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Introduction 

Since the first decade of the 21st century, the rise of “Industry 4.0” technologies 

played a fundamental role in the automation of industrial processes. Thanks to the 

extraordinary developments of Internet of Things (IoT) and telecommunication 

industries, it is possible to significantly improve the quality of the production and 

optimize the deployment of human operators in the industrial environment. The core of 

the innovation introduced by Industry 4.0 is represented by the growing use of sensors 

in the industrial production chain. Indeed, sensors are useful to improve product quality 

and decrease production costs, thus allowing a more rapid production of quality goods 

[1-4]. In this way, human error is minimized, and the quality of production can be 

increased with minimum monitoring [5,6].  

Among the different types of sensors, trace gas sensors play a crucial role in 

several industrial fields, such as oil and gas (O&G) field [7], industrial process control 

analysis [8] and environmental monitoring [9]. In particular, the market volatility in the 

O&G sector, induced by the recent COVID-19 pandemic, and the need for alternative 

green energy are leading the industry towards new forms of innovation [10]. 

Furthermore, major issues are represented by the cost of operations, such as the 

exploration and development of new O&G deposits, the lack of advanced monitoring 

systems, and environmental contamination deriving from crude oil production. 

Industrial applications require wide dynamic range of detection as well as real-time and 

in-situ monitoring of hazardous gases. For instance, hydrogen sulfide (H2S) is often 

produced in oil fields, with a concentration ranging from part-per-million (ppm) to 

percentage levels [11]. According to the Occupational Safety and Health 

Administration (U.S. Department of Labor) the acceptable concentration limit for 

exposure to H2S is 20 ppm for an eight-hour period [12]; higher concentrations can 

cause instant death [13]. Moreover, high concentrations of methane (CH4) are 

transported through pipelines in O&G industries. Since leakages may occur in pipes, 

high concentrations of methane could escape and diluted with surrounding air. 

Consequently, trace gas sensors can be employed to detect the variation of CH4 



 
 

concentration in the air for safety, and to identify the location of the leakage. 

Different types of gas sensors for trace gas detection can be listed, depending on 

their physical working principle: analytical sensors (gas-chromatography and mass 

spectrometers), electrochemical sensors and laser optical absorption sensors [14]. 

Analytical sensors are expensive, invasive, and bulky. Electrochemical sensors can be 

relatively specific to individual gas, have resolutions of gas concentration up to ppm, 

and are characterized by low power consumption. However, they experience hysteresis 

and suffer from humidity. Furthermore, they show a very slow response time, hence 

they are not suitable for real-time applications [14]. 

Optical techniques based on laser absorption spectroscopy (LAS) for trace gas 

sensing, compared to other techniques, are considerably faster with response times 

lower than 1 s, suffer from minimal drift, offer high gas specificity, and permit real time 

in-situ measurements. Direct LAS techniques are mainly based on light absorption 

ruled by the Lambert-Beer’s law. Among the indirect LAS techniques [14,15], 

photoacoustic spectroscopy (PAS) is one of the most innovative and sensitive optical 

techniques for gas sensing. PAS is based on the detection of acoustic waves, which 

results from the absorption of modulated light in a specific targeted gas. Light absorbed 

excites a fraction of the ground-state molecular population into higher energy levels. 

These excited states subsequently relax through a combination of radiative and non-

radiative pathways. No-radiative relaxations cause a local heating which in turn 

generates pressure waves that propagate far from the source. These weak sound waves 

can be detected by a microphone. The targeted gas is enclosed inside a resonant acoustic 

cell. The quality factor Q and the resonance frequency of an acoustic resonator typically 

fall in the ranges of 40-200 and 1-4 kHz, respectively. PAS does not require an optical 

detector because the sound wave generation is wavelength-independent. Other 

advantages include small size of the detection module, large linear dynamic range (from 

few % to part-per-trillion concentration range), and long-term stability [16]. These 

advantages make the PAS technology competitive with, and in many cases, preferred 

to, other trace gas sensing methods.  

A significant improvement of the PAS technique was made by replacing the 



 
 

microphone with a high-Q factor piezoelectric quartz tuning fork (QTF) with a 

resonance frequency close to 32.7 kHz. This frequency refers to the fundamental in-

plane flexural mode in which the QTF prongs vibrate in opposite directions 

(antisymmetric vibrational mode). Its Q-factor is 100,000 in vacuum and >10,000 at 

normal atmospheric pressure. QTF-based PAS is referred to as quartz-enhanced 

photoacoustic spectroscopy (QEPAS).  

In a QEPAS sensor, the minimum detection limit is strictly related to the signal-

to-noise ratio (SNR), which, in turn, is influenced by the noise level of the readout 

electronics. In a standard QEPAS experiment, suitable analog front-end (AFE) 

electronics is needed, in order to readout the signal generated by the QTF. Typically, 

the AFE consists of a preamplifier, which boosts the current signal generated on the 

QTF by the piezoelectric effect, followed by a lock-in amplifier (LIA), needed to extract 

the desired harmonic component and to get rid of the unwanted noise. Thus, a proper 

design of both stages is mandatory to fully exploit the QEPAS technique. 

 My research activity was focused on the improvement of the state-of-art signal 

conditioning chain of a QEPAS sensor. In particular, initial efforts were focused on the 

study of different QTF configurations, and on the investigation of the influence of the 

pressure on the QTF properties. Then, a detailed study on the different preamplifier 

configurations which can be employed as QTF front-end electronics was conducted, 

together with an analysis of the impact of the LIA parameters on the overall SNR. 

Finally, a custom printed circuit board (PCB) was designed and tested in order to 

evaluate the pressure dependency of the SNR.  

 This thesis work is organized as follows: 

▪ Chapter 1: In this section, the fundamentals of QEPAS technique are presented, 

focusing on the main detection schemes, and the mechanical and electrical 

model of a QTF is introduced. In addition, the influence of the pressure on the 

resonant frequency and quality factor of a T-shaped QTF coupled to a pair of 

resonator tubes is investigated, and a theoretical model is presented. 

▪ Chapter 2: A brief description of the signal conditioning chain of a QTF is 

provided. Three different preamplifier configurations are presented (i.e., 



 
 

voltage, transimpedance and charge sensitive amplifier), with the modeling of 

signal and noise transfer functions. An analytical model was developed and then 

validated by means of SPICE simulations. 

▪ Chapter 3: In this section, the working principle of the lock-in amplifier is 

described, and a behavioral model of a lock-in filter is proposed and compared 

with the outcome of SPICE simulations. A study of the influence of the lock-in 

filter time constant in each preamplifier configuration is presented and 

discussed.  

▪ Chapter 4: In this section, measurements of the resonance frequency and 

quality factor of a T-shaped QTF are presented, in order to validate the 

theoretical model presented in the first chapter. Then, the pressure dependence 

of a standard QTF impedance is investigated. Finally, measurements of the SNR 

as a function of the pressure, employing both a transimpedance and a charge 

sensitive amplifier, are presented. Finally, a custom PCB implementing both 

configurations was assembled and employed as AFE in a QEPAS sensor for 

water vapor detection in laboratory air. 

▪ Chapter 5: The advantages of a fully differential amplifier as QTF readout 

electronics are discussed in this last section. SPICE simulations of the SNR 

obtained with fully differential amplifier configurations are also shown. Then, 

a QEPAS experiment with a fully differential charge sensitive amplifier is 

presented, highlighting a remarkable improvement with respect to the results 

obtained employing a single-ended configuration. 

 

 

 

 



 
 

Chapter 1: Quartz Enhanced 

Photoacoustic Spectroscopy 

In this chapter, the working principles of Quartz Enhanced Photoacoustic 

Spectroscopy sensors are described. Then, the modeling of mechanical and electrical 

properties of the sensitive element is presented, together with a theoretical analysis of 

the influence of the pressure on the resonance properties of a Quartz Tuning Fork. 

1.1 Fundamentals of Quartz Enhanced Photoacoustic 

Spectroscopy technique 

Quartz-enhanced photoacoustic spectroscopy (QEPAS) is an alternative approach 

to photoacoustic detection of trace gas utilizing a quartz tuning fork (QTF) as a sharply 

resonant acoustic transducer to detect weak photoacoustic excitation and allowing the 

use of extremely small volumes [17,18]. Such an approach removes restrictions 

imposed on the gas cell by the acoustic resonance conditions. A quartz crystal is a 

natural candidate for such an application because it is a low-loss and low-cost 

piezoelectric material. High-Q quartz crystals are employed as a frequency standard in 

clock, watches and smart phones. Usually, QTFs with a resonant frequency of 215 or 

~32768 Hz are used. QTFs possess a quality factor Q ≈ 100,000 or higher when 

encapsulated in vacuum and a Q ≈ 10,000 at normal atmospheric pressure. Therefore, 

the corresponding energy accumulation time at atmospheric pressure is t ≈ 320 ms. 

Acoustically, QTF is a quadrupole, which provide good environmental noise 

immunity. In fact, the width of the QTF resonance at normal pressure is ~4 Hz, so only 

frequency components in this narrow spectral band can produce efficient excitation of 

the QTF vibrations. Sound waves in air at 32 kHz have an acoustic wavelength ~1 cm, 

and thus, if produced by external acoustic sources, such waves tend to apply a force in 

the same direction on the two QTF prongs positioned at a ~1 mm distance. As a result, 

such sound waves do not excite the piezoelectrically active mode in which the two 



 
 

prongs move in opposite direction and zero electrical response is produced. Hence, 

there is only one way to cause the QTF to resonate via the photoacoustic effect to 

produce sound waves from a source located between the two QTF prongs. The standard 

way to realize such a condition is for the excitation laser beam to pass through the gap 

between the prongs without touching them. 

The generation of a photoacoustic wave involves the energy transfer from internal 

to translational molecular degrees of freedom. If a rotational-vibrational state is excited, 

a collision-induced vibrational to translation (V-T) relaxation follows, with a time 

constant that for a particular molecule is dependent on the presence of other molecules 

and intermolecular interactions. QEPAS measurements are usually performed at a 

detection frequency of about 32 kHz and are more sensitive to the V-T relaxation rate 

compared to the conventional PAS which is commonly performed at f0 < 4 kHz. In case 

of slow V-T relaxation with respect to the modulation frequency, the thermal waves in 

the gas cannot follow fast changes of the laser induced molecular vibration excitation. 

Thus, the generated photoacoustic wave is weaker than it would be in case of fast V-T 

energy equilibration [19]. For instantaneous V-T relaxation, the detected photoacoustic 

signal can be expressed as follows: 

 𝑆 ∝
𝑄 ∙ 𝑃 ∙ 𝛼

𝑓0
 (1.1) 

where f0 is the QTF resonance frequency, Q its quality factor, α is the gas target 

absorption coefficient, and P is the laser power. Q typically ranges from 104 to 105, 

depending on the carrier gas and the gas pressure.  

The performance of QEPAS-based sensors can benefit from the consistently 

improved output powers of commercially available near infrared, mid-infrared, and far 

infrared lasers due to the technology developments by the semiconductor industry. 

Significant enhancements of the QEPAS signal-to-noise ratio have also been obtained 

as a result of the implementation of micro-resonators (mR). A mR is formed by one or 

two thin tubes and the QTF is positioned either between (on-beam QEPAS [20-24]) or 

adjacent to the tube(s) (off-beam QEPAS [25-30]) to probe the acoustic vibration 

excited in the gas contained inside the tubes. A sub system composed of the QTF and 



 
 

the mR is called a spectrophone or acoustic detection module (ADM). In both on-beam 

or off-beam sensor configurations, it is critical that the photoacoustic exciting radiation 

does not hit the ADM, as otherwise an undesirable background that can be several times 

larger than the QTF thermal noise level arises, with a shifting fringe-like interference 

pattern shape, which limits the detection sensitivity [31,32]. A schematic of a typical 

QEPAS setup, as used in most reported QEPAS sensor systems, is shown in Fig. 1.1.  

 

Figure 1.1 Schematic of a typical QEPAS sensor setup. QTF, quartz tuning fork; mR, 

acoustic micro-resonator; ADM, acoustic detection module; PC, personal computer. 

A laser source, typically a quantum cascade laser (QCL) or an interband cascade 

laser (ICL), serves as the excitation source for generating the QEPAS signal. The ADM 

is mounted inside a vacuum-tight cell equipped with optical windows. The laser beam 

is focused by a lens between the QTF prongs and it passes through the ADM. A power 

meter is used for monitoring the laser power as well as for optical alignment. A function 

generator is used to sinusoidally dither the laser current at the QTF resonance frequency 

or one of its subharmonics. The flow rate and pressure of the sample gas passing 

through the ADM can be controlled and maintained by using a flow meter and pressure 

controller, respectively. A control electronics unit (CEU) is used to determine the main 

QTF parameters: dynamic resistance R, quality factor Q, and resonant frequency f0. The 

CEU is also designed to pass on the amplified signal from a transimpedance pre-



 
 

amplifier (Pre-Amp) to the lock-in amplifier to demodulate the QEPAS signal. A 

picture of an ADM is shown in Fig. 1.2.  

 

Figure 1.2 Photograph of an ADM. An optical window and the gas inlet and outlet 

connectors are also visible. 

QEPAS based sensor systems are usually operated with a wavelength modulation 

(WM) and 2f detection configuration in order to suppress background noise originating 

from spectrally nonselective absorbers (such as the mR, QTF, and the optical windows 

of the ADM). One important advantage of WM is that only the noise centered within 

the detection bandwidth will affect trace-gas measurements. In WM, the laser beam is 

wavelength modulated at f0/2 frequency and the lock-in amplifier demodulates the QTF 

response at f0. 

Spectral data can be acquired when the laser wavelength is scanned. For 

broadband gas species with unresolved rotational spectral structure, the WM approach 

is not usable since the laser source cannot be wavelength modulated with a sufficient 

spectral tuning coverage. Thus, the only possibility is to operate in an amplitude 

modulation (AM) configuration, where the laser is modulated at f0 and the QEPAS 

signals are detected by the lock-in amplifier at the same f0 frequency. Unlike WM 

QEPAS, AM QEPAS is not background free. However, this AM QEPAS background 

can be stable over several hours and hence allows background subtraction [33-35].  

1.1.1 Wavelength modulation detection 



 
 

The wavelength modulation (WM) technique is generally used to improve the 

QEPAS SNR and to minimize external acoustic noise for a QEPAS based sensor 

system. The WM description is based on an intensity representation of an optical wave, 

so that only the absorption of the sample is considered and dispersion effects due to the 

sample can be neglected. The description is based on the instantaneous laser frequency: 

 𝜈(𝑡) = 𝜈0 − Δ𝜈 ∙ cos(𝜔𝑡) (1.2) 

where 𝜈0 is the optical carrier frequency and ω = 2πf is the modulation angular 

frequency due to the laser injection current modulated at the same angular frequency. 

In addition to frequency modulation, the current waveform applied to the QCL produces 

a sinusoidal modulation of the laser intensity and is given by: 

 𝐼(𝑡) = 𝐼0 + ∆𝐼 ∙ cos(𝜔𝑡) (1.3) 

The amplitude ΔI of the sinusoidal intensity modulation is determined by the slope of 

the laser power versus the current characteristics, which is assumed constant across a 

wavelength scan. The instantaneous laser frequency interacts with the absorption 

feature. Expanding the absorption coefficient α(ν(t)) for a small Δν we obtain: 

 

𝛼(𝜈(𝑡)) = 𝛼0 +
𝜕𝛼

𝜕𝜈
|
𝜐=𝜈0

Δ𝜈 cos(𝜔𝑡)

+
1

2

𝜕2𝛼

𝜕𝜈2
|
𝜐=𝜈0

(Δ𝜈)2 cos2𝜔𝑡+. . . 

(1.4) 

where α0 can be considered to be the background absorption contribution. The laser is 

modulated both in intensity and in wavelength simultaneously. Thus, assuming a small 

absorption Iabs, from the Lambert-Beer law we have: 

 

𝐼𝑎𝑏𝑠(𝑡) = [𝐼0 + ΔΙ cos(𝜔𝑡)] 

∙ [1 − 𝐿 (𝛼0 +
𝜕𝛼

𝜕𝜈
|
𝜐=𝜈0

Δ𝜈 cos(𝜔𝑡)

+
1

2

𝜕2𝛼

𝜕𝜈2
|
𝜐=𝜈0

(Δ𝜈)2 cos2𝜔𝑡)] 

(1.5) 

L is the effective length over which the absorption takes place to produce an acoustic 

wave detectable by the QTF (in other words, L is comparable with the thickness t0 of 

the QTF). Hence, the 1ω-signal, S1ω, is given by: 



 
 

 𝑆1𝜔 = 𝐿ΔΙ𝛼0 − 𝐿
𝜕𝛼

𝜕𝜈
|
𝜐=𝜈0

Δ𝜈 (1.6) 

and the 2ω-signal S2ω is given by: 

 𝑆2𝜔 = −𝐿Δ𝐼
𝜕𝛼

𝜕𝜈
|
𝜐=𝜈0

Δ𝜈 +
𝐼0
2

𝜕2𝛼

𝜕𝜈2
|
𝜐=𝜈0

(Δ𝜈)2 (1.7) 

This result shows that the background absorption contributes to the S1ω, whereas 

it does not contribute to S2ω. If we assume that the absorption coefficient has a pure 

Lorentzian line-shape, S1ω has a pure first derivative line-shape with a constant 

background; S2ω consists of two terms: the first term, arising from a residual amplitude 

modulation is proportional to the first derivative, whereas the second is the second-

derivative expression arising from the laser wavelength modulation. Hence, S2ω is not 

a pure second derivative of the Lorentzian line-shape but is distorted by a contribution 

originating from the residual amplitude modulation. This distortion does not affect the 

peak position of S2ω since the first derivative of the Lorentzian line-shape vanishes 

when υ = υ0. 

 

Figure 1.3 1f-QEPAS (a) and 2f-QEPAS (b) spectral scans of 2.6 ‰ of CO2 in N2 at a 

gas pressure of 50 Torr of a CO2 line centered at 2,311.515 cm−1. Blue lines highlight 

the strong background of the spectral 1f-QEPAS acquisition. 

The generated QEPAS signal is usually demodulated by means of a lock-in 

amplifier both at the fundamental frequency f or the successive harmonics nf. When the 

laser light is modulated at the resonant frequency f0 and QEPAS signal is demodulated 

at the same frequency, the demodulated signal is usually called 1f-QEPAS signal, while 



 
 

when the laser light is modulated at the f0/2 and QEPAS signal is demodulated at f0, the 

demodulated signal is referred to as 2f-QEPAS signal. In this case, the QTF detects 

sound oscillations at the second harmonic of the modulation frequency caused by the 

double intersection of the absorption line by the laser line during a modulation period. 

In Fig. 1.3 1f-QEPAS (2f-QEPAS) spectral scan of a 2.6 ‰ of CO2 in N2 mixture is 

depicted at a total gas pressure of 50 Torr, obtained by current modulation at 𝑓0 =

32809.1𝐻𝑧(𝑓0 2⁄ = 16504.55𝐻𝑧) and a peak-to-peak voltage amplitude of 2.8 V 

acquired by using a bare QTF (i.e., without mR tubes) and a CW DFB QCL targeting 

the CO2 (0111)–(0110) P(29) rotational-vibrational transition centered at 2,311.515 

cm−1 and with a line-strength of 7.458 ∙ 10−20 cm/mol. 

A strong background signal was observed for the 1f approach, originating from 

stray light ending up on the walls of the acoustic detection module. This is confirmed 

by the observation that the amplitude of this offset strongly increases with a 

misalignment of the laser beam in lateral directions so that the beam wings touch the 

QTF. Instead, it was experimentally observed that the 2f approach is background-free. 

Distortions in the demodulated signal displaying an asymmetry on both sides of the 

spectrum around the peak (see Fig. 1.3b) can be associated to an amplitude intrinsic 

modulation contribution, which is introduced by current modulation. The laser 

wavelength modulation amplitude Δf and light intensity modulation ΔI must be 

optimized at each gas pressure for a highest 2f-QEPAS signal. 

1.1.2 Amplitude modulation detection for broadband absorbers 

Vibrational spectra of most molecules consisting of more than five atoms are so 

dense that infrared absorption spectra of such polyatomic molecules consist of 100–200 

cm−1 broad bands. Spectroscopic identification of these species requires laser excitation 

sources with a wide spectral coverage. However, distributed feedback (DFB) or Fabry-

Perot (FP) QCLs cannot be wavelength modulated with a sufficient spectral tuning 

coverage for broadband absorption features. Thus, QEPAS detection of such molecules 

will require amplitude modulation (AM) of the laser radiation. The laser is operated at 

f0 by means of square wave amplitude current modulation and the QEPAS signals are 



 
 

detected by a lock-in amplifier at the same f0 frequency. Unlike WM QEPAS, AM 

QEPAS is not background free. Residual absorption of laser radiation by the cell 

windows as well as scattered radiation absorbed inside the gas cell produce a sound at 

the QTF resonant frequency, thus generating a coherent background. However, this 

background can be stable over several hours, which allows background subtraction.  

Typically, for every spectral point, both signal and background components 

normalized to the laser power are acquired. In post-processing, the in-phase and the 

quadrature components of the photoacoustic signal were calculated, respectively and 

by vector subtraction, it is possible to remove the background signal [33,34,36,37].  

1.1.3 QEPAS with custom quartz tuning forks (QTFs) 

Prior to 2013, all the QEPAS sensors reported in the literature employed 

commercial standard QTFs operating at the fundamental in-plane flexural resonant 

mode, with a frequency of ⁓32.7 kHz. However, the standard QTFs structure and its 

operating frequency were optimized for timing purposes and not for spectroscopic 

applications. Two main factors pose limitations to the use of standard QTFs for QEPAS 

sensing. First, the QEPAS signal depends strongly on the energy relaxation rates 

associated with the targeted gas species. The relaxation time constant τT depends on the 

specific molecule and on the specific gas carrier (typically either air or N2) and 

intermolecular interactions. For gases, vibrational-translational (V-T) time constants τT 

fall typically in the µs temporal range [38]. To ensure that the energy transfer occurs 

efficiently for a fast modulation f of the incident laser radiation, it is necessary to satisfy 

the condition f<<1/2πτT [39]. Therefore, QEPAS is more sensitive to the energy 

relaxation rate compared to the conventional PAS, which is commonly performed at f 

< 4 kHz [40,41]. For gas species with a slow relaxation rate (such as CO, CO2 and NO), 

the thermal waves in the gas cannot follow fast changes of the laser induced molecular 

vibration excitation. Thus, the generated photoacoustic wave is weaker than it would 

be in case of fast V-T energy equilibration [14]. Second, standard 32 kHz-QTFs are 

characterized by a small volume between their prongs (⁓0.3 x 0.3 x 3 mm3). Hence, the 

use of light sources with a limited beam quality, like LED, a fiber amplified laser, or a 



 
 

laser emitting in the THz spectral region (λ > 30 µm), is precluded, since they do not 

allow adequate focalization of the excitation beam between the prongs spaced by ⁓300 

µm. The best method to circumvent these limitations is to employ QTFs with larger 

prongs spacing and operation frequencies possibly <20 kHz to approach gas relaxation 

rates, but typically a decrease in f leads to a decrease of the resonance Q-factor [42], so 

that a trade-off optimization of the above parameters must be found.  

1.2 QTF modeling 

1.2.1 Mechanical model of a QTF 

A QTF can be considered as two identical cantilevers coupled by a low-loss 

quartz bridge. A schematic of a QTF is shown in Fig. 1.4.  

 

Figure 1.4 Schematic of a custom QTF with a gold contact pattern. The coordinate 

system with the y-axis parallel to the beam axis of the prong is depicted. In this way, 

the prongs bending for in-plane flexural modes occur in the xy-plane. 

The in-plane flexural vibrations modes of the two prongs can be classified as in 

phase (symmetric) and out of phase (antisymmetric). The flexural antisymmetric 

modes, in which the two prongs oscillate in antiphase, are the only vibrational modes 

employed in QEPAS based sensor systems [43]. The resonance frequencies of the QTF 

can be calculated in the approximation of an independent cantilever vibrating in in-

plane modes. The first two flexural modes are shown in Fig. 1.5. 

 



 
 

 

Figure 1.5 (a) First in-plane vibrational mode of a tuning fork. (b) Third in-plane 

vibrational mode of a tuning fork. 

In the first flexural mode, the tines move in opposite directions and the center of 

mass of the QTF remains unchanged. The flexural mode vibration can be modeled by 

considering that each prong of the tuning fork behaves as a clamped beam. When the 

force is removed from the displaced beam, the beam will return to its original shape. 

Assuming the elastic modulus, inertia and cross-sectional area are constant along the 

beam length, the equation for that vibration is given by the following fourth-order 

differential equation, according to the Euler-Bernoulli approximation: 

 𝐸𝐼
𝜕4𝑦

𝜕𝑥4
(𝑥, 𝑡) + 𝜌𝐴

𝜕2𝑦

𝜕𝑡2
(𝑥, 𝑡) = 0 (1.8) 

where ρ is the density of the material, E the Young modulus of the material, t is the 

time, A = w ∙ y0 and x and y directions in the plane of the QTF. Equation 1.8 can be 

solved by separation of variables, assuming that the displacement can be separated into 

two parts; one that depends on position and the other on time. This leads to a simplified 

differential equation for the y direction that can be solved by superimposing boundary 

conditions. These boundary conditions come from the support of the QTF. The fixed 

end must have zero displacement and zero slope due to the clamp, while the free end 

cannot have a bending moment or a shearing force (free-clamped boundary conditions). 

The general solution is a linear combination of trigonometric equations leading to the 

frequency equation for the cantilever beam [44]: 



 
 

 cos(𝑘𝑛𝑦0) cosh(𝑘𝑛𝑦0) = −1 (1.9) 

where kn are the wavenumbers related to the eigenfrequencies fn, given by the following 

expression: 

 𝑓𝑛 =
𝜋𝐾

8𝑦02
√
𝐸

𝜌
𝑛2 (1.10) 

where 𝐾 = (
1

√12
)𝑤0 and 𝑛 = (

𝜌𝐴

𝐸𝐼
𝜔𝑛

2)

1

4
. U-shaped QTFs are mass-produced for timing 

application used in electronic clocks and smartphones. The standard QTF has a resonant 

frequency of ~32 kHz, with a gap between the prongs of ~300 μm, and prongs that are 

3.2 mm long and 0.33 mm wide. Such QTFs have been widely used in all mid-IR 

QEPAS based sensors reported in the literature to-date, because of their commercial 

availability and ultra-low cost. Chromium/gold layer are deposited on both sides of the 

QTF to create electrodes, which collect the electrical charges induced by the mechanical 

deformation.  

1.2.2 Electrical model of a QTF 

QTFs can be designed to resonate at any frequency in the 4–200 kHz range and 

beyond, since resonance frequencies are defined by the properties of the piezoelectric 

material and by its geometry. The interaction between the laser modulated beam and a 

trace gas leads to the generation of acoustic waves that mechanically bend the QTF 

prongs. Hence, the electrode pairs of the QTF will be electrically charged due to the 

quartz piezoelectricity. Piezoelectricity is the coupling between internal dielectric 

polarization and strain, and is present in most crystals lacking a center of inversion 

symmetry. When a stress is applied to these materials, it induces a displacement of 

charge and a net electric field. The effect is reversible: when a voltage in applied across 

a piezoelectric material, it is accompanied by a strain. Due to this intrinsic coupling of 

strain and charge displacement a QTF can be modeled both mechanically and 

electrically (see Fig. 1.6).  



 
 

 

Figure 1.6 (a) Mechanical and (b) electrical model of a QTF. R, L, and C are the 

electrical resistance, inductance, and capacitance of the QTF, respectively. Cp is its 

parasitic capacitance. [45] 

 In particular, the electrical behavior of a QTF can be effectively described by the 

Butterworth-Van Dyke model (see Fig. 1.6b). In this way, the QTF parameters as a 

mechanical oscillator correspond to equivalent electrical parameters of a series RLC 

circuit: mass (m) to inductance (L), rigidity (k) to inverse capacity (1/C) and damping 

𝛽 to resistance R [17]. Cp is the parallel stray capacitance of the QTF. The resonant 

frequency is given by: 

 𝑓0 =
1

2𝜋
√
1

𝐿𝐶
 (1.11) 

and the quality factor is: 

 𝑄 =
1

𝑅
√
𝐿

𝐶
 (1.12) 

The resonance properties of a QTF can be obtained by analyzing its response to 

a sinusoidal electrical excitation with amplitude V0. The electrical response of a QTF 

can be determined by solving the equivalent circuit [14,46] represented in Fig. 1.7. 

 

 



 
 

 

 

Figure 1.7 Equivalent circuit for QTF characterization. TIA is the transimpedance 

amplifier, RF is the feedback resistor. 

The current through the RLC circuit i(t) is associated with the prong’s vibration, 

whereas ic(t) is the stray current generated by Cp. The impedance Z of this circuit is 

given by: 

 

1

𝑍(𝜔)
= 𝑗𝜔𝐶𝑝 +

1

𝑗𝜔𝐿 + 𝑅 +
1
𝑗𝜔𝐶

 
(1.13) 

The output current is given by the sum of i(t) and ic(t) and is converted into a 

voltage signal by a transimpedance amplifier with a feedback resistor RF. By solving 

the circuit represented in Fig. 1.7, the output signal amplitude Vout of the amplifier is 

retrieved as a function of the angular frequency of the excitation ω = 2πf: 

 
𝑉𝑜𝑢𝑡 =

𝐴𝜔

𝑄𝜔0

√1 + 2𝐶′ (1 −
𝜔2

𝜔02
) + 𝐶′2 (1 −

𝜔2

𝜔02
)
2

+ 𝐶′2 (
𝜔
𝜔0𝑄

)
2

(1 −
𝜔2

𝜔02
)
2

+ (
𝜔
𝜔0𝑄

)
2

 
(1.14) 

where A = V0∙RF/R; Q = L∙ω0/R; ω0 = 2πf0; and C’ = Cp/C. 

The output signal amplitude calculated by using Eq. 1.14 is plotted in Fig. 1.8a,b at 

different C’ values while keeping A, Q and f0 fixed, and (b) at different Q values while 

keeping A, C’ and f0 fixed. 
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Figure 1.8 (a) Resonance curve of a QTF for different values of C’=Cp/C, with A = 2 ∙ 

10-8, f0 = 15820 Hz, Q = 10000. (b) Resonance curve of a QTF for different values of 

Q with A = 2 ∙ 10-8, f0 = 15820 Hz, C’ = 0. The output signals were obtained applying a 

V0 = 1 V input signal. 

All curves are characterized by a peak at the resonance frequency f0 of the QTF. 

As C’, i.e., the stray capacitance, increases, the stray current creates a right-left 

asymmetry with respect to the peak value and a local minimum appears on the right 

side, as in the blue curve in Fig. 1.8a. In the case in which the stray capacitance can be 

neglected (black curve in Fig. 1.8a), the electrical response of the QTF can be 

represented by a Lorentzian line-shape. As the Q-factor increases (see Fig. 1.8b) the 

equivalent electrical resistance the QTF at the resonance decreases, leading to a higher 

resonance peak value, and the width at half maximum (FWHM) of the resonance curve 

decreases. 

1.3 Influence of pressure on QTF properties 

When the QTF is vibrating in air, the prong loses energy due to interaction with 

the surrounding medium. This effect can be modelled in the Euler –Bernoulli theory as 

an additional inertia caused by the motion of the molecules in the air and a viscous drag 

force acting on the prongs. Defining u as an additive mass per unit of length and Cd as 

the damping parameter, Equation 1.8 becomes [44]: 



 
 

 𝐸𝐼
𝜕4𝑦

𝜕𝑥4
(𝑥, 𝑡) + (𝜌𝐴 + 𝑢)

𝜕2𝑦

𝜕𝑡2
(𝑥, 𝑡) + 𝐶𝑑

𝜕𝑦(𝑥, 𝑡)

𝜕𝑡
= 0 (1.15) 

In the realistic case of a negligible damping, if u << ρA, the additive mass causes 

a normalized shift on the frequency of the fundamental mode given by: 

 
∆𝑓 =

𝑓′
0
− 𝑓0

𝑓′
0

=
𝑢

2𝜌𝐴
 (1.16) 

where f0 are the QTF resonance frequencies when prongs vibrate in air. In steady 

motion, the additive mass is proportional to the density of air ρair, thus u = ρair [47]. 

According to the ideal gas law, ρair = MP/RΘ, where M = 28.964 kg/mol is the molar 

mass, P is air pressure, R = 62.3637 m3 ∙ Torr/K ∙ mol is the gas constant, and Θ is the 

QTF temperature. 

Air damping also affects the Q-factor of the QTF resonance mode. The 

contribution due to air damping was derived by Hosaka et al. [40]. In the viscous region, 

the dynamics can be described by the Navier–Stokes equation which leads to an 

expression for the Q-factor contribution Qair related to air damping given by: 

 𝑄𝑎𝑖𝑟 =
4𝜋𝜌𝑇𝑤2𝑓0

3𝜋𝜇𝑤 +
3
4𝜋𝑤

2√4𝜋𝜌𝑎𝑖𝑟𝜇𝑓0

 (1.17) 

where µ is the coefficient of the viscosity of air.  

Thermoelastic and support losses are intrinsic dissipation mechanisms and can be 

assumed as pressure-independent. Hao et al. [48] developed a model to describe support 

losses as the effect of a shear force exerted from the vibrating beam on the QTF support, 

which excites elastic waves propagating into the support with a wavelength greater than 

the prong width w. With this assumption, the quality factor contribution Qsup related to 

support losses can be simplified as: 

 𝑄𝑠𝑢𝑝 = 𝐴𝑛
𝐿3

𝑇3
 (1.18) 

with the coefficients An depending on the n-th QTF resonance mode. Thermoelastic 

losses are due to the inhomogeneity of the stress field, which, in turn, causes an 

inhomogeneous, local increase in temperature. This temperature gradient is an 

additional channel of energy dissipation [49]. The corresponding Q-factor contribution 

QTED depends upon prong geometry and can be expressed as: 



 
 

 𝑄𝑇𝐸𝐷 ∝
𝑇3

𝐿2
 (1.19) 

These theoretical models describe each loss mechanism as standalone and their 

dependence on the main physical parameters is explicated. Each loss contribution is 

independent from the other, but all occur simultaneously for a vibrating QTF prong.  

 

 

 

 

 

 

 

 

 



 
 

Chapter 2: Front-end preamplifiers 

for QEPAS sensors 

In Quartz Enhanced Photoacoustic Spectroscopy, a proper design of the quartz 

tuning fork (QTF) read-out electronics is required to optimize the signal-to-noise ratio 

(SNR), and in turn, to improve the minimum detection limit of the gas concentration 

[50]. The analog front-end (AFE) electronics usually employed in QEPAS experiments 

consists of a preamplifier, which boosts the signal level, followed by a lock-in amplifier 

(LIA), that retrieves the desired harmonic component and filters out the unwanted 

noise.  

In this chapter, a brief overview of the signal conditioning chain of a QEPAS 

sensor is presented. Then, a theoretical study of the main preamplifier configurations 

employed as analog front-end for QTF is introduced, focusing both on the signal and 

noise characterization at the output of the different preamplifiers. 

2.1 Signal conditioning chain of a QTF 

 The QTF acts as a piezoelectric sensor which transduces the mechanical strain 

induced by an acoustic wave into a current signal [51-53], which is in turn proportional 

to the concentration of the target gas [14,54,55]. Nevertheless, this signal must be 

properly processed by means of suitable front-end electronics, to provide useful 

information about the concentration of the detected analyte. 

  The first stage of the QTF signal conditioning chain consists of an analog 

preamplifier, which converts the piezo-current into a voltage signal which is amplified 

(through a gain factor) to increase the amplitude of the output signal. Operational 

amplifiers (OPAMPs) are usually employed as dedicated readout for QTFs [56], and 

can work as voltage amplifiers, charge sensitive amplifiers (CSA) or transimpedance 

amplifiers (TIA).  

A sketch of the schematic of the main amplifier configurations is shown in Fig. 



 
 

2.1. 

 

Figure 2.1 Basic preamplifier configurations for the readout of a quartz tuning fork: (a) 

voltage amplifier, (b) charge sensitive amplifier, (c) transimpedance amplifier. 

The voltage amplifier (Fig. 2.1a) consists of an OPAMP used in non-inverting 

configuration; the voltage gain of the stage is determined by RF and RG resistors 

according to the following formula: 

 
𝐴𝑉 = 1 +

𝑅𝐹
𝑅𝐺

 (2.1) 

The resistor RL is needed to bias the non-inverting input of the operational amplifier, 

since the QTF behaves as an open circuit at low frequencies.  

Since the QTF behaves as a resistance around its resonance frequency, the use of 

a bias resistor is a generally accepted solution to convert the QTF piezo-current into a 

voltage signal [50,54,56]. The effects of the QTF stray capacitance could be limited 

employing a suitable compensation network [91,92]. Moreover, a capacitor could be 

added in series to RG [60], to reduce the offset at the input of the OPAMP. 

The charge sensitive amplifier (Fig. 2.1b) is an inverting amplifier in which the 

feedback network consists of the parallel connection of a resistor RF and a capacitor CF. 

The feedback resistor is needed to close the feedback loop at DC and to provide a 

discharge path to CF, thus preventing the saturation of the amplifier [57]. Moreover, 

thanks to the virtual short circuit between the inputs of the OPAMP [50,55,58], the 

parasitic capacitance of the QTF and the input capacitance of the OPAMP are grounded 

and do not contribute significantly to the output signal. If RF is sufficiently high with 



 
 

respect to the impedance of CF at the operating frequency (for instance RF ≅ 100 MΩ), 

the gain of the CSA depends on the ratio between the QTF capacitance CS and the 

external capacitor CF [56,59]. Nevertheless, since CF cannot be too low (otherwise it 

would be comparable to the parasitic capacitance of the board), this configuration does 

not allow high gain values.   

Finally, in the transimpedance amplifier (Fig. 2.1c), the QTF piezo-current is 

converted to a voltage signal [60] by means of the feedback resistor RF. The dashed 

capacitor CF represents the stray capacitance associated to RF; if the impedance of this 

capacitance is not negligible with respect to RF at the signal frequency, it creates a low-

pass filter with a time constant τF = RF ∙ CF, which remarkably attenuates the output 

signal [56,59]. This configuration allows to achieve higher gains with respect to the 

CSA configuration. For this reason, TIA is the most employed configuration for QTF 

readout [61-67]. 

  The amplified signal is then fed to a lock-in amplifier, used for extracting a 

desired harmonic component of the input signal in an extremely noisy environment 

[68]. Figure 2.2 represents the scheme of a dual-phase lock-in amplifier, usually 

employed in QEPAS measurements.  

 

Figure 2.2 Sketch of a dual-phase lock-in amplifier. Vs(t) is the input signal, Vref(t) is 

the reference signal provided by the oscillator. X and Y are the in-phase and out-of-

phase output signal components, respectively. 



 
 

The preamplifier output signal Vs(t) is mixed with a reference signal Vref(t) 

generated by an oscillator (typically the TTL output of a waveform generator) and with 

its 90 degrees phase shifted version. Then a low-pass filter (LPF) preserves the DC 

components at the output of the mixers. Therefore, by choosing fref equal to the 

frequency of the signal fs, the LPF output signal will depend on the amplitude of the 

input signal and on the phase shift φ between the input signal and the reference signal. 

On top of that, the output signal will be influenced only by the noise component around 

the reference frequency, thus getting rid of the noise floor overlapped to the input signal.  

The X output of the LIA is referred to as in-phase component, since it reaches its 

maximum value when the phase shift φ is zero: 

 𝑋 ∝ 𝐴𝑠 ∙ cos(Φ) (2.2) 

where 𝐴𝑠 is the amplitude of the input signal. The Y output signal is referred to as 

out-of-phase component: 

 𝑌 ∝ 𝐴𝑠 ∙ sin(Φ) (2.3) 

Starting from these components, it is possible to retrieve the amplitude R of the 

output signal and the phase shift φ with the following expressions:  

 𝑅 = √𝑋2 + 𝑌2 ∝ 𝐴𝑠 (2.4) 

 
Φ = 𝑎𝑟𝑐𝑡𝑔 (

𝑌

𝑋
) (2.5) 

2.2 Thevenin and Norton equivalent model of a QTF 

 Being the QTF a piezoelectric resonator, its mechanical parameters can be 

associated to corresponding electrical parameters. As already reported in section 1.2, 

the Butterworth – Van Dyke model can be efficiently employed to characterize the 

electrical behavior of a QTF. In addition, each amplifier configuration is characterized 

by its transfer function, which in turn depends on the parameters of the QTF. To 

separate the contributions of the QTF parameters from those of the preamplifier, as well 

as to simplify the overall transfer function at the output of the preamplifier, the 



 
 

Butterworth – Van Dyke model will be replaced by its equivalent Thevenin model, 

according to the scheme shown in Fig. 2.3. 

 

Figure 2.3 Thevenin equivalent model of a quartz tuning fork. 𝑉𝑖𝑛 is the QTF internal 

signal generated by the piezoelectric effect, 𝑉𝑡ℎ(𝑗𝜔) is the Thevenin equivalent voltage, 

and 𝑍𝑡ℎ(𝑗𝜔) is the Thevenin equivalent impedance. 

With this model, the QTF is represented as the series connection between an 

equivalent voltage source and an equivalent impedance. 𝑉𝑡ℎ(𝑗𝜔) is the voltage across 

the QTF pins when no load is applied to it, and can be easily computed as the division 

of 𝑉𝑖𝑛 on the parasitic capacitance CP: 

 

𝑉𝑡ℎ(𝑗𝜔) =
1

1 +
𝐶𝑃
𝐶𝑆

∙
𝑉𝑖𝑛(𝑗𝜔)

(1 − 𝜔2𝐿𝐶𝑒𝑞) + 𝑗𝜔𝑅𝐶𝑒𝑞
 

(2.6) 

where 𝐶𝑒𝑞 = 𝐶𝑃𝐶𝑆 (𝐶𝑃 + 𝐶𝑆)⁄ . 

𝑍𝑡ℎ(𝑗𝜔) is the equivalent impedance obtained shorting the signal source 

𝑉𝑖𝑛corresponding to the impedance of the QTF: 



 
 

 

𝑍𝑡ℎ(𝑗𝜔) = 𝑍𝑄𝑇𝐹(𝑗𝜔) 

=
1

𝑗𝜔(𝐶𝑃 + 𝐶𝑆)
∙
(1 − 𝜔2𝐿𝐶𝑆 + 𝑗𝜔𝑅𝐶𝑆)

(1 − 𝜔2𝐿𝐶𝑒𝑞 + 𝑗𝜔𝑅𝐶𝑒𝑞)
 

(2.7) 

This schematization can be used to model the QTF when a voltage readout 

configuration is employed, as depicted in Fig. 2.4.  

 

Figure 2.4 Equivalent circuit for the voltage mode readout of the QTF. Cin is the input 

capacitance of the operational amplifier. 

The voltage on the non-inverting input of the OPAMP corresponds to the division 

of 𝑉𝑡ℎ(𝑗𝜔) on the input impedance of the operational amplifier. The output voltage is 

then obtained by multiplying this voltage division by the voltage gain AV of the 

amplifier (see Eq. 2.1). 

When a current mode approach is used (i.e., a TIA or a CSA), it is convenient to 

model the QTF with the Norton equivalent model (see Fig. 2.5). 



 
 

 

Figure 2.5 Norton equivalent model of the QTF. 𝐼𝑛𝑜𝑟(𝑗𝜔) is the Norton equivalent 

current and 𝑍𝑛𝑜𝑟(𝑗𝜔) is the Norton equivalent impedance.  

The QTF is represented as the parallel connection between an equivalent current 

source 𝐼𝑛𝑜𝑟(𝑗𝜔) and an equivalent impedance 𝑍𝑛𝑜𝑟(𝑗𝜔). 𝐼𝑛𝑜𝑟(𝑗𝜔) is the current that 

flows between the QTF pins if they are shorted, and its expression can be easily derived 

by the Thevenin equivalent model: 

 𝐼𝑛𝑜𝑟(𝑗𝜔) =
𝑉𝑡ℎ(𝑗𝜔)

𝑍𝑡ℎ(𝑗𝜔)
= 𝑉𝑖𝑛 ∙

𝑗𝜔𝐶𝑠
(1 − 𝜔2𝐿𝐶𝑠) + 𝑗𝜔𝑅𝐶𝑠

 (2.8) 

The equivalent impedance 𝑍𝑛𝑜𝑟(𝑗𝜔) is derived with the same procedure 

described in the Thevenin equivalent model, therefore it coincides with the impedance 

of the QTF 𝑍𝑄𝑇𝐹(𝑗𝜔). 

If a transimpedance or charge sensitive amplifier is used for the QTF readout, the 

QTF can be easily represented with the Norton model, to retrieve the voltage of the 

output signal, as shown in Fig. 2.6. 



 
 

 

Figure 2.6 Equivalent circuit of a QTF current mode amplifier. ZF is the impedance of 

the feedback network. 

The impedance 𝑍𝑛𝑜𝑟(𝑗𝜔) is grounded by the virtual short circuit imposed by the 

OPAMP. The virtual ground on the inverting input of the OPAMP does not influence 

the mechanical resonance of the QTF, as long as its fundamental mode is excited. As a 

consequence, assuming that the input bias current of the OPAMP is negligible, the 

output voltage can be easily calculated as the product between the feedback impedance 

ZF and 𝐼𝑛𝑜𝑟(𝑗𝜔). This model can be applied for both TIA and CSA configuration; the 

only difference is that ZF is a resistive impedance in the transimpedance amplifier, while 

it is a capacitive impedance in the charge sensitive amplifier. 

2.3 Preamplifier configurations 

 The analog preamplifier represents the most critical stage in the signal 

conditioning chain of a QTF, since it influences the overall signal-to-noise ratio (SNR) 

and, in turn, the minimum detection limit of a QEPAS sensor [50]. For the calculation 

of the SNR, it is necessary to derive the signal transfer function and identify the main 

noise contributions in each configuration. Therefore, a theoretical analysis of the above-

mentioned amplifier configurations is useful to underline advantages and drawbacks of 

each amplifier configuration, with the final target of choosing the best configuration to 



 
 

be employed in a QEPAS sensor. 

2.3.1 Voltage amplifier 

As discussed in the previous section, the Butterworth–Van Dyke circuit and an 

equivalent Thevenin source were employed to model the QTF when excited by an 

acoustic wave [17] to find an analytical expression of the output signal Vout as a function 

of frequency for the circuit in Fig. 2.4. Straightforward calculations provide the 

expression of the transfer function Hv(jω) between the internal voltage Vin(jω) and the 

output voltage Vout(jω): 

 

𝐻𝑣(𝑗𝜔) =
𝑉𝑜𝑢𝑡(𝑗𝜔)

𝑉𝑖𝑛(𝑗𝜔)
= 

𝐴𝑣 ∙
𝑗𝜔𝐶𝑆𝑅𝐿

1 − 𝜔2(𝐿𝐶𝑆 + 𝑅𝐿𝑅𝐶𝑝𝑡𝐶𝑆) + 𝑗𝜔[(𝑅𝐿 + 𝑅)𝐶𝑆 + 𝑅𝐿𝐶𝑝𝑡 − 𝜔2𝐿𝐶𝑝𝑡𝐶𝑆𝑅𝐿]
 

(2.9) 

 where 𝐶𝑝𝑡 = 𝐶𝑃 + 𝐶𝑖𝑛 is the total parasitic capacitance at the non-inverting input 

of the operational amplifier. 

The squared modulus of 𝐻𝑣(𝑗𝜔) describes the dependence of the squared 

amplitude of the circuit in the frequency domain:  

 

|𝐻𝑣(𝑗𝜔)|
2 =

𝐴𝑣
2

(1 −
𝜔2

𝜔𝑅2
)
2

𝜔2𝑅𝐿
2𝐶𝑆

2 + (1 +
𝐶𝑝𝑡
𝐶𝑆
)
2

[(1 −
𝜔2

𝜔𝑃2
) +

𝑅
𝑅𝐿

𝐶𝑆
𝐶𝑝𝑡 + 𝐶𝑆

]
2

 

(2.10) 

  where 𝜔𝑅 = 1 √𝐿𝐶𝑆 + 𝑅𝐿𝑅𝐶𝑝𝑡𝐶𝑆⁄  is the angular frequency corresponding to a 

pure real value for Hv(jω) and 𝜔𝑃 = 1 √𝐿𝐶𝑠𝐶𝑝𝑡/(𝐶𝑠 + 𝐶𝑝𝑡)⁄ = 1 √𝐿𝐶𝑒𝑞,𝑡𝑜𝑡⁄  is the 

parallel-resonant angular frequency of the QTF as loaded in the circuit shown in Fig. 

2.4. 

AC SPICE simulations (Simulation Program with Integrated Circuit Emphasis) 

were carried out to confirm the validity of the expression in Eq. 2.10. A SPICE 

simulator associates a coded model to each component of an electric circuit, and solves 

it by applying Kirchoff’s current or voltage law. It assigns nodes to a circuit and 



 
 

attempts to solve the current and voltage values at the respective nodes. The SPICE 

simulator first generates nodal equations in the matrix format before solving them to 

obtain the values [69], thus providing an accurate description of the circuit behavior. 

The set of typical parameters listed in Table 2.1 has been used for the QTF in both the 

analytical model and SPICE simulations. Moreover, in SPICE simulations, Cin is 

included in the model of the AD8067, provided by Analog Devices. AD8067 is a low-

noise, high speed, FET input operational amplifier. Thanks to its very low input bias 

current, it is suitable for precision and high gain applications [70]. 

Parameter Value 

CP 5 pF 

CS 5.2424 fF 

L 4.5 kH 

R 92.7 kΩ 

Cin 1.5 pF 

RF 47 kΩ 

RG 1 kΩ 

Table 2.1 Parameter values used to compare the results of expression in Eq. 2.10 to 

SPICE simulations. 

The series-resonant frequency fS of the QTF is: 

 𝑓𝑆 =
𝜔𝑆
2𝜋

=
1

2𝜋√𝐿𝐶𝑆
= 32768𝐻𝑧 (2.11) 

whereas its quality factor Q is 

 𝑄 =
1

𝜔𝑆𝑅𝐶𝑆
= 104 (2.12) 

which are typical values for a standard 32.7 kHz-QTF used in a QEPAS sensor 

[14,17,18,71]. 

Moreover, the gain of the non-inverting configuration is Av = 48 and the parallel-

resonant frequency of the QTF is 𝑓𝑃 = 𝜔𝑃/2𝜋 = 32,781 Hz. The value of CP ≅ CP + 



 
 

CS could be found by measuring the equivalent capacitance of the QTF at low 

frequencies by mean of a capacitance meter. The ratio CS/CP is extracted by the ratio 

fP/fS after measuring the parallel and series-resonant frequencies of the QTF, where the 

circuit exhibits the minimum and maximum admittance, respectively. Finally, L can be 

calculated from fS, knowing CS, while R is extracted from the quality factor Q of the 

QTF [56]. Figure 2.7 shows the comparison between the results provided by the SPICE 

simulations and the analytical model for three different values of RL (100 kΩ, 500 kΩ, 

and 2.5 MΩ). 

 

Figure 2.7 Comparison between SPICE simulations and analytical model in Eq. 2.10 

of the frequency response of the circuit in Fig. 2.4 for RL = 100 kΩ, 500 kΩ and 2.5 

MΩ. 

The perfect matching between the two models demonstrates that Eq. 2.10 can be 

used to accurately represent the behavior of the circuit in Fig. 2.4. The maximum 

difference between the peak frequencies of corresponding curves is in the order of a 

few hundredths of Hz and the mean absolute percentage error between corresponding 

curves is about 1.8%. 

As shown in Fig. 2.7, the output signal amplitude and the peak frequency fpeak 



 
 

strongly depend on the value of the resistor RL. This is particularly relevant for an 

optimal choice of the operating frequency in the QEPAS technique, aimed at exploiting 

as much as possible the resonance properties of the QTF. Figure 2.8 shows the fpeak 

trend as a function of RL. This curve was retrieved computing |𝐻𝑣(𝑗𝜔)|
2 for different 

values of RL and then applying MATLAB code to retrieve fpeak values.  

 

Figure 2.8 Peak frequency fpeak of |Hv|
2 as a function of RL. 

For RL values lower than 100 kΩ, fpeak tends to the series-resonant frequency fS = 32768 

Hz; whereas, for RL values higher than 2 MΩ, fpeak tends to the parallel-resonant 

frequency fP = 32781 Hz.  

The behavior of the peak position as a function of RL value can be explained 

considering the two terms which compose the denominator of the function |𝐻𝑣(𝑗𝜔)|
2 

in Eq. 2.10, reported here for ease of reading as Den1 and Den2: 



 
 

𝐷𝑒𝑛1(𝜔) =
(1 −

𝜔2

𝜔𝑅2
)
2

𝜔2𝑅𝐿
2𝐶𝑆

2 , 
𝐷𝑒𝑛2(𝜔) = (1 +

𝐶𝑝𝑡

𝐶𝑆
)
2

[(1 −
𝜔2

𝜔𝑃2
)

+
𝑅

𝑅𝐿
∙

𝐶𝑆
𝐶𝑝𝑡 + 𝐶𝑆

]

2

 

(2.13) 

The behavior of Den1(ω) and Den2(ω) as a function of frequency is reported in 

Fig. 2.9a and 2.9b for RL = 100 kΩ and RL = 10 MΩ, respectively. 

 

Figure 2.9 Behavior of Den1(f) and Den2(f) in Eq. 2.13 as a function of frequency for 

(a) RL = 100 kΩ and (b) RL = 10 MΩ. 

Results show that Den1(ω) is strongly dependent on the value of RL. In the 

investigated frequency range:  

(i) the maximum value of Den1(ω) varies from 868.3 (Fig. 2.9a) to 0.17 (Fig. 

2.9b) 

(ii) the blue curve at 100 kΩ varies more rapidly than the Den1(ω) curve at 

10 MΩ in the frequency range close to the minimum 

(iii) the frequency where the Den1(ω) minimum occurs decreases by more 

than 20 Hz, from 32,768 Hz (Fig. 2.9a) to 32,746 Hz (Fig. 2.9b).  



 
 

Conversely, the dependence of Den2(ω) on RL is only due to the term 
𝑅

𝑅𝐿

𝐶𝑆

𝐶𝑝𝑡+𝐶𝑆
, 

which is negligible when RL ≥ 1MΩ, since CS << Cpt and RP << RL.  

In addition: 

(i) the red curve maximum value varies from 30.8 (Fig. 2.9a) to 21.5 (Fig. 

2.9b)  

(ii) Variations of Den2(ω) values in the frequency range close to the 

minimum value are slightly different at 100 kΩ and at 10 MΩ 

(iii) the difference frequency where the Den2(ω) minimum occurs is about 13 

Hz, from 32,794 Hz (Fig. 2.9a) to 32,781 Hz (Fig. 2.9b).  

As a result, for RL < 100 kΩ, the contribution of Den1(ω) becomes dominant, so 

that when RL decreases, the minimum value of the denominator of |Hv(jω)|2 tends to the 

zero of Den1(ω) function, located at ω = ωR. Moreover, in this range of RL values, ωR 

could be approximated to ωS: 

 𝜔𝑅 =
1

√𝐿𝐶𝑆 + 𝑅𝐿𝑅𝐶𝑝𝑡𝐶𝑆
≅

1

√𝐿𝐶𝑆
= 𝜔𝑆 (2.14) 

and the peak of |Hv(jω)|2 tends to the series-resonant frequency of the QTF. Instead, for 

RL > 2 MΩ, Den1(ω) becomes less relevant and Den2(ω) tends to be dominant in the 

sum of the two terms. Therefore, the minimum of the sum tends to the zero of Den2(ω). 

Finally, for the values of RL, this zero is very close to ω = ωP, thus, the peak of |Hv(jω)|2 

is almost coincident with the parallel-resonant frequency of the QTF. 

The trend of the peak value of |Hv(jω)|2 as a function of RL value is shown in Fig. 

2.10. The same method applied for Fig. 2.8 was used to obtain this curve.



 
 

 

Figure 2.10 Peak value of |Hv|
2 as a function of RL. 

The peak value of |Hv(jω)|2 is an increasing function of RL up to a saturation value 

at RL > 1 GΩ. As discussed in the previous section, for large values of RL, ωpeak = 2πfpeak 

is very close to the parallel-resonant angular frequency ωP and the peak of |Hv(jω)|2 

tends to the following value: 

 
|𝐻𝑣(𝑗𝜔𝑝𝑒𝑎𝑘)|

2
≅ |𝐻𝑣(𝑗𝜔𝑃)|

2 ≅ 𝐴𝑣
2 ∙
𝜔𝑃

2𝑅𝐿
2𝐶𝑆

2

(1 −
𝜔𝑃2

𝜔𝑅2
)
2 

(2.15) 

The denominator of Eq. 2.15 can be rewritten as: 

 

1 −
𝜔𝑃

2

𝜔𝑅2
= 1 −

𝐿𝐶𝑆 + 𝑅𝐿𝑅𝐶𝑝𝑡𝐶𝑆

𝐿𝐶𝑒𝑞,𝑡𝑜𝑡
 

=
𝐿(𝐶𝑒𝑞,𝑡𝑜𝑡 − 𝐶𝑆) − 𝑅𝐿𝑅𝐶𝑝𝑡𝐶𝑆

𝐿𝐶𝑒𝑞,𝑡𝑜𝑡

≅ −
𝑅𝐿𝑅𝐶𝑝𝑡

𝐿
 

(2.16) 

Since Ceq,tot ≅ CS and RL is very large, it results: 



 
 

 |𝐻𝑣(𝑗𝜔𝑝𝑒𝑎𝑘)|
2
≅ 𝐴𝑣

2

1
𝐿𝐶𝑒𝑞,𝑡𝑜𝑡

𝑅𝐿
2𝐶𝑆

2

𝑅𝐿
2𝑅2𝐶𝑝𝑡

2

𝐿2

≅ 𝐴𝑣
2 𝐿𝐶𝑆

𝑅2𝐶𝑝𝑡
2 (2.17) 

which is independent on RL. 

However, the performance of the QEPAS technique will depend on the SNR 

obtained at the output of the preamplifier, not only on the amplitude of the signal. 

Therefore, for maximizing the SNR, it is mandatory to carry out a detailed study of the 

electronic noise contributions that are involved in the circuit. 

The most relevant contributions to the total electronic noise at the output of the 

voltage-mode preamplifier are shown in Fig. 2.11. 

 

Figure 2.11 Noise contributions in the circuit of Fig. 2.4. 

In the following calculation, the phase noise was neglected [72] and only the main 

electronic noise contributions were considered. Each resistor Ri of the circuit was 

associated to its thermal noise voltage source, en,i
2 = 4kTRi. The OPAMP noise was 

characterized by means of the classic equivalent input noise voltage (en,op) and current 

(in+ and in-) sources. To simplify the study without losing accuracy, it is possible to 

neglect the noise contributions of RF and RG, composing the feedback network, due to 

the small values of these resistors. For the same reasons, the equivalent noise current in- 



 
 

associated to the inverting input of the OPAMP likewise does not give any relevant 

contribution. Moreover, all the sources in Fig. 2.11 can be considered independent, so 

that the total output noise power spectral density Sntot(ω) can be evaluated as follows: 

 𝑆𝑛,𝑡𝑜𝑡(𝜔) ≅ 𝑆𝑛,𝑄𝑇𝐹(𝜔) + 𝑆𝑛,𝐿(𝜔) + 𝑆𝑛,𝑜𝑝(𝜔) + 𝑆𝑛,𝑖𝑛+(𝜔) (2.18) 

where the terms of the right-hand side come from R, RL, en,op, and in+, respectively. In 

Eq. 2.18, the single terms are the product of the spectral density of each noise source 

multiplied by the squared modulus of the transfer function between the noise source 

and the output of the circuit, determined using the superposition principle [73]. 

Concerning the noise associated to the resistor R, the transfer function Sn,QTF(ω) 

between the source en,QTF and the output of the preamplifier is Hv(jω), thus: 

 𝑆𝑛,𝑄𝑇𝐹(𝜔) = 4𝑘𝑇𝑅 ∙ |𝐻𝑣(𝑗𝜔)|
2 (2.19) 

As a consequence, the behavior of Sn,QTF(ω) as a function of both the frequency 

and RL is the same discussed previously. 

Let us now consider the noise contribution from the resistor RL. The transfer 

function between the source en,L and the output of the front-end is: 

 

𝐻𝐿(𝑗𝜔) =
𝑉𝑛.𝑜𝑢𝑡(𝑗𝜔)

𝑒𝑛,𝐿(𝑗𝜔)

= 𝐴𝑣
1 − 𝜔2𝐿𝐶𝑆 + 𝑗𝜔𝑅𝐶𝑆

1 −
𝜔2

𝜔𝑅2
+ 𝑗𝜔[(𝑅𝐿 + 𝑅)𝐶𝑆 + 𝑅𝐿𝐶𝑝𝑡 −𝜔2𝐿𝐶𝑝𝑡𝐶𝑆𝑅𝐿]

 
(2.20) 

The denominators of Hv(jω) and HL(jω) are the same and the two transfer 

functions differ only in their numerator. The contribution of the thermal noise of the 

resistor RL to the total output noise spectral density is: 

 𝑆𝑛,𝐿(𝜔) = 4𝑘𝑇𝑅𝐿|𝐻𝐿(𝑗𝜔)|
2 (2.21) 

Figure 2.12 shows the behavior of Sn,L as a function of the frequency, for four 

different values of RL (100 kΩ, 500 kΩ, 6 MΩ, and 20 MΩ). 



 
 

 

Figure 2.12 Comparison between SPICE simulations and analytical model described 

in Eq. 2.21 of the output noise spectral density contribution from the thermal noise of 

RL, for four different values of the resistor: 100 kΩ, 500 kΩ, 6 MΩ, and 20 MΩ. 

The curves calculated with Eq. 2.21 and those obtained by SPICE simulation are 

in excellent agreement. The function |HL(jω)| has a minimum located at ω = ωS, since, 

at the series-resonant frequency, the Butterworth–Van Dyke impedance model of the 

QTF is reduced to R, which is the minimum value. Accordingly, also Sn,L(ω) exhibits a 

minimum at the same frequency value. Furthermore, a peak appears around the parallel-

resonant frequency for increasing values of RL. Figure 2.13 reports the behavior of the 

peak value of Sn,L(ω) as a function of RL varying from 500 kΩ to 20 MΩ. 



 
 

 

Figure 2.13 Peak of the output noise spectral density contribution due to RL as a 

function of RL itself. 

Using the set of parameters listed in Tab. 2.1, starting from low values of RL, the 

peak appears at RL = 500 kΩ (dashed magenta and green curves in Fig. 2.12), then 

increases up to RL = 6 MΩ (Fig. 2.13). Beyond this value, the peak decreases for 

increasing values of RL and the function Sn,L(ω) assumes lower values in the frequency 

range under investigation. 

For what concerns the noise contributions considered up to now, Figures 2.10 and 

2.13 suggest that it is convenient to work with large values of the resistor RL because 

the amplitude of the output signal increases with RL (see Fig. 2.10) and the noise 

contribution due to this resistor decreases (see Fig. 2.13), whereas the contribution from 

the thermal noise of R has exactly the same frequency behavior of the signal. Let us 

now consider the contribution of the input equivalent voltage noise of the OPAMP to 

the total output noise, namely: 

 𝑆𝑛,𝑜𝑝(𝜔) = 𝑒𝑛,𝑜𝑝
2 ∙ |𝐻𝑒𝑛(𝑗𝜔)|

2 (2.22) 

Since the flicker noise was considered negligible in the narrow bandwidth of 

interest, namely, around the QTF resonance frequency, the input equivalent noise 



 
 

voltage has a constant power spectral density, i.e., it can be considered as a white noise. 

The value of en,op has been set at 6.6 nV/√Hz, as reported in the data sheet of the 

AD8067 [70]. The transfer function Hen(jω) can be expressed as follows: 

 

𝐻𝑒𝑛(𝑗𝜔) =
𝑉𝑛,𝑜𝑢𝑡(𝑗𝜔)

𝑒𝑛,𝑜𝑝(𝑗𝜔)

= 𝐴𝑣
1 − 𝜔2(𝐿𝐶𝑆 + 𝑅𝐿𝑅𝐶𝑃𝐶𝑆) + 𝑗𝜔[(𝑅 + 𝑅𝐿)𝐶𝑆 + 𝑅𝐿𝐶𝑃 − 𝜔

2𝐿𝐶𝑃𝐶𝑆𝑅𝐿]

1 − 𝜔2(𝐿𝐶𝑆 + 𝑅𝐿𝑅𝐶𝑝𝑡𝐶𝑆) + 𝑗𝜔[(𝑅 + 𝑅𝐿)𝐶𝑆 + 𝑅𝐿𝐶𝑝𝑡 − 𝜔2𝐿𝐶𝑝𝑡𝐶𝑆𝑅𝐿]
 

(2.23) 

in which the numerator differs from the denominator only for the capacitance Cpt = CP 

+ Cin replaced by CP. This contribution can be considered as constant in the frequency 

range investigated for QEPAS applications. 

The contribution of the input equivalent current noise in+ to the overall output 

noise spectral density Sn,tot(ω) is 

 𝑆𝑛,𝑖𝑛+(𝜔) = 𝑖𝑛+
2(𝜔)𝑅𝐿

2|𝐻𝐿(𝑗𝜔)|
2 (2.24) 

Using Eq.s 2.24 and 2.21, the contributions to Sn,tot(ω), due to in+ and RL, 

respectively, can be compared as: 

 
𝑆𝑛,𝑖𝑛+(𝜔)

𝑆𝑛,𝐿(𝜔)
=
𝑖𝑛+

2(𝜔)𝑅𝐿
4𝑘𝑇

 (2.25) 

The contribution of Sin+(ω) can be neglected with respect to Sn,L(ω) when 

 𝑖𝑛+
2(𝜔) ≪

4𝑘𝑇

𝑅𝐿
 (2.26) 

For a large RL value, i.e., 100MΩ, Sin+(ω) will be negligible at room temperature 

when in+ << 13 fA/√Hz. Since the AD8067 has FET inputs, in+(ω) cannot be considered 

white, but is a linear function of the frequency, in the range where the flicker noise can 

be neglected [75]. In our model, the value of in+(ω) at 10 kHz was set to 1 fA/√Hz, a 

slightly higher value than the one reported in the datasheet of the OPAMP, which is 0.6 

fA/√Hz [70], and the slope of the linear function was set to +20 dB/dec [75]. Figure 

2.14 shows the excellent correspondence between the analytical model used for in+(ω) 

and the input equivalent noise current resulting from a simulation carried out with the 



 
 

SPICE model of the AD8067. 

 

Figure 2.14 Fitting between the analytical model and SPICE simulations of the input 

equivalent noise current of the AD8067. 

It is worth noticing that around the resonance frequencies of the QTF, the level 

of in+(ω) remains lower than the limit of 13 fA/√Hz determined above. Thus, the 

contribution Sin+(ω) is negligible with respect to Sn,L(ω) in the noise analysis of the 

circuit without losing accuracy. 

The analysis carried out so far allows for a comparison of the terms in Eq. 2.18 

to understand which ones are dominant for the output noise spectral density of the 

preamplifier. Figure 2.15 compares the spectral contributions of the OPAMP and the 

resistors R and RL to the overall Sn,tot(ω) at the output of the circuit. The terms due to 

en,op and in+, namely, Sn,op(ω) and Sn,in+(ω), respectively, are summed, for retrieving the 

overall noise contribution of the OPAMP (Sopamp(ω)) and allowing for a comparison of 

the analytical model with the results of SPICE simulations, in which the two terms are 

not distinguishable. The same RL values of Fig. 2.10 were considered (100 kΩ, 500 kΩ, 

6 MΩ, and 20 MΩ). 



 
 

 

Figure 2.15 Contributions to the overall output noise spectral density due to the 

OPAMP and resistors R and RL, for (a) RL = 100 kΩ, (b) RL = 500 kΩ, (c) RL = 6 MΩ, 

(d) RL = 20 MΩ: comparison between the results obtained with the analytical model 

and SPICE simulations. 

For all the considered cases, the results provided by the analytical model and the 

SPICE simulations exhibit a very good agreement. In addition, the contribution of the 

OPAMP to the total output noise is always negligible compared to the sum of the 

contributions from RL and R. Sn,L(ω) tends to overcome Sn,p(ω) for RL < 6 MΩ (Fig. 

2.15a,b), whereas the opposite trend is observed when the value of RL is larger than 6 

MΩ (Fig. 2.15c,d). This confirms the previous conclusion about the advantage of 

working with large values of the resistor RL in order to achieve good performance in 

terms of SNR. 

2.3.2 Transimpedance amplifier 

 The QTF model described in section 2.2, together with the parameters listed in 

Tab. 2.1, was employed to retrieve an analytical expression of the signal output voltage 

in a transimpedance amplifier, as a function of the frequency. Figure 2.16 shows the 



 
 

equivalent schematic circuit of a Transimpedance Amplifier (TIA). 

 

Figure 2.16 Equivalent circuit diagram of a transimpedance amplifier. Inor(jω) is the 

equivalent Norton current (see eq. 2.8), Znor(jω) is the equivalent Norton impedance 

and coincides with the QTF impedance. 

The total input capacitance Cin is 4 pF, corresponding to the sum of the differential 

input capacitance and common-mode input capacitance of the AD8067 OPAMP [70]. 

CF is the stray capacitance in parallel to the RF, due to feedback resistor parasitic and 

to the interconnections of the electronic components on the printed circuit board. As 

already mentioned, Inor(jω) is forced to flow in the feedback network, hence the squared 

module of the signal transfer function can be expressed as follows: 

 
|𝐻𝑇𝐼𝐴(𝑗𝜔)|

2 =
𝜔2𝐶𝑆

2

(1 −
𝜔2

𝜔𝑆2
)
2

+ 𝜔2𝑅2𝐶𝑆
2

∙
𝑅𝐹

2

1 + 𝜔2𝜏𝐹2
 

(2.27) 

where τF = RF ∙ CF is the time constant of the feedback network.  

Figure 2.17 shows the comparison between the results obtained with the 

analytical model and SPICE simulations for three different values of RF (1 MΩ, 5 MΩ 

and 10 MΩ).  



 
 

 

Figure 2.17 Comparison between analytical model and SPICE simulations of the signal 

transfer function, for RF = 1 MΩ, 5 MΩ and 10 MΩ. A stray capacitance CF of 100 fF 

was considered. 

The peak value of |𝐻𝑇𝐼𝐴(𝑗𝜔)|
2 always occurs at the series-resonant angular 

frequency ωS, regardless of the value of RF. If the impedance associated to CF is 

negligible with respect to RF, the transfer function in correspondence of the series 

resonance frequency is given by:  

 |𝐻𝑇𝐼𝐴(𝑗𝜔𝑆)|
2 =

𝑅𝐹
2

𝑅2
 (2.28) 

In addition, the curves obtained with the analytical model are in good agreement 

with the outcome of SPICE simulations. Therefore, Eq. 2.27 can be efficiently used to 

characterize the frequency response of the circuit in Fig. 2.16. 

Nevertheless, it is worth noticing that the peak value of |HTIA(jω)| is influenced 

by the parasitic capacitance CF, as can be deduced from Fig. 2.18. 



 
 

 

Fig. 2.18 Module of the TIA transfer function at the series-resonant frequency as a 

function of the feedback resistor RF. 

When RF < 20 MΩ, |HTIA(jωS)| tends to increase linearly with RF, as the impedance of 

the feedback capacitance is much higher than RF. For values of RF higher than 20 MΩ, 

the peak value of the transfer function module starts to deviate from the linear trend; 

for RF > 200 MΩ the peak saturates to a constant value. Therefore, the most important 

guideline for designing the layout of the amplifier board is to minimize the stray 

capacitance and preserve the gain of the transimpedance stage. 

Noise analysis can be performed following the same procedure described in the 

previous section. The equivalent circuit for the calculation of the output spectral noise 

density is shown in Fig. 2.19.  



 
 

 

Figure 2.19 Equivalent circuit for the calculation of the output noise spectral density 

in a transimpedance amplifier. CP,tot is the sum of the parasitic capacitance of the QTF 

CP and the input parasitic capacitance of the OPAMP Cin. 

In a transimpedance amplifier, the equivalent noise current at the non-inverting 

input flows to the ground, hence in+ does not provide any meaningful contribution to 

the total output noise. 

As already observed, the transfer function associated to the noise contribution of 

R is identical to the signal transfer function, hence: 

 𝑆𝑛,𝑄𝑇𝐹(𝜔) = 4𝑘𝑇𝑅 ∙ |𝐻𝑇𝐼𝐴(𝑗𝜔)|
2 (2.29) 

Considering Eq. 2.28, Eq. 2.29 can be rewritten as follows: 

 𝑆𝑛,𝑄𝑇𝐹(𝜔𝑆) = 4𝑘𝑇
𝑅𝐹

2

𝑅
 (2.30) 

The transfer function associated to the voltage noise of the OPAMP is: 

 |𝐻𝑒𝑛(𝑗𝜔)|
2
= (2.31) 

(1 − 𝜔2(𝐿𝐶𝑆 + 𝑅𝐹𝑅𝐶𝑆(𝐶𝑃2 + 𝐶𝐹)))
2
+ 𝜔2(𝑅𝐶𝑆 + 𝑅𝐹(𝐶𝑆 + 𝐶𝑃2 + 𝐶𝐹) − 𝜔

2𝐿𝑅𝐹𝐶𝑆(𝐶𝑃2 + 𝐶𝐹))
2

(1 − 𝜔2(𝐿𝐶𝑆 + 𝑅𝐹𝑅𝐶𝑆𝐶𝐹))2 + 𝜔2(𝑅𝐶𝑆 + 𝑅𝐹𝐶𝐹 − 𝜔2𝐿𝑅𝐹𝐶𝑆𝐶𝐹)2
 



 
 

where CP2 is the sum between CP and the common mode input capacitance CCM. 

This function peaks in correspondence of 𝜔𝑒𝑛,𝑝𝑒𝑎𝑘 = 1 √𝐿𝐶𝑆 + 𝑅𝐹𝑅𝐶𝑆𝐶𝐹⁄ , which 

coincides with ωS if τF is much shorter than the QTF time constant. In addition, if 𝑅𝐹 ≪

1 𝜔𝐶𝐹⁄ :  

 

𝑆𝑛,𝑜𝑝(𝜔𝑆) = 𝑒𝑛
2 [(1 +

𝑅𝐹
𝑅
)
2

+ 𝜔𝑆
2𝑅𝐹

2𝐶𝑃2
2] 

≅ 𝑒𝑛
2 (1 +

𝑅𝐹
𝑅
)
2

 

(2.32) 

Therefore, at the series resonant frequency, the output noise spectral density associated 

to the voltage noise of the OPAMP is proportional to the squared value of the feedback 

resistance. 

 The contribution from the equivalent noise current at the inverting input of the 

OPAMP can be computed as follows: 

 𝑆𝑛,𝑖𝑛−(𝜔) = 𝑖𝑛−
2 ∙

𝑅𝐹
2

1 + 𝜔2𝑅𝐹
2𝐶𝐹

2 ≅ 𝑖𝑛−
2𝑅𝐹

2 (2.33) 

Finally, the RF noise contribution is: 

 𝑆𝑛,𝐹(𝜔) = 4𝑘𝑇𝑅𝐹 ∙
1

1 + 𝜔2𝑅𝐹
2𝐶𝐹

2 ≅ 4𝑘𝑇𝑅𝐹 (2.34) 

It is worth noticing that the noise contributions from in- and RF do not depend on 

frequency, hence they can be considered as white noise sources. Figure 2.20 depicts the 

main noise contributions at the output of the transimpedance amplifier as a function of 

the frequency. 



 
 

 

Figure 2.20 Contributions to the overall output noise spectral density due to the 

OPAMP and resistors RF and R, for (a) RF = 1 MΩ, (b) RF = 5 MΩ, (c) RF = 10 MΩ, 

(d) RF = 20 MΩ: comparison between the results obtained with the analytical model 

and SPICE simulations. 

The figure shows a good matching between the analytical model and data 

obtained by SPICE simulations. Moreover, the noise contribution associated to the 

intrinsic resistance of the QTF is the dominant one, while RF and OPAMP noise 

contributions are negligible for increasing values of the feedback resistance. In 

particular, the SNR normalized to a 1 Hz integration bandwidth, associated to the noise 

contribution of RF only at the series-resonant frequency, is: 

 
𝑆𝑁𝑅𝑅𝐹(𝜔𝑆) =

𝑅𝐹
2

𝑅2

4𝑘𝑇𝑅𝐹
=

1

4𝑘𝑇

𝑅𝐹
𝑅2

 
(2.35) 

which is an increasing function of RF. Hence, even though Sn,F increases along 

with the feedback resistance, it can be neglected for RF > 5 MΩ, without losing 

reliability. 

The normalized SNR associated to the OPAMP voltage noise is: 



 
 

 𝑆𝑁𝑅𝑜𝑝(𝜔𝑆) =

𝑅𝐹
2

𝑅2

𝑒𝑛2 (1 +
𝑅𝐹
𝑅 )

2  

(2.36) 

 ≅

𝑅𝐹
2

𝑅2

𝑒𝑛2 ∙
𝑅𝐹

2

𝑅2

=
1

𝑒𝑛2
 

This contribution depends only on the input noise spectral density of the 

operational amplifier and can be optimized by working with a low-noise OPAMP, such 

as the AD8067. 

The analysis presented so far is valid whenever the gain of the transimpedance 

stage corresponds to the feedback impedance of the amplifier at the series-resonant 

frequency, depending on whether the condition of virtual short-circuit between the 

inputs of the OPAMP is respected. This condition is satisfied when the return ratio 

|𝜗(𝑗𝜔)| of the amplifier is high enough at ωS. In a feedback loop circuit, the return ratio 

is defined as the ratio between the controlling variable and the dependent variable, when 

the independent source is set to zero. Figure 2.21 shows the equivalent circuit for the 

calculation of the return ratio.  

 

Figure 2.21 Equivalent circuit for the calculation of the return ratio. 



 
 

The return ratio can be calculated with the following expression: 

 
𝜗(𝑗𝜔) = −

𝑣

𝑣
 

(2.37) 

The study of the return ratio of the preamplifier is crucial to evaluate the stability 

of the analyzed configuration. The most important parameter which quantifies the 

stability of a feedback loop amplifier is the phase margin (PM). The phase margin is 

defined by the following expression: 

 𝑃𝑀 = 180° + ∠𝜗(𝑗𝜔𝑥) (2.38) 

where 𝜔𝑥 is the frequency where the module of the return ratio is 0 dB.  

A feedback loop system is stable only if the phase margin is positive; indeed, if the 

phase margin is close to zero degrees, the feedback of the system becomes positive, and 

the output signal of the circuit will oscillate without control, thus compromising the 

stability of the system. 

Taking into account Eq. 2.37 and Fig. 2.21, the return ratio of the amplifier 

schematized in Fig. 2.14 is: 

Furthermore, the study of the return ratio of the preamplifier is crucial to evaluate 

the phase margin and, in turn, the stability of the analyzed configuration. 

The return ratio of the amplifier schematized in Fig. 2.16 is: 

𝜗(𝑗𝜔) = (2.39) 

𝐴0(𝜔)
(1 + 𝑗𝜔𝑅𝐹𝐶𝐹)(1 − 𝜔

2𝐿𝐶𝑆 + 𝑗𝜔𝑅𝐶𝑆)

1 − 𝜔2[𝐿𝐶𝑆 + 𝑅𝐹𝑅𝐶𝑆(𝐶𝐹 + 𝐶𝑃,𝑡𝑜𝑡)] + 𝑗𝜔[𝑅𝐶𝑆 + 𝑅𝐹(𝐶𝑆 + 𝐶𝐹 + 𝐶𝑃,𝑡𝑜𝑡) − 𝜔2𝐿𝑅𝐹𝐶𝑆(𝐶𝐹 + 𝐶𝑃,𝑡𝑜𝑡)]
 

where 𝐴0(𝜔) is the open-loop gain of the AD8067 OPAMP as a function of the angular 

frequency [70]. The module of the return ratio shows a pole at 𝜔𝑝𝑜𝑙𝑒 =

1 𝑅𝐹(𝐶𝐹 + 𝐶𝑆 + 𝐶𝑃,𝑡𝑜𝑡)⁄  and a zero at 𝜔𝑧𝑒𝑟𝑜 = 1 𝑅𝐹𝐶𝐹⁄ . For RF = 10 MΩ: 

 𝑓𝑝𝑜𝑙𝑒 =
𝜔𝑝𝑜𝑙𝑒

2𝜋
≅ 1.6𝑘𝐻𝑧 (2.40) 

 𝑓𝑧𝑒𝑟𝑜 =
𝜔𝑧𝑒𝑟𝑜
2𝜋

≅ 160𝑘𝐻𝑧 (2.41) 

The open-loop gain of the AD8067 has a pole at 𝑓𝑂𝐿 ≅ 64𝑘𝐻𝑧; the first pole of |𝜗(𝑗𝜔)| 

is 𝑓𝑝𝑜𝑙𝑒. As a consequence, the Gain Bandwidth product GBW of the TIA is: 



 
 

 𝐺𝐵𝑊𝑡𝑖𝑎 = 𝐴0 ∙ 𝑓𝑝𝑜𝑙𝑒 ≅ 7𝑀𝐻𝑧 (2.42) 

 𝐴0 =
𝐺𝐵𝑊𝑜𝑝

𝑓𝑂𝐿
∙ √2 (2.43) 

where 𝐴0 is the DC value of the open-loop gain and 𝐺𝐵𝑊𝑜𝑝 ≅ 200 MHz is the gain 

bandwidth product of the AD8067. Therefore, since 𝑓𝑧𝑒𝑟𝑜 is located between 𝑓𝑂𝐿 and 

𝐺𝐵𝑊𝑡𝑖𝑎, the phase margin is about 90 degrees, thus ensuring an excellent stability. 

Moreover, the module of the return ratio in correspondence of the series-resonant 

frequency is about 33 dB, which guarantees a good virtual short-circuit between the 

inputs of the operational amplifier. Figure 2.22 shows SPICE simulations of magnitude 

and phase of the return ratio for four different values of feedback resistance (RF = 1 

MΩ, 5 MΩ, 10 MΩ, 20 MΩ). 

 

Figure 2.22 Magnitude and phase of the return ratio for (a) RF = 1 MΩ, (b) RF = 5 MΩ, 

(c) RF = 10 MΩ, (d) RF = 20 MΩ. Dashed black lines identify the frequencies at which 

the module of the return ratio is 0 dB.  

The phase margin increases from 67.2° for RF = 1 MΩ up to 87.4° for RF = 20 



 
 

MΩ. Furthermore, as suggested by Eq. 2.35, increasing RF improves the output SNR; 

as a preliminary result, the performance of a transimpedance amplifier may benefit from 

a high feedback resistance. However, it is worth mentioning that |𝜗(𝑗𝜔𝑆)| shows the 

opposite trend with respect to the phase margin: sweeping RF from 1 MΩ to 20 MΩ 

causes a drop of |𝜗(𝑗𝜔𝑆)| from 52.3 dB to 27.6 dB, thus making the OPAMP virtual 

ground less effective. Moreover, since the impedance of the feedback network is limited 

by the parasitic capacitance CF, it is not convenient to increase too much RF. Therefore, 

the feedback resistance of a transimpedance amplifier must be properly chosen as a 

trade-off between the stability and reliability of the preamplifier. 

2.3.3 Charge sensitive amplifier 

The last examined configuration is the Charge Sensitive Amplifier (CSA). As 

already mentioned, the circuit diagram of a CSA and of a TIA are identical (see Fig. 

2.16). The main difference is that in the CSA configuration, CF is a physical capacitor 

and RF is higher with respect to the transimpedance amplifier (⁓ 100 MΩ). The output 

signal is proportional to the electric charge deposited on the QTF due to piezoelectric 

effect [57, 58]: 

 𝑉𝑜𝑢𝑡(𝑡) = −
𝑞𝑄𝑇𝐹(𝑡)

𝐶𝐹
=
1

𝐶𝐹
∙ ∫ 𝑖𝑄𝑇𝐹(𝜏)𝑑𝜏

𝑡

0

 (2.44) 

The feedback resistor RF does not contribute to the output voltage, but it is needed 

to prevent the saturation of the operational amplifier. Since 1 𝜔𝐶𝐹⁄ ≪ 𝑅𝐹, the signal 

transfer function of the CSA can be calculated using the approximation in Eq. 2.27: 

 |𝐻𝑐𝑠𝑎(𝑗𝜔)|
2 = (

𝐶𝑆
𝐶𝐹
)
2 1

(1 − 𝜔2𝐿𝐶𝑆)2 + 𝜔2𝑅2𝐶𝑆
2 (2.45) 

At the series-resonant frequency: 

 
|𝐻𝑐𝑠𝑎(𝑗𝜔𝑆)|

2 =
1

𝜔𝑆2𝑅2𝐶𝐹
2 (2.46) 

A comparison with the gain of a TIA at the resonance frequency (see Eq. 2.28) 



 
 

gives: 

 
1

𝜔𝑆2𝑅2𝐶𝐹
2 =

𝑅𝐹
2

𝑅2
⇒ 𝐶𝐹 =

1

𝜔𝑆𝑅𝐹
 (2.47) 

Therefore, to get the same gain of a TIA with a 10 MΩ feedback resistance, a 

feedback capacitance of about 0.5 pF should be employed. However, this capacitance 

value is not feasible, as it is comparable to the stray capacitance of a printed circuit 

board. For this reason, high gains with a CSA cannot be reached. The comparison 

between the analytical model of the transfer function and data obtained by means of 

SPICE simulations is shown in Fig. 2.23, for four different values of CF. The QTF 

parameters listed in Tab. 2.1 and the AD8067 SPICE model were employed in the 

analysis, while the feedback resistor RF was set to 100 MΩ. 

 

Figure 2.23 Comparison between analytical model and SPICE simulations of the signal 

transfer function, for CF = 2.2 pF, 2.7 pF, 4.7 pF and 10 pF. 

 The curves computed with Eq. 2.45 and those obtained by SPICE simulations are 

in good agreement. It is worth noticing that, as already observed in the TIA 

configuration, the peak of the output signal lies at the series-resonant frequency, 



 
 

regardless of the parameters of the readout electronics. 

The equivalent circuit for the calculation of the output noise is identical to the one 

reported in Fig. 2.19. The contribution of the QTF intrinsic resistance to the output 

noise spectral density is: 

 𝑆𝑛,𝑄𝑇𝐹(𝜔) = 4𝑘𝑇𝑅 ∙ |𝐻𝑐𝑠𝑎(𝑗𝜔)|
2 (2.48) 

At the series resonance frequency, it results: 

 𝑆𝑛,𝑄𝑇𝐹(𝜔𝑆) ≅
4𝑘𝑇𝑅

𝜔𝑆2𝑅2𝐶𝐹
2 =

4𝑘𝑇

𝜔𝑆2𝑅𝐶𝐹
2 (2.49) 

The in- noise contribution can be compared to the same contribution in the TIA 

configuration. Neglecting RF and CF in the CSA and in the TIA, respectively, one 

obtains: 

 𝑆𝑖𝑛−,𝑐𝑠𝑎(𝜔𝑆) ≅
𝑖𝑛−

2

𝜔𝑆2𝐶𝐹
2 (2.50) 

 𝑆𝑖𝑛−,𝑡𝑖𝑎(𝜔𝑆) ≅ 𝑖𝑛−
2 ∙ 𝑅𝐹

2 (2.51) 

By comparing these expressions with Eqs. 2.46 and Eq. 2.28, it can be noticed that the 

reduction of the current noise in the CSA is proportional to the reduction of the gain at 

the resonance frequency. Hence, the contribution of the OPAMP current noise is 

negligible in the CSA as well. 

 The transfer function of the OPAMP voltage noise is expressed by: 

 𝑆𝑛,𝑜𝑝(𝑗𝜔) = (2.52) 

𝑒𝑛
2 (
𝐶𝑃 + 𝐶𝑆 + 𝐶𝐹

𝐶𝐹
)
2 (1 − 𝜔2

𝐿𝐶𝑆(𝐶𝐹 + 𝐶𝑃)
𝐶𝑆 + 𝐶𝐹 + 𝐶𝑃

)
2

+ 𝜔2𝑅2 (
𝐶𝑆(𝐶𝐹 + 𝐶𝑃)
𝐶𝑆 + 𝐶𝐹 + 𝐶𝑃

)
2

(1 − 𝜔2𝐿𝐶𝑆)2 + 𝜔2𝑅2𝐶𝑆
2  

This function peaks in correspondence of ωS, where its value is: 

 

𝑆𝑛,𝑜𝑝(𝑗𝜔𝑆) = 𝑒𝑛
2 [(1 +

𝐶𝑃
𝐶𝐹
)
2

+
1

𝜔𝑆2𝑅2𝐶𝐹
2]

≅
𝑒𝑛

2

𝜔𝑆2𝑅2𝐶𝐹
2 

(2.53) 



 
 

Finally, the noise spectral density associated to the feedback resistor RF is: 

 𝑆𝑛,𝐹(𝑗𝜔) =
4𝑘𝑇𝑅𝐹

1 + 𝜔2𝑅𝐹
2𝐶𝐹

2 ≅
4𝑘𝑇

𝜔2𝑅𝐹𝐶𝐹
2 (2.54) 

which is almost constant around the series-resonant frequency. 

Figure 2.24 displays the output noise spectral density associated to each noise 

contribution, for four different values of the feedback capacitor. 

 

Figure 2.24 Contributions to the overall output noise spectral density due to the 

OPAMP and resistors RF and R, for (a) CF = 2.2 pF, (b) CF = 2.7 pF, (c) CF = 4.7 pF, 

(d) CF = 10 pF: comparison between the results obtained with the analytical model and 

SPICE simulations. 

As observed in the previously discussed configurations, the matching between 

the analytical model and the outcome of SPICE simulations is excellent. In addition, 

the dominant noise contribution is the one associated to the intrinsic resistance of the 

QTF, regardless of the value of CF. The noise contributions associated to the OPAMP 

and to the feedback resistor are both negligible, regardless of the value of the gain 

parameter CF. This behavior differs from what was observed in the analysis of the TIA 

configuration, where the contribution of the feedback resistor can be neglected only if 



 
 

RF is sufficiently high (> 5 MΩ). Since in the CSA configuration RF is much higher than 

in TIA, the RF output noise contribution is much lower (as suggested by Eq. 2.54). 

Moreover, the SNR associated to the noise of the feedback resistor is independent of 

CF at the series-resonant frequency: 

 𝑆𝑁𝑅𝑅𝐹(𝜔𝑆) =

1

𝜔𝑆2𝑅2𝐶𝐹
2

4𝑘𝑇

𝜔𝑆2𝑅𝐶𝐹
2

=
1

4𝑘𝑇𝑅
 (2.55) 

Hence, this contribution depends only on R, which is an intrinsic parameter of the 

QTF. 

As for the noise contribution of the OPAMP, SNRop can be easily derived from 

Eq. 2.53: 

 𝑆𝑁𝑅𝑜𝑝(𝜔𝑆) =

1

𝜔𝑆
2𝑅2𝐶𝐹

2

𝑒𝑛2

𝜔𝑆2𝑅2𝐶𝐹
2

=
1

𝑒𝑛2
 (2.56) 

This ratio corresponds exactly to the one computed in TIA configuration (see Eq. 

2.36), therefore, choosing a low-noise operational amplifier, the noise contribution 

from the OPAMP can be neglected in both configurations. 

Let us now analyze the return ratio in the CSA configuration. The expression of 

the return ratio is identical to the one already discussed in the TIA configuration (see 

Eq. 2.39). The main difference is that RF and CF values are higher, hence the pole and 

the zero of the return ratio are located at lower frequencies. Considering Eqs. 2.40 and 

2.41 for CF = 2.2 pF, one obtains: 

 𝑓𝑝𝑜𝑙𝑒 = 142𝐻𝑧 (2.57) 

 𝑓𝑧𝑒𝑟𝑜 = 723.4𝐻𝑧 (2.58) 

Unlike the TIA configuration, fpole and fzero are closer to each other and further 

from the OPAMP pole fOL. This implies that in correspondence of ωS, the module of the 

return ratio is remarkably higher, thus ensuring a good virtual ground at the inputs of 

the amplifier.  

Figure 2.25 shows the magnitude and phase of the return ratio in the CSA for CF 



 
 

= 2.2 pF, 2.7 pF, 4.7 pF and 10 pF. 

 

Figure 2.25 Magnitude and phase of the return ratio for (a) CF = 2.2 pF, (b) CF = 2.7 

pF, (c) CF = 4.7 pF, (d) CF = 10 pF. Dashed black lines identify the frequencies at which 

the module of the return ratio is 0 dB. 

The module of |𝜗(𝑗𝜔)| assumes its highest value (58.4 dB) for CF = 10 pF, and 

decreases with the feedback capacitance, up to 45.9 dB for CF = 2.2 pF. The unity gain 

frequency GBW is remarkably higher with respect to the TIA configuration, ranging 

from 62 MHz for CF = 2.2 pF to 126 MHz for CF = 10 pF. Therefore, GBW is very 

close to the out-of-band pole of the AD8067, which lies at about 334 MHz. 

Consequently, an increase of CF beyond 2.7 pF leads to a drastic drop of the phase 

margin (11.8° for CF = 10 pF), which may cause instabilities.  

In conclusion, since the SNR is not affected by variations of CF, it is preferable 

to work with low values of the feedback capacitor (CF < 3 pF), keeping both a good 

phase margin and a high return ratio. 

 

 



 
 

Chapter 3: Lock-in Amplifier 

modeling for noise analysis 

The output signal of the analog preamplifier employed for the QTF readout needs 

further processing to successfully exploit its resonance properties. Synchronous 

detection techniques based on lock-in amplifiers (LIAs) are utilized in QEPAS to 

extract the desired signal harmonic from the noise floor [68]. The use of a LIA in the 

signal conditioning chain of a QEPAS sensor allows the enhancement of the SNR, thus 

improving the sensitivity of the sensing system [50]. LIAs exploit phase sensitive 

detection based on a mixer and an adjustable low-pass filter (LPF) to retrieve the output 

signal. In particular, the low-pass filter influences the noise level at the output of the 

LIA; therefore, the choice of the LPF time constant crucially impacts on the output SNR 

and, in turn, on the detection capabilities of the sensor. 

In this chapter, a brief overview of the LIA working principle is provided, 

focusing on the time domain response of a low-pass filter. Finally, the influence of the 

LPF time constant on the output SNR for each preamplifier configuration is discussed, 

and results are compared. 

3.1 Lock-in amplifier working principle 

The structure of a LIA was described in section 2.2 and sketched in Fig. 2.2. The 

main feature of a LIA is its capability to retrieve low amplitude signals, up to few nV 

[69], in a noisy background, by means of a phase-sensitive detector (PSD). PSD 

consists of a multiplier and a low-pass filter (see Fig. 2.2).  

Assuming that an analog signal is fed to the input of a LIA, this can be represented 

as the sum between the 𝜔𝑠-frequency component to be extracted and all other 

components (treated as noise components), according to the Fourier theorem: 

 𝑉𝑠(𝑡) = 𝐴𝑠 cos(𝜔𝑠𝑡 + 𝜑𝑠) +∑𝐴𝑛cos(𝜔𝑛𝑡 + 𝜑𝑛)

𝜔𝑛

 (3.1) 



 
 

where the subscript “s” refers to the signal, and the subscript “n” refers to the noise 

components. 

The reference signal Vref(t) is then multiplied by Vs(t): 

 𝑉𝑠(𝑡) ∙ 𝑉𝑟𝑒𝑓(𝑡) = 𝐴𝑠𝐴𝑟𝑒𝑓 cos(𝜔𝑠𝑡 + 𝜑𝑠) cos(𝜔𝑟𝑒𝑓𝑡 + 𝜑𝑟𝑒𝑓) 

+𝐴𝑟𝑒𝑓 cos(𝜔𝑟𝑒𝑓𝑡 + 𝜑𝑟𝑒𝑓)∑𝐴𝑛cos(𝜔𝑛𝑡 + 𝜑𝑛)

𝜔𝑛

 
(3.2) 

This expression can be rewritten as follows: 

  
𝑉𝑠(𝑡) ∙ 𝑉𝑟𝑒𝑓(𝑡) =

𝐴𝑠𝐴𝑟𝑒𝑓

2
{cos[(𝜔𝑠 + 𝜔𝑟𝑒𝑓)𝑡

+ (𝜑𝑠 + 𝜑𝑟𝑒𝑓)]} 

+
𝐴𝑠𝐴𝑟𝑒𝑓

2
{cos[(𝜔𝑠 − 𝜔𝑟𝑒𝑓)𝑡 + (𝜑𝑠 − 𝜑𝑟𝑒𝑓)]} 

+
𝐴𝑟𝑒𝑓

2
∑𝐴𝑛 cos[(𝜔𝑛 + 𝜔𝑟𝑒𝑓)𝑡 + (𝜑𝑛 + 𝜑𝑟𝑒𝑓)]

𝜔𝑛

 

+
𝐴𝑟𝑒𝑓

2
∑𝐴𝑛 cos[(𝜔𝑛 − 𝜔𝑟𝑒𝑓)𝑡 + (𝜑𝑛 − 𝜑𝑟𝑒𝑓)]

𝜔𝑛

 

(3.3) 

This signal is sent to a low-pass filter, which preserves only its DC component. 

Therefore, only the terms ωs = ωref  and ωn = ωref  are nonzero. As a result, the in-phase 

component of the output signal can then be expressed as: 

 

𝑉𝑥 =
𝐴𝑠𝐴𝑟𝑒𝑓

2
cos(𝜑𝑠 − 𝜑𝑟𝑒𝑓)

+
𝐴𝑟𝑒𝑓𝐴𝑛

2
cos(𝜑𝑛 − 𝜑𝑟𝑒𝑓) 

(3.4) 

Hence, the output signal of a LIA is sensitive to the phase difference between the 𝜔𝑠-

frequency component of the input signal and the reference one; moreover, only the 

noise component at the reference frequency affects the output signal.  

The quadrature component is obtained employing a second PSD; the input signal 

is multiplied by the 90° shifted-version of the reference signal; the out-of-phase 

component can then be retrieved applying a low-pass filter to the output of the 



 
 

multiplier: 

 

𝑉𝑦 =
𝐴𝑠𝐴𝑟𝑒𝑓

2
sin(𝜑𝑠 − 𝜑𝑟𝑒𝑓)

+
𝐴𝑟𝑒𝑓𝐴𝑛

2
sin(𝜑𝑛 −𝜑𝑟𝑒𝑓) 

(3.5) 

The quadrature component is proportional to the sine of the phase shift between 

Vs(t) and Vref(t) (see Eq. 2.3), therefore if Aref is known, it is possible to get As and φs 

from the measured values of Vx and Vy. 

PSDs can be implemented either in analog or in digital LIAs. In digital LIAs, the 

input signal is digitalized by means of an A/D converter [69]. Since the reference sine 

waves are computed with high resolutions (up to 20 bits of accuracy), digital LIAs show 

better harmonic suppression with respect to their analog version. In addition, they are 

offset-free and are not sensitive to amplitude drifts [69].  For these reasons, digital PSDs 

are usually preferable to analog PSDs. 

3.2 Modeling of the lock-in filter 

 The low-pass filter of a PSD plays a key role in the maximization of the output 

SNR, since it suppresses the noise at the output of the LIA. As an approximation, let us 

consider an RC low-pass filter model [68]; its transfer function is: 

 𝐻(𝑗𝜔) =
1

(1 + 𝑗𝜔𝜏)𝑛
 (3.6) 

where τ is the time constant and n is the filter order.  

The output signal of the LPF in the frequency domain can be easily retrieved by 

multiplying the filter transfer function by the Fourier transform of the demodulated 

signal. Since the demodulation operation shifts the spectrum of the LIA input signal 

around the reference frequency 𝜔𝑟𝑒𝑓 = 2𝜋f𝑟𝑒𝑓, the output signal of the lock-in 

amplifier is: 

 𝑉𝑜𝑢𝑡(𝜔) = 𝑉𝑖𝑛(𝜔 − 𝜔𝑟𝑒𝑓)𝐻(𝑗𝜔) (3.7) 

Therefore, LIA operates as a bandpass filter, that picks out the frequency spectrum 

centered at fref and extends it on both sides by the LPF bandwidth [50,68]. When the 



 
 

QTF is excited at its series-resonant frequency fs, the spectral distribution of the 

preamplifier output signal can be modelled as a Dirac delta function. Consequently, the 

bandwidth of the LPF does not affect the LIA output signal. On the other hand, the 

input noise of the LIA (which corresponds to the output noise of the preamplifier) has 

its own proper spectral distribution, as shown in chapter 2. This implies that the output 

noise level depends both on the noise spectral density at the output of the preamplifier, 

and on the parameters of the low-pass filter. In particular, the cut-off frequency of the 

filter f3dB depends either on the time constant τ and on the filter order n. The order n, in 

addition, contributes to the steepness of the filter: a higher value of n increases the filter 

roll-off, thus improving its selectivity, but makes the filter more complex. 

 The relationship between f3dB, n and τ is expressed by the following relation [73]: 

 𝑓3𝑑𝐵
(𝑛)

=
√21 𝑛⁄ − 1

2𝜋𝜏
 (3.8) 

meaning that, for a fixed time constant, the cut-off frequency of the filter decreases as 

the filter order increases. Conversely, if the LPF order is fixed, f3dB decreases as τ 

increases, thus making the filter more selective. This behavior is shown in Fig. 3.1. 

 

Figure 3.1 Magnitude of the transfer function of a first order LPF, for τ = 1 ms, 10 ms, 

50 ms and 100 ms.  

It is convenient to define a filter in terms of its equivalent noise bandwidth (ENB), 



 
 

rather than its cut-off frequency. The ENB is the bandwidth of an equivalent brick-wall 

filter with an equivalent white noise at the output as the filter under investigation 

[50,68]. The relation between the ENB, the order n and the time constant τ is: 

 𝐸𝑁𝐵(𝑛) =
(2(𝑛 − 1))!

(2𝑛(𝑛 − 1)!)2
∙
1

𝜏
 (3.9) 

To study the behavior of a low-pass filter in the time domain, it is useful to 

analyze the response of the system to a voltage step signal, as depicted in Fig. 3.2. 

 

Figure 3.2 Step response of a first order low-pass filter to a step input signal with a 1 

V amplitude. 

Longer τ implies longer times for the signal to reach a steady-state value. Table 

3.1 shows the main frequency and time domain parameters of a low-pass filter, up to 

the fourth order [68,74].  

n 

Filter roll-off Bandwidth  

tsettle,95% 

[s] 
dB/oct dB/dec 

f3dB 

[1/τ] 

ENB 

[1/τ] 

1 6 20 0.1592 0.2500 4.6 ∙ τ 



 
 

2 12 40 0.1024 0.1250 6.6 ∙ τ 

3 18 60 0.0811 0.0937 8.4 ∙ τ 

4 24 80 0.0692 0.0781 10 ∙ τ 

Table 3.1 Overview of the properties of a nth order low-pass filter. 

A longer time constant improves the noise suppression capabilities of the filter, 

but it negatively affects the acquisition time. As an example, at τ = 1 ms for a second 

order filter ENB is equal to 125 Hz, and the corresponding settling time at 95% is 6.6 

ms; at τ = 100 ms, in a filter of the same order, the ENB is 100 times lower, but the 

settling time is 100 times higher. Accordingly, increasing the order n, the filter becomes 

sharper and more selective, but the settling time gets longer. In conclusion, a trade-off 

between accuracy and response time must be carefully chosen for setting a proper LIA 

time constant, especially if fast QEPAS measurements are required. 

3.3 Influence of lock-in amplifier time constant in the three 

amplifier configurations 

Synchronous detection techniques, based on laser modulation and LIA, are 

always used in QEPAS sensors to increase the SNR of the measurements. In chapter 2, 

the amplitude of the signal and its noise spectral density were retrieved in the frequency 

domain at the output of the three different preamplifiers. These expressions can be 

conveniently exploited to evaluate the SNR at the output of the LIA. Thanks to 

synchronous demodulation and narrow-band low-pass filtering, the LIA output signal 

is a DC level proportional to the amplitude of the preamplifier response, at the operation 

frequency. When the preamplifier response is acquired at the QTF resonance frequency, 

the SNR can be investigated in a small range around fs. Thus, if the preamplifier 

response is acquired at a certain frequency fop close to fs, the output signal is 

proportional to |H(fop)|. Regarding noise components, because of the demodulation, the 

only the noise spectrum centered around the LIA reference frequency is transferred to 

LIA. This noise is then filtered by means of the LIA narrow low-pass filter. As a result, 



 
 

the LIA operates as a narrow band-pass filter centered around its reference frequency. 

Hence, LIA was modelled as a biquadratic band-pass filter with a transfer function 

𝐻𝐿𝐼𝐴(𝜔) given by: 

 𝐻𝐿𝐼𝐴(𝜔) =
𝑗
𝜔𝑜𝑝
𝑄 𝜔

𝜔𝑜𝑝2 − 𝜔2 + 𝑗
𝜔𝑜𝑝
𝑄 𝜔

 (3.10) 

In the following sections, the influence of the LIA time constant on the output 

noise level in the three preamplifier configurations will be discussed. General 

guidelines for the choice of the amplifier parameters will be derived, aimed at 

maximizing the SNR and optimizing the acquisition time in QEPAS measurements. 

3.3.1 Voltage amplifier 

Considering the results obtained in section 2.3.1, the main noise contributions in 

the voltage preamplifier are associated to the QTF intrinsic resistance R and the bias 

resistor RL. The QTF intrinsic resistance is also characterized by an amplitude flicker 

noise contribution, which does not provide any meaningful contribution to the overall 

amplitude noise in the bandwidth of interest [93]. The phase flicker noise contribution 

of R was not considered in this analysis. Therefore, the behavior of the SNR at the 

output of the LIA as a function of the chosen operating frequency fop = ωop/2π can be 

described by means of the following expression: 

 

𝑆𝑁𝑅𝑛(𝜔𝑜𝑝) =
|𝐻𝑣(𝜔𝑜𝑝)|

√∫ 𝑆𝑛,𝑡𝑜𝑡(𝜔)|𝐻𝐿𝐼𝐴(𝑗𝜔)|2𝑑𝜔
+∞

−∞

= 

≅
|𝐻𝑣(𝜔𝑜𝑝)|

√∫ 𝑆𝑛,𝑄𝑇𝐹(𝜔)|𝐻𝐿𝐼𝐴(𝑗𝜔)|2𝑑𝜔
+∞

−∞
+ ∫ 𝑆𝑛,𝐿(𝜔)|𝐻𝐿𝐼𝐴(𝑗𝜔)|2𝑑𝜔

+∞

−∞

 

(3.11) 

where the amplitude of the input signal Vin was normalized to 1 V. 

By separating the noise contributions for R and RL, two expressions can be 

defined: 



 
 

 

𝑆𝑁𝑅𝑛,𝑄𝑇𝐹
2 (𝜔𝑜𝑝) =

|𝐻𝑣(𝜔𝑜𝑝)|
2

∫ 𝑆𝑛,𝑄𝑇𝐹(𝜔)|𝐻𝐿𝐼𝐴(𝑗𝜔)|2𝑑𝜔
+∞

−∞

 (3.12) 

and 

 
𝑆𝑁𝑅𝑛,𝐿

2 (𝜔𝑜𝑝) =
|𝐻𝑣(𝜔𝑜𝑝)|

2

∫ 𝑆𝑛,𝐿(𝜔)|𝐻𝐿𝐼𝐴(𝑗𝜔)|2𝑑𝜔
+∞

−∞

 (3.13) 

Thus, the overall normalized squared-SNR can be rewritten as follows: 

 
𝑆𝑁𝑅𝑛

2 =
1

∑
1

𝑆𝑁𝑅𝑛,𝑖
2𝑖

=
1

1

𝑆𝑁𝑅𝑛,𝑄𝑇𝐹
2 +

1

𝑆𝑁𝑅𝑛,𝐿
2

 
(3.14) 

First, let us consider a very narrow-bandwidth f3dB = 0.5 Hz, corresponding to a 

settling time of ~1.3 s for an equivalent first-order LIA low-pass filter. In this case, the 

behavior of the integrated noise as a function of fop is expected to be very similar to the 

output noise spectral density. Since the R-noise and the signal have the same transfer 

function Hv(f), the SNRn,QTF contribution is expected to be almost spectrally flat. 

Nonetheless, considering a representative value for RL = 100 kΩ, SNRn,QTF peaks as 

|Hv(f)|, because of the effect of integration, as reported in Fig. 3.3. For a bandpass filter, 

the effect of the integration bandwidth on the input noise spectral density can be more 

intuitively represented by means of a simple brick-wall filter. 

 



 
 

Figure 3.3 Integration of the contribution Sn,QTF (red line), due to R, to the total output 

spectral noise density at a low-pass filter bandwidth of 0.5 Hz around the operating 

frequency fop, for fop = fpeak and fop ≠ fpeak (RL = 100 kΩ). 

Indeed, in the narrow integration bandwidth, the function Sn,QTF(f) takes 

monotonically decreasing values on both sides of fop=fpeak; whereas, for any other 

frequency values, Sn,QTF(f) decreases in one direction and increases in the other one, as 

reported in Fig. 3.3. As a consequence, the value of the integrated noise normalized to 

the value of the signal reaches a minimum value at fop=fpeak, generating a peak value in 

the function SNRn,QTF(fop). 

The presence of a peak value for SNRn,QTF is also visible in Fig. 3.4, which reports 

SNRn,QTF as a function of the frequency fop, for different values of RL. Moreover, for 

increasing values of RL, the peak moves from fS to fP; for large values of RL, it becomes 

slightly more pronounced, even if the overall behavior remains almost spectrally flat. 

 

Figure 3.4 QTF noise contribution to the SNRn at the LIA output as a function of the 

operating frequency, for different values of RL and at a low-pass filter bandwidth of f3dB 

= 0.5 Hz. 

As for the term SNRn,L, its behavior as a function of fop is strongly affected by the 

minimum of the noise spectral density Sn,L at fs. This effect prevails over the peak value 



 
 

of the signal, which moves towards fp for increasing values of RL, resulting in a local 

maximum value on SNRn,L which appears at the series-resonant frequency fs for any 

value of RL. Figure 3.5 shows the behavior of SNRn,L as a function of the operation 

frequency, for different RL values. 

 

Figure 3.5 RL noise contribution to the SNRn at the LIA output as a function of the 

operating frequency, for different values of RL and at a low-pass filter bandwidth f3dB = 

0.5 Hz. 

Higher values of SNRn,L are obtained as RL increases. Therefore, as reported in 

Eq. 3.14, SNRn,QTF becomes crucial in the calculation of the overall SNR for large values 

of RL. 

Let us consider the overall SNR at the LIA output given by Eq. 3.14 as a function 

of fop. Figure 3.6 reports the SNRn as a function of fop for different values of RL with f3dB 

= 0.5 Hz.  



 
 

 

Figure 3.6 Total normalized signal-to-noise ratio SNRn at the LIA output as a function 

of the operation frequency, for different values of RL and at a low-pass filter bandwidth 

of f3dB = 0.5 Hz (solid lines). The corresponding results of SPICE simulations are also 

reported as dotted lines. 

A comparison between the results given by the analytical model and the 

corresponding SPICE simulation is also provided, showing an excellent agreement 

between the two methods of simulation. For low values of RL, SNRn,QTF is almost flat 

(see Fig. 3.4) and the peak of the total SNRn coincides with the peak of SNRn,L. Hence, 

the best operation frequency for QEPAS is the series-resonant frequency fS of the QTF. 

As RL increases, as already pointed out, the contribution of SNRn,L becomes less 

relevant, thus a local peak in the SNRn function appears, corresponding to the peak of 

SNRn,QTF, which occurs at the parallel-resonant frequency fP.  

Figure 3.6 shows that the SNRn peak feature at fS becomes less sharp as RL 

increases. For RL = 100 MΩ, the SNRn becomes quite flat around fS and a sharp peak 

appears at fP. In general, slightly better results in terms of SNR are obtained with large 

values of RL. The study above was carried out for a LIA with a very narrow-band filter, 

which is useful when long acquisition time for a single measurement can be tolerated. 

With fast measurements [76,77], the bandwidth of the LIA filter must be increased, and 

the results of the previous analysis must be revised. Moreover, when fast measurements 



 
 

are needed, the QTF response time is another parameter to be included in the discussion. 

Being an acoustic resonator, the QTF response time is given by: 

 𝜏 =
𝑄

𝜋𝑓𝑠
 (3.15) 

For a standard 32.7 kHz-QTF having at atmospheric pressure Q ~ 13000, a long 

integration time (300 to 400 ms) is required for the acquisition of the LIA output signal. 

Nevertheless, specific QEPAS techniques such as Beat Frequency (BF) QEPAS exploit 

the fast transient response of an acoustically excited QTF to retrieve the gas 

concentration, the resonance frequency, and the quality factor of the QTF [78]. This 

approach overcomes the limitations imposed by the time response of the QTF, allowing 

shorter acquisition times and faster measurements. 

Regarding the contribution to the total SNR at the LIA output due to the resistor 

R, since the integration bandwidth is larger, the effect of the integration around fpeak, 

(see Fig. 3.3) is more relevant. Consequently, the peak of SNRn,QTF as a function of the 

operation frequency centered at fpeak becomes sharper and more pronounced. Figure 3.7 

shows the behavior of SNRn,QTF as a function of fop when f3dB = 5 Hz, corresponding to 

a settling time of about 130 ms for an equivalent first order LIA low-pass filter, for the 

same values of RL considered in Fig. 3.4. 

 



 
 

Figure 3.7 R noise contribution to the SNRn at the LIA output as a function of the 

operation frequency, for different values of RL and at a low-pass filter bandwidth of f3dB 

= 5 Hz. 

Let us analyze the RL noise contribution to the SNR for increasing values of the 

LIA bandwidth. The effect of the minimum of Sn,L at fS tends to be less relevant, because 

of the increase of the integration bandwidth. Therefore, the function SNRn,L becomes 

flatter around the series-resonant frequency. Nonetheless, for small values of RL, the 

peak of the signal is located at fS and, consequently, the peak of SNRn,L is still at fS. 

Increasing RL, the peak value moves towards the parallel-resonant frequency fP and the 

effect of the minimum of Sn,L becomes less relevant, so SNRn,L tends to be flat. For large 

values of RL, Sn,L values decrease (see Fig. 2.13c,d), whereas the peak value at fP 

increases; as a result, SNRn,L exhibits a peak at fP, which becomes sharper as RL 

increases. The behavior of SNRn,L as a function of the operation frequency fop is shown 

in Fig. 3.8 for f3dB = 5 Hz. 

 

Figure 3.8 RL noise contribution to the SNRn at the LIA output as a function of the 

operation frequency, for different values of RL and at a low-pass filter bandwidth of f3dB 

= 5 Hz. 

Finally, Figure 3.9 shows the SNRn functions for low values of RL. 



 
 

 

Figure 3.9 Total SNRn at the LIA output as a function of the operation frequency, for 

different values of RL and at a low-pass filter bandwidth of f3dB = 5 Hz (solid lines). The 

corresponding results of SPICE simulations are also reported (dotted lines). 

As RL increases, the SNRn peak at fs becomes less pronounced: for RL values larger 

than ~1 MΩ, a peak appears close to fP, where both SNRn,QTF and SNRn,L have their 

maximum value. This peak is sharper as RL increases, as shown in Fig. 3.9, which 

represents the trend of SNR as a function of fop for f3dB = 5 Hz. The SNRn peak at 100 

MΩ is more than two times higher than the values close to fS. As before, SPICE 

simulations are in excellent agreement with the results provided by the analytical 

model.  

Finally, the Normalized Noise Equivalent Absorption (NNEA), an important 

parameter to compare QEPAS sensors [19,63,71,78,79], can be calculated. NNEA is 

defined as: 

 𝑁𝑁𝐸𝐴 =
𝑃 ∙ 𝛼

𝑆𝑁𝑅 ∙ √∆𝑓
 (3.16) 

where P is the laser optical power, α is the absorption coefficient of the gas under 

investigation, SNR is the signal-to-noise ratio, and Δf is the integration bandwidth. 

In [63], an NNEA of 5.0 ∙ 10-9 W∙cm-1/√Hz for the detection of CO2 in an N2 



 
 

mixture, employing a transimpedance amplifier with a 10 MΩ feedback resistor and a 

narrow-bandwidth LIA filter, was demonstrated. Employing a voltage preamplifier 

with a 10 MΩ bias resistor and an integration bandwidth of 0.5 Hz, a 100 MΩ bias 

resistor and the same integration bandwidth would lead to a NNEA of 4.4 ∙ 10-9 W∙cm-

1/√Hz, with improvement of a factor of 1.1. Moreover, with a 5 Hz LIA filter bandwidth, 

a NNEA of 5.8 ∙ 10-9 W∙cm-1/√Hz can be estimated for a bias resistor of 10 MΩ. A 

further improvement of a 1.4 factor can be calculated when a bias resistor of 100 MΩ 

is employed, leading to a NNEA of 4.1∙10-9 W∙cm-1/√Hz. Table 3.2 summarizes the 

NNEA values obtainable for different values of RL and Δf.  

RL [MΩ] Δf [Hz] NNEA [W∙cm-1/√Hz] 

10 0.5 5.0 ∙ 10-9 [63] 

100 0.5 4.4 ∙ 10-9 

10 5 5.8 ∙ 10-9 

100 5 4.1 ∙ 10-9 

Table 3.2 NNEA for different values of RL and Δf, calculated starting from the value 

reported in [63] for the detection of CO2 in an N2 mixture. 

It is worth noticing that, at a fixed filter bandwidth, increasing RL leads to an 

improvement of the NNEA, beneficiating the performance of a QEPAS sensor. 

3.3.2 Transimpedance amplifier 

Let us now discuss the influence of the LIA filter on the output SNR in the 

transimpedance configuration. As already pointed out in section 2.3.2, the dominant 

noise contribution comes from R, while the contribution from RF to the overall SNR 

tends to increase as RF decreases.  

Figure 3.10 shows the normalized SNR contribution from the intrinsic resistance 

of the QTF for different values of RF, at a low-pass filter bandwidth of f3dB = 0.5 Hz. 



 
 

 

Figure 3.10 Contribution of R to the normalized signal-to-noise ratio for RF = 1 MΩ, 

2.2 MΩ, 10 MΩ and 20 MΩ, at a low-pass filter bandwidth f3dB = 0.5 Hz. 

Since Sn,QTF(jω) has the same transfer function as the signal, both signal and noise 

signal show the same dependence on the feedback resistance. As a result, SNRn,QTF(fop) 

is not affected by RF variations, as shown in Fig. 3.10. 

 The contribution to the total SNR coming from RF is displayed in Fig. 3.11.  

 



 
 

Figure 3.11 Contribution of RF to the normalized signal-to-noise ratio for RF = 1 MΩ, 

2.2 MΩ, 10 MΩ and 20 MΩ, at a low-pass filter bandwidth f3dB = 0.5 Hz. 

 As already discussed in chapter 2, SNRn,F(fop) increases as RF increases (see Eq. 

2.35). As long as the stray capacitance CF is sufficiently low, the feedback resistor can 

be treated as a white noise source; hence, the LIA output noise Nout,F associated to RF 

can be easily calculated as the product between Sn,F and two times the ENB of the lock-

in filter: 

 𝑁𝑜𝑢𝑡,𝐹 = ∫ 𝑆𝑛,𝐹 ∙ |𝐻𝐿𝐼𝐴(𝑗𝜔)|
2𝑑𝜔

+∞

−∞

= 2 ∙ 𝑆𝑛,𝐹 ∙ 𝐸𝑁𝐵 (3.17) 

As a result, 𝑁𝑜𝑢𝑡,𝐹 is frequency-independent, and the peak of SNRn,F(ω) lies in 

correspondence of the signal peak, namely the series-resonant frequency fS. 

The normalized SNR as a function of the operation frequency at f3dB = 0.5 Hz is 

shown in Fig. 3.12, for different values of RF. 

 

Figure 3.12 Normalized SNR as a function of the operative frequency for RF = 1 MΩ, 

2.2 MΩ, 10 MΩ, 20 MΩ, at a low-pass filter bandwidth f3dB = 0.5 Hz. The dashed 

golden line represents the SNRn,QTF contribution from the intrinsic resistance of the 

QTF. 

The integration of the total noise spectral density in a narrow-bandwidth results in a 



 
 

smooth peak of the SNR around fS. Furthermore, the curve sides become sharper as RF 

decreases, as a consequence of the contribution of SNRn,F on the overall signal-to-noise 

ratio. On the other hand, if RF increases, SNRn,F becomes less relevant and SNRn can be 

approximated to SNRn,QTF in a close interval around fS, as shown in the inset of Fig. 

3.12. However, the peak of SNRn always lies in correspondence of fS, regardless of the 

value of the feedback resistance. 

 Let us now analyze the influence of a larger integration bandwidth on the output 

SNR of the LIA. Figures 3.13a and 3.13b plot the contributions of Sn,F(ω) and Sn,QTF to 

the total SNR, respectively, at a low-pass filter bandwidth of f3dB = 5 Hz. 

 

Figure 3.13 Contribution of the feedback resistor (a) and of the intrinsic resistance of 

the QTF (b) to the normalized SNR, for RF = 1 MΩ, 2.2 MΩ, 10 MΩ and 20 MΩ, at a 

low-pass filter bandwidth of f3dB = 5 Hz. 

SNRn,F still increases as RF increases, while SNRn,QTF is RF-independent. The main 

difference with respect to the narrow-bandwidth configuration is that the peak values 

of the SNR contribution are slightly lower, as can be deduced comparing Figs. 3.13a 

and 3.13b with Figs. 3.10 and 3.11, respectively. The resulting normalized SNR is 

plotted in Fig. 3.14. 



 
 

 

Figure 3.14 Normalized SNR as a function of the operative frequency for RF = 1 MΩ, 

2.2 MΩ, 10 MΩ, 20 MΩ, at a low-pass filter bandwidth f3dB = 5 Hz. The dashed golden 

line represents the SNRn,QTF contribution from the intrinsic resistance of the QTF. 

The peak of SNRn,QTF function is at fS and its value is 142.2 dB, which is 5 dB 

lower than the value obtained with f3dB = 0.5 Hz. Moreover, as a consequence of the 

integration of the noise contributions in a wider bandwidth, the total SNR is sharper 

around fS, and can be well approximated to SNRn,QTF in a wider range around fS, for RF 

> 10 MΩ. 

Thus, the peak values of the SNR obtained in the TIA configuration correspond 

to the ones obtained in the voltage configuration, namely, 147.2 dB for f3dB = 0.5 Hz 

and 142.2 dB for f3dB = 5 Hz. Nevertheless, unlike the voltage configuration, in the 

transimpedance amplifier neither the filter bandwidth nor the feedback resistor affects 

the position of the peak of the output signal-to-noise ratio. For this reason, it is always 

convenient to work at the series-resonant frequency of the QTF in order to optimize the 

performances of the AFE. In summary, with a fixed lock-in filter bandwidth, a proper 

choice of the feedback resistor is crucial to maximize the SNR. Conversely, if RF is 

fixed, the low-pass filter bandwidth will affect both the output SNR and signal 

acquisition time. 



 
 

To clarify, Figure 3.15 shows the trend of the main noise contributions in 

correspondence of fS, as a function of the 3 dB bandwidth of the lock-in filter, for 

different values of RF. 

 

Figure 3.15 Main noise contributions at the series-resonant frequency, as a function of 

f3dB, for (a) RF = 1 MΩ, (b) RF = 2.2 MΩ, (c) RF = 10 MΩ, (d) RF = 20 MΩ. 

Being the CF impedance negligible, Nout,F increases linearly with f3dB, whereas 

Nout,QTF saturates to a constant value as long as f3dB increases. Moreover, for low values 

of f3dB, the QTF represents the main noise contribution. As f3dB increases, depending on 

RF value, the contribution from the feedback resistor becomes more relevant. As an 

example, Nout,F becomes the highest noise contribution: 

(i) for f3dB > 16 Hz when RF = 1 MΩ (Fig. 3.15a) 

(ii) for f3dB > 38 Hz when RF = 2.2 MΩ (Fig. 3.15b) 

(iii) beyond 100 Hz when RF ≥ 10 MΩ (Fig. 3.15c,d). 

In addition, the noise contribution from the OPAMP becomes relevant for RF ≥ 10 MΩ 

and low values of f3dB, as shown in the insets of Fig. 3.15. However, both Nout,F and 



 
 

Nout,OP are much lower than Nout,QTF when RF is sufficiently high, therefore it can be 

neglected [80]. 

 The resulting SNRs as a function of f3dB for different values of RF are shown in 

Fig. 3.16. 

 

Figure 3.16 Normalized signal-to-noise ratio at fS as a function of f3dB, for RF = 1 MΩ, 

2.2 MΩ, 10 MΩ, 20 MΩ. Dashed golden line identifies a representative value of SNRn 

= 140 dB. 

For f3dB < 1 Hz, the total SNR is not significantly affected by RF variations, as the 

dominant noise contribution is Nout,QTF, and SNRn,QTF is independent from the feedback 

resistance (see Fig. 3.10). For f3dB > 1 Hz, the curves start to deviate from the 

representative value of SNRn = 140 dB; in particular, the lower RF, the more rapidly the 

SNR deviates (see the blue and red curves in Fig. 3.16). This is due to the noise 

contribution from RF, which is more relevant when RF is lower, as already discussed. 

As RF increases, the weight of SNRn,F  on the total SNR is lower, therefore the 

SNR curves slightly deviate from the representative value of SNRn = 140 dB (see the 

black and green curves in Fig. 3.16). This suggests that if RF is sufficiently high, namely 

RF ≥ 10 MΩ, the SNR does not benefit from the reduction of the lock-in filter 

bandwidth. Consequently, a lower filter time constant (namely, a higher 3dB frequency) 



 
 

can be employed to speed up the acquisition time, without impacting significantly on 

the total SNR. 

Table 3.3 lists the values of a first order lock-in filter bandwidth to be used to 

achieve a reference SNRn of 140 dB (the dashed golden line in Fig. 3.16), together with 

the corresponding values of time constant and 95% settling time, for different values of 

RF. 

SNR RF f3dB τ tsettle,95% 

140 dB 

1 MΩ 7.4 Hz 21.5 ms 64.5 ms 

2.2 MΩ 13.4 Hz 11.9 ms 35.7 ms 

10 MΩ 47.1 Hz 3.4 ms  10.2 ms 

20 MΩ 87.1 Hz 1.8 ms 5.4 ms 

Table 3.3 Values of 3dB lock-in filter bandwidth (f3dB), time constant (τ), 95% settling 

time (tsettle,95%) corresponding to a reference SNRn = 140 dB, for different values of RF. 

Comparable SNR values can be achieved with a lower time constant by increasing 

the value of the feedback resistance. As an example, a 10 MΩ feedback resistor and a 

3.4 ms time constant ensure the same SNR as a 1 MΩ feedback resistor and a 21.5 ms 

time constant, thus reducing the acquisition time by a factor of 6.3. Increasing RF 

beyond 20 MΩ is not convenient: the amplifier gain would lead to saturation of the 

SNR, and the acquisition time would not benefit anymore from an increase of RF.  

3.3.3 Charge sensitive amplifier 

The same method used to study the SNR in the TIA configuration can be used for 

CSA configuration as well. The main difference between the two configurations is that 

RF and CF are higher in CSA. Hence, since SNRn,F increases with RF, the noise 

contribution coming from RF  is negligible. The dominant noise contribution comes 

from the intrinsic resistance of the QTF, as previously discussed. 

Figures 3.17a and 3.17b shows SNRn,QTF and SNRn,F contributions in the CSA 

configuration, at a  first order low-pass filter bandwidth of f3dB = 0.5 Hz, for different 

values of CF. RF =100 MΩ was considered in the following simulations to fulfill the 



 
 

condition 1 𝜔𝐶𝐹⁄ ≪ 𝑅𝐹. 

 

Figure 3.17 Contributions to the normalized SNR from (a) the feedback resistor RF, 

and (b) the QTF intrinsic resistance R, for CF = 1 pF, 2.2 pF, 2.7 pF, 4.7 pF, at a first 

order low-pass filter bandwidth of f3dB = 0.5 Hz. 

With a fixed value of RF, SNRn,F is independent of CF; furthermore, as previously 

observed in the TIA configuration, SNRn,QTF does not show any dependency on the gain 

parameter, namely the feedback capacitance of the CSA. 

 Figure 3.18 shows the SNR contribution from the operational amplifier, at f3dB = 

0.5 Hz. 



 
 

 

Figure 3.18 Signal-to-noise contribution from the OPAMP for CF = 1 pF, 2.2 pF, 2.7 

pF, 4.7 pF, at a first order low-pass filter bandwidth of f3dB = 0.5 Hz. 

SNRopamp shows a small peak of about 162.7 dB at fS, and a higher peak around fP, 

which slightly increases and moves towards higher frequency values as CF decreases. 

This because the output spectral noise density associated to the OPAMP noise is 

characterized by a local minimum around the parallel resonance frequency, as shown 

in Fig. 3.19. 

 



 
 

Figure 3.19 OPAMP output noise spectral density as a function of the frequency, for 

CF = 1 pF, 2.2 pF, 2.7 pF, 4.7 pF. 

When the integration bandwidth is as narrow as 0.5 Hz, the second peak of 

SNRopamp is clearly distinguishable. However, since its value is much higher with 

respect to SNRn,QTF, it can be neglected (see Eq. 3.14). 

The total output SNR for f3dB = 0.5 Hz is showed in Fig. 3.20. 

 

Figure 3.20 Normalized SNR as a function of the operative frequency for CF = 1 pF, 

2.2 pF, 2.7 pF, 4.7 pF, at a low-pass filter bandwidth f3dB = 0.5 Hz. The dashed golden 

line represents the SNRn,QTF contribution from the intrinsic resistance of the QTF. 

The slight asymmetry in the curves is due to the asymmetric OPAMP output noise 

spectral density (see Fig. 3.19). In addition, the peak of SNRn falls at fS, and its value is 

about 147.2 dB, which corresponds to the value already found in the voltage and TIA 

configurations. Moreover, this value is not influenced by the feedback capacitance CF, 

as all curves are strongly overlapped in correspondence of fop = fS. 

 This analysis can be also extended for a LPF bandwidth of f3dB = 5 Hz, in order 

to investigate the effect of a wider integration bandwidth on the output SNR. The 

integration bandwidth affects SNRn,QTF and SNRn,F  only for a decreased value of the 



 
 

peak: the peak of SNRn,QTF is about 142.2 dB, while the peak of SNRn,F is about 166.5 

dB. Figure 3.21 depicts the SNRn,OPAMP contribution to the total SNR, for different 

values of CF. 

 

Figure 3.21 Signal-to-noise ratio contribution from the OPAMP for CF = 1 pF, 2.2 pF, 

2.7 pF, 4.7 pF, at a first order low-pass filter bandwidth of BW = 5 Hz. 

 The effect of a wider integration bandwidth leads to the disappearance of the peak 

feature around fP, observed in Fig. 3.18: the peak feature at fS is the only one still present. 

As a result, the total output SNR at f3dB = 5 Hz is shown in Fig. 3.22. 



 
 

 

Figure 3.22 Total SNR as a function of the operative frequency for CF = 1 pF, 2.2 pF, 

2.7 pF, 4.7 pF, at a low-pass filter bandwidth f3dB = 5 Hz. The dashed golden line 

represents the SNRn,QTF contribution from the intrinsic resistance of the QTF. 

The asymmetry observed for a 0.5 Hz bandwidth is strongly reduced, and the 

SNR can be more accurately approximated to the SNRn,QTF contribution (the dashed 

golden line in Fig. 3.22), regardless of the value of CF. Moreover, the SNR peak lies at 

fS and its value is about 142.2 dB, as the one already observed in the voltage and TIA 

configurations.  

Let us now examine the trend of the main noise contributions as a function of the 

integration bandwidth, in correspondence of the series-resonant frequency fS, for 

different values of CF (Fig. 3.23). 



 
 

 

Figure 3.23 Noise contributions at the output of the LIA as a function of the integration 

bandwidth, at the series-resonant frequency fS, for (a) CF = 1 pF, (b) CF = 2.2 pF, (c) CF 

= 2.7 pF, (d) CF = 4.7 pF. 

 Unlike the TIA configuration, the contribution from RF is always negligible with 

respect to the QTF intrinsic noise. Consequently, the total output noise voltage is almost 

constant as f3dB increases. The normalized SNR at fS as a function of f3dB is displayed in 

Fig. 3.24. 



 
 

 

Figure 3.24 Normalized signal-to-noise ratio at fS as a function of f3dB, for CF = 1 pF, 

2.2 pF, 2.7 pF, 4.7 pF.  

Because of the trends of the noise contributions, the SNR tends to sharply 

decrease as f3dB increases up to 5 Hz. Then, for higher values of f3dB, the total output 

noise is almost constant, and the SNR curves become flat. The value of CF does not 

influence the SNR trend; therefore the signal acquisition time is expected not to be 

affected by the choice of the feedback capacitor. 

3.3.4 Comparison among different configurations 

In conclusion, in this chapter the influence of the LIA time constant on the output 

signal-to-noise ratio in the three preamplifier configurations has been investigated. In 

the voltage configuration, the output SNR is strongly dependent both on the operating 

frequency and on the bias resistor RL. The peak value of the SNR tends to increase along 

with the bias resistor RL. When a narrowband low-pass filter of the LIA is employed 

(e.g., bandwidth of 0.5 Hz), the analysis suggests that only a slight increase of the SNR 

can be obtained by either increasing the value of the resistor RL or varying the operation 

frequency. For RL < 10 MΩ, the best operation frequency for the QEPAS technique is 

the series-resonant frequency of the QTF fS, where SNR function exhibits a peak value. 



 
 

This peak becomes less pronounced when RL increases. A 10 MΩ bias resistor leads to 

a 1.3 times higher SNR at the series-resonant frequency fS, with respect to a 100 kΩ 

bias resistor.  

For large values of RL, SNR tends to be flat around fS and a small peak emerges 

at the parallel-resonant frequency fP. Increasing the value of RL up to 100 MΩ leads to 

a further increase of the SNR peak by a factor of 1.4. Thus, for large values of RL, the 

choice of the optimal operation frequency is not critical, in case of a narrow-band LIA 

filter. When a wider LPF bandwidth of the LIA is employed (e.g., bandwidth of 5 Hz), 

the SNR peak as a function of the operating frequency is still placed at fS for small 

values of RL, as in the case of narrow-band filter (see Fig. 3.9). For large values of RL, 

the SNR peak at fP tends to be sharper as compared to the case of narrow-band LIA 

filter, thus the operating frequency for the QEPAS technique must be chosen as close 

as possible to fP to maximize SNR. As an example, for RL = 100 MΩ, the SNR peak is 

1.4 times higher with respect to RL =10 MΩ. 

In the TIA configuration, the peak of the SNR lies at the series-resonant frequency 

fS, regardless of the value of the feedback resistance RF. In addition, when the 

integration bandwidth is sufficiently low, the dominant noise contribution to the total 

SNR comes from R. As an example, for RF = 1 MΩ, SNRn,QTF is the most relevant 

contribution for f3dB < 16 Hz. On the other hand, when faster measurements are needed, 

and a wider integration bandwidth is employed, the noise contribution from RF becomes 

dominant, and the total output noise increases linearly with the integration bandwidth 

(see Fig. 3.15). However, with RF ≥ 10 MΩ, the influence of the feedback resistor noise 

on the LIA output noise voltage drastically reduces, thus allowing lower time constants 

without affecting the SNR. For instance, a normalized SNR of 140 dB can be obtained 

by increasing the feedback resistance from 1 MΩ to 10 MΩ and lowering the time 

constant from 21.5 ms to 3.4 ms, thus shortening the settling time of the output signal 

by a 6.3 factor. 

Finally, in the CSA configuration, the SNR peak falls at fS, and it is not influenced 

by the gain parameter of the amplifier, namely, the feedback capacitance CF. 

Therefore, when fop = fS, for an integration bandwidth of f3dB > 30 Hz (see Fig. 3.24), 



 
 

the SNR remains almost constant.  

It is worth noticing that the peak value of the SNR is identical in the three 

configurations, namely, 147.2 dB for f3dB = 0.5 Hz and 142.2 dB for f3dB = 5 Hz. 

However, in the voltage configuration, for large values of RL, the SNR peak is close to 

the parallel-resonant frequency fP, which depends on the input capacitance of the 

OPAMP, so it is not an intrinsic property of the sensitive element. Thus, suitable 

techniques must be used to measure fP in presence of Cin to exploit large values of RL, 

increase SNR, especially when short acquisition times are needed. Moreover, the value 

of RL cannot be made too large, since the input bias current of the OPAMP would cause 

undesirable input offset levels. When a lower integration time is needed, the SNR in 

the TIA configuration is less sensitive to variations of the feedback resistance when RF 

≥ 10 MΩ, whereas, in the CSA, the SNR does not depend on the value of the feedback 

capacitance CF. 

For these reasons, employing a TIA or a CSA as QTF front-end amplifier allows 

a higher reliability with respect to a voltage amplifier, ensuring the comparable 

performances in terms of SNR and acquisition time. 

 

 

 

 

 



 
 

Chapter 4: Results 

4.1 QEPAS sensor 

The influence of air pressure on the resonance properties of a bare T-shaped QTF 

and of the same QTF acoustically coupled with two resonator tubes was analyzed. A 

theoretical model was developed to predict the influence of air pressure both on the 

frequency and quality factor of the fundamental resonance mode of the QTF. The model 

was validated with experimental results. Furthermore, the QTF was assembled in a 

spectrophone with two resonator tubes. The influence of resonator tubes on the 

spectrophone resonance properties was investigated and compared with those of the 

bare QTF. The same analysis was performed considering two different distances of the 

tubes from the QTF. 

4.1.1  Experimental setup 

The electrical characterization of the QTF is useful to retrieve its resonance 

frequency and quality factor, as an alternative to the use of an impedance analyzer, that 

will be discussed in section 4.2. The experimental apparatus used to electrically excite 

the QTF is sketched in Fig. 4.1a. The analog output of a data acquisition (DAQ) card 

(NI USB-6008) was used as a waveform generator to provide a sinusoidal electrical 

excitation for the QTF. The QTF was excited at its fundamental in-plane flexural mode. 

A LabVIEW-based software was used to vary the excitation frequency step-by-step 

around resonance, with a peak-to-peak amplitude fixed to 0.5 mV. The piezoelectric 

current was converted into a voltage signal by a transimpedance amplifier and acquired 

via DAQ card through LabVIEW-based software, which allowed retrieval of the QTF 

signal at the excitation frequency. The QTF was placed in a stainless-housing (SSH) 

with an inlet and outlet to pump ambient air. Air passed through a needle valve (NV1 

in Fig. 4.1a), the SSH, a second needle valve (NV2) and a vacuum pump. The valves 

were used to regulate the pressure inside the SSH. 



 
 

 

Figure 4.1 (a) Experimental apparatus: SSH—stainless-steel housing; NV1—needle 

valve 1; NV2—needle valve 2; TA—transimpedance amplifier; DAQ—data 

acquisition card; WG—waveform generator. (b) Sketch of T-shaped QTF. 

The pressure value was measured using a digital pressure meter (DIGITRON 

2025P). A pressure range from 10 Torr to 760 Torr was investigated. These 

measurements were repeated in three different configurations. Firstly, a bare T-shaped 

QTF was used. Then, a cylindrical V-groove (not shown in Fig. 4.1a) was placed around 

the QTF to hold and fix two resonator tubes. The two tubes were mounted on both sides 

of the QTF (see Fig. 4.1a) at a distance of d = 200 µm, perpendicular to the QTF plane 

with the tube center 2 mm below the QTF top [81]. Lastly, the distance of 200 µm was 

halved. A sketch of the T-QTF is reported in Fig. 4.1b. The geometrical parameters of 

the T-QTF and the tubes are summarized in Tab. 4.1. 

 L1 L2 T1 T2 w 

T-QTF 2.4 9.4 2.0 1.4 0.25 

 L OD ID   

Tubes 12 1.83 1.59   

Table 4.1 Geometrical parameters of the T-QTF and of resonator tubes. L1 and T1 are 

the length and thickness of the T-shaped part of the QTF, L2 is the total prong length, 



 
 

T2 is the prong thickness, and w is the crystal width. OD and ID are the outer and internal 

tube diameters, respectively, and L is the tube length. All sizes are in millimeter units. 

4.1.2 Measurements of resonance frequency and quality factor 

As an example, resonance curves (black datapoints) for the bare T-QTF at two 

representative pressures, 10 Torr and 760 Torr, are shown in Fig. 4.2a and 4.2b. The 

QTF signal is normalized and plotted as function of 1 − 𝑓2 𝑓0
2⁄ . 

 

Figure 4.2 Resonance curve (black datapoints) for T-QTF at (a) 10 Torr, and (b) 760 

Torr. The solid red line is the best fit of experimental data obtained by using Eq. 4.1. 

Taking into account the results obtained in section 1.3, Equation 1.14 is used as 

fitting function in the form of: 

 

𝑉𝑜𝑢𝑡 = 𝐴√
(1 − 𝑥)𝐵(𝐶′2𝐵(1 − 𝑥) + (𝐶′𝑥 + 1)2)

𝑥2 + (1 − 𝑥)𝐵
 (4.1) 

where 𝐵 = 1 𝑄2⁄  and 𝑥 = 1 − 𝑓2 𝑓0
2⁄ . 

The f0 value corresponding to the peak values is needed for the fitting procedure. Since 

its value is not modified by the stray capacitance thanks to the virtual ground imposed 

by the transimpedance amplifier, firstly f0 can be determined by considering a 

Lorentzian fit of the measured results. Then, Equation 4.1 can be used for a second 

iteration fit to estimate the Q-factor. The best fit obtained by using Eq. 4.1, for the 



 
 

highest (760 Torr) and lowest (10 Torr) pressures at which the bare QTF was 

investigated, is also shown in Fig. 4.2a and 4.2b (solid red lines). From the preliminary 

Lorentzian fitting procedures, the resonance frequency f0 is extracted and plotted as a 

function of the air pressure, as shown in Fig. 4.3 (datapoints) for the all the three 

investigated configurations. 

 

Figure 4.3. Resonance frequency (datapoints) as a function of the pressure in the three 

configurations. The solid lines are the best linear fits. 

As expected from Eq. 1.16, f0 decreases linearly as pressure increases. The 

intercept values of linear fits, i.e., the resonance frequencies in vacuum, are different 

for three configurations. At first glance, this seems not to be in agreement with Eq. 1.16. 

It is worth noticing that the Euler–Bernoulli equation with viscous drag force term in 

Eq. 1.15 is valid only when the gas is supposed to be in the viscous regime. Lowering 

the pressure, the gas can enter the molecular region, where damping mechanisms are 

caused by independent collisions of non-interacting molecules with the vibrating QTF 

prong. As a result, at pressures <10 Torr, the additive mass cannot be supposed 

proportional to the air density and a deviation from the linearity can also be supposed 

for the QTF resonance frequency. With respect to the bare QTF, the coupling with a 

pair of resonator tubes causes a shift of spectrophone resonance frequency. Moreover, 

the frequency shift increases with the pressure, although it is almost constant at 



 
 

pressures lower than 200 Torr. This can be explained by considering that the tubes and 

the QTF interact with each other through the medium in SSH at higher pressures. Thus, 

at low pressure, the QTF–tubes coupling is reduced and the QTF can be considered 

almost isolated from the tubes. For any pressure values, the frequency shift is larger 

when d = 100 μm with respect to d = 200 μm. This can be explained observing that the 

QTF–tube distance also affects the resonator’s acoustic interaction, thus leading to a 

greater frequency shift for a shorter QTF–tube distance. From the linear fits, the 

intercept value represents the fundamental vibrational mode f’0 in vacuum whereas the 

slope is related to additive mass, as described in Eq. 1.16. Indeed, as discussed in section 

1.3, the additive mass per unit of length u = u0·P is proportional to the gas pressure, 

where u0 = kM/RΘ with k in m2
 units. U0 represents the additive mass per unit of length 

and pressure, and can be retrieved from the slope m of the linear fit as m = u0·f0/(2ρA) 

where ρ = 2650 kg/m3 and the prong section 𝐴 = 𝑇2 ∙ 𝑤. The results are listed in Tab. 

4.2. 

 Bare QTF 
Spectrophone 

d = 100 μm 

Spectrophone 

d = 200 μm 

f0 (Hz) 12455.01 12455.05 12455.11 

m (Hz/Torr) 1.31 ∙ 10-3 1.19 ∙ 10-3 1.10 ∙ 10-3 

u0 

(kg/(m∙Torr)) 
1.95 ∙ 10-10 1.77 ∙ 10-10 1.64 ∙ 10-10 

Table 4.2 Parameters retrieved from the linear fits shown in Fig. 4.3. f’0 is the intercept 

of the linear fit and represents the fundamental vibrational mode in vacuum; m is the 

slope of the linear fit; u0 is the additive mass per unit of length and pressure extracted 

by the slope. 

The bare T-QTF shows a slightly higher value of u0 with respect to the one 

obtained when it is coupled with tubes. This could be related to the fact that the presence 

of the tubes reduces the number of molecules surrounding the QTF which results in a 

decreasing of the inertia to the prong oscillation. The additional inertia of the vibrating 



 
 

prong due to the effect of the surrounding medium was modelled as an additive mass. 

Indeed, with respect to the bare QTF, the reductions in the additive mass results were 

8% and 16% for QTF–tube distance d = 100 µm and d = 200 µm, respectively.  

The quality factor values are extracted by fitting the resonance curves with Eq. 

4.1. The Q-factor values (datapoints) are plotted as a function of the air pressure in Fig. 

4.4, for the three investigated configurations. 

 

Figure 4.4 Q-factor values as a function of the air pressure (datapoints) for the three 

investigated configurations. Solid lines are best fits of experimental data by using Eq. 

4.3. 

The trends show a strong dependence on air pressure, especially at pressures lower than 

20 Torr, suggesting that the dominant loss mechanism is air damping. Moreover, 

working at pressures lower than 100 Torr, the Q-factor dramatically increases as 

pressure decreases, meaning that air pressure requires a higher efficient stabilization 

with respect to operating at pressures close to the atmospheric one. Negligible 

differences are observed when the QTF–tube distance is reduced from 200 µm to 100 

µm: if the tube–QTF distance is reduced from 200 µm to 100 µm, the spectrophone Q-

factor is almost not affected. This “relaxes” the assembling procedure of the 

spectrophone, avoiding the requirement of a superfine placement of tubes. This can be 

explained by noting that the prong spacing (800 µm) is comparable with the tube ID 



 
 

(see Tab. 4.1); thus, the effective interacting surface can be neglected. Indeed, while 

prongs are vibrating, they could lose energy via interaction with the tube walls (squeeze 

damping). If this additional loss mechanism is present, it should be influenced by: (i) 

the tube–QTF distance: the lower the distance, the higher the contribution; (ii) the air 

pressure: the higher the pressure, the higher the squeeze damping. Thus, in Fig. 4.4, a 

squeeze damping effect should result in a deviation at higher pressures of red circles 

(spectrophone with d = 100 µm) towards lower values, with respect to blue triangles 

(spectrophone with d = 200 µm). Conversely, red circles and blue triangles should 

overlap at lower pressures. Instead, both datasets are quite overlapped in the whole of 

the investigated pressure range, demonstrating that squeeze damping is negligible. In 

the whole pressure range, the coupling with tubes leads to a reduction in the 

spectrophone Q-factor with respect to the bare QTF. This reduction increases as 

pressure increases and is almost zero at pressures lower than 100 Torr. This behavior 

can be explained by considering that the effect of the acoustic coupling of the high Q-

factor QTF with the low Q-factor tubes, which leads to a QTF loss of energy, is reduced 

at low pressures, because of the reduced number of surrounding molecules. Indeed, at 

10 Torr, the Q-factor of the spectrophone (45454) is comparable with the one measured 

for the bare QTF (45221). As a result, the surrounding air strongly affects the acoustic 

coupling of both resonators, namely, the tube and the QTF. It is worth noticing that 

datapoints in Fig. 4.4 close to atmospheric pressure deviate from fitting with Eq. 4.3. 

This is expected because Hosaka’s model in Eq. 1.17 was rewritten with the assumption 

that air density is proportional to pressure. This is valid only if the ideal gas law is 

assumed. Approaching atmospheric pressure, the ideal gas law is no longer valid, 

requiring a replacement with the van der Waals equation (real gas law).  

As the dissipation mechanisms described in section 1.3 are independent of each 

other, the overall quality factor can be written as: 

 1

𝑄(𝑃)
=
1

𝑄0
+

1

𝑄𝑎𝑖𝑟(𝑃)
 (4.2) 

where 1 𝑄0 = 1 𝑄𝑇𝐸𝐷 + 1 𝑄𝑠𝑢𝑝⁄⁄⁄ . Using Eq. 1.17 for 𝑄𝑎𝑖𝑟, 𝑄(𝑃) can be rewritten as: 



 
 

 
𝑄(𝑃) =

1

𝐶 + 𝐷√𝑃
 (4.3) 

where: 
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 (4.4) 

With this formulation, parameter C takes into account all the pressure-

independent loss mechanisms. Equation 4.3 was used to fit the experimental data and 

the results are shown as solid lines in Fig. 4.4. The obtained fit curves were used to 

evaluate the difference ΔQ between the Q-factors of the bare QTF and the spectrophone 

with d = 200 µm, as a function of the air pressure. The result is shown in Fig. 4.5. 

 

Figure 4.5 ΔQ as a function of the air pressure, where ΔQ is the Q-factor decrease when 

the QTF is coupled with a pair of resonator tubes at a distance of 200 μm. 

Starting from low pressures, ΔQ quickly increases until it reaches a maximum at 

around 200 Torr. At p > 200 Torr, we can assume that the influence of air on the 

interaction between tubes and QTF is saturated, leading to an almost flat trend with a 

slight decrease towards the atmospheric pressure. A reduction of 24% in the Q-factor 



 
 

of the spectrophone with respect to the bare QTF is observed at atmospheric pressure. 

4.2 Extraction of the electrical parameters of a QTF 

The Butterworth – Van Dyke model, introduced in section 1.2.2, allows to 

describe the electrical behavior of a QTF [17,50,82-84] through the intrinsic resistance 

R, the series capacitance Cs, the inductance L and the parallel capacitance Cp. The 

estimation of these parameters is very useful to retrieve the resonance frequency and 

the quality factor of a QTF without employing a preamplifier. The electrical parameters 

of a QTF can be extracted by measuring the module of the QTF impedance, and then 

fitting the acquired data. 

An impedance analyzer (MFIA from Zurich Instruments) was employed to 

measure the module and phase of the impedance of a standard 32.7 kHz-QTF at 

different pressures. To minimize the parasitic effects of the cables, the impedance 

analyzer was used with a test fixture and the probe was calibrated before starting the 

measurements. For each pressure, 10 characterization waveforms were acquired. Then, 

a fitting algorithm (see section A.1) was applied to each waveform in order to extract 

the parameters of the QTF. Finally, the obtained parameters were averaged. Figures 

4.6a and 4.6b show two representative acquisitions obtained at 50 and 700 Torr and the 

related best fits of the experimental data. 



 
 

 

Figure 4.6 Module (4.6a) and phase (4.6b) of the impedance of a standard QTF at 50 

and 700 Torr. 

Table 4.3 lists the values of the QTF parameters in the investigated pressure range. 

 

Pressure 

[Torr] 
L [H] Cs [fF] Cp [pF] R [kΩ] 

50 6021.578 3.923 5.372 63.197 

100 6041.807 3.910 5.322 72.356 

150 6087.885 3.881 5.653 79.047 

250 6065.168 3.895 5.235 91.043 

400 6068.501 3.894 5.197 105.842 



 
 

600 6050.332 3.906 5.170 123.402 

700 6039.973 3.913 5.160 130.920 

Table 4.3. Values of QTF parameters measured with MFIA in a pressure range between 

50 and 700 Torr. 

Figure 4.7 depicts the values of quality factor and intrinsic resistance of the 32.7 

kHz-QTF as a function of the air pressure.  

 

Figure 4.7 Quality factor and intrinsic resistance of a standard QTF (datapoints) versus 

pressure; solid lines are best fits. 

As previously observed, the quality factor decreases exponentially as the pressure 

increases, while the QTF intrinsic resistance shows the opposite trend, being inversely 

proportional to the quality factor. 

4.3 QEPAS sensor with TIA for QTF readout 

4.3.1 Experimental setup 



 
 

  Experimental measurements for measuring the signal to noise ratio (SNR) at the 

output of the lock – in amplifier employing both a TIA and a CSA were performed. A 

Printed Circuit Board (PCB) implementing both TIA and CSA configurations was 

realized (see Fig. 4.8a and 4.8b). Since the two configurations differ only in the 

feedback network components, it is possible to switch between TIA and CSA by means 

of a jumper. In the TIA configuration, a 10 MΩ feedback resistor was employed to set 

the gain of the amplifier. Another jumper can be employed to select the mode of 

operation, namely QEPAS mode or QTF characterization mode; when the jumper is set 

on QEPAS mode, the loose end of the QTF is grounded, while during QTF 

characterization it is connected to the waveform generator. A 6-ways connector was 

used to connect the PCB to the laboratory instrumentation (power supply, waveform 

generator and lock-in amplifier). A ±12 V dual power supply was employed to power 

on the board, and an RC network was implemented to filter out the high frequency noise 

components. The operational amplifier mounted on the board is the AD8067, from 

Analog Devices [70].  

Figure 4.8 (a) Circuit schematic of the preamplifier for QTF readout. The red label 

refers to the TIA configuration, the blue labels refer to the CSA configuration. WFG – 

Waveform Generator, QTF – Quartz Tuning Fork. (b) Top view of the Printed Circuit 



 
 

Board implementing TIA and CSA. Components are placed on the top layer, as the 

bottom layer is entirely devoted to the ground plane. 

The experimental setup employed to perform QEPAS measurements is sketched 

in Fig. 4.9. A single-mode laser diode (EP1392-5-DM-B01-FM) specifically designed 

for the detection of H2O at 1392 nm was employed as light source for the detection of 

the water vapor in laboratory air. The emission wavelength of laser diode was 

modulated by means of a current driver with a built-in thermo-electric cooler (Thorlabs 

CLD1010). A waveform generator (AFG3102 by Tektronix) was employed to dither 

the laser diode current driver with a sinusoidal modulation signal. The working 

temperature of the laser was set to 25°C.  The laser beam was collimated by a fiber 

coupled collimator, and then an aspheric lens was employed to focus the laser beam 

between the prongs of the QTF.  

The QTF was encapsulated in an Acoustic Detection Module (ADM). A pressure 

controller (Alicat Scientific) and a vacuum pump were used to set the working pressure, 

and an external valve was employed to fix the flow to 30 sccm (Standard Cubic 

Centimeters per Minute).  

 



 
 

Figure 4.9 Experimental apparatus for QEPAS measurement with a transimpedance 

amplifier for QTF readout. ADM – Acoustic Detection Module, QTF – Quartz Tuning 

Fork, fmod – modulation frequency, f0 – resonance frequency of the quartz tuning fork. 

The preamplifier was externally connected to the QTF, and its output pin was 

connected to a lock-in amplifier (MFIA by Zurich Instruments), whose reference signal 

input was connected to the TTL output of the waveform generator. The MFIA is a 

digital LCR meter, which can work either as impedance meter or as lock-in amplifier, 

therefore it can be directly connected to a personal computer (PC) to collect data. A 

second order low-pass filter with a 100 ms time constant was used as LIA filter [54], 

and the signal acquisition time was set to 700 ms. A custom LabVIEW program was 

realized to easily interface the PC both to the MFIA and the AFG3102. A picture of the 

experimental setup employed for QEPAS measurements is reported in Fig. 4.10. 

 

Fig 4.10 Experimental setup for QEPAS measurements employing both a TIA and a 

CSA as QTF readout electronics. 

The environmental water concentration was constantly monitored with the 

HYT271 sensor by Innovative Sensor Technology (see Fig. 4.11). This sensor allows a 

reliable measurement of the environmental temperature and humidity, with a ±0.2 °C 



 
 

temperature accuracy and a ±1.8 % relative humidity accuracy at room temperature.  

 

Figure 4.11 HYT271 sensor. Pinout (from left to right): SDA (serial data), GND 

(ground), VDD (positive power supply), SCL (serial clock). 

The HYT271 is a digital sensor implementing the I2C protocol, hence it can be 

easily interfaced with any microcontroller supporting this communication protocol. 

4.3.2 Signal measurements 

  The LIV characteristic of the EP1392-5 laser diode (Fig. 4.12) shows that the 

H2O absorption occurs at a DC driving current of 101 mA; therefore, this value of 

current was set on the current driver for the QEPAS measurements.  

 



 
 

Figure 4.12 LIV characteristic of the EP1392-5 laser diode. The water absorption peak 

occurs at 101 mA. 

The QEPAS sensor operates in wavelength modulation and second harmonic 

detection (2f-WM): the laser current was modulated half the QTF resonance frequency, 

while the QTF signal is demodulated at the QTF resonance frequency by the lock – in 

amplifier. The amplitude of the sinusoidal modulation was optimized to maximize the 

LIA output signal, for each working pressure. A 10 dB attenuator was connected at the 

output channel of the waveform generator to provide a modulation amplitude lower 

than the minimum value allowed by the AFG3102, which is 20 mV peak-to-peak.  

Table 4.4 summarizes the values of the modulation frequency and amplitude that 

maximize the QEPAS signal, for each investigated pressure.  

Pressu

re 

[Torr] 

Modulation 

amplitude [mVpp] 

fmod,peak 

[Hz] 
f0/2 [Hz] 

50 9.5 16373.62 16373.71 

100 14.2 16373.34 16373.42 

150 17.4 16373.10 16373.02 

250 25.3 16372.53 16372.53 

400 50.6 16371.66 16371.63 

600 79.1 16370.50 16370.40 

700 85.4 16369.88 16369.72 

Table 4.4 Parameters of the modulation signal that maximize the amplitude of the LIA 

output signal in TIA configuration. fmod,peak is the modulation frequency corresponding 

to the peak of the output signal, f0 is the QTF resonance frequency. 

As expected, the peak of the QEPAS signal lies nearby the QTF resonance 

frequency. Figure 4.13 shows LIA output signal as a function of the frequency, at 

different pressures. The highest output voltage measured at the QTF resonance 

frequency is 410 µV at 50 Torr, while the lowest output voltage is 186 µV at 700 Torr. 

Indeed, the higher the pressure, the higher the intrinsic resistance of the QTF (as shown 



 
 

in Table 4.3) and the lower the amplitude of the preamplifier output signal at the 

resonance frequency.  

 

Figure 4.13 QEPAS signal (datapoints) as a function of the demodulation frequency at 

different pressures (TIA configuration); solid lines represent the Lorentzian fit of the 

experimental data. 

Since the QEPAS signal is proportional to the concentration of the detected gas 

[43,85], it is possible to relate the LIA output signal to the measured water 

concentration. Figure 4.14 shows the trend of the QEPAS signal normalized to absolute 

humidity (AH) as a function of the air pressure. 



 
 

 

Figure 4.14 Normalized QEPAS signal peaks in TIA versus pressure (datapoints) and 

exponential fit of experimental data (solid red line). SQEPAS – QEPAS signal, AH – 

absolute humidity. 

The normalized signal follows the same exponential-like decay of the QTF quality 

factor depicted in Fig. 4.7. 

4.3.3 Noise measurements 

The same procedure employed to measure the QEPAS signal was applied for the 

noise analysis, with the laser source turned off [59]. Figure 4.15 shows the noise level 

nearby the QTF resonance frequency at 100 Torr, as representative.  



 
 

 

Figure 4.15 LIA output noise voltage as a function of the demodulation frequency in 

TIA configuration. 

For each pressure, the peak value of the noise is extracted and plotted as a function 

of the pressure in Fig. 4.16.  

 

Figure 4.16 Noise peaks in TIA normalized to water concentration (datapoints), as a 

function of the working pressure, and exponential fit of experimental data (solid red 

line). NQEPAS – QEPAS noise, AH – Absolute Humidity. 

The experimental data follows the same exponential-like trend observed for the 



 
 

QEPAS peak signals (Fig. 4.14). As expected, since the dominant noise contribution is 

due by the QTF thermal noise, the transfer function of the total output noise coincides 

with the signal transfer function. 

The SNR at the output of the lock-in amplifier in the investigated pressure range 

can now be estimated. Figure 4.17 shows the SNR as a function of the pressure 

(datapoints).  

 

Figure 4.17 Signal to Noise Ratio peak (datapoints) versus pressure at the output of the 

lock – in amplifier. Solid red line is the ratio between the fit function of the normalized 

QEPAS signal peaks (solid line in Fig. 4.14) and the fit function of the noise peaks 

(solid line in Fig. 4.16). 

The red solid line is the ratio between the fit function of the normalized QEPAS 

signal peaks (red solid line in Fig. 4.14) and the fit function of the noise peaks (red solid 

line in Fig. 4.16). The red solid line in Fig. 4.17 shows that the SNR decreases almost 

linearly with the pressure; however, the highest SNR occurs at 100 Torr, and its value 

is approximately 40.5 dB.  

Recently [59], a SNR of 32.46 dB was demonstrated for a QEPAS-based water 

vapor detection system at atmospheric pressure, employing a TIA as QTF readout 

electronics. Therefore, the presented result shows a 6 dB increase of the total SNR with 



 
 

the analyzed TIA configuration (see Fig. 4.16). 

Figure 4.18 shows the demodulation frequencies at which the SNR peak values 

occur.  

 

Figure 4.18 Demodulation frequencies corresponding to the SNR peak (black squares) 

and QTF resonance frequencies (red squares) versus pressure (TIA configuration). 

 Apart from the measurement at the atmospheric pressure, the demodulation 

frequency corresponding to the peak value of the SNR is coincident with the QTF 

resonance frequency within 0.02‰, as already proved by the theoretical model 

described in section 3.3. As a result, it is convenient to work at lower pressures to 

maximize the SNR at the output of the LIA, thus enhancing the detection capabilities 

of the QEPAS sensor. 

4.4 QEPAS sensor with CSA for QTF readout 

 The same measurements described in section 4.3 were also performed employing 

a CSA as QTF analog preamplifier, with the aim of comparing the SNR at the output 

of the lock – in amplifier to that measured with the transimpedance amplifier. In the 

CSA, the feedback network consists of a 2.2 pF capacitor connected in parallel to a 100 



 
 

MΩ resistor, to provide a discharge path to the feedback capacitor.  

4.4.1 Signal measurements 

The same procedure used to measure the QEPAS signal with the transimpedance 

preamplifier configuration was employed to investigate the trend of the QEPAS signal 

as a function of the pressure in the CSA configuration. As in section 4.3, the QEPAS 

sensor operates in wavelength modulation and second harmonic detection. The 

modulation amplitudes and frequencies which maximize the output signal are reported 

in Table 4.5. 

Pressure 

[Torr] 

Modulation 

amplitude [mVpp] 

fmod,peak 

[Hz] 
f0/2 [Hz] 

50 12.6 16373.61 16373.71 

100 14.2 16373.31 16373.42 

150 19.0 16373.02 16373.02 

250 28.5 16372.45 16372.53 

400 44.3 16371.59 16371.63 

600 66.4 16370.33 16370.40 

700 79.1 16369.43 16369.72 

Table 4.5 Parameters of the modulation signal that maximize the amplitude of the LIA 

output signal in CSA configuration. fmod,peak is the modulation frequency corresponding 

to the peak of the output signal, f0 is the QTF resonance frequency. 

The trend of the QEPAS signal as a function of the demodulation frequency at 

different pressures is plotted in Fig. 4.19.  



 
 

 

Figure 4.19 QEPAS signal (datapoints) as a function of the demodulation frequency at 

different pressures (CSA configuration); solid lines represent the Lorentzian fit of the 

experimental data. 

Conversely to what was observed in the TIA configuration, the peak voltage at f0 

is 100 µV, at 100 Torr. This value is slightly higher with respect to the one measured 

at 50 Torr, which is 94 µV. This result is not consistent with the theoretical model, since 

at the resonance frequency the output signal is expected to increase as the pressure 

decreases. For this reason, this datapoint will be not considered in the following 

analysis.  

The peaks values of the QEPAS signal were extracted and normalized with 

respect to the water concentration, as shown in Fig. 4.20 as a function of the pressure.  



 
 

 

Figure 4.20 Normalized QEPAS signal peaks in CSA versus pressure (datapoints) and 

exponential fit of experimental data (solid red line). SQEPAS – QEPAS signal, AH – 

absolute humidity. 

It is worth noticing that the experimental data follow the same exponential-like 

trend observed for the TIA configuration. 

4.4.2 Noise measurements 

 With the same procedure described in section 4.3.3, the output noise was 

measured and then normalized to the environmental water concentration.  Figure 4.21 

shows experimental data (black squares) and their best fit.  



 
 

 

Figure 4.21 Noise voltage peaks in CSA normalized to water concentration 

(datapoints), as a function of the working pressure, and exponential fit of experimental 

data (solid red line). NQEPAS – QEPAS noise, AH – Absolute Humidity. 

Again, the normalized output noise follows the same exponential-like trend 

already discussed in the other configurations. The SNR as a function of the pressure is 

plotted in Fig. 4.22 for the CSA configuration (datapoints). Also, the ratio between the 

fit function of the normalized QEPAS signal peaks (red solid line in Fig. 4.20) and the 

fit function of the noise peaks (red solid line in Fig. 4.21) is reported as a red solid line. 



 
 

 

Figure 4.21 Signal to Noise Ratio peak (datapoints) versus pressure at the output of the 

lock – in amplifier. Solid red line is the ratio between the fit function of the normalized 

QEPAS signal peaks (solid line in Fig. 4.20) and the fit function of the noise peaks 

(solid line in Fig. 4.21). 

As for the TIA configuration, the SNR decreases almost linearly with the 

pressure. Similarly, the frequency at which the peak of the output SNR occurs is almost 

coincident with the QTF resonance frequency, as shown in Fig. 4.23.  



 
 

 

Figure 4.23 Demodulation frequencies corresponding to the SNR peak (black 

datapoints) and QTF resonance frequencies (red datapoints) versus pressure (CSA 

configuration). 

In conclusion, in both TIA and CSA configurations, the SNR can be maximized 

by lowering the working pressure and modulating the laser at half the resonance 

frequency of the QTF; indeed with a lock- in amplifier time constant of 100 ms, the 

intrinsic resistance of the QTF generates the dominant noise contribution, and the SNR 

is inversely proportional to R, in both configurations.  

 

 

 

 

 

 

 

 

 

 



 
 

Chapter 5: Fully differential front-

end, a further improvement 

 The theoretical study presented so far, along with the experimental results, proves 

that the TIA and CSA configurations for the readout of a QTF yield similar results in 

terms of SNR, hence they can be both effectively employed in the design of the AFE 

of a QTF. 

In order to further improve the performance of the front-end electronics and enhance 

the detectivity of a QEPAS sensor, the use of a different topology of preamplifier can 

be investigated. 

 In particular, many works proved that differential amplifiers can achieve a higher 

total SNR with respect to single-ended amplifiers [54,56,59], thanks to their immunity 

to the common mode noise and wider output dynamic range. 

 In this chapter, the working principle of a fully differential amplifier is briefly 

presented, and a comparison with the previously analyzed preamplifier configurations 

is provided. 

5.1 Architecture of a fully differential amplifier 

 A fully differential amplifier (FDA) is very similar to a standard voltage-feedback 

OPAMP (see Fig. 5.1). The main difference between the two topologies is that FDAs 

have differential output, whereas standard operational amplifiers have single-ended 

outputs. Hence, while in standard OPAMPs the output voltage is referenced to ground, 

in FDAs the output signal is given by the difference between the voltages at the output 

pins. 



 
 

 

Figure 5.1 Diagram symbols of (a) a single-ended output amplifier and (b) a fully 

differential amplifier [86]. 

 The output common mode voltage [87] is usually set by means of a dedicated pin 

(Vocm in Fig. 5.1b), so that its level can be controlled independently of the differential 

voltage. Moreover, while in standard operational amplifiers there is just one feedback 

path from the output to the inverting input, in FDAs two feedback paths can be 

implemented. 

If symmetric feedback paths are employed, the outputs of an FDA have the same 

amplitude and are shifted by 180 degrees; this implies that the output voltage swing 

increases by a factor of 2 over a single-ended output with the same voltage swing [86]. 

 One of the main advantages of the differential configuration is that both input and 

output voltages are not referenced to ground, hence they are not sensitive to variations 

of the ground potential in the circuit. On top of that, FDAs can easily reject common 

mode noise at the input, thus amplifying only the differential signal. 

 To provide a better understanding of an FDA operation, let us consider a classic 

bipolar fully differential amplifier, as depicted in Fig. 5.2. 



 
 

  

Figure 5.2 Schematic of a classic bipolar fully differential amplifier. The stage is biased 

by the non-ideal current source composed by IEE and the resistor REE in parallel. 

The input signals Vin1 and Vin2 are applied to the base of two matched bipolar 

junction transistors (BJTs), and the same collector resistance RC is employed in both 

branches of the circuit. The output voltages Vout1 and Vout2 are probed on the collector 

of Q1 and Q2. A current generator is connected between the emitters of Q1 and Q2 and 

the negative voltage supply, to bias the circuit. 

The differential mode input signal can be defined as the difference between the 

input voltages: 

 𝑉𝑖𝑑 = 𝑉𝑖𝑛1 − 𝑉𝑖𝑛2 (5.1) 

The input voltages, in turn, can be expressed as a function of the differential mode 

input voltage 𝑉𝑖𝑑 and the common mode input voltage 𝑉𝑖𝑐: 

 
𝑉𝑖𝑛1 = 𝑉𝑖𝑐 +

𝑉𝑖𝑑
2

 (5.2) 

 
𝑉𝑖𝑛2 = 𝑉𝑖𝑐 −

𝑉𝑖𝑑
2

 (5.3) 

 
𝑉𝑖𝑐 =

𝑉𝑖𝑛1 + 𝑉𝑖𝑛2
2

 (5.4) 

Similarly, the differential mode output signal is: 



 
 

 𝑉𝑜𝑑 = 𝑉𝑜𝑢𝑡1 − 𝑉𝑜𝑢𝑡2 (5.5) 

and the output voltages can be defined as a function of a differential and a common 

mode component, as well: 

 𝑉𝑜𝑢𝑡1 = 𝑉𝑜𝑐 +
𝑉𝑜𝑑
2

 (5.6) 

 
𝑉𝑜𝑢𝑡2 = 𝑉𝑜𝑐 −

𝑉𝑜𝑑
2

 (5.7) 

 
𝑉𝑜𝑐 =

𝑉𝑜𝑢𝑡1 + 𝑉𝑜𝑢𝑡2
2

 (5.8) 

 In an FDA it is possible to define the small-signal differential mode gain Adm as 

the ratio between the differential output voltage and the differential input voltage with 

input common mode set to zero: 

 
𝐴𝑑𝑚 =

𝑉𝑜𝑑
𝑉𝑖𝑑
|
𝑉𝑖𝑐=0

=
𝑉𝑜𝑢𝑡1 − 𝑉𝑜𝑢𝑡2
𝑉𝑖𝑛1 − 𝑉𝑖𝑛2

|
𝑉𝑖𝑐=0

 

(5.9) 

This gain can be easily calculated using the superposition principle, after imposing Vic 

= 0. As a consequence, from Eqs. 5.2 and 5.3: 

 𝑉𝑖𝑛1 = +
𝑉𝑖𝑑
2

 (5.10) 

 𝑉𝑖𝑛2 = −
𝑉𝑖𝑑
2

 (5.11) 

Since the bases of Q1 and Q2 have opposite polarities, the variations of the emitter 

currents of Q1 and Q2 with respect to the bias point are equal but opposite. As a 

consequence, no signal current flows through the bias resistor REE, thus the emitters of 

the BJTs behave as a virtual ground for the voltage signals (see Fig. 5.3). 



 
 

 

Figure 5.3 Equivalent circuit for the calculation of the small-signal differential mode 

gain: the common emitter of Q1 and Q2 is a signal ground. 

The current signal in the collector of Q1 is: 

 

𝑖𝑐1 = 𝑖𝑐2 = 𝑔𝑚 ∙ 𝑣𝑏𝑒1

= 𝑔𝑚 ∙
𝑉𝑖𝑑
2

 
(5.12) 

where gm is the transconductance of Q1 and Q2. The output voltages vout1 and vout2 can 

then be calculated as follows: 

 𝑣𝑜𝑢𝑡1 = −𝑣𝑜𝑢𝑡2 = −𝑔𝑚𝑅𝐶
𝑉𝑖𝑑
2

 (5.13) 

The differential voltage at the output of the amplifier (see Eqs. 5.5 and 5.9) is: 

 𝑉𝑜𝑑 = 𝑣𝑜𝑑

= −𝑔𝑚𝑅𝐶𝑉𝑖𝑑 ⇒ 

𝐴𝑑𝑚 = −𝑔𝑚𝑅𝐶  

(5.14) 

Therefore, the differential mode gain of a bipolar FDA corresponds to the gain of 

a BJT in common emitter configuration. 

 The common mode gain Acm is calculated imposing Vid = 0, i.e. Vi1=Vi2=Vic, 

according to the following definition: 



 
 

𝐴𝑐𝑚 =
𝑉𝑜𝑐
𝑉𝑖𝑐
|
𝑉𝑖𝑑=0

 

 The equivalent circuit for the calculation of Acm is depicted in Fig. 5.4. 

 

Figure 5.4 Equivalent circuit for the calculation of the small-signal common mode 

gain. 

In the common mode equivalent circuit, the current signals in the emitters of the 

BJTs ie1 and ie2 flow in the same direction, therefore the resistance REE cannot be 

neglected. The common mode gain is: 

 
𝐴𝑐𝑚 = −

𝑔𝑚𝑅𝐶
1 + 2𝑔𝑚𝑅𝐸𝐸

 (5.15) 

which corresponds to the gain of a BJT in common emitter configuration, but with a 

large 2REE degeneration resistance. 

 The capability of rejecting the common mode noise is defined by the ratio 

between Adm and Acm. This parameter is known as Common Mode Rejection Ratio 

(CMRR). In the described example, the CMRR is: 



 
 

 

𝐶𝑀𝑅𝑅 =
𝐴𝑑𝑚
𝐴𝑐𝑚

=
𝑔𝑚𝑅𝐶
𝑔𝑚𝑅𝐶

1 + 2𝑔𝑚𝑅𝐸𝐸

≅ 2𝑔𝑚𝑅𝐸𝐸

= 2
𝐼𝐶
𝑣𝑇
𝑅𝐸𝐸 =

𝐼𝐸𝐸𝑅𝐸𝐸
𝑣𝑇

 

(5.16) 

 where 𝐼𝐶 = 𝐼𝐸𝐸 2⁄  is the bias collector current of Q1 and Q2, and 𝑣𝑇 = 𝑘𝑇 𝑞⁄  is 

the thermal voltage. 

Typically, CMRR can reach up to 120 dB, but tends to decrease when the 

operative frequency increases. Hence, when working at high frequencies, additional 

circuitry should be implemented in the circuit layout, in order to ensure an effective 

common mode rejection [88].  

5.2 Fully differential amplifiers for QTF readout 

5.2.1 Fully differential transimpedance amplifier  

FDAs can be effectively employed to implement the AFE electronics of a QTF in 

a QEPAS sensor. In particular, fully differential transimpedance amplifiers can be used 

in place of their single-ended counterpart, already described in chapters 2 and 3, in order 

to further improve the total SNR. 

The schematic circuit of a fully differential TIA is displayed in Fig. 5.5. 

 



 
 

Figure 5.5 Schematic circuit of a fully differential transimpedance amplifier. The 

dashed capacitor CF models the stray capacitance of the feedback network. 

The QTF is connected across the inputs of the amplifier, and two feedback 

resistors connect each input to the differential output pins. The output common mode 

pin Vocm is used to set the output common-mode voltage [89]. 

The analysis of the SNR in a TIA configuration presented in chapters 2 and 3 

applies with the same results and equations also for a fully differential transimpedance 

amplifier [86,90]. The main difference is that in the differential configuration the output 

signal at the resonance frequency fS is two times the output signal in the single-ended 

configuration.  

Figure 5.6 reports a SPICE simulation of the output signal of the circuit shown in 

Fig. 5.5, compared to a single-ended TIA output signal. The parameters listed in table 

2.1 were employed to model the QTF. Furthermore, the model of the THS4567 fully 

differential amplifier, produced by Texas Instruments, was chosen to simulate the 

behavior of the fully differential TIA configuration. 

 

Figure 5.6 SPICE simulation response of a fully differential TIA (red solid line) and a 

single-ended TIA (blue solid line), normalized to a 1 V input signal amplitude. The 

gain of the stage is set by a 10 MΩ feedback resistor. 



 
 

 As for the noise analysis, fully differential and single-ended configurations are 

characterized by the same output noise spectral density, as shown in Fig. 5.7. 

 

Figure 5.7 SPICE simulation of output noise spectral density in a fully differential TIA 

(red solid line) and a single-ended TIA (blue solid line). 

 As a result, the total SNR at the output of the fully differential TIA is 6 dB higher 

than the one obtained with the single-ended configuration, as shown in Fig. 5.8. 

 



 
 

Figure 5.8 SPICE simulation of the output SNR normalized to a 1 Hz equivalent noise 

bandwidth, in a fully differential TIA (red solid line) and a single-ended TIA (blue solid 

line). 

 Therefore, employing a fully differential TIA improves the performance of the 

QEPAS sensor, raising the SNR by a factor of two, thus enhancing the detection 

capabilities of the whole detection system. 

5.2.2 Fully differential charge sensitive amplifier 

 Similarly, it is possible to configure an FDA in charge-sensitive mode of 

operation, according to the schematic shown in Fig. 5.9. 

 

Figure 5.9 Schematic circuit of a fully differential charge-sensitive amplifier. 

As already observed in the previous section, the gain of the fully differential 

configuration is two times the one obtained with the single-ended configuration (see 

Fig. 5.10).  



 
 

 

Figure 5.10 SPICE simulation of the response of a fully differential CSA (red solid 

line) and a single-ended CSA (blue solid line), normalized to a 1 V input signal 

amplitude. The gain of the stage is set by a 2.2 pF feedback capacitor and a 100 MΩ 

feedback resistor. 

 Moreover, the output noise spectral density is the same in both configurations, as 

reported in the SPICE simulation shown in Fig. 5.11. 

 

Figure 5.11 SPICE simulation of output noise spectral density in a fully differential 

CSA (red solid line) and a single-ended TIA (blue solid line). 

 Therefore, the output SNR at the QTF series-resonant frequency with a fully 



 
 

differential configuration is twice the SNR obtained with a single-ended configuration, 

as reported in Fig. 5.12. 

 

Figure 5.12 SPICE simulation of the output SNR normalized to a 1 Hz equivalent noise 

bandwidth, in a fully differential CSA (red solid line) and a single-ended CSA (blue 

solid line). 

 It is worth noticing that the value of the normalized SNR at fS in the fully 

differential CSA configuration coincides with the one obtained with the fully 

differential TIA. Hence, the same conclusions of chapters 2 and 3 apply to the FDA 

architecture. 

5.2.3 Signal-to-noise measurement with a fully differential CSA 

Experimental measurements aimed at evaluating the SNR achievable with a fully 

differential CSA were performed, employing a 15.8 kHz bare QTF with a quality factor 

of 15000 at atmospheric pressure. A DFB laser emitting at 1392 nm was used as light 

source, in order to match the water absorption spectrum.  

A PCB implementing the fully differential CSA configuration was realized, with 

a 100 MΩ feedback resistor and a 2.2 pF feedback capacitor. THS4567 amplifier was 

mounted on board, and its differential output was connected to the input of a variable-

gain amplifier (AD8338 by Analog Devices), which provides a further programmable 



 
 

gain, ranging from 0 to 80 dB. A 14 bits analog to digital converter (ADC141S626 by 

Texas Instruments) was mounted on the board, in order to digitize the output signal of 

the preamplifier.  

An FPGA development board (DE0-NANO by Terasic) and a custom D/A board 

were employed to implement a digital lock-in amplifier, and to generate: 

(i) the modulation signal of the laser (i.e., the sum of a current ramp and an 

fS/2 sinewave). 

(ii) the control signal of the VGA. 

(iii) the calibration signal of the QTF. 

The control voltage of the VGA was set to 0.3 V, in order to provide a further 16 

dB gain. The 2f-QEPAS signal was then retrieved by sweeping the laser modulation 

current between 75 and 110 mA, as shown in Fig. 5.13. 

 

Figure 5.13 2f-QEPAS signal of water vapor in laboratory environment, acquired with 

a fully differential CSA. The gain of the VGA was set to 16 dB. 

Two peaks of the water absorption spectrum can be clearly resolved; the highest 

one occurs with a driving current of about 100.4 mA. The amplitude of the average 

QEPAS signal measured on the water absorption peak is 19 mV. 

Then, an Allan deviation plot was acquired, keeping the laser on, far from the 



 
 

absorption peak of the water vapor. The result is displayed in Fig. 5.14. 

 

Figure 5.14 Allan deviation plot of the QEPAS sensor noise with laser on. 

The output noise obtained with a 500 ms integration time is about 181 µV, 

resulting in an overall SNR of 40.4 dB, leading to a remarkable improvement of the 

results obtained with the single-ended configuration, where the SNR obtained at 

atmospheric pressure is 34.7 dB (see Fig. 4.21). 

Therefore, we can conclude that employing a fully-differential preamplifier for 

the readout of a QTF remarkably enhances the performance of a QEPAS sensor, by 

increasing the dynamic range of the output signal and strongly improving the signal 

integrity. 

These measurements pave the way for designing an application-specific 

integrated circuit (ASIC), which would allow for a better signal path matching and thus, 

a further enhancement of the QEPAS SNR. 

 

 

 

 

 



 
 

Conclusions and future perspectives 

The aim of this thesis work was the investigation of the pressure dependence of 

the main parameters of a QEPAS sensor, and the improvement of the state-of-art analog 

front-end electronics for the readout of a QTF. 

QEPAS sensors are well suitable for industry 4.0 applications; thanks to their 

compactness, robustness, wide detection range, real-time and in-situ operations, they 

perform instantaneous and accurate measurements of trace gas concentrations, ranging 

from ppm to percentage levels.  

A study of the influence of air pressure on QTF resonance properties is 

fundamental to define the best working pressure, and to further enhance the 

performance of a QEPAS sensor. The analysis proposed, together with the experimental 

results, showed that when the QTF vibrates in air, the effect of the surrounding medium 

affects the resonance frequency, whereas energy dissipation in air reduces the Q-factor. 

The shielding effect of tubes in a spectrophone causes a reduction of the additive mass; 

therefore, the effect of air on vibrating prongs is attenuated. Moreover, at low pressures 

the quality factor of a spectrophone weakly deviates from that of the bare QTF. At 

higher pressures, the acoustic coupling is stronger, leading to an increase in resonance 

frequency and a decrease in quality factor. 

Analytical models of three different configurations of the QTF front-end 

preamplifier were developed and validated. The comparison of these models allowed 

to define the performances of the analyzed configurations in terms of SNR. In the 

voltage amplifier configuration, the value of the bias resistor strongly affects the SNR 

and its peak frequency: for RL<10 MΩ the peak of SNR is located at the series-resonant 

frequency of the QTF, whereas for higher RL values it shifts towards the parallel-

resonant frequency. When the lock-in filter time constant is sufficiently high, the 

frequency trend of the SNR is quite flat around the peak frequency, therefore the choice 

of the operating frequency is not critical. If faster measurements are needed, and a lower 

time constant is employed, the SNR becomes sharper for large RL values. 

In the TIA configuration the peak of the SNR always lies in correspondence of 



 
 

the series resonant frequency. For high time constants, the SNR rapidly drops as the 

lock-in integration bandwidth increases, since the noise contribution from the QTF 

intrinsic resistance is the dominant one. For low values of τ, RF noise contribution 

prevails, and the SNR tends to increase together with the feedback resistance. 

In the CSA configuration, as the integration bandwidth increases, the SNR 

becomes flat. Therefore, a lower time constant can be employed to shorten the 

acquisition time, without significantly reducing the total SNR.  

The reported study suggests that TIA and CSA configurations show similar 

performances in terms of SNR, while the voltage amplifier can achieve the same peak 

SNR at fP with an RL value as large as 100 MΩ. Therefore, an accurate estimation of 

the OPAMP input parasitic capacitance would be mandatory to maximize the SNR; 

moreover, such a large bias resistance might lead to undesirable offset levels. 

Experimental measurements on a QEPAS setup for water vapor detection with 

varying pressure proved that the SNR increases as the pressure decreases, as the noise 

associated to the QTF intrinsic resistance is lower. Results show that the 

transimpedance configuration is the most promising architecture for the QTF readout; 

the obtained results show a remarkable improvement of the SNR with respect to the 

state-of-the-art configurations. The performance of the front-end electronics can be 

significantly enhanced by employing a fully differential amplifier as QTF readout 

preamplifier, thus leading to a 6 dB increase of the SNR with respect to single ended 

configurations. 

Furthermore, an FDA can be easily interfaced with a differential ADC, thus 

allowing the digital control of the whole QEPAS front-end system. In this way, bench 

instrumentation can be replaced by an FPGA and/or a microcontroller, which can be 

directly connected to a personal computer, to control the measurement and retrieve in 

real-time the acquired data. Finally, by getting rid of bulky instruments, it would be 

possible to implement the whole QEPAS setup on drones or unmanned aerial vehicles 

(UAVs), to perform in-situ measurements of trace gas concentration. 

 



 
 

Appendix 

A.1 Fitting algorithm for the extraction of the electrical 

parameters of a QTF  

A MATLAB function for determining the electrical parameters of a QTF (L, CS, 

CP and R) was written. The inputs of the algorithm are the frequency vector and the 

module of the QTF impedance. Then, a system of 4 equations is solved, and the four 

unknown parameters are retrieved in double-precision format. 

 

function [L,Cs,Cp,R] = QTFparams(freq,modZ) 

A.1.1 Series and parallel resonant frequency of the QTF 

N = size(modZ,2); % number of acquisitions 

 

    for i=1:N 

        [min_Z(i,1), i_fs(i,1)] = min(modZ(:,i)); 

        fs(i,1) = freq(i_fs(i,1)); % series resonance frequency 

 

        [max_Z(i,1), i_fp(i,1)] = max(modZ(:,i)); 

        fp(i,1) = freq(i_fp(i,1)); % parallel resonance frequency 

    end 

A.1.2 Solving the system 

    for i=1:N 

        syms ind c_s c_p rp positive % symbolic variables; only positive solutions are 

taken into account 

 

        eq1(i,1) = 1/sqrt(ind*c_s) == 2*pi*fs(i,1); % series resonance frequency 

equation 

        eq2(i,1) = 1/sqrt(ind*c_p*c_s/(c_p+c_s)) == 2*pi*fp(i,1); % parallel resonance 

frequency equation 

        eq3(i,1) = rp^2*ind*c_s/(rp^2*c_p^2+ind*c_s) == min_Z(i,1)^2; % minimum value 

of squared module of impedance at f_s 



 
 

        eq4(i,1) = (ind^2*(c_s/c_p)^2 + rp^2*ind*c_s/c_p*(c_s+c_p))/(rp^2*(c_s+c_p)^2) 

== max_Z(i,1)^2; % peak value of squared module of impedance at f_p 

 

        sol(i,1) = solve([eq1(i,1), eq2(i,1), eq3(i,1), eq4(i,1)],[ind c_s c_p 

rp],'real',true); % solving the system 

 

A.1.3 Converting the parameters in double format 

        L(i,1) = double(sol(i,1).ind); 

        Cs(i,1) = double(sol(i,1).c_s); 

        Cp(i,1) = double(sol(i,1).c_p); 

        R(i,1) = double(sol(i,1).rp); 

 

        clear ind c_s c_p rp 

    end 

end 

A.2 Measurement of the absolute humidity 

The absolute humidity was measured with the HYT271 sensor, produced by 

Innovative Sensor Technology (see section 4.3.1). An ESP32 board was used to read 

sensor data, and transmit them on a wireless network, where they can be accessed by 

any authenticated user. ESP32 is a microcontroller unit (MCU), with integrated Wi-Fi 

connectivity, supporting a wide range of IoT applications.  

Another ESP32 board was used to receive transmitted data, according to the scheme 

depicted in Fig. A.2.1. 

 



 
 

Figure A.2.1 Connection of ESP32 boards for the measurement of the absolute 

humidity. 

 The server connects to a local network and builds an asynchronous web server, 

transmitting data read by the sensor to a specific IP address. In this way, multiple 

connections can be handled at the same time. The client queries the same IP address 

every 5 seconds with an HTTP get request, and prints received data on a serial monitor. 

Data are accessible by any other device authenticated to the wireless network, such as 

a smartphone (see Fig. A.2.2). 

  

Figure A.2.2 Data transmitted by the SERVER board and displayed on a CLIENT 

device (i.e., a smartphone). Displayed data are relative humidity (%), temperature (°C), 

pressure (Torr) and absolute humidity (ppm), respectively. 

In the following sections, the codes running on server and client boards are shown 

and commented. 

A.2.1 Code running on the SERVER board 



 
 

#include <ESP8266WiFi.h> 

#include <Wire.h> 

#include <ESPAsyncWebServer.h> 

 

  //declaring variables 

   

  int address1 = 0x28; // address of HYT 271 sensor 

   

  byte h1,h2,t3,t4; // i2c bytes 

   

  float temperature;  

  float humidity; 

  float pressure; 

  float pressure_torr; 

  float conv_factor = 0.13332236842105; // kPa to Torr conversion  

// factor 

 

  float Tc = 647.096; // critical temperature in K 

  float Pc = 220640.0; // critical pressure in hPa 

   

  float c1 = -7.85951783; 

  float c2 = 1.84408259; 

  float c3 = -11.7866497; 

  float c4 = 22.6807411; 

  float c5 = -15.9618719; 

  float c6 = 1.80122502; 

  float teta; // coefficients and variables to compute absolute  

// humidity in ppm 

   

  unsigned int tt; 

  unsigned int hh; 

  unsigned int hh2; // auxiliar variables 

   

  const char* ssid = "PolySense"; //ssid  of WiFi network 

  const char* password = "*************"; // password of WiFi network  

// (not shown) 

 

  AsyncWebServer server(80); 

 

  void setup(){ 

      Wire.begin(); // initializing i2c bus 

      Serial.begin(115200); // initializing serial port  

      WiFi.mode(WIFI_STA); // setting WiFi in station mode 

 

  IPAddress staticIP(192,168,0,130); // static IP address of the  

// board 

  IPAddress gateway(192, 168, 0, 1); // gateway IP address of the  

// client 

  IPAddress subnet(255, 255, 255, 0); // subnet mask  

 

  WiFi.config(staticIP,gateway,subnet); // configuring WiFi  

// communication 

 

    WiFi.begin(ssid,password); // connecting to the network 

    while(WiFi.status()!= WL_CONNECTED){ 



 
 

      delay(500); 

      Serial.print("."); 

    } 

    Serial.println("Connection established"); 

    Serial.print("IP address: "); 

    Serial.println(WiFi.localIP()); // displaying the IP address of  

    // the board (should be the one set previously) 

 

    Serial.println(); 

   

    delay(500); 

 

    Serial.println(ESP.getFreeHeap()); // display free bytes of  

// memory 

   

  server.on("/sensor1", HTTP_GET, [](AsyncWebServerRequest *request){ 

    request->send(200, 

"text/plain",ReadHum(address1)+"\t"+ReadTemp()+"\t"+press_torr()+"\t"

+ppmComput()); 

  }); // transmitting string data to 192.168.0.130/sensor1 

   

  delay(5000); 

 

   server.begin(); // starting asyincronous server 

} // end setup 

 

 

  void ReadData(int address){  

 

      Wire.beginTransmission(address); // beginning i2c transmission  

// with "address" 

      Wire.requestFrom(address,4); // polling 4 bytes to "address" on  

// the i2c bus 

      while(Wire.available()==4){ // reading 4 bytes whilst any data  

// is available on the bus 

      h1 = Wire.read(); 

      h2 = Wire.read(); 

      t3 = Wire.read(); 

      t4 = Wire.read();    

      } 

     int error = Wire.endTransmission(); 

      if(error!=0){ // if there isn't any device connected to  

// "address", set to zero each byte 

        h1 = 0; // the programm will retrieve humidity = 0% and  

// temperature = -40°C 

        h2 = 0; 

        t3 = 0; 

        t4 = 0;         

      } 

  } 

 

  String ReadHum(int address){ 

    ReadData(address); // reading i2c data on "address" 

    CalcHum(); // Call to CalcHum() method 

    return (String)humidity; // float to string conversion of  



 
 

// humidity data 

    delay(50); 

  } 

 

    void CalcHum(){ 

    hh = h1 & 0x3F; 

    hh2 = hh<<8 | h2; // shifting and masking humidity bytes (see  

// HYT271 datasheet) 

    humidity = (100*hh2)/pow(2,14); // computing percentual relative  

// humidity 

  } 

 

    String ReadTemp(){ 

    CalcTemp(); // Call to CalcTemp() method 

    return (String)temperature; // float to string conversion of  

// temperature data 

    delay(50); 

  } 

 

  void CalcTemp(){    

    tt = t3 << 8 | t4 & 0xFC; // shifting and masking temperature  

// bytes (see HYT271 datasheet) 

    temperature = ((tt / pow(2,16)) * 165.0) - 40.0; // computing  

// temperature in Celsius degrees 

  } 

 

  String ReadPress(){ 

     

    pressure = 101.325; // atmospheric pressure in kPa 

    return(String)pressure; // float to string conversion of pressure 

// data 

     

  } 

 

  String press_torr(){ 

    pressure_torr = pressure/conv_factor; // converting the pressure 

// from kPa to Torr 

    return(String)pressure_torr; // converting the pressure from  

// float to string format 

  } 

 

  String ppmComput(){ 

      teta = 1-(temperature+273.15)/Tc; 

      float pws = Pc*exp((Tc/(temperature+273.15))*(c1*teta + 

c2*pow(teta,1.5) + c3*pow(teta,3.0) + c4*pow(teta,3.5) + 

c5*pow(teta,4.0) + c6*pow(teta,7.5))); 

      float pw = pws*humidity/100; 

      float ah = pw*pow(10.0,6.0)/(pressure*10.0 - pw); // computing 

// absolute humidity in ppm 

      return(String)ah; // float to string conversion of absolute  

// humidity data 

  } 

 

  void loop() { // display data 

       



 
 

    Serial.print(ReadHum(address1)); 

    Serial.print("\t"); 

    Serial.print(ReadTemp()); 

    Serial.print("\t"); 

    Serial.print(ReadPress()); 

    Serial.print("\t"); 

    Serial.print(press_torr()); 

    Serial.print("\t"); 

    Serial.println(ppmComput()); 

     

    delay(5000); 

     

    } // end loop 

A.2.2 Code running in the CLIENT board 

#include <WiFiClient.h> 

#include <ESP8266WiFi.h> 

#include <ESP8266HTTPClient.h> 

 

const char* ssid = "PolySense"; // name of the network 

const char* pass = "*************"; // password of the network (not  

// shown) 

 

const char* sensor11Data = "http://192.168.0.130/sensor1"; // URL  

// path of the HYT271 sensor  

 

void setup() { 

 

  Serial.begin(115200); // initializing serial port 

 

  IPAddress staticIP(192, 168, 0, 133); // static IP address of the  

// board 

  IPAddress gateway(192, 168, 0, 1); // gateway IP address of the  

// client 

  IPAddress subnet(255, 255, 255, 0); // subnet mask 

 

  WiFi.config(staticIP, gateway, subnet); // configuring WiFi  

// communication 

  WiFi.mode(WIFI_STA); 

  WiFi.begin(ssid, pass); 

  while (WiFi.status() != WL_CONNECTED) { 

    delay(500); 

    Serial.print("."); 

  } 

  Serial.println("Connection established"); 

  Serial.print("IP address: "); 

 

  Serial.println(WiFi.localIP()); // IP address 

 

  delay(500); 

 

} 

 



 
 

void loop() { 

 

        String data11 = httpGETRequest(sensor11Data); 

 

        Serial.print("Sensor1: "); 

        Serial.print(data11); 

        Serial.println("\t"); 

 

  delay(5000); 

} 

 

String httpGETRequest(const char* serverName) { 

  WiFiClient client; 

  HTTPClient http; 

 

  // IP address with path or Domain name with URL path 

  http.begin(client, serverName); 

 

  // Send HTTP POST request 

  int httpResponseCode = http.GET(); 

 

  String payload = "--"; 

 

  if (httpResponseCode > 0) { 

    payload = http.getString(); 

  } 

   

  http.end(); 

 

  return payload; 

} 
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