. This gap in the operation condition is reflected in some
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components of the inertial signals from which the DL-based model learns patterns, thus
potentially worsening the performance of the activity recognition [47].

Hence, for each subject of the training dataset, signals have been treated with a con-
ventional data augmentation technique by flipping to reproduce the operational condition
of the test dataset and improve the classifier robustness [61]. More specifically, Figure 5
visually reports the normalized magnetometer signal of the IMU sensor located at the
left hip during the execution of sit-to-stand and turning tasks related to the test dataset
(i.e., continuous execution), and to the training dataset (i.e., separated execution) before
and after data augmentation. The operational discrepancy leads the magnetometer signal
to be flipped along the x-axis and z-axis for the turning action and along the x-axis and
y-axis for the sit-to-stand task. Hence, such components of the training dataset have been
flipped to make the magnetometer components of the training dataset resemble those of
the test dataset.

On the other hand, the operational discrepancy is not reflected in accelerometer and
gyroscope signals because, differently from the magnetometer data, linear acceleration,
and angular velocity do not change according to the subject’s position with respect to the
position of the magnetic north. Hence, such components of the IMU sensors are not affected
by the change in motion direction and they have not been flipped.
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Figure 5. Data augmentation technique to cope with operational differences.

In addition, the time needed to perform ADLs can be different for intrinsic character-
istics of the task included in the protocol, since motor actions such as walking for seven
meters last far more than standing from a chair. This difference in activity duration results
in a different number of samples (i.e., windows) that feed the classifier; consequently, the
dataset of IMU signals would be unbalanced towards the majority class (i.e., the motor
action with the highest number of windows), thus leading to reduced classification per-
formance [47]. Therefore, another conventional data augmentation technique for time
series data is applied to compensate for the imbalance [61]. In particular, the signals of the
minority classes (e.g., sit-to-stand, turning, lying-down) are scaled by a factor that can be
either amplified or attenuated so as to simulate slight magnitude differences among the
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repetitions made by one subject. The number of trials of the above-mentioned activities has
been increased, thus enlarging the volume of the collected data.

Sensor Combinations

Sensor configuration, which is given by the number and placement of the IMUs
adopted in the setup, can have a significant impact on the performance of the HAR sys-
tem [39,46,56,62]. Therefore, it might be useful to evaluate the different combinations of
the sensors from which the inertial data feeding the model come. More specifically, the
authors focused on those combinations involving two and three sensors, as well as all the
four IMUs explained in Section 2.1.3.

In light of this, each window of the pre-processed dataset is an array of size Wl × Nc,
where Wl is the window width and Nc is the number of sensor channels, which differs
according to the combination of sensors to be evaluated: it is six for any sensor pair, nine
for any sensor triple, and twelve for the combination with four sensors.

2.2.2. Custom Convolutional Neural Network

In this work, the authors have employed a one-dimensional CNN for classifying
ADLs, since they were successfully applied in related works about HAR [8,22,23,27,43,46]
and CHAR [32]. Specifically, the chosen architecture (see Figure 6) employs three distinct
parallel branches to process signals from the accelerometer, gyroscope, and magnetometer
simultaneously. This structure automatically extracts features from signals that have
different physical meanings, thus allowing it to leverage all the data recorded by each
sensor at the same time.

The input layer is fed by a multidimensional array whose shape is (Nw, Wl , Nc), where
Nw is the number of windows in the input dataset, which may change across subjects and
trials, Wl is the window length, which is fixed, and Nc is the number of sensor channels,
which differs according to the combination of sensors to be evaluated (e.g., it is six for any
sensor pair, nine for any sensor triple, and twelve for the combination with four sensors).
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Figure 6. The custom multi-branch CNN addressing CHAR.

A grid-search method is employed to optimize the architectural characteristic of the 1D-
CNN, i.e., determine the number of convolutional and dense layers, as well as the number
of neurons that maximize validation accuracy [9,38]. Therefore, each branch consists of
two 1D convolutional layers using 128 filters and kernels of size 5 for the first and 3 for the
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second one, and one max-pooling layer. Next, two 1D convolutional layers use 64 filters
and kernels of size 5 and 3, respectively, followed by a max-pooling layer. Then, a flattened
layer reshapes data into a linear vector. All convolution layers are characterized by a ReLu
nonlinear activation functions. Subsequently, all three branch outputs are concatenated
in one linear vector, thus gathering the smaller previous outputs. This composite feature
vector is then fed through two fully connected layers, each with 128 neurons, for learning
more abstract representations of the data. The first one is followed by a dropout layer
that switches off 20% of the neurons to prevent overfitting. Finally, an output layer with
a softmax activation function is included to classify tasks into one of the four defined
classes. This layer is responsible for the final prediction of activity labels, based on the
representations learned from the input data.

The same heuristic on validation accuracy is used to select the model hyper-parameters,
such as the optimizer, the learning rate, the batch size, and the number of epochs. The best
performance is obtained by using a number of epochs of 200, a batch size of 64, and the
Adam optimizer with a learning rate of 0.001. An early stop criterion monitoring the loss
value on the validation set during the training is exploited; however, criteria accounting for
other metrics (e.g., validation recall) can be used. Consequently, the value of the patience is
set to 10 to stop the learning process prematurely if the value increases for 10 consecutive
iterations on the validation batches.

For each combination of sensors, the dataset of the separate execution of ADLs was
split into ten stratified folds, 75% of which is assigned for training and the remaining
25% for validation. Afterward, a 10-fold-cross-validation methodology is employed to
ensure a fair and unbiased evaluation of the model [48]. All investigations in this study are
conducted on the Google Colab-Pro framework to train the model on a Tesla T4. Tensorflow,
Sklearn, Pandas, and Numpy libraries have been exploited for training and inferencing the
CHAR-targeting architecture.

2.2.3. Classification Strategy

Human activities are usually classified by applying a sliding-window technique on
the input data, meaning that the prediction is given for each of the windows in which the
signal is divided [17]. However, signal duration within a trial can differ across subjects,
because people with motor impairment may need a higher amount of time to accomplish
the task [58–60]. In light of this, monitoring ADLs for pathological individuals could admit
a slightly slower classification by means of wider windows to enhance the accuracy of the
final prediction of the performed motor action.

Hence, for each activity, the authors propose a classification strategy that entails
the combination of predictions coming from sub-windows of a single trial to achieve the
model prediction related to a grouped window that lasts as in the trial [57]. Ultimately, the
classification of the grouped window is given by the average of the predictions made on
the sub-windows.

2.2.4. Performance Metrics

The efficacy of the CHAR-oriented framework has been evaluated by means of two
metrics. On the one hand, classification performance is measured through accuracy, since
the input dataset has been rebalanced by means of data augmentation. The formula of this
performance index is given below:

ACC =
TP + TN

TP + TN + FP + FN
(1)

In such equations, TP, TN, FP, and FN represent true positives, true negatives, false positives,
and false negatives, respectively.

On the other hand, the feasibility of the framework in a real-time clinical application
is investigated by computing inference time [32]. For each ADL, this metric is calculated
both for the sub-windows and grouped windows of each trial as follows:
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- sub-windows inference time is the time that is necessary for returning the prediction
from a single sub-window;

- grouped-window inference time is the time needed for returning the prediction from
the single trial of the activity.

Hence, this metric is mathematically defined as follows:

IT [s] = tend − tstart (2)

In such equations tstart is when the inference procedure is started by giving the data
in input, whilst tend is when the inference process differs depending on the window type.
More specifically, given a single trial of each ADL, tend may be:

- the time in which the model returns a classification label for a single sub-window, in
the case of sub-windows inference time;

- the time in which the model gives the classification output as the average prediction
across sub-windows in the case of grouped-window inference time.

The proposed metrics are computed for each test fold to obtain a confidence interval
distribution for each index [48].

2.2.5. Comparisons and Statistics

Sensor placement can be impactful on the model performance of a workflow for
recognizing human activities [39,46,56,62]. Hence, the model has been tested on all the
combinations entailing at least two of them, which are detailed in the following.

1. Combinations with two sensors:

- Right Pelvis + Left Pelvis (RP+LP);
- Left Pelvis + Sternum (LP+S);
- Right Wrist + Left Pelvis (RW+LP);
- Right Pelvis + Sternum (RP+S);
- Right Wrist + Right Pelvis (RW+RP);
- Right Wrist + Sternum (RW+S);

2. Combinations with three sensors:

- Right Pelvis + Left Pelvis + Sternum (RP+LP+S);
- Right Wrist + Right Pelvis + Left Pelvis (RW+RP+LP);
- Right Wrist + Left Pelvis + Sternum (RW+LP+S);
- Right Wrist + Right Pelvis + Sternum (RW+RP+S);

3. Combination with all the four sensors:

- Right Wrist + Right Pelvis + Left Pelvis + Sternum (RW+RP+LP+S).

Such combinations have been statistically compared with the non-parametric Friedman’s
test since the hypothesis of a Gaussian distribution is excluded due to the limited number
of tests. Besides, a pairwise post-hoc test with Bonferroni’s correction was performed with
a significance level set to p < 0.05. These analyses were conducted using MATLAB 2022b.

3. Results

This section presents the results of the continuous human activity recognition per-
formed with the proposed DL-based framework: the outcomes of the efficacy of the classifi-
cation strategy are reported in Section 3.1, whereas the results concerning the investigation
of the optimal sensor configuration are described in Section 3.2.

3.1. Differences between Window Types

The classification performance of the CNN-based framework addressing CHAR has
been evaluated in each fold for all combinations of sensors. Hence, many distributions
have been obtained for the two window types described in Section 2.2.3, i.e., sub-windows
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of a single repetition of the ADL and grouped window lasting the repetition itself, and for all
metrics mentioned in Section 2.2.4, which are accuracy and inference time.

Since two classification strategies have been applied, i.e., without and with averaging,
the authors have compared the distributions of accuracy and inference time to investigate
the impact of the averaging technique on both these metrics.

Table 1 contains the average accuracy of the CHAR-oriented model computed on
ten-fold testing sets for each combination of sensors before and after averaging predictions.

Table 1. Average accuracy [%] on ten-fold testing sets for each combination of sensors with the two
window types (e.g., sub-windows and grouped windows). The corresponding p-values are specified
with a significance level set to p < 0.05 as well.

Combination
Test Accuracy [%]

p Value
Sub-Windows Grouped Window

RP+LP 75.42 88.75 0.0001
LP+S 65.94 81.44 0.0001

RW+LP 79.59 95.00 0.0001
RP+S 78.01 83.31 0.0298

RW+RP 79.64 82.31 0.1569
RW+S 77.74 89.88 0.0001

RP+LP+S 74.90 86.12 0.0018
RW+RP+LP 83.83 96.69 0.0001
RW+LP+S 80.33 95.75 0.0001
RW+RP+S 79.16 81.38 0.4212

RW+RP+LP+S 84.88 96.06 0.0001

The accuracy of the DL-based classification has been significantly boosted for almost
all combinations of sensors passing from sub-windows to a grouped window, with an
increment of about 15% for RW+LP and RW+LP+S with p < 0.001; however, the model
tested with data related to RW+RP+LP outperforms the outcome corresponding to any
other combination for both window types, since the classifier accuracy has significantly
raised to 96.69% with p < 0.001.

Moreover, the average and standard deviation of inference time for 10 testing sets of
each combination of sensors for each window type are reported in Table 2.

Table 2. Average and standard deviation inference time in seconds needed for the inference related
to ten-fold testing sets of each window type with the two window types (e.g., sub-windows and
grouped window). The corresponding p Values are specified with significance level set to p < 0.05
as well.

Combination
Inference Time [s]

p Value
Sub-Windows Grouped Window

RP+LP 0.21 ± 0.04 0.25 ± 0.07 0.1901
LP+S 0.22 ± 0.02 0.22 ± 0.02 0.3565

RW+LP 0.22 ± 0.02 0.24 ± 0.03 0.1820
RP+S 0.23 ± 0.01 0.25 ± 0.03 0.0684

RW+RP 0.23 ± 0.07 0.25 ± 0.03 0.4002
RW+S 0.23 ± 0.03 0.26 ± 0.07 0.1660

RP+LP+S 0.23 ± 0.03 0.25 ± 0.03 0.1678
RW+RP+LP 0.24 ± 0.07 0.26 ± 0.02 0.4601
RW+LP+S 0.24 ± 0.03 0.28 ± 0.07 0.1206
RW+RP+S 0.26 ± 0.05 0.29 ± 0.08 0.2706

RW+RP+LP+S 0.30 ± 0.09 0.33 ± 0.10 0.3803
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The proposed 1D-CNN needs almost 300 ms on average with a low standard deviation
to recognize one activity performed with no interruption with the other ones. Furthermore,
the average inference time has incremented, but not significantly (p > 0.05), for all combi-
nations of sensors. Notwithstanding, such time stays in the order of magnitude of a few
milliseconds.

3.2. Differences in Accuracy Among Sensor Combinations

Statistically significant differences were revealed for each performance index when
comparing sensor combinations. The outcomes of the proposed metric for evaluating the
efficacy of the proposed framework to address CHAR are pictorially depicted in the boxplot
reported in Figure 7.
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Figure 7. Boxplots of accuracy distributions on the test set for each sensor combination, with *, **,
and *** representing statistically significant comparisons with p < 0.05, p < 0.01, and p < 0.001,
respectively.

Friedman’s test revealed that ACC significantly differs among sensor combinations,
with p < 0.01.

Regarding the comparisons among sensor configurations with two sensors, according
to post-hoc tests, the ACC in the RW+LP combination is significantly greater than the ACC
in both LP+S (p < 0.01) and RP+S combinations with p < 0.05, as well as than the ACC in
RW+RP combination with p < 0.01. Instead, no statistically significant differences were
found in the values of ACC between the RW+LP combinations and any other combination
with two sensors. However, the RW+LP combination was revealed to be the best config-
uration with two IMUs placed at the Right Wrist (RW) and the Left Pelvis (LP). Similarly,
slightly worse performance can be observed for the RP+LP and the RW+S combinations.
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Concerning the comparisons between each configuration with two sensors and each
one with three sensors, posthoc tests showed that ACC in the RP+LP+S combination
revealed no statistically significant difference with any sensor pair On the other hand, ACC
in the RW+RP+LP combination is significantly higher than ACC in the LP+S combination
with p < 0.001, as well as ACC in RP+S and RW+RP combinations with p < 0.01. Secondly,
ACC in the RW+LP+S proved to be better than ACC in both RP+S with p < 0.01, as well
as higher than ACC in LP+S and RW+RP with p < 0.001. Besides, ACC in the RW+RP+S
combination significantly lessens ACC in the RW+LP combination with p < 0.05, but no
other significant differences were found with any other sensor pair.

As for the comparisons among sensor triples, posthoc tests revealed that ACC in
the RW+RP+S combination is the lowest one among sensor triples. More in detail, it
significantly lessens ACC in the RW+RP+LP and RW+LP+S combinations with p < 0.01;
ACC in the RW+RP+S combination is also slightly worse, though not significantly, than
ACC in the RP+LP+S triple.

Considering the comparisons between the sensor quadruple and any sensor triple,
according to the post-hoc test, the ACC median in the RW+RP+LP+S combination is almost
comparable with ACC in the RW+RP+LP and RW+LP+S triples; on the other side, ACC
in the sensor quadruple is higher than the one in RP+LP+S, though with no statistically
differences; in addition, the RW+RP+LP+S combination outperforms the RW+RP+S one in
terms of accuracy with p < 0.01.

Besides, this sensor quadruple is better than both LP+S and RP+S combinations with
p < 0.001 and p < 0.01, respectively, as well as RW+RP with p < 0.001. The ACC median
in the RW+RP+LP+S combination is even higher, but not significantly, than the one in any
other sensor pair.

The outcomes depicted in the boxplots can be further investigated by means of the
confusion matrices of the ten-fold testing sets. More in detail, the confusion matrices of
the predicted activities against ground truth using RW+LP+S, LP+S, RW+S, RW+RP+LP,
RP+LP, RW+RP, RW+RP+LP+S, RW+RP+S, and RP+LP+S combinations are shown in
Figure 8.

Regarding the confusion matrix related to the LP+S combination, a misclassification
can be observed between sit-to-stand (S2S) and lying-down (LD): besides, walking (W) is
confused with both turning (TN) and S2S. Similarly, the confusion matrix related to the
RW+S configuration shows that S2S is still confused with LD, and W is misclassified with
TN in an even worse way. On the contrary, The confusion matrix related to the RW+LP+S
combination decreases such misclassifications and improves the overall accuracy.

The confusion matrix related to the RP+LP combination reveals a misclassification
between S2S and LD, as well as walking W is confused with either turning TN or S2S. Simi-
larly, the confusion matrix related to the RW+RP combination shows that this configuration
leads to confusing S2S with LD, as well as worsening the misclassification between W and
TN. On the other side, The confusion matrix related to the RW+RP+LP triple reduces the
number of false positives and false negatives, thus leading to enhanced overall accuracy.

As for the confusion matrix of the RW+RP+S triple, S2S is confused with LD, whilst
TN is misclassified with W; furthermore, the confusion matrix of the RP+LP+S combination
reveals a comparable misclassification between S2S and LD, whereas W is slightly confused
only with S2S. Instead, according to the confusion matrix related to the RW+RP+LP+S
configuration, a decrease in false positives and negatives is produced when using all
sensors, thus ensuring a better performance in terms of accuracy.
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Figure 8. Confusion matrices of the proposed model for continuous human activity recognition for
three sensor configurations: (a) RW+LP+S means that inertial sensors are placed at the right wrist,
the left pelvis, and the sternum; (b) LP+S means that inertial sensors are placed at the left pelvis
and the sternum; (c) RW+S means that inertial sensors are placed at the right wrist and the sternum;
(d) RW+RP+LP means that inertial sensors are placed at the right wrist, and the right and left pelvises;
(e) RP+LP means that inertial sensors are placed at the right pelvis and left pelvis; (f) RW+RP means
that inertial sensors are placed at the right wrist and the right pelvis; (g) RW+RP+LP+S means that
inertial sensors are placed at the right wrist, the right and left pelvises, and the sternum; (h) RW+RP+S
means that inertial sensors are placed at the right wrist, the right pelvis, and the sternum; (i) RP+LP+S
means that inertial sensors are placed at the right and left pelvises and the sternum. The activities to
be recognized are Lying-down (LD), Sit-to-stand (S2S), Turning (TN), and Walking (W).
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3.3. Differences in Inference Time among Sensor Combinations

In this subsection, the authors present the results in terms of inference time compared
among sensor combinations. Such comparisons are pictorially depicted in the boxplots
reported in Figure 9.
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Figure 9. Boxplots of inference time distributions on the test set for each sensor combination, with
* and ** representing statistically significant comparisons with p < 0.05 and p < 0.01, respectively.

Friedman’s test leads to statistically significant differences in IT among sensor combi-
nations. Besides, post-hoc tests revealed that IT in the RP+S combination is significantly
lower than IT in both RW+LP+S and RW+RP+S triples with p < 0.05, as well as inferior
than IT in the RW+RP+LP+S configuration with p < 0.01. Inference time stays below
300 ms in almost all sensor combinations, except for IT in the RW+RP+LP+S combination
whose distribution reached the highest values (almost 450 ms), but less than 1 s.

4. Discussion

In this work, the authors present a DL-based framework that is aimed to perform
continuous human activity recognition (CHAR), i.e., the classification of activities of daily
living (ADLs) with a custom convolutional neural network (CNN) that is fed by data
acquired by means of inertial measurement units (IMUs) located at four body parts, which
are the left pelvis (LP), right pelvis (RP), sternum (S), and right wrist (RW). The experimental
protocol requires the subject to perform four ADLs, which are Walking (W), Turning (T)
while walking, Sit-to-stand (S2S) and Lying-down (LD) on a surface, in two ways: On the one
hand, ADLs are executed separately (i.e., every subject performs multiple repetitions of one
of the motor actions before passing to the each of the other ADLs) to collect data for training
the model; on the other side, the execution of motor tasks lies within a circuit (i.e., ADLs
are performed uninterruptedly) to record signals for testing the workflow. Moreover, the
CHAR is addressed first by employing a sliding-window procedure on the pre-processed
IMU signals to predict the ADL in each of these sub-windows, and then by combining these
outcomes to obtain the final prediction related to a wider window, i.e., grouped window. To
the best of the authors’ knowledge, this classification strategy has already been proposed
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in one related work, but it was not tested on a dataset of human activities performed in a
continuous way [57]. Two metrics are exploited to quantitatively evaluate the performance
of the proposed framework: accuracy (ACC) serves to assess the capability of the model to
perform CHAR, whereas inference time (IT) is aimed at ascertaining its feasibility in a real-
time monitoring scenario. As described in Section 2.2.3, all possible combinations of sensors
made up of at least two IMUs were considered in order to determine the optimal sensor
configuration, i.e., the number and location and sensors leading to a good compromise
between classification accuracy and inference time.

The quantitative outcome related to metrics and comparisons are reported in detail
in the previous subsections. Such results show that the classification strategy effectively
increased accuracy for all combinations; remarkably, the exploitation of IMUs both at the
right wrist and the two pelvises (e.g., RW+RP+LP combination) led to the highest boost
in accuracy. This proves the efficacy of the proposed averaging strategy in enabling more
accurate predictions of continuously performed human actions. Furthermore, even though
employing grouped windows delayed the final prediction of the model targeting CHAR, the
time needed to recognize one activity performed in a seamless way stayed beneath 500 ms
for all combinations. Hence, inference time on a single data sample is coherent with a
real-time scenario of health monitoring impaired subjects, whose execution of ADLs lasts
more than 2 s [58–60]. In light of this, one may infer that the exploitation of grouped windows
effectively increases the classification performance without excessively enlarging inference
time for all combinations, especially the RW+RP+LP combination that is revealed to be the
optimal sensor configuration as a good trade-off between accuracy and computational cost;
indeed, albeit the average time needed to inference on the test dataset becomes slightly
higher, such increment is not significant and the average accuracy of the model using all
sensors gains from 83.83% to 96.69% after combining predictions of sub-windows.

When comparing sensor combinations (see Sections 3.2 and 3.3), it emerged that con-
figuration with two sensors located at the right wrist and the left pelvis, i.e., RW+LP is the
best among sensor pairs, arguably because it integrates information regarding the motion
of both upper and lower limbs, respectively. On the contrary, placing IMUs either at the left
pelvis and the sternum (LP+S) or at the two sides of the pelvis (RP+LP) slightly decreases
classification performance. This results in misclassification between S2S and LD (Figure 8),
which may be due to the absence of information about the movement of the right wrist that
is recruited to support the lying-down action. Indeed, integrating wrist-related information
into either LP+S or RP+LP combinations (i.e., RW+LP+S and RW+RP+LP, respectively) can
reduce misclassifications and ensure a more accurate CHAR-targeting framework.

On the other hand, pairing the sensor at the right pelvis with the one at the right wrist
(i.e., RW+RP combination) may lead the model to fail in recognizing turning, which is
confused with walking, and sit-to-stand, which is misclassified as lying-down; the sensor
configuration with IMUs at the two sides of human pelvises reduces misclassifications
between TN and W, keeping them between S2S and LD. On the contrary, feeding the
model with data coming from both pelvises and the right wrist (i.e., RW+RP+LP triple)
enhances accuracy.

In the author’s opinion, such outcomes can be explained with the following motivation:
the sensor at the left pelvis captures relevant information about the turning action, whereas
the one at the right wrist is crucial in recognizing the lying-down motor pattern. Hence,
either using this sensor pair (i.e., RW+LP) or integrating it with one (i.e., RW+RP+LP)
or more sensors (i.e., RW+RP+LP+S) allows for classifying continuously executed ADLs
with a satisfying accuracy (close to 100%); however, the RW+RP+LP triple is the optimal
configuration of sensors in the proposed workflow for CHAR, since it does not lead to an
excessive increase in the inference time with respect to using two sensors.
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5. Conclusions

This work presents a framework based on Deep Learning (DL) for classifying activities
of daily living (ADLs) that are executed uninterruptedly by means of data coming from
inertial sensors placed at different parts of the human body. Comparison of the computed
metrics for different sensor configurations proved the efficacy of the proposed workflow
in accurately recognizing motor actions with temporal performance that are acceptable in
a real-time clinical scenario. Most notably, the outcomes indicate that the integration of
sensors located at the right wrist and the two pelvises offered a good compromise between
accuracy and computational cost.

The main limitation of the study is related to the size of the experimental sample. This
could be addressed either by recruiting new subjects with different characteristics or by ex-
ploiting DL-based data augmentation algorithms, such as generative adversarial networks [63].
Besides, the investigation may be pushed forward by implementing explainable artificial
intelligence methods (e.g., attention mechanism) to improve interpretability [64–67].

In addition, the dataset of activities to be recognized can be enlarged so as to include
other clinically relevant transitional motor actions (e.g., stand-to-walk, stand-to-sit, walk-
to-sit, or lying-to-sit). In so doing the proposed framework could be even addressed for
evaluations of either motor or cognitive impact, such as motion intent recognition [68–70].
Furthermore, acquiring inertial signals during stair ambulation would offer the possibility
to investigate another motor pattern in which some patients would exhibit an abnormal
execution of the task due to the fear of falling [15].
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