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Abstract
We propose paradigmatic examples to show how material damage phenomena can be effi-
ciently described as a solid-solid phase transition. Starting from the pioneering work of J.L.
Ericksen (J. Elast. 5(3):191–201, 1975) and the extensions of R.L. Fosdick and other authors
to three-dimensional non linear elasticity, we describe the insurgence of damage as a hard
→ soft transition between two material states (damage and undamaged) characterized by
two different energy wells. We consider the two separate constitutive assumptions of a sim-
ple Neo-Hookean type damageable material and a more complex microstructure inspired
damageable Gent type material with variable limit threshold of the first invariant. In both
cases we study two different deformation shear classes, one homogeneous and the other
one inhomogeneous and obtain fully analytic description of the system damage response
under cyclic loading. The considered constitutive assumptions and deformation classes are
aimed at attaining fully analytic descriptions. On the other hand, we remark that the pro-
posed, Griffith type, variational approach of damage, based on two different energy density
functions for the damaged and undamaged material phases, and a resulting non (rank-one)
convex energy, can be extended to systems with more complex energy functions, possibly
with a larger number of wells representing an increasing degree of damage.

Keywords Damage · Phase transition · Damageable Gent material · Simple shear ·
Antiplane shear · Non convex energy

Mathematics Subject Classification Primary 74-XX · 74A45 · 74B20

The researchers interested in nonlinear elasticity and in particular in its role in describing
phase transition phenomena are no doubt greatly indebted to J.L. Ericksen for his 1975 work
Equilibrium of Bars [11], where in a simple and straightforward manner he extended the
predictive power of this theory in considering the delicate problem of material instabilities
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and phase transition phenomena. After many efforts in determining so called constitutive
inequalities for constitutive equations, not given by thermodynamics [21], he proposed a
new approach in determining the correct form of constitutive assumptions. In his words [12]
“my general experience tells me that it is neither wise nor fruitful to impose any restrictions
upon the constitutive equations, in general... I merely propose adoption of the mathemati-
cian’s criterion: the weaker the hypothesis, the better the theorem”. The main assumption
of [11] was the possibility of instability material domains, where the energy density was
not rank-one convex, or in other words the possibility of multiwells energy densities. In the
conclusion of [11] we read: “Linear elasticity theory is, by its nature, ill-designed to treat
such problems, but we should not saddle nonlinear elasticity theory with deficiencies not
inherent in it”.

Ericksen’s work has put the basis to enable us to review and understand non-linear elas-
ticity in particular in the direction of prediction of the possible coexistence of equilibrium
phases in material science. His seminal paper originated a stream of fundamental results that
for more than twenty years reshaped the potential of a mathematical theory fundamental to
all continuum mechanics, about many other J. Ball, R.D. James, M. Gurtin, J. Knowles, R.
Abeyaratne, E Sternberg results in [1, 2, 4, 10, 20, 23, 24]. Very fruitful has then been the ex-
tension to the discrete versions of these models as proposed by I. Muller and P. Villaggio [25]
and fully analyzed and adopted in the analysis of shape memory materials by G. Puglisi and
L. Truskinovsky [29, 30]. Possible extension to the analysis of non local interactions, mim-
icking three dimensional effects have been considered in [26]. Recent extension to lower
scales thermomechanical problems exhibited the efficacy of this type of approaches also for
molecular scale material transition effects [13] and related multiscale modelling [31].

Roger Fosdick was not only one of the pioneers of this important extensions of non-linear
elasticity to problems with non (rank-one) convex energy densities, as evidenced by his work
with Dunn in 1980 [10], but he established fundamental results in the thermodynamics of
continua and nonlinear elasticity theory representing a reference for the entire scientific
community. First, the interest in deformation classes that, especially in the case of incom-
pressible materials, reduces the general balance equations through the semi-inverse method
to a less complex system of equations (e.g., from a system of PDEs to a system of ODEs) al-
lowing for analytic solutions and deep results also in the complex field of three-dimensional
non linear elasticity. Such analytical results allowed for a deeper physical interpretation with
both theoretical interest and important applications for real problems. This series of pioneer-
ing works, beginning more or less in 1983 and continuing without interruption until 1996
[14–18], has been a landmark for an entire generation interested in the extension of classical
methods of non-linear elasticity and thermodynamics.

This work is inspired to the recalled approaches in solving boundary values problems in
continuum mechanics describing solid-solid phase transition phenomena. Specifically, we
explore the possibility of describing damage phenomena in elastomeric materials modeled
as a material hard→soft phase transition. In particular we consider elastomeric materials.
These are amorphous materials and therefore their mesoscopic description is highly phe-
nomenological typically based on the kinetic theory of rubber [34]. Despite this, it is widely
recognized that approaches based on micro-mechanical interpretations allow for the deduc-
tion of very effective material modelling to describe both elastic and inelastic phenomena
in rubber-like materials. Amorphous materials can be modelled as a mixture of different
materials: in some sense a family of elastic materials [5, 6]. Their damage and fracture be-
havior can be considered as a homogenized effect of complex phenomena of links breaking
and recrosslinking, corresponding to a distribution of activation and fracture thresholds of
the different constituent materials at the microstructure scale. At low strains, the material
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response is mainly regulated by the molecular network properties such as intermolecular or
chain-filler interactions. This first stage is characterized by a continuous phenomenon of link
scission leading to a softening effect. On the contrary, at larger strain the behavior is mainly
independent from the network properties such as density and type of strands, whereas it is
regulated by the elastomeric matrix with a hardening effect induced by chains re-orientation.

A number of microstructure inspired or multiscale models have been proposed to de-
scribe the recalled phenomenology. We recall the papers by Rajagopal, Wineman, and others
based on a continuous transition among different network natural configurations controlled
by a scalar function of the strain invariants [22, 33, 35]. Here we consider a different ap-
proach based on the assumption of two distinct material phases, undamaged and damaged,
characterized by a different energy density. In particular we focus on the simple case of
isotropic materials and damage, and consider elastic energy of Neo-Hookean and Gent type.
As well known in this case the energy depends on the only first invariant I1 of the left Cauchy
Green tensor that gives a measure of the averaged (with respect to orientation) of molecule
stretch at the network scale under the classical affinity hypothesis [34]. We then assume the
existence of a damage threshold I1 = Icr leading to a decreasing of the shear modulus μ.
Based on the physical interpretation of μ as proportional to the number of molecules per
unit volume, this assumption corresponds to a transition to a state with a fraction of the
molecules in the broken state. We then evaluate the corresponding dissipation. Based then
on a Griffith type variational approach, we search for the minima of the total (elastic and
damage) energy. As in the problems considered by Fosdick in [14–18], the resulting func-
tional to be minimized is non-convex and for this reason it results in a coexistence of two
phases: damaged and virgin material.

While the choice of two states, Neo-Hookean and Gent materials allow us for fully ana-
lytical description of the results, with a transparent physical interpretation, several extension
of the models can be considered. In particular, we argue that by extending this approach
to more phases can be fully descriptive of many damage effects and resulting localization
phenomena [6].

1 Constitutive Assumptions

We consider here isotropic damageable incompressible materials. In particular, we analyze
the simple case of a two-state (virgin and damaged) material. In the first state the system has
a classical Neo-Hookean behavior with an energy density

�̄(F ) = �u(I1) = μ

2
(I1 − 3)

whereas in the second state we consider again a Neo-Hookean behavior

�̄(F ) = �d(I1) = α μ

2
(I1 − 3) + β μ

2
,

where α < 1 measures the damage in the material (damaged vs undamaged modulus) and
β measures the dissipation associated with the damage effect. Here F is the deformation
gradient, B = F T F is the left Cauchy Green tensor and I1 = F · F is its first invariant.
Here and in the following we use the index u and d to denote the undamaged and damaged
material phases, respectively.

While anisotropic effects can be very important in the description of damage and asso-
ciated residual strains in soft materials [19, 31], here to focus on the main physical effect
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Fig. 1 Constitutive assumptions. a) Damageable two-phase Neo-Hookean material (1.1): α = 0.5, I cr
1 = 4.

b) Damageable two-phase Gent material (1.4): Jm = 4; α = 2; I cr
1 = 6

of describing damage as a material phase transition, we neglect anisotropic effects. As a
result, following [9] we assume that damage is regulated by the only first invariant I1. In the
case of macromolecular materials it is interesting to observe that I1 measures the average
elongation along the different direction in each material point, thus if we assume, according
with the classical affinity hypothesis [34], that the molecular deformations coincide with
the macromolecular ones and that the damage depends on the macromolecular deformation,
then we may assume that the damage is regulated by I1 itself. In particular, under our simpli-
fying two-state hypothesis we assume that there exists a damage threshold I cr

1 such that the
system is undamaged for I1 ∈ (0, I cr

1 ) and damaged for I1 ≥ I cr
1 . Thus the energy function

is assigned by (see Fig. 1)

�(I1) =

⎧
⎪⎨

⎪⎩

μ

2
(I1 − 3) if Imax

1 < Icr
1 , undamaged state,

αμ

2
(I1 − 3) + βμ

2
if Imax

1 ≥ I cr
1 , damaged state,

(1.1)

where

β = (1 − α)(I cr
1 − 3) (1.2)

measures the dissipation function and Imax
1 represents the maximum attained value of I1 in

the loading history. Correspondingly the Cauchy stress is

T (I1) =

⎧
⎪⎨

⎪⎩

μ

2
B − pI , if Imax

1 < Icr
1 ,

αμ

2
B − pI , if Imax

1 ≥ I cr
1 .

(1.3)

Some comments are in order. By recalling that according with the statistical mechanics
interpretation of the shear modulus we have μ = NkBT , where N is the number of chains
per unit volume, kB is the Boltzmann constant, and T is the temperature. Moreover it is easy
to interpret I1 as an averaged measure of the elongation in all directions. Thus the underlying
physical idea of the model that due to damage a fraction (1 − α) chains are broken in the
damaged state. Thus under a simple isotropic assumption we simply describe damage as
a variation of the parameter μ. Observe also that based on (1.2) we can give an energetic
interpretation to the damage criterion. Indeed if the critical damage threshold I cr

1 is assigned,
the ‘dissipated’ energy associated to damage is μβ

2 = μ

2 (1 − α)(I cr
1 − 3), i.e. the difference

of the elastic energy in the undamaged and damaged state at the critical damage threshold.
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It is important to observe that more general assumptions with more phases wi(I1) =
αiμ

2 (I1 − 3) + βiμ

2 can be considered, by assuming different limit conditions Imax
1 = I cr

i ,
i = 1, . . . , n. In this perspective (see [34]), we may relate the variation of the moduli to
the variation of the number N of chains per unit volume, i.e. αi ∼ �Ni , where �Ni is the
number of chains broken at the i-th step and similarly we may assume that the damage
energy is proportional to �Ni . As a result we can assume a simple relation βi = kαi with k

a single constitutive parameter for the progressive damage. Possible extension to the case of
a continuous distribution of damageable materials can be also considered [5, 8].

This simple assumption let us attain a full analytical treatment of the problem with a clear
physical interpretation of the results, on the other hand it does not take in consideration im-
portant effects such as entropic hardening observed in rubberlike materials [28] and density
and volume changes associated with damage induced cavitation effects [3].

Thus, as a second constitutive assumption, in order to take care of the hardening effect,
we consider a damageable Gent energy

�(I1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−μ

2
Jm ln

(

1 − I1 − 3

Jm

)

, if Imax
1 < Icr

1 ,

−αμ

2
Jm ln

(

1 − I1 − 3

αJm

)

+ βμ

2
, if Imax

1 ≥ I cr
1 ,

(1.4)

where Jm is a dimensionless parameter defined as Jm = Im−3 and Im indicating the (damage
dependent) limiting value for I1. This corresponds to a stress strain relation

T (I1) =

⎧
⎪⎪⎨

⎪⎪⎩

μJm

Jm − (I1 − 3)
B − pI , if Imax

1 < Icr
1 ,

αμJm

αJm − (I1 − 3)
B − pI , if Imax

1 ≥ I cr
1 .

(1.5)

In this case we assume α > 1 that corresponds to both a decreasing of the tangent mod-
ulus in (1.5) and an increase of Jm to αJm due to damage. This can be again interpreted
based on previous microstructure description. As the stretch increases the shortest molecules
break. Thus, since Jm − 3 represents an averaged value of the stretch molecular threshold
due to limit chain extensibility [27], after damage we can expect an increase of this value.
The explicit dependence of α and β can be deduced on the basis of microscopic consid-
erations. For example, as described in details in [9] in the case of biopolymer materials or
thermoplastic polyurethans [32], damage can be addressed to the progressive unfolding of
hard domains into soft unfolded domains. As a result the number n of monomers (or Kuhn
segments) increases. This corresponds to a variation of the contour length lc ∼ n so that
α ∼ n3 if we consider the case of isotropic damage and the dissipation is β ∼ Nn. In this
case then we have α ∼ β3. While we may assume that Jm depends only on the elastic part of
the deformation, more general assumptions can be considered as in [9] where natural con-
figuration variations and growth mechanics are considered in the constitutive assumptions.
Moreover also in this case we may consider progressive damage.

In the simplest framework of a two phase Gent material, here considered, the dissipation
energy can be evaluated as

β = −Jm ln

(

1 − I cr
1 − 3

Jm

)

+ αJm ln

(

1 − I cr
1 − 3

αJm

)

which again represents the energy difference of the two states at the damage threshold I1 =
I cr

1 .
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2 Damage as a Phase Transition

We now show through different explicit examples the possibility of describing physically
based damage behaviors.

2.1 Piecewise Homogeneous Deformations: Simple Shear

Consider first the simple energetic assumption (1.1) for the rectangular body in Fig. 3 under
the hypothesis of assigned displacement δ and simple shear deformations f assigned as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x = X + kY,

y = Y,

z = Z,

(2.1)

where by X = (X,Y,Z) we denote a material point in the reference configuration and by
x = f (X) = (x, y, z) its image under the deformation. The corresponding deformation gra-
dient is then F = I + ke1 ⊗ e2, so that the left Cauchy Green tensor is B = FF T . Thus,

F =
⎡

⎣
1 k 0
0 1 0
0 0 1

⎤

⎦ B =
⎡

⎣
1 + k2 k 0

k 1 0
0 0 1

⎤

⎦

and I1 = 3 + k2. Here and in the following we indicate with ei , i = 1,2,3 the reference
frame vectors.

2.1.1 Damageable Neo-Hookean Material

Consider first the case of damageable Neo-Hookean material �̄(F ) = �(I1) = �(3+ k2) =
φ(k) with

φ(k) =
{

μ

2 k2 if kmax < kcr ,

αμ

2 k2 + βμ

2 if kmax ≥ kcr ,
(2.2)

where Icr = 3 + k2
cr .

The Cauchy stress is then given by T = μB − pI and the Piola stress is given by
S = μF − pF−T where p represents a pressure taking care of the incompressibility con-
straint. By imposing the boundary conditions T22 = T33 = 0 we obtain p = pu = μ for the
undamaged phase and p = pd = αμ for the damaged phase.

Thus,

T u =
⎡

⎣
μk2 μk 0
μk 0 0
0 0 0

⎤

⎦ , Su =
⎡

⎣
0 μk 0

μk 0 0
0 0 0

⎤

⎦ ,

with a shear stress

τu(k) = μk.
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And for the damaged phase,

T d =
⎡

⎣
αμk2 αμk 0
αμk 0 0

0 0 0

⎤

⎦ , Sd =
⎡

⎣
0 αμk 0

αμk 0 0
0 0 0

⎤

⎦ ,

with a shear stress

τd(k) = αμk.

According with previous constitutive hypothesis, under the normalizing assumption of uni-
tary section in the πe1,e3 plane, we may consider single phase solutions as in (2.1) with
energy


 =
∫ L

0

μ

2
k2dY = μ

2L
δ2, (2.3)

where we imposed the kinematic constrain

∫ L

0
k(Y )dY = kL = δ. (2.4)

We may then, by following classical approaches in the phase transition theory [20]
and our energetic assumption, describe the evolution of damage as a phase transition phe-
nomenon. While in the tridimensional case the analysis of continuum bodies with non
(quasi)-convex energy densities constitute a very complex (typically not analytically solv-
able) mathematical problem, since we are here in the special cases of general Neo-Hookean
material and under the special assumption on piecewise homogeneous shear deformations,
as in the case of simple shear, with interfaces having normal n ≡ e2, we may use the neces-
sary conditions to obtain local minimizers as in [20].

Thus if F 1 and F 2 are the deformation gradients corresponding to shears k1 and k2

respectively, the solutions must respect

τ(k2) = τ(k1) =: τMax Interface equilibrium,

φ(k2) − φ(k1) = τMax(k2 − k1) Maxwell condition.
. (2.5)

Observe that the considered two phase solutions verify the kinematic compatibility
Hadamard condition (n being the normal to the interface)

F 2 − F 1 = a ⊗ n = (k2 − k1)e1 ⊗ e2 (2.6)

and the equilibrium condition at the interface, namely

S(F 2)n = S(F 1)n = τMaxe1.

Thus, in the present case, we may reduce the three-dimensional problem within a one
dimensional setting. Indeed we have to compare the single phase solution with energy (2.3)
with two-phase solutions. We then search for the deformation minimizers k = k̂(Y ) of the
total potential energy

min
k

[∫ L

0
w(k(Y )) dY − τ

(∫ L

0
k(Y )dY − �

)]

, (2.7)
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Fig. 2 Scheme for the energy minimization in (2.7) for a damageable Neo-Hookean material. Here
α = 0.2;β = 0.5,μ = 2

with τ representing a Lagrange multiplier taking care of the kinematical constraint (2.4)
physically interpreted as the reaction shear applied by the constraint on the edge Y = L. We
are then lead to the classical Maxwell construction represented in Fig. 2. The two phases
solutions according with (2.2) and (2.5) the Maxwell stresses and shears are:

ka = τMax

μ
=

√
α β√

1 − α
;

kb = τMax

αμ
=

√
β√

(1 − α)α
;

τMax =
√

αβ√
1 − α

μ.

(2.8)

We restrict here to the case of irreversible damage. Two points are worth of noticing; we
are here neglecting all rate and interfacial energy effects. In other words time represents just
an order parameter so that the results are rate-independent (invariant with respect to loading
time rescaling) and all the solutions with fixed phase fractions are energetically equivalent.
As a result, in the following we focus on the two phase solutions (see Fig. 3) with the body
with 0 ≤ Y ≤ s in the undamaged regime and with s ≤ Y ≤ L in the damaged regime. This
solution (or its symmetric) is chosen because it is the one with one single interface, so that
it would be preferred if interfacial energy terms were considered.

We may then measure the damage by introducing the overall stiffness function

μ̂(kmax) =
(

1 + (α − 1)
s(kmax)

L

)

μ ∈ (αμ,μ),

with the system in the virgin undamaged configuration μ̂ = μ for kmax ≤ ka with homoge-
neous elastic modulus μ and in the fully damage configuration (damage saturation limit) if
kmax ≥ kb with homogeneous damaged elastic modulus μ̂ = αμ.

Consider first the case of monotonic loading starting from the virgin configuration μ̂ =
μ. According with previous description and our hypothesis of total (elastic plus damage
dissipated) energy minimization (corresponding to the convex envelope of the energy w), it
is easy to show that, if we define the averaged assigned shear k̄ := δ

L
, the system remains in

the virgin configuration s = L and

τ(k̄) = μk̄
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Fig. 3 Scheme of a two-phase damage evolution in a rectangular body under simple shear deformations. Here
α = 0.2;β = 0.5,μ = 2

until

k̄max ≤ ka,

where by k̄max we indicate the maximum value of the past attained averaged shear (for
monotonic loading k̄ = k̄max ).

For k̄ ∈ (ka, kb) we have a two-phase configuration with

s(k̄max) =
βμ

√
α

β−αβ

k̄max

and a variable overall system stiffness

μ̂(k̄max) =
√

αβ

1 − α

μ

k̄max

. (2.9)

The system follows the transition plateaux τ = τMax until k̄ = kb and the system is in the
fully damaged configuration. For higher values of assigned displacement the system follows
the fully damaged branch

τ(δ) = α

μ
k̄.

Observe that we can extend easily previous considerations also when cyclic loading paths
are considered. Thus if after monotonic loading with k̄max ∈ (ka, kb) (path O-A-B in Fig. 3)
we unload, the system behaves elastically, within a damaged state and a homogenized elastic
modulus (2.9) (path B-O in the figure). If reloaded the system follows again the same path
until τ = τMax and k̄ = k̄max (point B) and the system follows again the stress plateaux. The
damage is complete and μ̂ = αμ when k̄max = kb . Such conclusions are easily attained if
one considers that at fixed kmax there is a fraction L − s(k̄max) irreversibly damaged. Thus
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we can minimize the energy using again the same (local) conditions in (2.5) for the only
undamaged fraction.

Possible healing effects, due to molecule recrosslinking, can be considered by following
the approach in [7].

2.1.2 Damageable Gent Material

Consider now the constitutive assumptions (1.4), (1.5). In this case for the considered defor-
mation class we have an energy �̄(F ) = �(I1) = �(3 + k2) = φ(k) with

φ(k) =

⎧
⎪⎨

⎪⎩

−μ

2 Jm ln
(

1 − k2

Jm

)
if kmax < kcr ,

− αμ

2 Jm ln
(

1 − k2

αJm

)
+ β

μ

2 if kmax ≥ kcr ,

(2.10)

where the damage shear threshold is obtained by solving Icr = 3 + k2
cr .

After imposing the boundary conditions for the one phase undamaged solution we have

p = pu = μJmk2

Jm−k2 corresponding to

T u =

⎡

⎢
⎢
⎢
⎣

μJmk2

Jm−k2
μJmk

Jm−k2 0

μJmk

Jm−k2 0 0

0 0 0

⎤

⎥
⎥
⎥
⎦

, Su =

⎡

⎢
⎢
⎣

0 μJmk

Jm−k2 0

μJmk

Jm−k2 0 0

0 0 0

⎤

⎥
⎥
⎦ .

When we consider the two phase solutions, in the damaged fraction we have

T d =

⎡

⎢
⎢
⎢
⎣

μαJmk2

αJm−k2
μαJmk

αJm−k2 0

μαJmk

αJm−k2 0 0

0 0 0

⎤

⎥
⎥
⎥
⎦

, Sd =

⎡

⎢
⎢
⎣

0 μαJmk

αJm−k2 0

μαJmk

αJm−k2 0 0

0 0 0

⎤

⎥
⎥
⎦ .

By following the same theoretical considerations of the previous case we are then lead to
the variational problem in (2.7). Specifically the Maxwell rule leads to equations

∫ kcr

ka

μJmk

Jm − k2
dk −

∫ kb

kcr

αμJmk

αJm − k2
dk = τMax (kb − ka) ,

μJmka

Jm − k2
a

= αμJmkb

αJm − k2
b

= τMax,

(2.11)

that can be solved numerically to determine the (unique) solution ka , kb , τMax (see Fig. 4).1

Once determined these solutions we may obtain the overall behavior by following the
same reasoning of the previous case with both monotonically loading (path O-A-C-D) and
unloading paths (path O-A-B-O) as exhibited in Fig. 5 where dashed lines represent the
(fixed damaged fraction) unloading force-displacement curves.

1The unicity follows by observing that the shear stress-strain relations τd (k), τu(k), are both monotonic
convex functions with τd (k) < τu(k), k > 0. Thus if we denote ku(τ̄ ) and kd (τ̄ ) the inverse functions, the

integral
∫ kcr
ku(τ̄ )

(τu(k) − τ̄ ) dk − ∫ kd (τ̄ )

kcr
(τ̄ − τd (k)) dk, representing a τ̄ dependent driving force, is a strictly

monotonic decreasing function that is positive at τ̄ = τd (kcr ) and negative at τ̄ = τu(kcr ). It thus attains a
unique solution at the Maxwell stress τ̄ =: τMax .
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Fig. 4 Scheme for the energy minimization in (2.7) for a damageable Gent material. Here α = 2; μ = 1,
Jm = 4, Icr = 6 so that β = 8 ln 5

4 ∼ 1.78, τmax ∼ 4.068, ka =∼ 1.57, kb =∼ 2.01

Fig. 5 Overall shear stress-strain
relation for a damageable Gent
material under the hypothesis of
homogeneous simple-shear
deformations. Here α = 2;μ = 1,
Jm = 4, Icr = 6 so that
β = 8 ln 5

4

2.2 Inhomogeneous Deformations: Antiplane Shear for a Circular Cylinder

To show the effectiveness of the proposed model also for more complex non homogeneous
deformations, we consider now a long hollow cylinder C (see Fig. 6), bonded to a fixed rigid
support at its outer radius R = Re and to a rigid sleeve at its inner radius R = Ri = ρ̄Re .
We assume that a force per unit cylinder length F = 2πRiτi is applied to the inner sleeve.
We introduce the cylindrical coordinates � ∈ (0,2π), R ∈ (Ri,Re), and Z ∈ (0,L) and the
corresponding local frame references e�, eR , and eZ . We assume the antiplane shear class
[16]

⎧
⎪⎪⎨

⎪⎪⎩

r = R = ρRe, ρ ∈ (ρ̄,1),

θ = �, � ∈ (0,2π),

z = Z + h(R), Z ∈ (0,1),

(2.12)

where ρ := R
Re

is the non dimensional radius and

w(ρ) = h(ρRe)

Re

(2.13)

represents an unknown, radius dependent, non dimensional displacement function along the
cylinder axes direction. We finally denote by δ = d

Re
the non dimensional displacement of
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Fig. 6 Scheme of the case of inhomogeneous deformations for a damageable Neo-Hookean material. Here
we assumed α = 0.2, β = 0.5; μ = 2, ρ̄ = 0.5. In A the system is an undamaged state, in B-C the system is
in a partially damaged state (two phase solutions), in D the system is in the fully damaged state. Dashed lines
correspond to unloading, where the interface between damaged and undamaged states is fixed as well as the
phase fractions

the inner sleeve, so that we have

w(ρ̄) = δ, w(1) = 0. (2.14)

The deformation gradient is then

F = eR ⊗ eR + e� ⊗ e� + keZ ⊗ eR + eZ ⊗ eZ, (2.15)

where

k = h′(R) = ẇ(ρ) (2.16)

is the shear. Here we denote by ( . )′ = d( . )

dR
and by ˙( . ) = d( . )

dρ
. Thus we have the right Cauchy

Green tensor is

B = eR ⊗ eR + e� ⊗ e� + (1 + k2)eZ ⊗ eZ + k(eR ⊗ eZ + eZ ⊗ eR), (2.17)

with

I1 = I2 = 3 + k2. (2.18)

2.2.1 Damageable Neo-Hookean Material

Under the Neo-Hookean assumption we obtain

T u = μBu − pu(r)I , T d = αμBd − pd(r)I ,
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where pu and pd are pressures taking care of the incompressibility constraint.
By imposing the boundary conditions

T �� = T RR = 0, (2.19)

we obtain pu = μ and pd = αμ. As a result the first Piola stress tensor has the only non zero
components

τu(ρ) := SRZ = SZR = μku = μẇu(ρ),

τd(ρ) := SRZ = SZR = αμkd = −αμẇd(ρ)
(2.20)

that for a fully undamaged state delivers

∂SRZ

∂R
+ 1

R

∂S�Z

∂�
+ ∂SZZ

∂Z
+ 1

R
SRZ = 0. (2.21)

Consider first the one phase, fully undamaged solution. We obtain the local equilibrium
equation

ẅu + ẇu

ρ
= 0. (2.22)

Observe that the same equation can be obtained by considering the minimization of the
Gibbs energy density

g = G

2πR2
e

=
∫ 1

ρ̄

[μ

2
(ẇu(ρ))2 ρ

]
dρ − τiδ

=
∫ 1

ρ̄

[μ

2
(ẇu(ρ))2 ρ + τiẇ(ρ)

]
dρ,

(2.23)

corresponding to the Euler–Lagrange equation

˙ρẇu = 0 (2.24)

and the natural boundary condition

−ẇu(ρ̄) = t

ρ̄
, (2.25)

where we introduced the non dimensional assigned axial force

t = τi ρ̄

μ
. (2.26)

This equation can be solved easily as

wu(ρ) = A − t lnρ. (2.27)

Thus by imposing wu(1) = 0, we obtain

wu(ρ) = −t lnρ. (2.28)
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We then deduce the equilibrium shear strain and stress

ku(ρ) = t

ρ
, τu(ρ) = μt

ρ
. (2.29)

Based on the previous assumption of a two-wells energy, we consider the possibility of
two phase solutions. Since the shear decreases as ρ increases, we assume that there exists
ρMax ∈ (ρ̄,1) such that the material is undamaged for ρ ∈ (ρMax,1) and damaged for ρ ∈
(ρ̄, ρMax). Using (2.17) and (1.1) the non-dimensional total potential energy can written as

g(w) =
∫ ρMax

ρ̄

[
α

μ

2
ẇ2

d(ρ)ρ + τiẇd(ρ)
]
dρ

+
∫ 1

ρMax

[μ

2
ẇ2

u(ρ) + τiẇu(ρ)ρ
]
dρ,

(2.30)

where in this case both the function wd(ρ) in the damaged region and wu(ρ) in the undam-
aged cylinder portion and ρMax have to be determined by energy minimization. The Euler
Lagrange equations in both regions are again given by (2.24) as

˙ρẇd = 0, ˙ρẇu = 0, (2.31)

whereas the natural conditions are

αμẇd(ρ̄) = t
ρ̄
,

αẇd(ρMax) = ẇu(ρMax),
(2.32)

to which we add the continuity of the displacement at the interface and the assigned dis-
placement at the external cylinder

wd(ρMax) = wu(ρMax),

wu(1) = 0.
(2.33)

Observe that in this way we respect the interface condition (nR being the normal to the
interface)

F 2 − F 1 = a ⊗ nR = (ẇu(ρMax) − ẇd(ρMax))ez ⊗ eR (2.34)

and the equilibrium condition at the interface

S(F u)nR − S(F d)nR = (μẇu(ρMax) − αμẇd(ρMax))nR = 0.

The equilibrium configurations are then obtained by imposing the boundary condition
(2.32) and (2.33) to the equilibrium equations (2.31)

⎧
⎨

⎩

wd = − t

α
ln(ραρα−1

Max), ρ ∈ (ρ̄, ρMax), damaged region,

wu = −t ln(ρ), ρ ∈ (ρMax,1), undamaged region.

(2.35)

By following the same consideration in (2.5), that can be considered as classical Weier-
strass Erdman corner conditions, corresponding to determine the convex envelope of the
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energy assigned by (2.8). In this case, based on the described monotonicity results of the
stress, we have that the two phase solutions are geometrically characterized by a stress-
dependent interface ρMax(t) such that the system is undamaged for ρ ∈ (ρ̄, ρMax(t)) and
damaged for ρ ∈ (ρMax(t),1). The solution can be determined by the following equilibrium

condition at the interface: τd(ρMax) = τu(ρMax) = τmax =
√

αβ

1−α
μ that gives

ρMax = μt

τmax

. (2.36)

We remark that in both undamaged and damaged phases the system respects the same
variation of the shear stress

τu(ρ) = μt

ρ
, τd(ρ) = αμ t

ρ
,

and shear strains
⎧
⎪⎪⎨

⎪⎪⎩

kd = t

αρ
ρ ∈ (ρ̄,

μt

τMax
) damaged region

ku = t

ρ
, ρ ∈ (

μ t

τMax
,1) undamaged region.

(2.37)

Observe that the system is in the fully undamaged configuration if ρMax(t) < ρ̄, i.e. for
t <

ρ̄τMax

μ
. On the other hand the system is in the fully damaged configuration when if

ρMax(t) > 1, i.e. for t >
τMax

μ
. Moreover in the two phase regime, when the cylinder is

partially damaged, the global (average) force-displacement relation is given by

δ = δd = − t

α
ln(ρ̄αρα−1

Max). (2.38)

By using (2.27) we may synthesize the obtained behavior by considering a monotonically
increasing loading τi .

The system behaves as follows

δu = −t ln ρ̄, t ≤ ρ̄

μ
τMax undamaged

δd = − t
α

ln(ρ̄αρα−1
Max),

ρ̄ τMax

μ
< t <

τMax

μ
partially damaged

δf d = − t
α

ln ρ̄, t ≥ τmax

μ
fully damaged

(2.39)

The global shear stress displacement curve is represented in Fig. 6 and the corresponding
elastica in Fig. 7.

2.2.2 Damageable Gent Material

When a damageable Gent material is considered for the hollow cylindrical shape, by using
(1.5), (2.19) and (2.15), (2.16) we obtain the stresses

Su =

⎡

⎢
⎢
⎣

0 0 kμJm

Jm−k2

0 0 0

kμJm

Jm−k2 0 0

⎤

⎥
⎥
⎦ , Sd =

⎡

⎢
⎢
⎣

0 0 kμα Jm

α Jm−k2

0 0 0

kμα Jm

α Jm−k2 0 0

⎤

⎥
⎥
⎦ . (2.40)
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Fig. 7 Displacement fields for the same system in Fig. 6 (damageable Neo-Hookean material) for different
values of the assigned force t . In A the system is in the undamaged state, in B-C the system is in a partially
damaged state (two phase solutions), in D the system is in the fully damaged state

The only non trivial local equilibrium equation (2.21) for the fully undamaged configu-
ration

˙
ρ τu(˙)w = 0, with τu = −ẇu(ρ)μJm

Jm − ẇu(ρ)2 , (2.41)

with the boundary conditions

τu(ρ̄) = τi, w(1) = 0.

Thus we have

ρ τu(ρ) = ρ
−ẇu(ρ)μJm

Jm − ẇu(ρ)2 = ρ̄τi . (2.42)

We then obtain the displacement field

wu(ρ) =
[

ρ

(

−
√(

ρ2 + t2
)
)

+
(

ρ2 + t2 log

( √
t2 + 1 + 1

ρ + √
ρ2 + t2

)

− 1

)

+ (
t2 + 1

)
] √

Jm

2t
,

where we introduced the non-dimensional applied force per unit cylinder length

T̄ = 2ρ̄τi√
Jm μ

.
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Correspondingly we find the shear stretch and stress

ku(ρ) =
√

Jm

(√
ρ2 + t2 − ρ

)

t
, τu(ρ) = √

Jm μ
t

ρ
. (2.43)

This solution represents the global minimum of the energy until τ(ρ̄) = τMax , where τMax

is the solution of (2.11), i.e. for

tMax ≤ 2ρ̄τmax√
Jmμ

,

where tMax represents the maximum attained value of the non dimensional force t .
If t is increased more, following the same discussion of previous sections, two phase

solutions correspond to the global energy minimization, with an internal damaged portion
of the hollow cylinder assigned by

ρ ∈ (ρ̄, ρMax),

where, by using (2.43)b , we obtain

ρMax = √
Jm μ

t

τMax

.

In this case the displacement wd(ρ) of the damaged fraction can be again determined by
the Euler-Lagrange equilibrium condition (2.41) with the continuity boundary condition
wd(ρMax) = wu(ρMax),

wd(ρ) =
[
(α − 1)

(
−J

3/2
m

)
μ2t2 + 4

√
Jmτ 2

Max

(
αρ2 − 1

)

+ 4τ 2
Max

(
ρ3

(
−

√
α3Jm

αρ2+t2

)
− ρt2

√
αJm

αρ2+t2 +
√

Jm

(
t2 + 1

))

+ 4
√

Jmt2τ 2
Max log

(√
t2+1+1

)(√

α
(
αJmμ2+4τ2

Max

)
+α

√
Jmμ

)

(√

Jmμ2+4τ2
Max

+√
Jmμ

)(
αρ+

√

α
(
αρ2+t2

))

+ Jmμt2

(√

α
(
αJmμ2 + 4τ 2

Max

) −
√

Jmμ2 + 4τ 2
Max

)]
1

8tτ2
Max

.

Correspondingly the shear stress and strain are given by

kd(ρ) =
3ρ2t2

√
α3Jm

αρ2+t2
+2αρ4

√
α3Jm

αρ2+t2
+√

Jm

(
t2

(√

α
(
αρ2+t2

)−2αρ
)
−2α2ρ3

)
+t4

√
αJm

αρ2+t2

2
(
t3+αρ2t

) ,

τd(ρ) = √
Jm μ t

ρ
.

(2.44)

Two phase solutions with w = wd(ρ), ρ ∈ (ρ̄, ρMax) and w = wu(ρ), ρ ∈ (ρMax,1) rep-
resent the global minima until the interface attains the external boundary ρMax = 1. Thus in
this case two-phase solutions are global minimizers for

2ρ̄ τmax√
Jmμ

≤ tMax ≤ 2τmax√
Jmμ

.
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Fig. 8 Overall force-displacement curves for inhomogeneous deformations with a damageable Gent material.
Here we assumed α = 2, Icr = 6; μ = 1, ρ̄ = 0.5, Jm = 4. Left figure force-displacement curves (dashed lines
correspond to unloading). Right figure displacement fields for A an undamaged state, B-C partially damaged
states (two phase solutions), and a fully damaged state D

Finally for larger maximum attained forces the system is fully damaged with a displacement
field

wf d(ρ) =
[

ρ
(
ρ

√

α3Jm

(
αρ2+t2

)−α
√

Jm

(
αρ2+t2

))
−t2

√

αJm

(
αρ2+t2

)
log

(
αρ+

√

α
(
αρ2+t2

))

√

α
(
αρ2+t2

)

+ √
Jm

(
−α +

√

α
(
α + t2

) + t2 log
(
α +

√

α
(
α + t2

)))]
1
2t

corresponding to shear stress and strain fields

kf d(ρ) =
α2J

3/2
m

(
αρ2+t2

)2−ρ

(

ρ2
√

α7J 3
m

(
αρ2+t2

)+t2
√

α5J 3
m

(
αρ2+t2

)
)

Jmt
(
α
(
αρ2+t2

))3/2

τf d(ρ) = √
Jm μ t

ρ
.

(2.45)

The damage evolution, the elastica, and the force-displacement diagrams are reported in
Fig. 8.

3 Concluding Remarks

We have shown the possibility of describing damage effects as a material phase transition
phenomenon. Specifically we considered damageable versions of the Neo-Hookean and
Gent constitutive assumptions for rubberlike incompressible materials. Thus the material
is characterized by two states, damaged and undamaged. The damaged state is characterized
by a lower shear modulus, interpreted as a fraction of broken molecules per unit volume
at the network scale. We then assign, under an isotropic assumption of damage, a critical
damage threshold, I1 = I cr

1 , measuring a critical value of the averaged molecular stretch
at each material point, inducing material damage. The hard→soft (undamaged→damaged)
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transition corresponds then to a finite energy dissipation, proportional to the broken chains’
fraction, that we deduce as a function of the threshold I cr

1 . Many possible extension to more
complex and realistic constitutive laws, possibly with more than one damaged state with
progressive damage, can be considered. The choice of this paper has been guided from the
aim of attaining fully analytical solutions, allowing for a clear physical interpretation of the
results. Specifically we considered a Griffith type approach minimizing the global (elastic
plus dissipated) energy, thus ending up to a variational problem with non (rank-one) con-
vex energy that can be solved following the approaches suggested in many papers of Roger
Fosdick to whom this paper is dedicated. Despite the simplicity of our considered consti-
tutive assumptions, the model qualitatively reproduce well known effects in 3-D non linear
damage mechanics that we show by considering the simple case of homogeneous simple
shear and inhomogeneous antiplane shear deformation classes. We believe this paper can
represent a ‘proof of concept’ on the possibility of efficiently study damage problems in the
field of Griffith type total energy minimization models with non-convex energies.
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