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Abstract

The increasing application of Artificial Intelligence and Machine Learning models
poses potential risks of unethical behaviour and, in light of recent regulations, has
attracted the attention of the research community. Current AI regulations require
discarding sensitive features (e.g., gender, race, religion) in the algorithm’s decision-
making process to prevent unfair outcomes. However, even without sensitive features
in the training set, algorithms can persist in discrimination. Indeed, when sensitive
features are omitted (fairness under unawareness), they could be inferred through
non-linear relations with the so-called proxy features. Several researchers focused on
seeking new fairness definitions or developing approaches to identify biased predictions
without helping to answer the following question: Which fairness definition should
be used and satisfied in a deployed model? Consequently, what metric should we
satisfy? However, what metrics can better quantify the unfair behavior of a model?
These questions remain open challenges in the field. Furthermore, a limitation of the
proposed approaches is that they focus solely on a discrete and limited space; only a
few analyze the minimum variations required in the user characteristics to ensure a
positive outcome for the individuals (counterfactuals).

This dissertation aims to bridge the gap in the fairness domain by proposing a new
fairness perspective. Starting from the recent academic literature in the area, this thesis
will intertwine with the issues close to the field of responsible AI by offering insights
in the following directions: (i) we propose a framework grounded in counterfactual
reasoning to reveal the potential hidden bias of a machine learning model that can
persist even when sensitive features are discarded, (ii) we propose a simple procedure
to identify and quantify the relationship between sensitive characteristics and proxy
features. (iii) we leverage counterfactual reasoning to explain the model decision
building a responsible pipeline for the credit score domain.
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Chapter 1

Introduction

The Cambridge Dictionary defines discrimination as the act of “treating a person or
particular group of people differently, especially in a worse way from how you treat other
people, because of their skin colour, sex, sexuality, etc.”1. Recently, various regulations
have been designed to face the discrimination problem. For instance, Article 21 of the
EU Charter of Fundamental Rights defines the non-discrimination requirements: “any
discrimination based on any ground such as sex, race, colour, ethnic or social origin,
genetic features, language, religion or belief, political or any other opinion, membership
of a national minority, property, birth, disability, age or sexual orientation shall be
prohibited”2 [40]. In 2015, the United Nations General Assembly set up the Sustainable
Development Goals (SDGs) or Global Goals, a collection of 17 interlinked global goals
designed to be a “blueprint for achieving a better and more sustainable future for
all”3. Most of the SDGs are somehow related to the discrimination problem, such as
no poverty, zero hunger, gender equality, and reduced inequality. The discrimination
problem is well-known and recognized in the financial domain where, for example,
the decision to approve or deny credit has been regulated with precise and detailed
regulatory compliance requirements (i.e., Equal Credit Opportunity Act4 [49], Federal
Fair Lending Act5 [86], and Consumer Credit Directive for EU Community6 [43]).
However, these laws were set to prevent discrimination in human decision-making
processes and not in automated ones, such as those exploiting Machine Learning (ML)

1https://dictionary.cambridge.org/dictionary/english/discrimination
2https://fra.europa.eu/en/eu-charter/article/21-non-discrimination
3United Nations (2017) Resolution adopted by the General Assembly on 6 July 2017
4https://www.ftc.gov/enforcement/statutes/equal-credit-opportunity-act
5https://www.fdic.gov/resources/supervision-and-examinations/consumer-

compliance-examination-manual/documents/4/iv-1-1.pdf
6https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX:32008L0048

https://dictionary.cambridge.org/dictionary/english/discrimination
https://fra.europa.eu/en/eu-charter/article/21-non-discrimination
https://www.ftc.gov/enforcement/statutes/equal-credit-opportunity-act
https://www.fdic.gov/resources/supervision-and-examinations/consumer-compliance-examination-manual/documents/4/iv-1-1.pdf
https://www.fdic.gov/resources/supervision-and-examinations/consumer-compliance-examination-manual/documents/4/iv-1-1.pdf
https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX:32008L0048
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or, more generally, Artificial Intelligence (AI) systems. The EU Commission, in the wake
of the GDPR7 (i.e., a regulation to safeguard personal data), seeks to regulate the use
of AI systems with the “Ethics Guidelines for Trustworthy AI” and more recently with
“The Proposal for Harmonized Rule on AI”. The regulated characteristics are various
(e.g., technical robustness, privacy, data governance, transparency, accountability,
societal and environmental well-being), and the European legislature deems adopting
non-discriminatory AI models crucial. Therefore, the financial domain is the perfect
workbench to test these regulations. Indeed, financial services are considered high-risk
AI applications on the European AI risk scale (the levels are minimal, limited, high,
and unacceptable risk). As a consequence, a financial AI model must demonstrate
fairness concerning sensitive characteristics to protect the social context in which it
operates.

Since unfair treatment is strictly related to discriminatory behaviour, fairness can
be seen as the antonym of discrimination. Unfortunately, finding a strict and formal
definition of fairness is challenging, and the subject is still under debate. Mehrabi et al.
[123] proposed a definition that could fit the financial domain and its discrimination-
derived risks. They defined fairness as “the absence of any prejudice or favouritism
toward an individual or a group based on their inherent or acquired characteristics.”
Another relevant aspect of fairness is highlighted by Ekstrand et al. [80] that refers
to unfairness when a system treats people, or groups of people, in a way that is
considered “unfair” by some moral, legal, or ethical standard. The exciting aspect is
that, in that case, “fairness” is related to the normative aspects of the system and its
effects. For this work, the counterfactual fairness as defined by Pitoura et al. [142]
is particularly relevant. The intuition, in this case, is that an output is fair towards
an entity if it is the same in both the actual world and a counterfactual world where
the entity belongs to a different group. Causal inference is used to formalize this
notion of fairness. This definition inspired the design of our model. From a geometrical
perspective that considers how a decision model works, Dwork et al. [76] says that
items that are close in construct space shall also be close in decision space, which is
widely known as individual fairness: similar individuals should receive similar outcomes.
In contrast to individual fairness, Deldjoo et al. [68] define group fairness as aims to
ensure that “similar groups have similar experiences”. Typical groups in such a context
are a majority or dominant group and a protected group (e.g., an ethnic minority).
Following this overview, some critical aspects of this work emerged: the legislation,

7https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:
32016R0679

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679


1.1 Thesis Statement 3

the counterfactual, and the group. More specifically, the legislation is the primary
motivation behind this work, the counterfactual generation is the strategy we exploited
for detecting unfairness, and the group is the subject of discrimination we want to
catch. Furthermore, the counterfactual generated can also be used for explainability
purposes and personalized, actionable recommendations in the loan domain. Although
system designers train a model without any discriminatory purpose, several studies
demonstrated that using AI systems without considering ethical aspects can promote
discrimination [14, 51, 74]. Moreover, while the financial domain regulations strictly
prohibit using sensitive characteristics for decision-making, some researchers defend
their usage and believe the model should avoid unfair treatments (i.e., active bias
detection) [81, 150]. Nevertheless, only avoiding using sensitive features for training
AI models does not guarantee the absence of biases in the outcome [2]. Indeed, there
could be features in the dataset that can represent an implicit sensitive feature. In
this study, we name these independent features as proxy features for the sensitive one.
For instance, education, smoking and drinking habits, pet ownership, and diet can be
proxy variables for the feature “age”. The relationship between proxy and sensitive
features generally depends on multicollinearity, namely a strong linear relationship
between more than two variables. Unfortunately, non-linear relationships are more
challenging to detect.

1.1 Thesis Statement

The investigation of this thesis finds its backbone and relies on the “Fairness Under
Unawareness” –or “blindness” Pitoura et al. [142]– definition (i.e., “an algorithm is
fair as long as any protected attributes are not explicitly used in the decision-making
process” [32]). The choice of this definition as a fairness setting is a logical operational
consequence of current regulations. Indeed, like for other high-risk applications, the law
dictates that AI applications in the financial domain cannot use sensitive information.

The second most important concept in this dissertation is Counterfactual Reasoning.
Counterfactual reasoning stands as a pivotal tool in the realm of machine learning and
artificial intelligence, especially in the context of fairness understanding and model
explanation. Its significance lies in its capacity to unveil the intricate mechanisms
underpinning algorithmic decisions. By generating counterfactual instances that depict
alternative scenarios, it offers a profound glimpse into how a model would have acted
differently under varying circumstances. This not only enhances transparency and
interpretability but also empowers stakeholders, model developers, and end-users to
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discern the factors contributing to a model’s predictions. Furthermore, counterfactual
reasoning plays a fundamental role in addressing and rectifying biases, as it enables
the identification of discriminatory features or tendencies in machine learning models,
ultimately paving the way for more equitable and accountable AI systems. As we
navigate the complexities of deploying AI in critical domains like finance, healthcare,
and criminal justice, counterfactual reasoning emerges as a critical tool in fostering trust,
mitigating bias, and ensuring that AI models operate with fairness and transparency
as guiding principles.

More specifically, the dissertation is divided into two main parts. The first part
(i.e., Chapter 4 and Chapter 5) investigates a strategy to detect decision biases in a
realistic scenario where sensitive features are absent, and there could be an unknown
number of proxy features. The second part (i.e., Chapter 6), tries to quantify the same,
proposing an explanation methodology for the loan domain. The link between these
two macro-sections is the Counterfactual Reasoning methodology.

We propose to tackle this challenging task by designing a system composed of three
main modules. The first module encapsulates the classifier to analyze, named the
outcome classifier. This predictor, as regulations demand, is trained without any
sensitive features. The second module trains a separate classifier, named sensitive
feature classifier, on the same features to predict the sensitive characteristics. The
third module calculates the minimal counterfactual samples, i.e., variants of the original
sample, by modifying the values of non-sensitive features to obtain a different outcome
with the outcome classifier. Finally, the sensitive feature predictor classifies the
generated samples to check whether the samples still belong to the original sensitive
class. If this does not occur, the outcome predictor is biased, and its unfairness can be
quantified.

To better explain the idea behind our approach, let us introduce a simple example
regarding the loan granting process. Suppose our goal is to assess whether our
loan classifier discriminates against women. In this example, the protected class is
women, and the sensitive feature is gender. The outcome classifier is a state-of-the-art
classification model trained without gender information. The sensitive feature classifier
will then distinguish men from women by exploiting the other non-sensitive features
in the dataset (e.g., car type, job, education). A customer loan request triggers the
system’s operation: the classifier rejects her request. Therefore, the counterfactual
module perturbs the values of her non-sensitive features until the loan is approved (e.g.,
increasing income, reducing the loan duration). The sensitive feature classifier then
classifies the new approved counterfactual sample. Is she still classified as a woman
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by the system? What could we say if the features changed and those responsible for
the approval were the same responsible for classifying her as a man? The decision
model may still be biased and thus unfair, and since it does not use sensitive features,
this is due to proxy features. The same methodology, except for the sensitive feature
classifier, is part of the second goal of this research, which is explaining a loan decision.
Counterfactual sample generation can have multiple purposes. Indeed, they can be
used to explain a decision, to propose and recommend a counterfactual actionable
change in a loan recommendation platform, and can be user-specific by interacting with
the platform by recommending personalized, actionable steps based on the user-specific
requirements and possibilities. Notwithstanding, the type of explanation can depend
on the stakeholder which is delivered. All these contributions will be exploited in the
remaining part of the thesis.

1.2 Research Contributions

In this dissertation, the concepts that will be exploited are fairness under unawareness,
counterfactual reasoning, proxy features, and explainability.

To the best of our knowledge, the interconnection between these concepts is still
unexplored, which brings novelty to this dissertation. Overall, this study proposes an
approach for detecting bias in machine learning models using counterfactual reasoning,
even when those models are trained without sensitive features, i.e., in the case of
Fairness Under Unawareness. In addition, we investigate the presence of bias in an
algorithm using counterfactual reasoning as an effective strategy for bias detection and
evaluate if different counterfactual strategies have dissimilar efficacy in detecting biases.
Furthermore, as a second contribution, we aim to build an explainable framework
taking into account counterfactual reasoning. The framework not only can handle
discriminative analysis with the investigation and detection of proxy features-outcomes
relationships but also the explanation and actionable steps in a loan recommendation
domain. In detail, the dissertation intends to answer the following research questions:

• RQ1: Is there a principled way to identify if proxy features exist in a dataset?

• RQ2: Does Fairness Under Unawareness setting ensure that decision biases are
avoided?

• RQ3: Is counterfactual reasoning suitable for discovering decision biases?

• RQ4: Is it possible to define a strategy for identifying the proxy features?
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• RQ5: Can counterfactual reasoning be useful to explain a loan decision?

• RQ6: What is the most suitable explanation strategy depending on each stake-
holder in the loan domain?

1.2.1 Publications

Following, the list of works taken into account for the thesis dissertation are listed in
chronological order. Most of them have been published at journals and conferences
on algorithmic fairness, information retrieval, recommender system, and artificial
intelligence [52, 54–58, 60, 62, 136]. A comprehensive description of the work published
but not taken into account for the thesis dissertation is reminded to Section 1.4.
Journal Papers:

• Giandomenico Cornacchia, Vito Walter Anelli, Giovanni Maria Biancofiore,
Fedelucio Narducci, Claudio Pomo, Azzurra Ragone, and Eugenio Di Sciascio.
“Auditing fairness under unawareness through counterfactual reasoning.” In:
Information Processing & Management (2023)

• Giandomenico Cornacchia, Vito Walter Anelli, Fedelucio Narducci, Azzurra
Ragone, and Eugenio Di Sciascio. “A General Architecture for a Trustworthy
Creditworthiness-Assessment Platform in the Financial Domain.” In: Annals of
Emerging Technologies in Computing (AETiC) 7.2 (2023).

Conference Papers:

• Giandomenico Cornacchia, Vito Walter Anelli, Fedelucio Narducci, Azzurra
Ragone, and Eugenio Di Sciascio. “Counterfactual Reasoning for Bias Evaluation
and Detection in a Fairness under Unawareness setting.” In: ECAI. Vol. 372.
Frontiers in Artificial Intelligence and Applications. IOS Press, 2023, pp. 477–484.

• Giandomenico Cornacchia, Vito Walter Anelli, Fedelucio Narducci, Azzurra
Ragone, and Eugenio Di Sciascio. “Counterfactual Reasoning for Decision Model
Fairness Assessment.” In: Companion Proceedings of the ACM Web Conference
2023. WWW’23 Companion. Austin, TX, USA: Association for Computing
Machinery, 2023, pp. 229–233.

• Giandomenico Cornacchia, Fedelucio Narducci, and Azzurra Ragone. “Improving
the User Experience and the Trustworthiness of Financial Services.” In: Human-
Computer Interaction – INTERACT 2021. Ed. by Carmelo Ardito, Rosa
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Lanzilotti, Alessio Malizia, Helen Petrie, Antonio Piccinno, Giuseppe Desolda,
and Kori Inkpen. Cham: Springer International Publishing, 2021, pp. 264–269.

Workshop Papers:

• Giandomenico Cornacchia, Vito Walter Anelli, Fedelucio Narducci, Azzurra
Ragone, and Eugenio Di Sciascio. “Counterfactual Reasoning for Responsible
AI Assessment.” In: Ital-IA. Vol. 3486. CEUR Workshop Proceedings. CEUR-
WS.org, 2023, pp. 347–352.

• Giandomenico Cornacchia, Fedelucio Narducci, and Azzurra Ragone. “A General
Model for Fair and Explainable Recommendation in the Loan Domain (Short pa-
per).” In: KaRS/ComplexRec@RecSys. Vol. 2960. CEUR Workshop Proceedings.
CEUR-WS.org, 2021.

The following section provides additional details on the thesis’s organization. This
is intended to guide the reader on the structure of the thesis and on the main research
path that motivated our research goals.

1.3 Organization of the Thesis

The chapters of this thesis are self-contained and present the notions of specific problems,
architectures, paradigms, data structures, and metrics related to their content.

In the next two chapters, we propose a brief but comprehensive introduction to
the dissertation. To understand the urgency in relying on the concept handle in the
dissertation, in Chapter 2 we start by examining the regulation that in the financial
domain determines fair practice in human decision-making and the consequent novel
law regulating the unethical use of AI. Subsequently, in Chapter 3 we introduce
the unfairness problem in the machine learning domain with its multiple definitions,
evaluations, and proposed solutions to the problem with their complementary limitation.
Following, in Chapter 4 we provide the preliminaries of the work while proposing our
methodology to close the gap with the literature. Thus, to provide an answer to the
first 4 RQs, in Chapter 5 we performed an extensive experimental evaluation on three
state-of-the-art datasets, broadly recognised as datasets containing Social Bias. Then,
in Chapter 6 we propose different pipelines that try to give an explanation which is
user-friendly and recommends actionable and interactive explanations. Furthermore,
we try to differentiate possible useful explanations based on the considered stakeholders.
In the conclusive Chapter 7, we have the closing remarks.
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1.4 Bibliographical Notes

This section briefly describes the research articles published during the PhD but not
discussed in the dissertation. We decided not to include the following article so as not
to lose the focus and pertinence with the previously introduced concepts. Indeed, the
following works have been conducted as simultaneous topics whose research questions
have been raised while studying the literature.

Recommender systems, which provide personalized suggestions based on user
preferences, are increasingly influential across digital platforms. Ensuring their trust-
worthiness—through transparency, fairness, and the mitigation of bias—is crucial
for building user trust and satisfaction. One of the crucial issues for a trustworthy
Recommender System (RS) is explanations. Research contributions in this direction
have become attractive again due to the renewed interest in eXplainable Artificial
Intelligence (XAI). In order to improve the effectiveness, efficiency, persuasiveness, and
user satisfaction of recommender systems, explainable recommendation refers to the
personalized recommendation algorithms that address the problem of why – they not
only give the user the suggestions but also make the user aware of why such items are
recommended by generating recommendation explanations. Motivated by these results,
we proposed a formal approach for generating explanations from Multi-Stakeholder
type RSs (MS-RSs). In this context, we considered the point of view of counterfactual
explanations. We highlighted the pros and cons of their application in a scenario that
explained the recommendation for the consumer and the policy adopted by the system
for the considered stakeholder. The proposed model for generating counterfactual
explanations in a Multi-Stakeholder context was presented at the Advanced Informa-
tion Systems Engineering Workshops held in conjunction with the 33rd International
Conference on Advanced Information Systems Engineering (CAiSE) 2021 under the
title “Explanation in multi-stakeholder recommendation for enterprise decision support
systems” [59].

While recommendation systems leveraging multimedia content have long been
established as successful and efficient approaches in the literature, their application
of multimodal deep learning strategies remains not clearly defined, formalized, and
empirically analyzed. The survey literature, under the title Formalizing Multimedia
Recommendation through Multimodal Deep Learning [118], has been accepted as a
journal at the ACM Transactions on Recommender Systems.

This literature is grounded in an innovative analysis of the performance of state-of-
the-art graph-based recommender systems leveraging multimodal information under
several evaluation perspectives encompassing, among others, novelty, diversity, bias,
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and fairness recommendation measures. The analysis is a condensed part of two works:
(i) Disentangling the Performance Puzzle of Multimodal-aware Recommender Systems
presented at the 3rd EvalRS workshop at the Knowledge and Data Mining (KDD)
Conference 2023 [119], and (ii) On Popularity Bias of Multimodal-aware Recommender
Systems: A Modalities- driven Analysis presented at the 1st International Workshop
on Deep Multimodal Learning for Information Retrieval at the 31st ACM International
Conference on Multimedia (ACM MM) 2023 [117].

Beyond RS, the security of Large Language Models (LLMs) against jailbreak attacks
has become increasingly relevant. These attacks compromise LLM safety mechanisms,
risking data integrity and privacy. To address this, the MoJE (Mixture of Jailbreak
Experts) architecture was proposed, introducing a novel guardrail framework that
detects 90% of jailbreak attacks without affecting benign prompts. This research
demonstrates a balance between security and computational efficiency, enhancing LLM
protection against adversarial threats. The work will be presented at AIES 2024 [63].





Chapter 2

Regulation Compliance in the
Credit Domain

Dedicating a chapter to the historical discrimination laws and current legal regulations
on AI applications is crucial. It provides essential context by tracing the evolution of
societal values and legal frameworks in the fight against discrimination. Additionally, it
offers a clear understanding of how AI’s integration into society raises complex ethical
and legal issues. Examining current AI laws highlights the legal system’s response to
emerging challenges related to bias, transparency, accountability, and privacy. This
chapter equips the reader with a comprehensive grasp of how AI intersects with fairness,
equity, and legality, fostering an informed approach to AI development and deployment.

2.1 Introduction

Financial institutions and banks have always been under scrutiny for ethics, safe-
guarding citizens, and ensuring non-discrimination of sensitive groups. Over the years,
several laws have been passed with the primary objective of providing fair access to
credit. Despite this, Federal Reserve data showed that discrimination has not entirely
disappeared over the years in areas such as home loans and small business credit, which
continue to pose challenges for public policymakers [12].

Discrimination and equal credit opportunities have been some of the main objec-
tives of the financial market laws. The discrimination in-laws and economics can be
categorised as statistical [3, 140], in which an agent discriminates indirectly without
any causal relation if any sensitive category is not considered, and taste-based [102],
in which an agent can discriminate based on personal prejudice (sexism, racism, etc.).
Furthermore, both categories focused on utility. Going deeper, with statistical discrim-
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ination, the sensitive attribute is used to make inferences. Instead, with discrimination
based on preference, decision-makers act as if they have a preference or “taste for
prejudice”, sacrificing profit to avoid certain transactions [50]. In particular, the equal
protection law, established by the U.S. Constitution’s Fourteenth Amendment, prohibits
government agents from acting with “discriminatory purpose”1. Indeed, it prevents
preference-based actions (since it means sacrificing utility) but allows the limited use
of protected attributes since it represents a form of statistical discrimination.

2.1.1 Credit regulation

One of the first regulations in the financial services industry was the Truth in Lending
Act (TILA, 1968), a U.S. federal law [48]. It was designed to promote informed
consumer credit use by standardising the disclosure of loan terms and costs [71].

Attribute FHA [47] ECOA [49] CCD [43]
Race ✓ ✓ ✓
Color ✓ ✓ ✓
National origin ✓ ✓ ✓
Religion ✓ ✓ ✓
Sex ✓ ✓ ✓
Familial status ✓ ✓
Disability ✓ ✓
Exercised rights under CCPA ✓
Marital status ✓ ✓
Recipient of public assistance ✓ ✓
Age ✓ ✓
Language ✓
Opinion (political or any other) ✓
Genetic feature ✓
Sexual orientation ✓

Table 2.1 A list of the protected attributes as specified in the Fair Housing Act, Equal Credit
Opportunity Act, and Consumer Credit Directive through the EU Charter of Fundamental
Rights (FHA, ECOA, CCD), partially from [32].

Furthermore, the TILA law protects borrowers against inaccurate and unfair credit
billing and credit card practices by giving them the right to withdraw. It requires
lenders to provide information on the loan cost so that borrowers can decide whether
to make or not the loans and, in a negative case, compare with other institutions.

1https://supreme.justia.com/cases/federal/us/426/229/

https://supreme.justia.com/cases/federal/us/426/229/
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The Fair Housing Act (FHA, 1968) [47], also known as Titles VIII through IX of the
Civil Rights Acts of 1968 (follow-up of the precedent Civil Rights Act of 1964), is a
federal law enacted in 1968 that prohibits discrimination in the purchase, sale, rental,
or financing of housing - private or public - based on race, colour, sex, nationality or
religion (see Table 2.1). Thus, the Fair Housing Act succeeded in the main purpose of
the previous law, the Civil Rights Act, to prevent various types of discrimination.

The U.S. Department of Housing and Urban Development (HUD) is the primary
enforcer of the Fair Housing Act. Some examples of discriminatory practices include
different prices for selling or renting a home, delaying or failing to maintain or repair
homes for certain tenants, or limiting the privileges, services, or facilities of a home
based on a person’s gender, nationality, or racial characteristics.

These laws provided the impetus for a regulatory movement that led to new laws
forming the basis for fair lending. Indeed, between 1968 and 1974, different laws
were legislated. First, the Consumer Credit Protection Act (CCPA, 1968) protects
consumers from harm caused by creditors, banks, and credit card companies and
requires that the total cost of a loan or credit product be disclosed, including how
the interest is calculated and any fees. In addition, it regulates the fair reporting
of a client’s financial information, as well as prohibits misleading advertising and
discrimination by creditors, and makes the terms of loans more transparent and easier
to understand for borrowers who may not be financial or banking experts (see Code
of Federal Regulations. “12 CFR 1005.4.”2). Second, in relation to the previous law,
the Fair Credit Reporting Act (FCRA, 1970), in addition to the CCPA, regulates the
collection of consumers’ credit information and access to their credit reports addressing
the fairness, accuracy, and privacy of the personal information contained in the files
of the credit reporting agencies. The last one is the Equal Credit Opportunity Act
(ECOA, 1974), a considerable improvement on the FHA of 1968. The ECOA, as
shown in the table, prohibits discrimination in credit transactions based on race or
colour, national origin, religion, sex, marital list status, age, whether an applicant
receives income from a public assistance program, and the exercise by an applicant, in
good faith, of any right under the Consumer Credit Protection Act [67]. Furthermore,
Regulation B of the ECOA requires that an adverse action notice (AAN) be served
within 30 days if credit is denied, and Appendix C of Reg. B requires that a list of no
more than 4 reasons, known as “principle reason explanations”, must be provided. For

2https://www.ecfr.gov/current/title-12/chapter-X/part-1005/subpart-A/section-
1005.4

https://www.ecfr.gov/current/title-12/chapter-X/part-1005/subpart-A/section-1005.4
https://www.ecfr.gov/current/title-12/chapter-X/part-1005/subpart-A/section-1005.4
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the U.S., the regulations exploited so far are still operative and continuously updated
over time.

While the United States could continue along the line presented in the 1970s as
they were among the first to introduce anti-discriminatory laws, in Europe, due to the
different nature of its member countries and because of its relatively recent foundation,
non-discriminatory laws have only been implemented in the last twenty years.

One of the most important milestones in the EU’s commitment against racial and
gender discrimination has been the Racial Equality Directive adopted in 2000 [41]
and the Gender Equality Directive adopted in 2006 [42]. Considering the credit
domain, in 2008, the EU Commission introduced the Consumer Credit Directive, which
established lending responsible practice and consumer protection [43]. It harmonized
consumer credit laws across member states, ensuring transparent information and
non-discriminatory access to credit, thereby promoting fair and equal treatment for all
consumers. The non-discrimination directive is based on the EU Charter of Fundamental
Rights [40] exploited in Chapter 1 and in Table 2.1.

All these discrimination constraints and explanation requirements, to which financial
services firms need to pay attention, can be considered the base and building block for
the recent AI regulations.

2.2 AI regulations according to the European Com-
mission

In more recent years, thanks to the revolution brought about by Big Data and the
increasing use of artificial intelligence, there has been a speeding up of credit application
processes. These systems have proven to be highly accurate in their predictions and
emphasize the historical problems they have been trying to eliminate. In fact, in apply-
ing risk assessment models, discriminatory intent was never a primary concern because
decision-making was delegated to predictive model algorithms. However, powerful
predictive models can be hazardous, leading to very often unintended discriminatory
decisions. The European Commission, initially with the GDPR, and other countries
such as the US, Canada, and the UK have tried to regulate the possible artificial
intelligence applications such that they can be considered trusted, safe, fair, and
human-centred.

With the “General Data Protection Regulation” (EU) n. 2016/679 (GDPR) [44], the
European Union has addressed EU law on the protection and privacy of personal data
concerning citizens of countries in the European Economic Area (EEA). The GDPR
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was adopted on 27 April 2016 and officially entered into force on 25 May 2018. The
GDPR is not only aimed at protecting the privacy of personal data but also addresses
the issue of exporting personal data outside the EU and obliges all data controllers
(including those with registered offices outside the EU) who process the data of EU
residents to observe and fulfil their obligations by making the data flow compliant.
Since it entered into force, the GDPR has replaced the contents of the Data Protection
Directive (Directive 95/46/EC) [39].

The GDPR has triggered initiatives to regulate AI by European countries, which
may have autonomous laws on the subject, but which converge on a unified European
strategy 3. The main objectives of the European strategy are to make Europe a world
leader in this field, to initiate and promote a radical socio-economic change in the
countries of the European Economic Area and to ensure the ethical, legal and safe use
of the same technology. In drafting the European strategy on artificial intelligence, the
European Commission was assisted by a group of high-level experts on AI. Indeed,
on 8 August 2019, they presented the “Ethics Guidelines for Trustworthy Artificial
Intelligence [4]”. The Ethics Guidelines introduced the concept of Trustworthy AI, which
is the point of convergence of 7 key requirements that AI providers must absolutely
comply with. These are as follows: human Agency and oversight, technical robustness
and safety, privacy and data governance, transparency, non-discrimination and fairness,
societal and environmental well-being, and accountability. These guidelines have been
presented to more than 350 different stakeholders through a piloting process to be
improved and enhanced. Indeed, on 17 July 2020, the High-Level Expert Group on
Artificial Intelligence (AI HLEG) presented its final Assessment List for Trustworthy
Artificial Intelligence. This is a revised version of the Ethics Guidelines, in which
the AI principles are translated into an accessible and dynamic checklist that guides
developers and deployers of AI in implementing such principles in practice4.

On 2 February 2020, the European Commission released its “White Paper on
Artificial Intelligence - A European approach to excellence and trust”, consisting of
two main building blocks [45]. The first analyses and emphasizes AI’s benefits and
having a European strategy for achieving excellence in the international arena. The
second one analyzes the weaknesses and dangers of unregulated, unaccountable, and
unsafe use of artificial intelligence to identify its potential risk. Indeed, a risk-based
fine-tuning criterion emerges for the first time in the White Paper.

3https://digital-strategy.ec.europa.eu/en/policies/strategy-artificial-intelligence
4https://digital-strategy.ec.europa.eu/en/library/assessment-list-trustworthy-

artificial-intelligence-altai-self-assessment

https://digital-strategy.ec.europa.eu/en/policies/strategy-artificial-intelligence
https://digital-strategy.ec.europa.eu/en/library/assessment-list-trustworthy-artificial-intelligence-altai-self-assessment
https://digital-strategy.ec.europa.eu/en/library/assessment-list-trustworthy-artificial-intelligence-altai-self-assessment
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Fig. 2.1 Regulatory framework proposal on Artificial Intelligence, a risk-based approach

In the same direction of the white paper, the European Commission, on 21 April
2021, presented the proposed law “Proposal for a Regulation laying down harmonized
rules on artificial intelligence” [46], also known as “EU AI Act” that has been approved
on the 14 June 2023. This proposal remarks on the importance of monitoring the
deployed AI system based on a scale of risk (see Figure 2.1). The risk-based approach
divides AI system into four different categories depending on the risk of the use case:

• Unacceptable risk: all systems that are considered a clear threat to security,
livelihoods, and people’s rights (e.g., social scores or toys that encourage dangerous
behaviour) will be banned;

• High-risk: all systems that are used in critical infrastructures (e.g., transport),
educational or vocational training (e.g., scoring of exams), safety components
of products (e.g., AI application in robot-assisted surgery), employment, work-
ers management, and access to self-employment (e.g., CV-sorting software for
recruitment procedures), essential private and public services (e.g., credit scoring
denying citizens opportunity to obtain a loan), Law enforcement (e.g., evaluation
of the reliability of evidence), migration, asylum, and border control management
(e.g., verification of the authenticity of travel documents), and administration of
justice and democratic processes (e.g., applying law to a concrete set of facts);

• Limited risk: all system that needs some transparency obligations (i.e., chatbots,
in which the user must be aware of interacting with a machine so they can take
an informed decision to continue or step back);

• Minimal risk: all systems that represent a minimal risk or no risk (e.g., AI-
enabled in video games or spam filter) allowing the free use of AI;
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Therefore, as can be seen from the list, the use of artificial intelligence in credit
institutions is considered to be high-risk. Following, it is reported on the two most
important recitals concerning systems used to assess creditworthiness (i.e., Recital 37)
and the importance of regulators in the financial sector (i.e., Recital 80).

EU AI Act - Recital 37
Creditworthiness of Natural Persons
“Another area in which the use of AI systems deserves special consideration is the access to and
enjoyment of certain essential private and public services and benefits necessary for people to
participate in society fully or to improve one’s standard of living. In particular, AI systems
used to evaluate the credit score or creditworthiness of natural persons should be classified
as high-risk AI systems, since they determine those persons’ access to financial resources or
essential services such as housing, electricity, and telecommunication services. AI systems
used for this purpose may lead to discrimination of persons or groups and perpetuate historical
patterns of discrimination, for example, based on racial or ethnic origins, disabilities, age, and
sexual orientation, or create new forms of discriminatory impacts. Considering the very limited
scale of the impact and the available alternatives on the market, it is appropriate to exempt AI
systems for creditworthiness assessment and credit scoring when put into service by micro or
small enterprises, as defined in the Annex of Commission Recommendation 2003/361/EC for
their own use. Natural persons applying for or receiving essential public assistance benefits and
services from public authorities are typically dependent on those benefits and services and are
in a vulnerable position in relation to the responsible authorities. If AI systems are used to
determine whether such benefits and services should be denied, reduced, revoked, or reclaimed by
authorities, including whether beneficiaries are legitimately entitled to such benefits or services,
those systems may have a significant impact on persons’ livelihood and may infringe their
fundamental rights, such as the right to social protection, non-discrimination, human dignity
or an effective remedy. Those systems should therefore be classified as high-risk. Nonetheless,
this Regulation should not hamper the development and use of innovative approaches in public
administration, which would stand to benefit from a wider use of compliant and safe AI systems,
provided that those systems do not entail a high risk to legal and natural persons. Finally, AI
systems used to dispatch or establish priority in the dispatching of emergency first response
services should also be classified as high-risk since they make decisions in very critical situations
for the life and health of persons and their property. AI systems are also increasingly used
for risk assessment in relation to natural persons and pricing in the case of life and health
insurance which, if not duly designed, developed, and used, can lead to serious consequences
for people’s lives and health, including financial exclusion and discrimination. To ensure a
consistent approach within the financial services sector, the above-mentioned exception for
micro or small enterprises for their own use should apply, insofar as they themselves provide
and put into service an AI system for the purpose of selling their own insurance products.”
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EU AI Act - Recital 80
Designation of Financial Services Authorities as Competent Authorities
“Union legislation on financial services includes internal governance and risk management
rules and requirements which are applicable to regulated financial institutions in the course
of the provision of those services, including when they make use of AI systems. In order
to ensure coherent application and enforcement of the obligations under this Regulation and
relevant rules and requirements of the Union financial services legislation, the authorities
responsible for the supervision and enforcement of the financial services legislation should be
designated as competent authorities for the purpose of supervising the implementation of this
Regulation, including for market surveillance activities, as regards AI systems provided or used
by regulated and supervised financial institutions unless Member States decide to designate
another authority to fulfil these market surveillance tasks. Those competent authorities should
have all powers under this Regulation and Regulation (EU) 2019/1020 on market surveillance
to enforce the requirements and obligations of this Regulation, including powers to carry our
ex-post market surveillance activities that can be integrated, as appropriate, into their existing
supervisory mechanisms and procedures under the relevant Union financial services legislation.
It is appropriate to envisage that when acting as market surveillance authorities under this
Regulation, the national authorities responsible for the supervision of credit institutions regulated
under Directive 2013/36/EU, which are participating in the Single Supervisory Mechanism
(SSM) established by Council Regulation No 1024/2013, should report, without delay, to the
European Central Bank any information identified in the course of their market surveillance
activities that may be of potential interest for the European Central Bank’s prudential supervisory
tasks as specified in that Regulation. To further enhance the consistency between this Regulation
and the rules applicable to credit institutions regulated under Directive 2013/36/EU of the
European Parliament and of the Council27, it is also appropriate to integrate some of the
providers’ procedural obligations in relation to risk management, post-marketing monitoring
and documentation into the existing obligations and procedures under Directive 2013/36/EU.
In order to avoid overlaps, limited derogations should also be envisaged in relation to the
quality management system of providers and the monitoring obligation placed on users of
high-risk AI systems to the extent that these apply to credit institutions regulated by Directive
2013/36/EU. The same regime should apply to insurance and re-insurance undertakings and
insurance holding companies under Directive 2009/138/EU (Solvency II) and the insurance
intermediaries under Directive 2016/97/EU and other types of financial institutions subject to
requirements regarding internal governance, arrangements or processes established pursuant to
the relevant Union financial services legislation to ensure consistency and equal treatment in
the financial sector.”

As can be seen from Figure 2.2, before the model can be placed on the market,
it must pass specific verification steps. For example, in the case of AI models in the
financial sector and high-risk models, they must pass the assessment to be deemed
compliant with the regulations. Subsequently, it must be registered in an EU database,
receive the CE mark, and then be placed on the market. Once the AI system is on the
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Fig. 2.2 How does it all work in practice for providers of high-risk AI systems?

market, the authorities are responsible for market surveillance and control of providers
who must also ensure full compliance with the law5.

In the same direction as the EU Commission, in 2015, the UK presented the “Digital
Economy Strategy 2015-2018” supporting the application and development of AI in
business. In the UK, the Financial Conduct Authority (FCA) requires firms to explain
why a more expensive mortgage has been chosen if a cheaper option is available. The
G20 has adopted the OECD AI Principles for a trustworthy AI where it is underlined
that users should not only understand AI outcomes but also be able to challenge
them [78]. In the same way, the US issued in 2016 the “National Strategic Research
and Development Plan for Artificial Intelligence” [101], and, on 7 January 2019, the
White House’s Office of Science and Technology Policy presented a draft “Guidance
for Regulation of Artificial Intelligence Applications”, which includes ten principles for
United States agencies when deciding whether and how to regulate AI.

All the regulations that have been presented enforce the importance of having a
strategy in an international field to tackle undesired problems with AI and regulate
unfair and untrustworthy actions, with a particular focus on financial services.

5https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai

https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai




Chapter 3

Fairness in Machine Learning

The primary goal of this dissertation is to introduce a comprehensive strategy for the
identification of bias in machine learning models, employing Counterfactual Reasoning
as a fundamental tool. To achieve this, the following chapter is dedicated to establishing
the necessary foundation for the reader. It delves into an exploration of the most
pertinent contributions within the realms of Fairness and Counterfactual Reasoning
research, with the limitation that no regulation could deal with providing essential
context for the subsequent discussions.

3.1 Introduction

Artificial Intelligence technologies offer a set of powerful techniques for the financial
service domain to handle challenging tasks. In particular, Deep Learning (DL) models
have been shown to outperform classical statistical techniques as well as more recent
machine learning algorithms. However, none of the current DL-based algorithms can
help users recognize where unfair treatment or discrimination will come from. In some
cases, the more effective the algorithms are at classification, regression, and time-series
detection tasks, the more they are prone to amplify the bias present in the data.
These applications directly affect our lives and might harm people if not designed and
engineered correctly having fairness considerations in mind. As expressed by Osoba
et al. [134]:
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“While machine learning and AI are technologies often dissociated from human
thinking, they are always based on algorithms created by humans. Moreover,
like anything created by humans, these algorithms are prone to incorporating the
biases of their creators.”

3.1.1 Discrimination in the Financial Domain

Discrimination is not a recent concern in the financial world. Fairness in the financial
services domain has had crucial importance since the government tried to address
demographic, gender, and racial discrimination as regulatory compliance requirements.
The set of laws that represents the foundation for fair acting in financial services firms
was legislated between the 1960s and 1970s (e.g., Fair Housing Act of 1968 [47], Truth
in Lending Act of 1968 [48], Equal Credit Opportunity Act of 1974 [49]). These laws
take into account different aspects, as in the past the discrimination in the Financial
decision-making process reflected not only social bias but also the lack of statistical
information (see Statistical Discrimination in Section 3.2).

Today, we face an overabundance of poor-quality credit lending practices (e.g.,
high interest rates and fees, abusive debt traps) and there are concerns over the usage
of too many data sources that can be used as a proxy for sensitive attributes (e.g.,
gender, age, country, race) leading to illegal discrimination. Although the law prohibits
using gender to determine credit eligibility or pricing, countless proxies for gender
exist, ranging from the type of deodorant a person buys to the movies they watch 1.
Credit scoring computation lies very often in the hands of ML algorithms, if we discard
ethical considerations, the outcomes can negatively influence decisions, preventing
customers from accessing opportunities for which they are instead qualified. Since the
previous norms were not set to prevent discrimination in not-human decision-making
setting (as in the case of ML algorithms), the EU Commission released the “Ethics
guidelines for a Trustworthy AI” [4] and “The White Paper” [45] to give guidance on
the ethical and safe use of AI. Some critical key requirements are “equity, diversity and
not-discrimination” enclosed in the concept of fairness. In the same way, the “Proposal
for a Regulation laying down harmonised rules on artificial intelligence” of the EU
Commission remarks the need for model transparency to protect fundamental rights,
such as non-discrimination and equality between genders [46].

1https://www.brookings.edu/research/reducing-bias-in-ai-based-financial-
services/

https://www.brookings.edu/research/reducing-bias-in-ai-based-financial-services/
https://www.brookings.edu/research/reducing-bias-in-ai-based-financial-services/
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Now that we have established the ethical and legal foundation upon which the
concept of fairness rests, we can introduce the subsequent sections that are organized
according to the following logic. Section 3.2 presents the various types of social biases
that can arise and how they can manifest themselves to users. In Section 3.3, the
various types of bias are presented and related according to which stage of the data
loop and machine learning predictions they originate. Section 3.4 is devoted to the
mathematical formulation of the three statistical criteria (i.e. independence, separation,
and sufficiency) to which each definition of fairness belongs to. Furthermore, the
various metrics derived from the respective definitions of fairness are presented. Finally,
Section 3.5 is devoted to listing the various bias-mitigation methodologies divided into
pre-processing, in-processing, and post-processing.

3.2 Social harmful discrimination

Philosophers and psychologists have long studied fairness. However, no universal law
acceptable in different dimensions has been drawn [166]. Before exploring the various
definitions of fairness and the various statistical criteria on which the evaluation metrics
are based, it is helpful to understand how a user can be perceived to have been hit
by a discriminating judgment in the financial field. The various concepts of fairness
are closely linked to the different types of discrimination and vice versa. Fairness can
be achieved in different ways but it can be nullified by the occurrence of a parallel
discriminating event affecting one or more different fairness definitions. This is why it
is essential to determine every single type of discriminating phenomenon to have an
overview of how it can be perceived and how it can harm a user [153]. Three principal
kinds of discrimination can occur: Direct, Indirect, Statistical.

1. Direct Discrimination is when someone is treated unfairly because of a protected
characteristic, such as gender, race, disability, or age (see Table 2.1). This
type of discrimination arises when people belonging to one or more protected
characteristics turn out to be disadvantaged in the outcome [176]. Taking into
account racial discrimination, it appears any time an individual is discriminated
against based on their skin colour or racial or ethnic origin. In financial Services,
these traits have been regulated for a long time as specified in the laws Fair
Housing Act [47] and Equal Credit Opportunity Act [49]. Although laws regulate
the behaviour of financial institutions, several studies have demonstrated that
racial discrimination still persists today. Indeed, the study of Cohen-Cole [38]
found a significant difference in the amount of credit offered to similarly qualified
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applicants living in black areas w.r.t. white areas. Subsequently, the Census of
Federal Deposit Insurance Corporation [64] shows black and Hispanic Americans
are more likely to go underbanked or deprived of conventional banking services
than white or Asian Americans. Bartlett et al. [9] compare the discrimination
of face-to-face decision w.r.t. algorithm scoring. He found that lenders charge
Latin/African-American borrowers 7.9 and 3.6 basis points more for purchase
and refinance mortgages, respectively, costing them $765 million in aggregate per
year in extra interest. FinTech algorithms also discriminate but 40% less than
face-to-face lenders [177]. Another longstanding form of direct discrimination
is related to gender. Fay et al. [85] state that women can experience gender
discrimination when seeking start-up capital. In that direction, Baden et al. [5]
claim that financial markets experience gender-based distortions, disadvantaging
female borrowers and savers, in addition to the lack of collateral requirements
that limit women’s access to finance. The study conducted by Ongena et al. [133]
shows that women who own firms face more difficulties obtaining credit compared
to similar firms owned by men, even when female-owned firms perform better
than male-owned firms. All type of discrimination leads to social deterioration, to
a loss of earnings both by women and financiers. As proof of what was previously
stated, Sahay et al. [151] found that greater inclusion of women as users, providers,
and regulators of financial services would have benefits beyond addressing gender
inequality. Narrowing the gender gap would foster more excellent stability in the
banking system and enhance economic growth. It could also contribute to more
effective monetary and fiscal policy [177]. The study of Cohen-Cole also found
age discrimination. Indeed, age discrimination is not new in financial firms. In
fact, in 2002 the Federal Reserve Board [22] presented a study that shows people
in underserved populations may be unfamiliar with tools of the financial system
(e.g. credit cards) and may feel distrust in the use of the same. A combination
of growing complexity increases in consumer responsibility, as well as the noted
changes in the structure of personal nuance to include more individual credit
have contributed to differences in financial literacy [177].

2. Indirect Discrimination happens when there are policy and rules that apply in
the same way for everybody, but disadvantages a group of people who share a
protected characteristic. However, protected groups or individuals still get to
be treated unjustly due to implicit effects from their protected attributes. As
an example, the residential zip code, or more generic geographical information
of a person, can be used in decision-making processes such as loan applications.
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However, this can still lead to racial discrimination. Even though zip code is not a
non-sensitive attribute in principle, it might be correlated with race because of the
population of residential areas [176]. If this happens, the person or organisation
applying the policy must show a good reason for it, but if there is a direct
correlation and causality between a sensitive characteristic and a non-sensitive
one, it must be addressed carefully.

3. Statistical Discrimination is a theorized statistical behaviour in which statistical
characteristics are used as a proxy for either hidden or more difficult-to-determine
characteristics relevant to the outcome. For instance, if a financial agent has
to decide whether or not to grant a customer the requested credit but, having
imperfect information about the customer, decides to use statistical information
(e.g., correlation or mutual information) according to the group to which he/she
belongs as a proxy for the decision, then we are in the presence of statistical
discrimination. According to this theory, inequality may exist and persist between
demographic groups even when economic agents are rational and non-prejudiced
[122, 140]. It stands in contrast with taste-based discrimination, which uses
racism, sexism, and the like to explain different labour market outcomes of
groups.

3.3 Where does bias in data come from?

As said in the previous sections, fairness has been widely regulated in financial firms.
However, these kinds of regulations are aimed at human beings involved in decision-
making processes in financial activities. In the era of Big Data and with the advent
of automated decision-making systems, responsibility for unethical actions is hard to
determine: who is accountable for the decision taken by these algorithms? Olteanu
et al. [131], Suresh et al. [159] and Mehrabi et al. [122] have provided an extensive list
of data biases. In Mehrabi et al. [122], the different types of data biases can occur in
different steps of the machine learning operation loop: data collection and manipulation
(Data), prediction (Algorithms), and data ingestion (User-Interactions).

Going deeper, we have the feedback loop phenomenon when the prediction outcome
is exploited as a new ground-truth to update the model. These decisions will affect
future data that will be collected for subsequent training rounds or new models [35]. In
addition, this infinite loop also involves the interaction with the user who can provide
feedback that influences the model [30].
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Table 3.1 Definition and type of bias, partially from [122]

Bias Definition

Historical
bias

Historical bias is the already existing bias and socio-technical issues
in the world and can seep into from the data generation process
even if data is perfectly measured and sampled [158].

Social bias Social bias happens when other people’s actions or content coming
from them affect our judgment [6].

Temporal
bias

Temporal bias arises from differences in populations and behaviors
over time [131].

Representation
bias

Representation bias occurs when the development sample under-
represents some part of the population, and subsequently fails to
generalize well for a subset of the use population [158].

Population
bias

Population bias arises when statistics, demographics, representa-
tives, and user characteristics are different in the user population
represented in the dataset or platform from the original target popu-
lation [131].

Aggregation
bias

Aggregation bias happens when false conclusions are drawn for a
subgroup based on observing other different subgroups or generally
when false assumptions about a population affect the model’s outcome
and definition [158].

Sampling bias Sampling bias arises when there is a non-random sampling of sub-
groups and, as a result, the development sample will represent a
skewed subset of the target population [158].

Popularity
bias

Items that are more popular tend to be exposed more. However,
popularity metrics are subject to manipulation—for example, by
fake reviews or social bots [37].

Evaluation
bias

Evaluation bias occurs when the benchmark data used for a particular
task does not represent the use population [158].

Algorithmic
bias

Algorithmic bias is when the bias is not present in the input data
and is added purely by the algorithm [6].

User-
Interaction
bias

User Interaction bias is a type of bias that can not only be observed
on the Web but also get triggered from two sources—the user in-
terface and through the user itself by imposing his/her self-selected
biased behavior and interaction [6].

Emergent
bias

Emergent bias happens as a result of use and interaction with real
users. This bias arises as a result of change in population, cultural
values, or societal knowledge usually some time after the completion
of design [91].

Statistical
bias (SB)

Statistical bias is a term that refers to any type of error or distortion
that is found with the use of statistical analyses4.

SP-
Simspons’s
Paradox

Simpson’s Paradox is a statistical phenomenon where an association
between two variables in a population emerges, disappears or reverses
when the population is divided into subpopulations3.

SB-Omitted
Variable bias

Omitted variable bias occurs when one or more important variables
are left out of the model4.

SB-Cause-
Effect bias

Cause-effect bias can happen as a result of the fallacy that correlation
implies causation4.
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Fig. 3.1 Example of Machine Learning feedback loop

Considering a financial institution that wants to automate the decision-making
process of a loan application, the data biases that might affect the fairness and present
discriminatory biases in the main ML loop steps are those listed in Table 3.1.

Historical and Social biases are the main biases that can occur in the model. Suppose
that the data is characterized by historical choices influenced by discriminatory Social
biases on sensitive characteristics. Accordingly, these Social biases may be part of the
Historical ones. In that case, the algorithm will be influenced by such biased data
leading to equally discriminatory and biased decisions based on historical bias.

Although not related to finance, the COMPAS (Correctional Offender Management
Profiling for Alternative Sanctions) case2 is a prime example of how an algorithm
affected from Historical and Social biases can discriminate and, consequently, be
considered unreliable. The COMPAS risk scores, considered by judges during sentencing,
predict black people to commit a future crime of any kind with higher probability than
white people. However, these scores do not reflect the real risks of black and white
people to re-offend. Hence, we can state that the algorithm is affected by historical
and social biases related to discrimination of black people.

Historical bias is closely related to the temporality of the phenomenon and can
also be seen as Temporal bias from a certain point of view. Let us suppose that in
a given period of time, the dataset of financial loans’ application contains only users
belonging to the well-off category of a population who got a credit. In the same dataset,
there have been no loans for less well-off categories. This dataset characteristic will
automatically lead the algorithm to avoid approving a credit towards the lower-middle
class of the population. However, even though a change in characteristics of the
population that apply for a credit occurs, the ML algorithm will remain biased by the
old credit-applicant profile.

2https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
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Another type of bias is Representation bias. This type of bias is closely linked to
data generation and sampling used for the model training. Furthermore, it can be
considered a macro category of other biases such as Population bias, Aggregation bias,
and Sampling bias. Suppose a data engineer needs to create a dataset for the credit
application. If the available data represents only a specific portion of the population
(e.g., people over 50), we can speak of Population bias. The same applies if there is
an aggregation of two or more subgroups with specific peculiarities. In that case, the
new merged group will probably lose these peculiarities in favour of the most shared
characteristics. Hence, Aggregation bias can lead to a model that is not optimal for
any group or a model that is fit to the dominant population [158]. In the case where
the data provides a broad spectrum of the population but, during the sampling phase
before model training, there is an imbalance or lack of representation of some subgroups,
this can be called Sampling bias. In the case the dataset used in the evaluation stage is
affected by one or more of the above biases, we fall in the case of the Evaluation bias.

A further bias closely related to the Representation bias category is Popularity bias.
Popularity bias is a type of bias of particular importance in Information Retrieval and
Recommender Systems. Recommender Systems (RS) can have different applications
in the financial world, such as portfolio optimization, personalized stock prediction,
or peer-to-peer lending [178]. When a financial product is more present in the data
(blockbusters) than another, the RS will recommend that product more frequently
than niche products (long tails). This issue is widely known as the Accuracy-diversity
trade-off, or simply Popularity bias [1].

A statistical and evaluation problem on unfairness criteria is the Simpson’s Paradox3.
The Simpson’s Paradox is related to the subgroup representation of a dataset as well.
It could manifest itself when a population characteristic (e.g., gender) appears to be
disadvantaged when the entire population is analyzed. However, the same characteristic
is advantaged in some subgroups when the analysis is performed at a finer-grained
level. For example, credit card holders are in general unbalanced towards employers
with a permanent contract. However, if the analysis is focused on pre-paid credit
cards, people with fixed-term contracts represent the predominant part of customers.
This type of paradox is widespread in statistics. However, this is not the unique type
of Statistical bias4 that can arise in data and problem formulation. Suppose that
in a loan application, a sensitive variable is omitted (e.g., the race). The algorithm
can discriminate sensitive groups without basing their decision on the same sensitive

3https://plato.stanford.edu/entries/paradox-simpson/
4https://data36.com/statistical-bias-types-explained/

https://plato.stanford.edu/entries/paradox-simpson/
https://data36.com/statistical-bias-types-explained/
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variable but through other variables that implicitly contain the information of the
sensitive variables. This situation is known as Omitted Variable bias. Similarly,
correlation-causality bias, known as Cause-Effect bias, is a statistical error that arises
when the correlation between two events is mistaken for causation. For example, if
there is a correlation between the race and the defaulting characteristic, there may be
a risk that the algorithm will erroneously learn this correlation.

Biases can also emerge in data acquired in the third phase of the feedback loop.
Emergent bias is one of them. In that case, the bias emerges only at the production
stage. Accordingly, the model did not show biases in the training phase, but when the
characteristics of real users become different from the training dataset, it generates
biased outcomes. The biases presented so far referred to biases in the data or during
the generation of the data. Naturally, as emerged during our discussion, there is not
a sharp separation between one bias and another. Indeed, some biases share similar
characteristics, such as the case of Temporal bias and Emergent bias, which are both
influenced by the temporal dimension.

This type of bias can also be influenced by poor User Interaction design, also known
as User-Interaction bias. Algorithm bias, on the other hand, is a type of bias directly
added by the algorithm. It is caused either by premeditation or by a design error on
the part of the data scientist. Unquestionably there are other types of biases, but to
the best of our knowledge, these are the main biases that can occur when using ML
techniques in financial tasks.

3.4 Non-discrimination statistical criteria and fair-
ness definitions

Fairness has been studied for a long time by philosophers and psychologists as one of
the principles on which to base justice and the rights of all citizens. Despite the work
done and the laws enacted in all these years, a clear and precise vision of how this
principle can be applied to everyday life is still hard to achieve. Overall, in the context
of decision-making, the concept of fairness can be briefly and ideally summarized as
“the absence of any prejudice or favouritism toward an individual or a group based on
their inherent or acquired characteristics” [122]. However, although it can give an idea
of fairness, it cannot be helpful in a practical way since unfairness and discrimination
can appear differently. According to the analysis provided in the previous section,
from our point of view, fairness can be seen as the total absence of any kind of bias.



30 Fairness in Machine Learning

Following, the problem of fairness and the interconnection between data, sensitive
variables, and outcomes is outlined from a statistical point of view.

Next, a mathematical formulation of a classification model will be given, and the
statistical criteria underpinning the various definitions and metrics of fairness will also
be presented.

3.4.1 Problem formulation

Considering the case of financial firms’ activities and precisely the case of the loan
application, Machine Learning models are trained to find generalizable predictive
patterns from previous customers’ data. A loan application is a classification task
in which we might try to predict whether a loan applicant will pay back her loan by
looking at various characteristics such as credit history, income, and net worth.

Let X ∈ Rn the space of possible n non-sensitive feature values of a loan applicant,
Y ∈ {0,1} the target variable denoting if the loan applicant repays the loan (i.e., Y = 1)
or defaults (i.e., Y = 0), and S ∈ Rl be the space of l protected sensitive attributes.
financial firms make use of ML models to predict the risk score f(X) = P(Y = 1 |X)
equal to the probability that a new loan applicant will repay based on his characteristics.
This probability can be exploited for classification purposes by assigning a positive
label (i.e., will repay) to customers above a given cutoff τ which is generally defined as
equal to 0.5. We can now introduce the output prediction space as:

Ŷ =

1 if f(X) > τ

0 if f(X) < τ

The n features of any X customer applying for a loan can implicitly contain or
encode sensitive individual characteristics. Let us suppose we divide the features
into “neutral” (i.e., X) and “protected” (i.e., S), removing the protected from the
training data or for monitoring tasks cannot guarantee the model to be discrimination-
free for multiple reasons (see Indirect Discrimination and Statistical Discrimination
in Section 3.2). We will discuss this deeply in Section 3.4.5 under the concept of
fairness under unawareness.

Many fairness criteria have been proposed over the years, each aiming to formalize
different desiderata. Without these considerations and following the Kozodoi et al. [110]
differentiation, in what follows, we will introduce three non-discrimination statistical
criteria (i.e., Independence, Separation, and Sufficiency) and the correspondent Fairness
Definitions (FDs) for reaching them.
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3.4.2 Independence

Independence is a fundamental notion of Probability Theory. In statistic, independence
states that “given n variables A1,A2, ...,An, they are independent if and only if their
joint probability can be factorized into their marginal probabilities as P(⋂n

i=1 Ai) =∏n
i=1P(Ai)”. Furthermore, independence is the backbone of the Statistical notion of

discrimination (see Section 3.2).
Taking up the case of a loan classification task in which Si corresponds to a sensitive

feature, for simplicity we consider a binary case, the independence criteria can be
formulated as:

P[Ŷ | Si = 0] = P[Ŷ | Si = 1] (3.1)

where the score function f(X) satisfies the independence criteria if the classifier
prediction is statistically independent from the sensitive attributes, so the model
function can be also written as Ŷ ⊥ Si. Let us suppose to have gender as a sensitive
feature where the disadvantaged, or unprivileged, group is the female gender. Then, the
algorithm used by the financial institution has achieved statistical independence from
that particular sensitive variable if it proves to have the same statistics in predicting
the good creditor both with “female” and the advantaged “male” gender. Then the
probabilistic formulation is as follows:

P[Ŷ | Si = “female”] = P[Ŷ | Si = “male”]

Thus, the algorithm can be considered independent of the sensitive variable gender.
An example of a fairness definition (FD) based on independence criteria is the Statistical
or Demographic Parity.

FD 3.4.1 (Demographic Parity or Statistical Parity). A predictor satisfies demographic
parity if the probability of obtaining a positive outcome does not depend on the sensitive
characteristics [77, 112].

Demographic Parity can be seen both as an ex-ante and ex-post metric. The ex-ante
metric refers to the Difference in Positive proportion Labels (DPL), which measures
the difference between the ratio of positive labels for the sensitive or disadvantaged
groups and the ratio of positive labels for advantaged groups in the dataset. This
metric is also known as ex-ante Difference in Statistical Parity (ex-ante DSP). DPL
can be formulated as:

DPL = qSi=1− qSi=0, (3.2)
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. The closer DPL is to 0, the fairer the dataset is. The ex-post

metrics are the Difference in the Positive proportion of Predicted Labels (DPPL) and
the Disparate Impact (DI). The first is similar to the DPL but refers to the predicted
labels and is formulated as:

DPPL = q̂Si=1− q̂Si=0, (3.3)
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interpretation of this metric is very similar to DPL and is known as ex-post Difference
in Statistical Parity (ex-post DSP) or simply Difference in Statistical Parity (DSP).
The Disparate Impact is the ratio of the proportion in the predicted positive outcome
of disadvantaged groups ˆqSi=0 and advantaged groups ˆqSi=1 [87, 107], as:

DI = q̂Si=0
q̂Si=1

. (3.4)

The Disparate Impact metric should be within (0.80−1.20) range for the “rule of
thumb” 6.

5An indicator function I(·) is used to denote whether a condition is true (1) or false (0).
6In an employment context in the US, the regulation of The Equal Opportunity Act is known as

“80% rule” or as a ”rule of thumb” for measuring disparate impact [67]. In fact, the DI value should
be between 0.8 and 1.2
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Another type of fairness definition that stands under the Independence Criteria is
the Conditional Statistical Parity.

FD 3.4.2 (Conditional Statistical Parity). Conditional statistical parity means that an
equal proportion of defendants are detained within each sensitive group, controlling for
a limited set of “legitimate” risk factors [51].

Formally, for a set of legitimate factors L which can correspond also to a specific
value of features in the X space, the predictor f(X) satisfies conditional statistical
parity if P[Ŷ | L =1,Si =0] = P[Ŷ | L =1,Si =1]. In essence, Conditional statistical
parity states that people in both protected and unprotected groups should have an
equal probability of being assigned to a positive outcome given a set of legitimate
factors L (e.g., credit history, employment) [164].

Independence has convenient technical properties [8]. However, decisions based on
a classifier that satisfies independence can have undesirable properties (and similar
arguments apply to other statistical criteria). For example, if the positive and negative
outcomes are differently distributed between groups, using Independence criteria
can worsen the model’s performance. It all depends on how we want to consider
homogeneous or heterogeneous the two groups concerning the target variable.

3.4.3 Separation

In statistics, Separation occurs if “the predictor is associated with only one outcome
value when the predictor range is split at a certain value”, and, in this case, if the
sensitive characteristic may be correlated with the target variable. The separation
criterion allows the correlation between the outcome and the sensitive attribute to
the extent that the target variable justifies it. For instance, in the case of a loan
classification task in which Si corresponds to a sensitive feature, the separation criteria
can be formulated as:P[Ŷ = 1 | Y = 1,Si = 0] = P[Ŷ = 1 | Y = 1,Si = 1]

P[Ŷ = 0 | Y = 0,Si = 0] = P[Ŷ = 0 | Y = 0,Si = 1]
(3.5)

The score function f(X) satisfies the separation criteria if both the positive outcomes
(Ŷ =1) and the negative outcomes (Ŷ =0) are independent of the sensitive attributes
given the ground truth Y , so the model function can be also written as Ŷ ⊥ Si | Y .

Let us suppose to have the gender as a sensitive feature (Si) where the disadvantaged
group is the female values. Then, the algorithm used by the financial institution has
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achieved statistical separation from that particular sensitive variable if the probability
of obtaining both a positive outcome (good creditor) and a negative outcome (bad
creditor) for the “female” gender is the same as the advantaged group of the “male”
gender. Then the probabilistic formulation is as follows:P[Ŷ = 1 | Y = 1,Si = “female”] = P[Ŷ = 1 | Y = 1,Si = “male”]

P[Ŷ = 0 | Y = 0,Si = “female”] = P[Ŷ = 0 | Y = 0,Si = “male”]

In line with the above, several definitions of fairness that fall within the separation
criterion will be presented below.

FD 3.4.3 (Treatment Equality). Treatment Equality is achieved when the ratio of
false negatives and false positives is the same for both protected group categories[13].

Treatment Equality can be applied only to the outcome as an ex-post metric. Berk
et al. [13] defined this as the ratio of false negatives to false positives (or viceversa):

TE = τSi=0− τSi=1 (3.6)

where both classes are τSi=1 = FNSi=1/FPSi=1 and τSi=0 = FNSi=0/FPSi=0.
Another important fairness definition is Equal Opportunity. This is also considered

a relaxation of the Equalized Odds definition that will be exploited in this section.

FD 3.4.4 (Equal Opportunity). A binary predictor Ŷ satisfies equal opportunity with
respect to a sensitive feature Si and Y if Ŷ = 1 and Si are independent conditional on
Y = 1[97].

The Equal Opportunity definition means that the probability of a person in a
positive class being assigned to a positive outcome should be equal for both protected
and unprotected (female and male) group members, so P[Ŷ = 1|Si = 0,Y = 1] =P[Ŷ =
1|Si = 1,Y = 1] [164]. In other words, the equal opportunity definition states that the
protected and unprotected groups should have equal true positive rates or Recall:

DEO = RecallSi=1−RecallSi=0 ≈ 0 (3.7)

FD 3.4.5 (Equalized Odds). A predictor Ŷ satisfies equalized odds with respect to
protected attribute Si and outcome Y , if Ŷ and Si are independent conditional on Y .

The equalized odds definition, provided by Hardt et al. [97], states that the protected
and unprotected groups should have equal rates for true positives and false positives
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known as Difference in Average Odds (DAO) and formalized as:

DAO = 1
2(

∣∣∣FPrateSi=1−FPrateSi=0
∣∣∣ +

∣∣∣TPrateSi=1−TPrateSi=0
∣∣∣) (3.8)

The Difference in Rejection Rate is another metric that measures whether qualified
applicants from the advantages and disadvantages class are rejected at the same rates
and is formulated as:

DRR = TNrateSi=0−TNrateSi=1 ˆnSi=1
(0).

3.4.4 Calibration and Sufficiency

In statistics, a statistic is sufficient with respect to a statistical model and its associated
unknown parameter if “no other statistic that can be calculated from the same sample
provides any additional information as to the value of the parameter” [90].

In the case of a loan classification task in which Si corresponds to a sensitive feature,
the sufficiency criteria can be formulated as:

P[Y =1 | f(X) > τ,Si =0] = P[Y =1 | f(X) > τ,Si =1] (3.9)

where the score function f(X) satisfies the separation criteria if the likelihood of
positive outcomes (i.e., f(X) > τ) is independent of the sensitive attributes, so the
model function can also be written as Y ⊥ Si | Ŷ .

To be more specific, let us suppose to have the gender as a binary sensitive feature
(Si) where the disadvantaged group is the female gender (i.e., Si = 0) and male the
advantage one (i.e., Si = 1). Then, the algorithm used by the financial institution
is statistically sufficient for the sensitive variable if the probability of being judged
a good creditor does not change, for instance, between male and female. Then, the
probabilistic formulation is as follows:

P[Y =1 | f(X) > τ,Si =“female”] = P[Y =1 | f(X) > τ,Si = “male”]

Thus, the sensitive variable does not contribute to the strictly positive prediction
of the outcome.

FD 3.4.6 (Conditional use accuracy equality). A classifier satisfies “conditional use
accuracy equality” if the subjects in the protected and unprotected groups have equal
Positive Predicted Value (PPV) and equal Negative Predicted Value (NPV).
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Furthermore, Chouldechova [34] defines the sufficiency metric SF + as the absolute
difference between the group-wise PPV:

SF + =| PPVSi=1−PPVSi=0 |

where PPVSi=1 = T PSi=1
T PSi=1+F PSi=1

and PPVSi=0 = T PSi=0
T PSi=0+F PSi=0

7.

FD 3.4.7 (Test Fairness or Calibration). A classifier satisfies test-fairness if individuals
with the same predicted probability score R have the same probability of being classified
in the positive class when they belong to either the protected or the unprotected group
[34].

The definition of “Test fairness” can be written as P(Y = 1|f(X) = r,Si = 0) =
P(Y = 1|f(X) = r,Si = 1). The following is the definition of “Well-Calibration”, which
completes the definition of test fairness and extends it.

FD 3.4.8 (Well-Calibration). A classifier is considered well-calibrated between groups
if, given the same predicted probability score R to individuals inside or outside the
protected group, they must have the same probability of being classified in the positive
class, and this probability must be equal to r.

So, following the “Test Fairness” formulation, a classifier is considered “well-
calibrated” between two groups if P(Y = 1|f(X) = r,Si = 0) = P(Y = 1|f(X) = r,Si =
1) = r.

Sufficiency often could come for free (at least approximately) due to standard
machine learning practices. The flip side is that imposing sufficiency as a constraint
on a classification system may not be much of an intervention. In particular, it would
not affect a substantial change in current practices [8].

3.4.5 Other Fairness Criteria

The three principal fairness criteria have been presented in the previous Sections. These
criteria introduced above comprise several other fairness concepts, which have been
proposed in prior work. These criteria are slightly varying statistical formulations

7In an equivalent manner, and if the task is to get equivalent negative prediction between groups,
can be defined the adjacent metric SF − as the absolute difference between the group-wise NPV:

SF − =|NPVSi=1−NPVSi=0 |

where NPVSi=1 = T NSi=1
T NSi=1+F NSi=1

and NPVSi=0 = T NSi=0
T NSi=0+F NSi=0

.
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of the same fairness criteria of Independence, Separation, and Sufficiency [8, 127].
However, these fairness criteria belong to a specific type of differentiation of fairness
criteria. Indeed, one way to evaluate fairness in the classification or regression task is
based on identifying groups, subgroups, individuals, and finally counterfactuals. Besides
these concepts, there is another one that has emerged due to privacy compliance with
the not use of sensitive information and is known as fairness under unawareness.
Group-based fairness metrics essentially compare the outcome performance of the
classification algorithm between two or more predefined groups. These groups can be
based on attributes like race, gender, age, or any other protected characteristic.
Subgroup fairness is an extension of group fairness, but it considers fairness within
subgroups or smaller categories within the protected groups. It looks at fairness at a
more granular level.
Individual-based fairness metrics do not compare different groups as defined by a
sensitive variable but consider the outcome for each participating individual regardless
of their group or subgroup. It emphasises that similar individuals should receive similar
treatment [77].
Counterfactual fairness notion derives from Pearl’s causal model [154], which
considers a model is fair if for a particular individual its prediction in the real world
is the same as that in the counterfactual world where the individual had belonged
to a different demographic group [169]. Kusner et al. [112] propose the concept of
counterfactual fairness, which builds on causal fairness models and can be considered
as the intersection of both individual- and group-based fairness concepts.
Fairness under Unawareness is a concept in the field of machine learning and
algorithmic fairness that addresses fairness in situations where an algorithm or decision-
making process is designed to be fair without having direct access to or awareness of
certain sensitive attributes or characteristics of individuals. In other words, it aims to
mitigate bias and ensure fairness without using or considering protected attributes like
race, gender, or religion.

Following, we will define and exploit fairness under unawareness and counterfactual
fairness related works as the backbone of our study.

Fairness under Unawareness

The first domains to take an interest in the theme were financial Services, Banking,
and Health. In fact, due to the critical impact of decision-making in these domains
on people’s well-being, today, the use of sensitive characteristics is strictly prohibited.
The decisional tasks, i.e., regression and classification tasks with models deprived of
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sensitive features, took the name of fairness under unawareness assessment. However,
companies and institutions must demonstrate the fairness and impartiality of their
systems despite the absence of such sensitive characteristics [31].

While designing the decision-making algorithm not to leverage sensitive information
is simple, assuring the same accuracy as before and demonstrating that the predictor
is unbiased is another matter. Thus, even if the regulation requires the use of the
unawareness setting for model training, the assumption is still too strong to guarantee
a fair model behaviour.

FD 3.4.9 (Fairness under Unawareness). An algorithm is fair as long as any protected
attributes S are not explicitly used in the decision-making process [94, 112].

For tasks like granting credit cards or approving loans and mortgages, financial
companies should collect and use sensitive features to ensure their tools are non-
discriminatory. On this point, the EU Commission proposes a conformity assessment
before AI systems are put into service or placed on the market 8. In fact, their tools are
subject to fair and trustworthy audit assessments to check their conformity. However,
is a shallow check of the input characteristics sufficient to determine that a predictor
will not suggest unfair treatment? Even though the user does not provide protected
characteristics, the system could predict sensitive features from variables, i.e., proxy
variables, that still represent protected characteristics. The models that infer sensitive
features from proxy variables are known as “probabilistic proxy models” [24, 32].

Most of the approaches proposed in the literature for identifying proxy features
rely on techniques capable of discovering multicollinearity between variables. If the
correlation between two independent variables is 1 or −1, we have perfect multi-
collinearity between them [2]. Methods for discovering multicollinearity are based
on Linear Regression, Variance Inflation Factor, and Pearson correlation coefficient
[171]. However, the relationships may not be linear. In that case, cosine similarity and
mutual information are the most used approaches [2].

Elliott et al. [82] investigated, in their work, whether from customer characteristics
such as name and geolocation information (e.g., residence address) the information
about the race can be inferred. Using a Bayesian classifier model, they demonstrated
that first-name listings might improve prediction estimates. In particular, they showed
that in some Asian and black subgroups, first names tend to have low sensitivity.
Conversely, imputing native American and multiracial identities from surname and
residence remains challenging. Chen et al. [32] studied the relationship between proxy

8https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai

https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai
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features and sensitive variables (i.e., geolocation and race). In their work, bias seems to
depend on the chosen threshold, suggesting an ad-hoc threshold estimation to produce
fair thresholded classifiers and probabilistic proxy models.

Fabris et al. [83] use a quantification approach to measure group fairness when
sensitive features are unknown. The advantage is that quantification-based estimates
are robust to distribution shifts and do not allow the inference of sensitive attributes at
the individual-class level. Biswas et al. [16] likewise employ quantification techniques. In
detail, they propose a mitigation model in which training and test population subgroups
structurally differ. The proposed model, CAPE (i.e., Combinatorial Algorithm for
Proportional Equality), aims to minimize a peculiar loss to obtain a Proportional-
Equality-fair model.

The exposure of some groups on a geographic and demographic basis is also a
problem that impacts the Recommender Systems community. In this direction, there
are some attempts to analyze and mitigate this type of issue. One possible solution
is the re-ranking strategy [93], to balance the items produced in a continent and the
ranking of the items. Another recent proposal is FairLens [135], a framework to discover
the bias of a generic Decision Support System model. The authors tested the approach
in the medical domain. Interestingly, this strategy involves human experts in analyzing
misclassifications. Specifically, the expert describes which aspects of the impacted
patients’ clinical history are responsible for the model error in the considered groups.
It is essential to underline that the human expert, who thoroughly analyzes potential
fairness issues, plays a crucial role in the operational loop.

Counterfactual Reasoning as Fairness Perception

Counterfactual Reasoning is an active and flourishing field in artificial intelligence
research [92, 125]. This research was initially born to investigate causal links [137], and
today it can count on several contributions [89]. Most of them define and employ coun-
terfactuals as helpful tools to explain the decisions taken by modern decision support
systems. The underlying rationale is that some aspects of past events could predict
future events. In detail, some studies focus on identifying causality-related aspects to
discover the link between the counterfactuals and the analyzed phenomenon [69].

Counterfactual Reasoning finds application in various fields. To summarize what
we have briefly detailed before, machine learning research has positively valued these
contributions ranging from Explainable AI [128] to the most recent counterfactual
fairness measures [103, 112]. Beyond the theoretical aspects, Counterfactual Reasoning
is extensively applied to interactive systems [19, 61, 160, 162]. Unfortunately, this
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important application showed some limitations. These systems employ machine learning
models that reflect the data they use for learning. Consequently, the same information
influences the reasoning, and the contribution of Counterfactual Reasoning could
be limited or somehow biased. The explaining policy, coming from Counterfactual
Reasoning, exhibits a bias toward the implemented learning model. Researchers devoted
considerable effort to tackle this issue and proposed new models such as doubly robust
estimators [75].

Overall, even though limitations that need a solution, Counterfactual Reasoning is
taking over Explainable AI, and it is becoming the de facto standard for explaining
decisions taken by autonomous systems. In this respect, the European Union’s “right
to explanation” played a crucial role in arousing a further interest in this methodolo-
gies [109]. Indeed, they are compliant with the regulation and easily interpreted by
either a domain expert or a layperson [156].

Decision support systems particularly benefited from these models. However, the
more the application domain is vital, the more the fairness problem emerges. For
instance, the issue cannot be overlooked in sensitive domains such as justice, risk
assessment, or clinical risk prediction. This need promoted the most promising research
in the Counterfactual Reasoning field to analyze and mitigate this issue. Kusner et al.
[112] proposed a metric exploiting casual inference to assess fairness at an individual
level (i.e., Counterfactual Fairness) by requiring that a sensitive attribute not be the
cause of a change in a prediction.

In order to define Counterfactual Fairness, let us assume that we are given a causal
model (U,V,F ), where V ≡ S ∪X are the observable variables, U is a set of latent
background variables, and F is a set of functions {f1, . . . ,fn}, one for each Vi ∈ V

known as structural equations [17].

FD 3.4.10 (Counterfactual Fairness). Given a set of attributes n in a random space
X ∈ Rn, a classifier Ŷ : X → Y is counterfactually fair if, under any observational
condition, we have:

P[ŶSi←1 | Si] = P[ŶSi←0 | Si,X],

where ŶSi←1 and ŶSi←0 is the causal effect of the sensitive variable set to 1 or 0 on
the outcome. The definition ensures that the prediction for an individual coincides
with the decision if the sensitive variable would have been its counterfactual value [28].
Thus, the sensitive variable S should not be a cause of Ŷ in any individual instance
and will not change its distribution.

Pfohl et al. [139] further extended the approach for clinical risk assessment. They
aim to mitigate the exposure of medical care disparities due to bias implicitly embedded
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in data for historically underrepresented and mistreated groups. For what concerns the
risk assessment domain, Mishler et al. [126] put forward a similar working hypothesis.
They propose a counterfactual equalized odds ratio criterion to train predictors oper-
ating in the post-processing phase. They extend and adapt previous post-processing
approaches [97] to the counterfactual setting and employ doubly robust estimators.

In contrast to the majority of the mentioned studies, our investigation aims to
leverage a counterfactual generation tool to reveal the presence of implicit biases in
a decision support system. Interestingly, this motivation is similar to Bottou et al.
[20]. In fact, both aim to answer the question: “How would the system have decided
if we had replaced some user characteristics?”. Beyond this commonality, the two
studies differ significantly. Indeed, they focus on measuring the fidelity level of the
system and robustifying the model. Instead, our study is in line with the goal of other
investigations [70, 124] that aim to use the counterfactual approach to uncover the
bias present in the dataset that plagues the predictive model itself.

3.5 Bias Mitigation Methodologies

The previous section has presented different statistical criteria based on which all
fairness definitions refer from. These different definitions refer specifically to different
ways or perspectives based on which to measure fairness. Most of the metrics are
post-training metrics and evaluate the impact of the model prediction on the different
groups. However, the bias mitigation is not exclusively a post-processing step but
can also be a regularization step during the training of the model or a pre-training
cleaning and re-balance. Indeed, bias mitigation methodologies can be divided into pre-
training or pre-processing, in-training or in-processing (through algorithms modification
or regularization), post-training, or post-processing. In the following, the various
methodologies will be presented for each type of mitigation.

3.5.1 Pre-processing

Pre-processing methodologies refer to tools and strategies that Data scientists can use
to give the model “as fair as possible” input data. [65] Examples of fair Pre-processing
methodologies we can have are Reweighting, fair representation, Class rebalance and
Removing sensitive feature. We want to highlight that “Removing sensitive features”
is not a good strategy since they can be hidden in other proxy features. Some
methodologies will be synthetically presented below.
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Reweighting: Each instance (or tuple) in the training dataset is assigned a weight
based on its sensitive attribute, allowing the dataset to be balanced with respect to
that attribute without altering the original labels [26]. The goal of this method is to
minimize the dependency between the sensitive attribute and the predicted outcome,
effectively reducing bias according to the Independence Criterion. By reweighting the
instances, the method ensures that the overall proportion of positive class labels is
preserved, leading to the development of a classifier that is independent of the sensitive
attribute. This process replaces underrepresented or overrepresented instances with
others, ensuring the model learns in a balanced and unbiased manner.

Rebalance: Rebalancing methods address imbalances in the rates of positive and
negative outcomes between different groups defined by sensitive attributes. For example,
in a loan application scenario, if the rate of loan approvals (positive outcomes) is higher
for the advantaged group compared to the disadvantaged group, the rebalance strategy
seeks to equalise these rates. This can be achieved through oversampling techniques,
where additional instances are generated for the disadvantaged group to balance their
representation. Similarly, if the rate of loan rejections (negative outcomes) is higher for
one group, rebalancing can adjust these instances accordingly. However, this approach
may reduce accuracy when the outcome is inherently correlated with the sensitive
attribute. Alternatively, random perturbation of class labels can be used, although
it may lead to variability in results across different iterations. Another approach
involves transforming the features to maintain their distribution while minimising their
correlation with the class label, aiming to reduce any bias linked to sensitive attributes
as much as possible [67].

Disparate impact remover: Feldman et al. [87] introduce this method to achieve
fairness by ensuring independence between the sensitive attribute Si, the features X,
and the outcome Y .

This method refers to the Disparate Impact fairness metric previously examined.
Once the Disparate Impact presence has been certified, it requires the dataset D =
(X,Y,S) to be changed to D̂ = (X̂,Y,S) so that would be certified as fair. The repaid
term is the label X with the X̂ so that the cumulative probability of FSi=1(X) is equal
to FSi=1(x̂), thus preserving the ability to predict the class Y .

Learning fair representations: This algorithm proposed by Zemel et al. [173]
formulate fairness as an optimisation problem of finding a good representation of the
data with two competing goals: to map the data D = (X,Y,S) as well as possible to
a prototype set D̂ = (Z,Y ) while simultaneously obfuscating any information about
membership in the protected group by nulling out the difference in statistical parity.
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According to Zemel et al. [173], this algorithm seems to achieve both group fairness
and individual fairness. On the same line of this work, different versions of algorithm
accounting variational fair autoencoder [114] or fair normalizing flows [7] have been
proposed with the same goal.

Optimized preprocessing: Pin Calmon et al. [141] proposed a convex optimiza-
tion for learning a data transformation with three goals: controlling discrimination,
limiting distortion in individual data samples, and preserving utility. It transforms
the features and labels in the data with group fairness, individual distortion, and data
fidelity constraints and objectives. This method also enables an explicit control of
individual fairness and the possibility of multivariate, non-binary protected variables
[177].

3.5.2 In-processing

In-processing methodologies refer to techniques that try to modify and change classic
learning algorithms to prevent unfair and discriminatory outcomes during the model
training process [65]. Suppose it is allowed to change the learning procedure for a
machine learning model. In that case, in-processing can be used during the training
of a model, either by incorporating a regularisation term, changes into the objective
function, or imposing a constraint. The main measures used in this approach are false
positive rate, false negative rate, or any misclassification rate. One constraint or more
can be added, and the equality of false negative rates implies the equality of true
positive rates, which means equal opportunity (Separation Criteria). After adding the
restrictions to the problem, it may turn intractable, so a relaxation on them may be
needed. This technique obtains good results in improving fairness while keeping high
accuracy and lets the programmer choose the fairness measures to improve. However,
each machine learning task may need a different method to be applied, and the code in
the classifier needs to be modified, which is not always possible [8]. Some methodologies
will be synthetically presented below.

Prejudice remover: Kamishima et al. [106] proposed prejudice remover, a fairness-
driven regularized classification model. This is obtained by adding a regularization
term to the loss function and analyzing the model fairness-based independence criteria
named as prejudice index (PI):

argmin
f

L[f(X),Y ]+ηPI
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where L(·) is the loss function of the model f(X), and η hyper-parameter that regulates
the influence of the regularization terms PI. PI measures the amount of mutual
information between Y and Si, and is equal to:

PI =
∑
Ŷ ,Si

P(Ŷ ,Si) ln P(Ŷ ,Si)
P(Si)P(Ŷ )

.

This regularization approach can be applied to general prediction algorithms within
a training rutine ensuring that the sensitive attributes become less influential in the
outcome.

Adversarial debiasing: Zhang et al. [174] proposed a framework for mitigating
such biases. In the proposed architecture, they try to maximise the accuracy of
outcome prediction on Y and minimise the accuracy of adversary outcome’s predictor
on sensitive attribute Si. The model is thus composed of two neural networks (the
predictor and the adversary), one with opposite objectives to the other. The predictor
network tries to accomplish the task of predicting the target variable Y , given X,
modifying the model weights parameter W to minimise the loss function LP (fp(X),Y ).
The adversary network tries to accomplish the task of predicting the sensitive class Si,
given Ŷ = fp(X), also modifying, in this case, the weights U to minimising the loss
function LSi=1(fSi=1(Ŷ ),Si). The weights U of the adversary are updated in order to
minimize LSi=1(Ŝi,Si) at each training step according to the gradient ∇U LSi=1. The
weights W of the predictor are propagated to the gradient in order to minimise its loss
function Lp(Ŷ ,Y ), and simultaneously maximising the loss function of the adversary,
formulated as:

∇W LP (Ŷ ,Y )−proj∇W LSi=1(Ŝi,Si)∇W LP (Ŷ ,Y )−α∇W LSi=1(Ŝi,Si)

where the proj∇W LSi=1(Ŝi,Si)∇W LP (Ŷ ,Y ) prevents the predictor from moving in a
direction that helps the adversary decrease its loss while the last term, α∇W LP ,
attempts to increase the adversary loss.

Xu et al. [170] introduced FairGAN, which generates synthetic data free from
discrimination and is similar to real data. FairGAN consists of two components: a
generator which generates the fake data conditioned on the protected attribute, and
two discriminator that are trained to identify the fake sample from the real ones. For
achieving fairness constrained, one discriminator is trained in order to identify if the
outcome is of a sensitive group or not [170].
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Fair constraints: Recent works use constraints on the classifier, formulating it as
a constrained optimization problem to satisfy specific group fairness and simultaneously
maximize accuracy. One of the most interesting is the work of Celis et al. [29] that
proposes a meta-fair classification algorithm designed to achieve fairness according
to several different fairness criteria. This meta-algorithm for classification takes as
input a large class of fairness constraints regarding multiple non-disjoint sensitive
attributes, which come with provable guarantees. This is achieved by first developing
a meta-algorithm for a large family of classification problems with convex constraints
and then showing that classification problems with general types of fairness constraints
can be reduced to those in this family. Each criterion has a fairness metric, which
measures the equality (or discrimination) between groups. So the main idea is that if
the metric is similar across groups, the level of fairness is high (group fairness).

Donini et al. [72] propose a fairness risk measure during model learning. In
the same way, Williamson et al. [168] start from the notion of perfect fairness in
terms of Demographic Parity and subgroup losses parity (as the average of subgroup
losses deviation) and build a convex fairness-aware objective based on minimizing the
Conditional Value at Risk (CVaR) [148] and demonstrate the relation between fairness
risk measures and risk measure of mathematical finance. Martinez et al. [120] propose
a Pareto constraints method known as Blind Pareto Fairness (BPF) leveraging recent
methods in no-regret dynamics [33] in order to address the worst-case of subgroup
robustness. Similar to Martinez et al. [120], Chzhen et al. [36] propose a framework
based on Pareto frontier optimization with Demographic Parity constraint.

A significant concern of fair classification with constraints is the trade-off between
accuracy and fairness. As demonstrated by the previous works [29, 120], and specifically
in loan application by Zhang et al. [177], fairness constraints can have on one hand a
big impact on the accuracy and, being the accuracy strictly related to the profit of
the financial institution and the long term profit of an applicant, from the other hand
a loss of revenue or impoverishment for all the stakeholders. For these reasons, Liu
et al. [113] propose a Relaxation Constraints Fairness and do not recommend base
constraints on classical fairness criteria but through firstly understanding the causality
between variable and outcome.

3.5.3 Post-processing

Post-processing methodologies refer to techniques that try to modify and change the
outcome of classic learning algorithms to improve prediction fairness. In the loan
classification task, the classifier will return a score that reflects the posterior probability
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that a candidate could be or not be a defaulter. High scores are likely to get a positive
outcome, while low scores are likely to get a negative one, but we can adjust the cutoff
to determine when to answer yes as desired, affecting the trade-off between the rates
for true positives and true negatives.

The advantages of post-processing include that the technique can be applied after
any classifiers, without modifying it, and has a good performance in fairness measures.
The cons are the need to access to the protected attribute in test time and the lack of
choice in the balance between accuracy and fairness [8].

Cutoff post modelling: The cutoff probability is usually set at τ = 1
2 . The score

function will be fair if the model is independent of the protected attribute. Then any
choice of the cutoff will also be fair, but classifiers of this type tend to be biased, so a
different cutoff may be required for each protected group to achieve fairness. If the
classifier is biased, then the cutoff for the advantaged class can be adjusted to τ + δ,
and the cutoff for the disadvantaged class will be reduced to τ − δ or vice versa, and
the hyperparameter δ can be tuned appropriately until the desired level of fairness and
accuracy is achieved [97]. A way to do this is plotting the true positive rate against
the false negative rate at various cutoff settings and find a cutoff where the rates for
the protected group and other individuals are equal and also trying to maintain as
high as possible the accuracy [97].

Reject Option Based Classification: Reject option classification, proposed by
Kamiran et al. [105], defines a critical region of high uncertainty and reassigns labels
for customers that have predicted scores within this region, such that members of the
unprivileged group receive a positive label (Y = 1) and vice versa. Formally, the critical
region is defined as:

max(P[f(X) = 1 |X],1−P[f(X) = 1 |X])≤ θ

where 0.5 < θ < 1. Given a set of predicted scores and the true outcomes, a suitable
value of θ and the number of posterior classifications can be optimized for a fairness
criterion (e.g., independence) based on the allowed fairness bound σ = [σ1,σ2] for the
corresponding constraint.

Discrimination-Aware Ensemble: Kamiran et al. [104] proposed a second
solution. It makes an ensemble of (probabilistic, non-probabilistic, or mixed) classifiers
discrimination-aware by exploiting the disagreement region among the classifiers. A
standard ensemble classifier predicts and classifies new instances by assigning the
majority class label. The solution deviates from this standard procedure to neutralize
the effect of discrimination. Specifically, if all member classifiers predict the same label,
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the agreed class label is assigned; otherwise, we compensate the instances belonging
to the deprived group by assigning them the positive label and penalize the instances
belonging to the favored group by giving the negative label [104]. Then having more
classifiers in the ensemble may neutralize the discriminatory effect of the ensemble
due to the fair classifiers. Thus, using ensembles is very useful by nature towards the
solution of the discrimination-aware classification problem.

Equalized odds post-processing: Pleiss et al. [144] proposed “Equalized odds
post-processing” as a post-processing technique that solves a linear program to find
probabilities with which to change output labels to optimize equalized odds [97, 144].
Equalized odds processor uses a different logic to post-process classifier predictions. It
finds a cutoff value τ that optimizes the predictive performance while satisfying the
separation criterion, i.e., ensuring the same false negative and false positive rate per
group.

Platt scaling: Platt [143] proposed a post-processing method known as Platt
scaling based on the calibration criteria for support vector machine output. Calibration
addresses the problem that some classification algorithms cannot make a statement
about the certainty of their prediction, i.e., the probability with which an instance
belongs to a certain class. In credit scoring, the predicted score could be an indicator
of default risk but not the actual probability of default. A score f(X) is calibrated if:

P(Y = 1 | f(X) = τ) = τ

When extending the calibration condition to the group level, it becomes apparent that
it implements the sufficiency criterion [8]:

P(Y = 1 | f(X) = τ,Si = 1) = P(Y = 1 | f(X) = τ,Si = 0) = τ.

To achieve calibration for each group, Platt scaling is applied separately to each sensitive
group. The method uses the output of a possibly uncalibrated score f(X) as input for
logistic regression fitted against the target variable Y . Based on the loss function of the
logistic regression, the result is a new calibrated score that represents the probability
that an instance belongs to the positive class. Formally, Platt scaling minimizes the
log-loss equal to E(Y ln(σ)+(1−Y ) ln(σ)) by finding the optimal parameters A and
B of the sigmoid function σ = 1

1+exp(Af(X)+B) [143].
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3.5.4 Fairness tools

In the scientific community, fairness has long been the subject of attention and study in
searching for techniques that can solve this problem in the pre, in, and post-processing
phases, as seen above. Several companies and developers have contributed to using these
techniques through the development of open-source libraries or paid tools to stimulate
a conscious, responsible, and trustworthy use of machine learning techniques. Some of
the best-known libraries are What-if tools, Audit AI, AIF360, fairlearn, Aequitas, and
Amazon SageMaker Clarify.

The What-if tools (WIT) [167] developed by Google is an open-source, model-
agnostic interactive visual tool for model understanding and fairness measure, as part
of TensorBoard. AIF360 is an open-source library that can help detect and remove bias
in machine learning models [10]. It has been developed by IBM and contains metrics and
techniques developed by the researcher to mitigate bias and prevent undesired bias in
the classification task. Audit AI9 is another open-source library developed by the Data
Scientist at Pymetrics10 and has almost the same utilities of AIF360, as the Microsoft
open-source library, fairlearn [15]. Aequitas is an open-source library developed by the
University of Chicago in 2018 to audit machine learning models for discrimination and
bias, and to make informed and equitable decisions around developing and deploying
predictive tools [152]. Amazon SageMaker Clarify [96] developed by Amazon Web
Service is a feature for bias detection and model explanation integrated into Amazon
SageMaker, a fully managed service for build, train, and deploy ML models at any
scale.

9https://github.com/pymetrics/audit-ai
10https://www.pymetrics.com/

https://github.com/pymetrics/audit-ai
https://www.pymetrics.com/


Chapter 4

Fostering Counterfactual Reasoning
for Auditing Fairness: the Showcase

To the best of our knowledge, and quite unexpectedly, the idea of adopting counterfac-
tual reasoning along with learning a classifier on sensitive features for discovering biases
is unexplored in the financial domain literature. Furthermore, given the regulator’s
intervention, the concept of fairness under unawareness has assumed a crucial role in
financial decision-making systems. However, the research on detecting bias for models
trained in a fairness-under-unawareness setting is still in a very early stage. The
experimental setup adopted in this investigation rigorously follows the best practices
proposed in the recent literature and complies with the regulations. Nevertheless, the
study shows that removing sensitive features from a decision support system does not
guarantee a fair outcome. Concerning existing state-of-the-art approaches, the analysis
tackles the fairness theme in the financial domain and proposes a general approach
to identify implicit bias in a decision support system. Finally, instead of leveraging
Counterfactual Reasoning to explain outcomes, the approach exploits the causal link
between the counter-facts and the prediction to reveal the otherwise unnoticed bias.

4.1 Social, Theoretical, and Practical Implications
on Information Access Systems

The UN Agenda 2030 for Sustainable Development sets out 17 Sustainable Development
Goals, which are part of a broader program of actions consisting of 169 associated targets
to be achieved in the environmental, economic, social, and institutional domains by 2030.
Among them, there are “gender equality”, “reducing inequalities”, and “responsible
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consumption and production” –i.e., goals 5, 10, and 12, respectively. As a consequence,
current and impending regulations affecting high social impact tasks will comply with
the UN Agenda 2030. Among the others, the financial sector is a high-risk domain, as
unethical use of AI can have significant repercussions from a social point of view, such
as, for instance, discriminatory access to credit.

Several works attempted to tackle the fairness problem or provide model explain-
ability for tasks ranging from classification to loan recommendation [31, 61, 62, 66].
The “Fairness Under Unawareness” setting mitigated the discrimination. However, the
evaluation and the quantification of bias in a situation of “Fairness Under Unawareness”
are of worryingly little interest to researchers.

The investigation at hand proposes a theoretical approach to identify the existence
of bias even when sensitive information is not exploited in the training of the machine
learning model. The proposed approach is general enough to neglect what kind of
classifier is adopted under the hood and could be used in any classification task. The
whole approach could be practically very useful for any practitioner since it could be
used as a black box that measures and returns several pieces of information regarding the
potential bias. Finally, the approach is designed to be a support tool for several kinds
of Information Access Systems. The prominent potential application of the proposed
approach is in Conversational-Agent systems that rely on lending recommendations
(e.g., peer-to-peer lending) in which social bias may imply different access to credit.
In that setting, the proposed system sheds light not only on the features that are
necessary to reverse the decision but also on the potential biases of the decision maker.
More generally, every Information Access System exploiting machine learning models
that imply life-changing decisions can use our methodology to assess the bias in the
models.

4.2 Preliminaries

This section introduces some useful notation that is extensively used in the rest of
the dissertation. To ease the reading and for a rapid understanding, the definition of
protected groups has some commonalities with Chen et al. [32], while some other aspects
necessarily diverge from it due to the different nature of the study. It is important
to note that the following notation diverges from that used in Section 3.4.1. While
Section 3.4.1 employs population-level statistical criteria to assess fairness across entire
datasets, the following notation transitions to a sample-wise notation. Despite the
transition, the mathematical background remains consistent between the two sections.
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This shift enables the application of counterfactual reasoning and fairness evaluation
at an individual level, providing a more detailed understanding of model behaviour
and fairness for specific instances rather than the broader population. Throughout
the remainder of this dissertation, the notation from Section3.4.1 will be used when
presenting aggregation or statistical-based results, while the sample-wise notation
introduced here will be used to express results based on individual data points.

Table 4.1 List of the main notational conventions used in this document.

Notation Description

x a vector of values for non-sensitive features x =< x1,x2, ...,xn >.
s a vector of binary values for sensitive features s =< s1, s2, ..., sl >. When

no confusion arises, s is reported instead of si

y a binary class value from the target domain for a single data point, with
y ∈ {0,1}

p a vector of values for proxy features, i.e., a subvector of x, with h(·)
being an unknown
function s.t. h(p) = si

ŷ a binary class prediction value from the target domain for a single data
point, with ŷ ∈ {0,1}

ŝi a binary prediction value of the i-th sensitive feature, with ŝi ∈ {0,1}
f(x) = ŷ a binary classification function of the target variable y
fs(x) = ŝi a binary classification function of the sensitive variable si

g(x) = Cx a function that, given a data point x, returns k counterfacts.
X− set of samples negatively predicted by the decision maker and correctly

predicted by the sensitive features classifier (i.e., x|f(x) = 0∧fsi = si).
cx ∈ Cx a counterfact of x. cx is a vector cx =< cx1 , cx2 , ..., cxn >= x± ϵ, with ϵ

being a perturbation such that f(cx) = 1−f(x) = 1− ŷ.

In the following, we assume the dataset D is an m-dimensional space containing
n non-sensitive features, l sensitive features, and a target attribute. In other words,
we have D ⊆ Rm, with m = n + l + 1.1 A data point d ∈ D is then represented as
d = ⟨x,s,y⟩, the concatenation of a vector x containing values of non-sensitive features
and a vector s containing values for sensitive features.

Non-sensitive Features: We use x =< x1,x2, ...,xn > to represent a vector of
values for non-sensitive features defined as x ∈X = Rn ⊂Rm. The value of xi, with
1≤ i≤ n, can be categorical (set of discrete values) or numerical (set of continuous
values).
1Without loss of generality, we assume that categorical features can always be transformed into

features in R via one-hot-encoding.
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Sensitive Features: We use s =< s1, s2, ..., sl > to represent a vector of values for
sensitive features in dom(D). When no confusion arises, s is reported instead of
si. Without loss of generality, we assume the value of si, with 1≤ i≤ l, as binary,
i.e., si ∈ {0,1}. Based on the value of si, the advantaged group is referred to as
privileged and associated with si = 1; the disadvantaged group is referred to as
unprivileged and associated with si = 0.

Target Labels: Given a target feature y ∈ {0,1}, we use y∗ to represent the positive
outcome y = 1 (the negative outcome is associated to y = 0).

Proxy Features: Let p⊆ x be a subset of x, and h(·) be a function that can maps
the relation h : p 7→ si such that h(p) = si, i.e., the value returned by h applied to
the values associated to the features in p is equal to the values associated to si. We
say that p is a set of proxy features for the sensitive feature si.
In practical terms, if we knew h(·), a set of proxy features could be used to predict
a certain sensitive feature.

Outcome prediction: Let ŷ ∈ {0,1} be the prediction for a given data point. The
notation ŷ = 1 denotes a favorable prediction (e.g., loan application approved), while
ŷ = 0 an unfavorable one (e.g., loan application rejected). Let f(·) be a function
such that f(x) = ŷ.

Sensitive Feature Prediction: Let ŝi ∈ {0,1} be the prediction of the i-th sensitive
feature. The notation ŝi = 1 denotes the prediction to belong to a privileged group,
while ŝi = 0 denotes the prediction to belong to an unprivileged group.

Let fs(·) be a function able to predict the value of a sensitive feature given the value
of non-sensitive ones, i.e., fs(x) = ŝi. Since the set of proxy features p is unknown,
we can use fs(·) to predict the value of si.

Negatively-predicted samples: Our work is focused on samples negatively
predicted by the Decision Maker (i.e., ∀d ∈D s.t. f(x) = 0) and correctly predicted
by the Sensitive-Feature Classifier (i.e.,∀d ∈ D s.t. fs(x) = s). For simplicity, we
denote the set of such samples with X−, with X− ⊆D. For clarity, this set depends
on the f(·) used to predict the sample and varies for each Decision Maker taken
into account.

Counterfactual samples: Given a vector x and a perturbation ϵ, we say that a
vector cx =< cx1 , cx2 , ..., cxn >= x± ϵ is a counterfactual of x if f(cx) = 1−f(x) =
1− ŷ. We use the set Cx ∈ (Rm)k, with |Cx| = k, to denote the set of possible
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Fig. 4.1 An example of a loan-approval decision process analysed through our model. From
left to right, we have the decision made on the original user profiles, the counterfactual
generation for users with loan denied, the sensitive-feature classification of the original profile,
and counterfactual profiles with the decision changed. For user 2, both counterfactual profiles
change the sensitive feature category.

counterfactuals for x. A function g(x) that is used to compute k counterfactuals for
x such that g(x) = Cx.

Our investigation focuses on unfavourable outcome predictions. Consequently, all
the generated counterfactuals are associated with a favourable f(cx) = 1. When no
confusion arises, c and C are reported instead of cx and Cx, respectively. For simplicity,
we denote f(·), fsi(·), and g(x) as the Decision Maker, the Sensitive-Feature
Classifier, and the Counterfactual Generator respectively.

4.3 Methodology

The fairness under unawareness setting (see Section 3.4.5) poses several challenges to
the identification of discriminatory behaviours performed by intelligent systems. Proxy
traits can be non-linearly associated with sensitive ones, making typical statistical
procedures ineffective. Figure 4.1 depicts the principal components of our model,
namely the Decision-Maker, the Counterfactual Generator, and the Sensitive-Feature
Classifier, as well as the flow of our pipeline.

Following, we are introducing the key component of our methodology.
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4.3.1 Decision-Maker

The decision-maker is the key component of the decision support system. Even though
the nature of the decisions can be heterogeneous, the decision-maker implements a
machine-learning algorithm trained using past human decisions. Although it does not
use sensitive features in the learning phase, we assume the predictive model is not
necessarily bias-free, thanks to current regulations. This phenomenon could be due to
proxy features.

To keep the approach as general as possible, to implement the decision-maker, we
have chosen four largely adopted approaches to tackle the classification task. As far as
possible, we avoided domain-specific models, preprocessing steps, and operations, and
we relied on the general best practices that apply to a broader set of machine learning
domains.

Our choice was to sacrifice a small quantity of accuracy (even though the per-
formance remains highly competitive) to gain the generality of the approach. In
detail, we opted for Logistic Regression (LR), Decision Tree (DT), Support-Vector
Machines (SVM), XGBOOST2 (XGB), LightGBM3 (LGBM), Random Forest (RF),
and Multi-Layer Perceptron4 (MLP). LR is a linear statistical model that predicts
the probability of one event taking place through a linear combination of independent
variables. SVM is a pattern classification technique aiming to minimise an upper
bound of the generalisation error by maximising the margin between the separating
hyperplane and data instances [18]. DT is a tree-like structure used for classification
and regression tasks. It splits the data into subsets based on the values of different
features, making decisions at each node until it reaches leaf nodes that provide the
final predictions. RF is an ensemble learning method that combines multiple decision
trees to make predictions. It builds a forest of decision trees, each trained on a different
subset of the data and with a random selection of features. The final prediction is
made by aggregating the predictions of individual trees, often using a majority vote
or averaging. The MLP is a type of artificial neural network with multiple layers of
interconnected neurons (perceptrons). It’s used for a wide range of tasks, including
image recognition, natural language processing, and regression. An MLP typically
consists of an input layer, one or more hidden layers, and an output layer. It’s capable
of modelling complex relationships in data, and training involves backpropagation and

2XGB: https://github.com/dmlc/xgboost
3LGBM: https://github.com/microsoft/LightGBM
4LR, DT, SVM, RF, MLP: https://scikit-learn.org/

https://github.com/dmlc/xgboost
https://github.com/microsoft/LightGBM
https://scikit-learn.org/
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gradient descent. We exploited LR, SVM, DT, RF, and MLP’s Scikit-learn5 imple-
mentation. XGB stands for eXtreme Gradient Boosting, and it implements gradient
boosting machines guaranteeing high computational speed and performance. XGB
learns both classification and regression models employing gradient-boosted decision
trees. LGBM stands for Light Gradient Boosting Machine and uses an approach
similar to XGB, thus favouring speed to robustness. Since the two approaches are
state-of-the-art solutions yielding the best results in many competitions, we considered
them despite their similarity.

Debiased Decision-Makers

To evaluate whether debiasing algorithms can reduce discriminatory behaviour even
in a “fairness under unawareness” setting, we also considered decision-makers that
exploit debiasing approaches. The overall system is the same as the one depicted in
Figure 4.1. This variation aims to assess whether debiasing models guarantee fair
behavior, and counterfactual reasoning can help discover discrimination even when
these models are chosen as decision-makers. The debiasing algorithms we chose to
investigate are Linear Fair Empirical Risk Minimization (LFERM) 6 [72], Adversarial
Debiasing (Adv) 7 [175], and Fair Classification (FairC)8 [172].

• Adversarial Debiasing: Zhang et al. [175] propose an adversary framework for
debiasing algorithms (AdvDeb). The model comprises two elements: a target
predictor and an adversary. The target label predictor consists of a Deep Neural
Network that, given a general input x, tries to predict the target label y. The
adversary is a simple Neural Network that, fed by the predicted output of the
DNN ŷ, tries to predict the sensitive label s. The DNN and the Adversary
Network (AN) are trained to optimise both their model weights, W (for DNN)
and U (for AN), by minimising the losses LP (ŷ, y) and LA(ŝ, s), respectively.
LP (ŷ, y) is the target discrimination loss of the classification task, typically a
cross-entropy loss. LA(ŝ, s) is the loss the adversary aims to maximise to predict
the sensitive label. To ease the understanding of the adversarial learning process,
LA(ŝ, s) is herein used with an opposite sign concerning the original paper, in

5https://scikit-learn.org/
6LFERM: https://github.com/jmikko/fair_ERM
7Adv: https://github.com/Trusted-AI/AIF360
8FairC: https://github.com/mbilalzafar/fair-classification

https://scikit-learn.org/
https://github.com/jmikko/fair_ERM
https://github.com/Trusted-AI/AIF360
https://github.com/mbilalzafar/fair-classification
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which the adversary aims to minimize LA(ŝ, s).

argmin
W

LP (ŷ, y) − [ argmax
U

proj∇W LA(ŝ,s)LP (ŷ, y)+αLA(ŝ, s) ]︸ ︷︷ ︸
best-case loss LA = optimal prediction of the sensitive feature︸ ︷︷ ︸

robust classification against the prediction of the sensitive feature
(4.1)

The overall learning process resembles a min-max game in which the discriminator
tries to minimise the loss of the predictor while the adversary tries to maximise
its utility (see Equation 4.1). The middle term (i.e., proj∇W LA(ŝ,s)) limits the
predictor from moving in a direction that promotes the adversary’s loss reduction.
For reproducibility, we adopt the IBM implementation available in the AIF3609

framework.

• Linear Fair Empirical Risk Minimization: Donini et al. [72] propose a
method that applies a fairness constraint to the loss function of an SVM classifier.
In detail, they constrain the Hinge-loss to respect the “Equality of Opportunity”
condition. The underlying goal is to remove the discrepancy between the false-
negative rates of the privileged and unprivileged groups. The fairness condition
is implemented by imposing an orthogonality constraint directly on the sample.
Specifically, the sample vector is required to be orthogonal to the vector formed
by the difference between the barycenters of the positive input samples in the
two groups. Let u = upriv−uunpriv be the difference between the two barycenter
vectors of the privileged and unprivileged groups, respectively, and let |ui| be the
maximum valued feature in the vector, and x be a sample in the original space.
The fairness-constrained representation x̃ is then calculated as follows:

x̃j = xj−xi
uj

ui
, j ∈ {1, . . . , i−1, i+1, . . . ,d} (4.2)

with d being the number of features. In this study, to ensure the reproducibility
of the results, the implementation provided by the authors10 is used. Specifically,
the reader can refer to the linear implementation of Fair SVM, named linear fair
empirical risk minimisation (LFERM) therein.

• Fairness Classification: Zafar et al. [172] propose incorporating fairness con-
straints into the model optimization process. These constraints are mathematical

9https://github.com/Trusted-AI/AIF360
10https://github.com/jmikko/fair_ERM

https://github.com/Trusted-AI/AIF360
https://github.com/jmikko/fair_ERM
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expressions that specify fairness requirements that the model should satisfy. For
example, fairness constraints might ensure that the false positive and false negative
rates for different groups (e.g., different demographic groups) are approximately
equal. Specifically, the authors introduce a flexible mechanism quantifying the
relation between the classifier’s decision boundary with the sensitive attributes.
Indeed, their (un)fairness measures is defined as the covariance between the users’
sensitive attributes, {si}Ni=1, and the signed distance from the users’ feature
vectors to the decision boundary, {dθ(xi)}Ni=1, i.e.:

Cov
(
s,dθ(x)

)
= E

[
(s− s)dθ(x)

]
−E[(s− s)]d̄θ(x)

≈ 1
N

N∑
i=1

(si− s)dθ (xi) ,
(4.3)

where E[(s− s)]d̄θ(x) cancels out since E[(s− s)] = 0. Since in linear mod-
els for classification, such as logistic regression or linear SVMs, the decision
boundary is simply the hyperplane defined by θT x = 0, Equation 4.3 reduces
to 1

N

∑N
i=1 (si− s)θT xi. To this end, the authors find the optimal θ parameters

by minimising the corresponding loss function over the training set under the
previous fairness constraints, i.e.:

minimize L(θ)
subject to 1

N

∑N
i=1 (si− s)dθ (xi)≤ c

1
N

∑N
i=1 (si− s)dθ (xi)≥−c

(4.4)

where c is the covariance threshold, which specifies an upper bound on the
covariance between each sensitive attribute and the signed distance from the
feature vectors to the decision boundary, trading off fairness and accuracy.

4.3.2 Counterfactual Generator

This study leverages the counterfactual reasoning approach to explore the decision-
maker boundary in the feature space. Thanks to the sample generation process, this
strategy can ease the analysis of the decision boundary even though the decision-maker
is a black-box model. Moreover, the proposed model is utterly agnostic about the
algorithm chosen as the decision-maker.

The input of the counterfactual generator is the same sample previously evaluated
by the decision-maker. When the system takes a decision adverse to the user (e.g.,
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loan request rejected, income under a given threshold), the counterfactual generator is
called in, and it produces new samples that would lead to a favourable outcome, as
we discussed in Section 4.2. Under the hood, it modifies user characteristics following
various strategies (e.g., increasing savings or changing education level). Each generated
counterfactual feeds the decision-maker, and all the counterfactuals that switch the
decision outcome, e.g., granting the loan, constitute the input of the next module of the
system. For the sake of reproducibility and reliability, the counterfactuals are generated
with an external counterfactual framework. We opted for DiCE [129], an open-source
framework developed by Microsoft 11. Mothilal et al. [128] built their framework to
satisfy two fundamental requirements. The generated counterfactuals should be (1)
plausible and associated with actions that could be actionable by users and (2) diverse
from each other. Both requirements fit the goals of our work. The first ensures that
generated counterfactuals are close to the original sample and thus realistic. The
second guarantees that they are all different, thus suggesting various strategies to
solve the problem. The diversity requirement is fulfilled thanks to determinantal point
processes (DPP), commonly used in selection problems with diversity constraints [111].

For the sake of completeness, we briefly introduce the DiCE counterfactual genera-
tion process using the notation adopted in this study. Let x be a candidate sample,
Cx = {c1

x,c2
x, . . . ,ck

x} be a set of k candidate counterfactual samples, with k being the
desired number of counterfactuals, and f(·) being a predictor function, i.e., a machine
learning model. The optimisation function of the module that generates counterfactual
samples is then the following:

g(x) = argmin
c1

x,...,ck
x

1
k

k∑
i=1

yloss(f(ci
x),y∗)+ λ1

k

k∑
i=1

dist(ci
x,x)−λ2dppd(c1

x, . . . ,ck
x) (4.5)

where yloss(.) is a metric (e.g., ℓ1-loss, ℓ2-loss, or hinge-loss) minimising the distance
between the predicted output of ci

x and the desired y∗; dist is a proximity function that
quantifies the distance between ci

x and x; dppd(·) is the determinantal point processes
diversity, i.e., the determinant of the kernel matrix of the inverse distance between
counterfactuals. More formally:

dppd = det(K), with Ki,j = 1
1+dist(ci

x,cj
x)

(4.6)

11https://github.com/interpretml/DiCE

https://github.com/interpretml/DiCE
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where dist in the previous equation denotes a generic distance metric between counter-
factuals. Finally, λ1 and λ2 are hyperparameters that balance the contribution of the
distance and the diversity part, respectively.

DiCE offers several strategies for generating candidate counterfactual samples. We
decided to use two different approaches, i.e., Genetic and KDtree generation. The
choice of these strategies allows (i) to assess whether it is possible to generate a large
enough number of counterfactuals from a sample, (ii) to investigate which strategy is
most effective for our purposes, and (iii) to find the most robust and valid method in
generating plausible counterfactuals. The DiCE framework also offers a third strategy,
i.e. Random, that we decided not to use at this time due to not effectively generating
counterfactual samples [53]. The Random strategy randomly selects a set of features
to perturb and replace the original sample. The perturbation goes ahead until the
counterfactual satisfies the requirement f(cx) = y∗. The KDtree strategy computes
a tree-based distance between all the dataset samples; it chooses the samples that
are close to the original one and switches the outcome prediction to y∗. The Genetic
strategy can start with a Random initialisation or a KDtree initialisation and then
iterates by generating new samples close to the original one that switches the outcome
prediction to y∗.

4.3.3 Sensitive-Feature Classifier

The sensitive-feature classifier performs a classification of the sample generated by
the counterfactual generator (that caused a decision flip) into one of the sensitive
categories. This component plays a crucial role in our methodology since it allows
the system to discover hidden discriminatory models. For each sensitive feature (e.g.,
gender, race, age, etc.), a classifier is thus learned. In Figure 4.1, the counterfactual
sample that caused the flip becomes the input of the sensitive-feature classifier. If
the sensitive-feature classification predicts a category different from the one initially
(i.e., before generating counterfactuals) associated with the sample (e.g., from female
to male), a bias in the decision-making process could occur. In fact, a change in
the sensitive-feature classification means that there are some non-sensitive features
(whose values have been changed by the counterfactual generator) that allow the
system to recognize the counterfactual sample as belonging to the privileged class (i.e.,
male). Hence, the sensitive-feature classifier gives us an indication of the existence of a
function that links non-sensitive features to sensitive ones, namely a proxy feature. We
exploited RF, MLP, and XGB for implementing this component due to their capability
to learn non-linear dependencies.
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4.4 The Model at Work

As a relevant case study, we refer to the financial domain, considering the tasks of
predicting loan-repayment default. However, focusing on this specific domain does not
compromise the model generality.

Loan Request Example

Let us imagine that some users with certain characteristics apply for a loan
(see Figure 4.1). The Decision Maker analyzes their requests and computes a
positive or negative decision. If a request is denied (e.g., for users 2 and 3),
the counterfactual generator starts to produce a series of counterfactuals until
it gets a positive decision (ŷ = 1, loan accepted). In the example, only two
counterfactuals for users 2 and 3 are generated. Once the decision has been
changed, the Sensitive-Feature Classifier analyzes the original characteristics of
users’ 2 and 3 profiles and the newly generated counterfactuals to assess how
many counterfactuals changed the sensitive-feature gender. User 2 was originally
classified as female and, then, as male for both counterfactuals (profile with
counterfactual changes for getting loan approval). For user 3, this does not
happen, the gender classification is the same before and after the counterfactual
changes (loan approved).

Excluding sensitive features makes verifying that all users are treated equally
incredibly challenging. However, counterfactual reasoning can be an effective tool to
propose actionable steps for reaching a positive outcome.

In a nutshell, our process pipeline, described in Section 4.4, is as follows: the
Decision Maker makes decisions without exploiting sensitive features, then if the
outcome is negative (e.g. loan rejected), the Counterfactual Generator is exploited
to propose modifications to user characteristics and request for reaching a positive
outcome (e.g. loan approved). For each data point d with a negative prediction
f(x) = 0, we generate a set of counterfactual samples Cx that reach a positive outcome
(i.e., ∀cx ∈ Cx s.t. f(cx) = 1). Afterward, each counterfactual (CF) sample is evaluated
by the Sensitive-Feature Classifier that predicts the value of the (omitted) sensitive
feature for the given CF sample. If the CF sample is classified as e.g. male (privileged
group), while the original sample was e.g. female (unprivileged group), the decision
model could be biased and its unfairness can be quantified (Equations 4.15 and 4.17).
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Indeed, each CF sample derives from the original sample x plus a perturbation ϵ,
where |ϵ| is the distance from the original sample for getting a positive outcome, and it
should be independent from the user-sensitive characteristics.

(a) male on Classic ML
model

(b) female on Classic ML
model

(c) male on Debiasing
model

(d) female on Debiasing
model

Fig. 4.2 Adult t-SNE visualizations of a random male (a-c) and female (b-d) sample with a
negative outcome and their CF samples with a positive outcome, respectively, for a Classic
ML model (i.e. XGB) and a Debiasing model (i.e. Adversarial Debiasing).

Figure 5.1 depicts a scenario in which male (blu color) is the privileged category,
and female (red color) is the unprivileged one. For each subfigure, a sample with an
unfavorable decision and its corresponding CFs are depicted. A classic ML model (i.e.,
XGB) is compared with a debiasing ML model (i.e., AdvDeb). We can observe that
for the male sample and classic ML model (Figure 5.1(a)), the CF samples belong to
the same sensitive category (i.e., male). For the female sample (Figure 5.1 (b)), this is
not true, revealing a bias of the model. Conversely, the debiasing model (Figure 5.1
(c) and (d)) shows no predominance in the generated counterfactuals of one value of
the sensitive class. However, a change of the outcome, e.g. from negative to positive,
should not be determined by a flip of the value(s) of the sensitive feature(s).

4.5 Counterfactual Fair Flip and Opportunity

To define a discrimination score of a given decision model, we propose a metric that
we call Counterfactual Flips providing a snapshot of the discriminatory behavior the
model might put in place.

Definition 1 (Counterfactual Flips). Given a sample x belonging to a demographic
group s whose model output is denoted as f(x), generated a set Cx of k counterfactuals
with a desired y∗ outcome f(ci

x) = y∗ ∀ci
x ∈ Cx, the Counterfactual Flip indicates

the percentage of counterfactual samples belonging to another demographic group (i.e.,
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fSi
(ci

x) ̸= fSi
(x), with fSi

(x) = s).

CFlips(x,Cx,fSi
=

∑k
i=1(1(ci

x))
k

(4.7)

where the function 1(ci
x) correspond to:

1(ci
x) =

1 if fSi
(ci

x) ̸= fSi
(x)

0 if fSi
(ci

x) = fSi
(x)

(4.8)

and it measures if a counterfactual sample is linked with a Flip, i.e. a change, for the
sensitive characteristic 12.

The bigger the CFlips value is, the stronger the biases and the discrimination the
model suffers from. In Example 4.4, CFlipsi = 1 for user 2, and CFlipsi = 0 for user 3,
thus the sensitive classification changed 2 out of 2 CF samples for user 2 and 0 out of 2
CF samples for user 3, unveiling implicit bias in the Decision Maker in favour of male
characteristics. All the following metrics assume that the sensitive feature classifier
make perfect predictions. Therefore, we can introduce the proposed Counterfactual
Fair Flips desiderata.

Definition 2 (Counterfactual Fair Flips). -A binary classifier shows Counterfactual
Fair Flips if the probability of generating Counterfactual samples belonging to a different
demographic group (privileged vs unprivileged) is the same:

P(fSi
(CD|Si=0) ̸= Si | f(CD|Si=0),Si = 0) = P(fSi

(CD|Si=1) ̸= Si | f(CD|Si=1),Si = 1)
(4.9)

which implies the complement:

P(fSi
(CD|Si=0) = Si | f(CD|Si=0),Si = 0) = P(fSi

(CD|Si=1) = Si | f(CD|Si=1),Si = 1)
(4.10)

where CD|Si
refers to all counterfactual samples generated for all dataset sample

belonging to specific Si.
In our work, we only take into account samples negatively predicted by the Decision

Maker (i.e., f(x) = 0), that we denote as X− ⊆D, as we are interested in quantifying
the discrimination of the minority group (e.g. women) in the process to achieving a

12Without loss of generality 1(ci
x) correspond to 1(fSi

(ci
x) = fSi

(x)) as more compact notation.
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positive counterfactual result (i.e., f(cx) = 1∧fSi
(cx) ̸= s). Thus, we want to restrict

the Definition 2 to only the positively predicted counterfactual samples that belong to
the set X−. We introduce now the “Counterfactual Fair Opportunity” notion.

Definition 3 (Counterfactual Fair Opportunity). “A decision model is fair if the
counterfactual samples of individuals with unfavourable decisions (i.e., X−), to reach
a positive outcome (i.e., f(CX−) = 1), maintain the same sensitive behaviour. This
behavior must be guaranteed for the privileged and for the unprivileged group.”

P(fSi
(CX|−Si=0

) ̸= Si | f(CX|−Si=0
) = 1,X|−Si=0) =P(fSi

(CX|−Si=1
) ̸= Si | f(CX|−Si=1

) = 1,X|−Si=1)
(4.11)

which implies the complement:

P(fSi
(CX|−Si=0

) = Si | f(CX|−Si=0
) = 1,X|−Si=0) =P(fSi

(CX|−Si=1
) = Si | f(CX|−Si=1

) = 1,X|−Si=1)
(4.12)

Definition 3 works in a context where counterfactual samples are used for sug-
gesting actionable steps to achieve the desired positive outcome that corresponds to
an opportunity (e.g., to achieve the loan). However, the outcome behaviour should
not depend on a specific sensitive group. Thus, the degree of sensitive (un)fidelity of
counterfactual samples must be equal between the two sensitive groups.

The bigger the CFlips value is, the stronger the discriminatory bias the model
suffers from. From a probabilistic perspective, the CFlips can be considered as the
probability of Counterfactual, generated to reach an opposite outcome from the original
sample, to be predicted by the sensitive feature classifier as opposite to the original
sample (see Equation 4.13).

P(fSi
(Cx) ̸= Si | f(Cx) = 1−f(x),f(x), s) with Si ∈ {0,1} (4.13)

For the set of samples X−, the metric in Equation 4.7 can be generalized to the
privileged and unprivileged group (Equation 4.14 is restricted to the privileged samples
negatively predicted, while Equation 4.15 is restricted to the unprivileged samples
negatively predicted).

Privileged
{

CFlipsSi=1 =
∑

i CFlips(xi,Cxi ,fSi

|X |−Si=1|
with x ∈ X |−Si=1 (4.14)

Unprivileged
{

CFlipsSi=0 =
∑

i CFlips(xi,Cxi ,fSi

|X |−Si=0|
with x ∈ X |−Si=0 (4.15)
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Definition 2 requires that the quantities of counterfactuals flipped in Equation (4.14)
and Equation (4.15) must be equal. Thus, we are interested in the difference between
the result of the two equations, i.e. ∆CFlips, being close to zero (see Equation 4.16).

∆CFlipss = |CFlipsSi=1−CFlipsSi=0| (4.16)

A limitation of the CFlips metric is that it does not measure the distance of each
CF sample from the original data point. However, from an individual-fairness wise, a
debated issue is the definition of a metric that considers that distance [77]. Accordingly,
we propose a new metric that considers CFs ranked based on the Mean Absolute
Deviation from the original sample and other criteria [128]. The insight behind this
metric is that the more the CF is ranked high, the more its impact on the metric value.
Thus, the metric penalises CFs ranked in the top positions for which the value of the
sensitive feature is flipped. More formally:

Definition 4 (Discounted Cumulative Counterfactual Fairness). Given a set of Coun-
terfactuals Cx for a sample xi, the Discounted Cumulative Counterfactual Fairness
DCCFxi measures the cumulative gain of the ranking of counterfactuals with respect to
the sensitive group of the original sample:

DCCFxi ≜
∑

pj ,cj
xi
∈Cxi

2(1−1(cj
xi

))−1
log2(pj +1) (4.17)

where pj is the rank of cj
xi

in Cxi and 1(cj
xi

) from Equation 4.7.

DCCF rewards the CF samples in the ranking that did not flip. If more CF
samples belonging to the same sensitive group as the original data point are in a higher
ranking position, the result will be a higher DCCF. Thereby, we can formulate the
Ideal Discounted Cumulative Counterfactual Fairness (IDCCF) correspond to an ideal
ranking in which each CF sample cxi belongs to the same sensitive group as the starting
sample xi (Definition 4.5), and the normalized DCCF (nDCCF) (Definition 4.5).

Definition 5 (Ideal Discounted Cumulative Counterfactual Fairness). The Ideal
Discounted Cumulative Counterfactual Fairness is the ideal ranking of the estimated
sensitive information of counterfactuals with respect to the sensitive information of the
original sample. In an ideal ranking, each counterfactual belongs to the same sensitive
group of the original sample.
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IDCCFxi ≜
∑

pj ,cj
xi
∈Cxi

1
log2(pj +1) (4.18)

Definition 6 (normalized Discounted Cumulative Counterfactual Fairness). The nor-
malized Discounted Cumulative Counterfactual Fairness (nDCCF) is the normalization
of the current counterfactual rank DCCF with respect to the ideal rank IDCCF.

nDCCFxi ≜
DCCFxi

IDCCFxi

(4.19)

In the same way as CFlips, given a set of samples X− ⊆D predicted by the decision
maker as negative, the metric in Equation 4.19 can be generalized to the unprivileged
and privileged group (Equation 4.20 and 4.21).

nDCCFSi=0 ≜
1

|D|Si=0|
∑
xi

nDCCFxi with xi ∈ X |−Si=0 (4.20)

nDCCFSi=1 ≜
1

|D|Si=1|
∑
xi

nDCCFxi with xi ∈ X |−Si=1 (4.21)

For both CFlips and nDCCF, we are interested in the difference (i.e., ∆CFlips
and ∆nDCCF), between the privileged and unprivileged groups, being close to zero.
In fact, even though those metrics are individual-based computed they can serve as
group-based fairness measures thanks to the ∆ (see Equation 4.22).

∆nDCCFs = |nDCCFSi=1−nDCCFSi=0| (4.22)

4.6 Algorithm

For reproducibility reasons, the framework adopted for the generation of the Counter-
factual samples is DiCE (see Section 4.3.2) with two different strategies: Genetic and
KDtree generation. We first train the models for the target label binary classification
task f(·), i.e., the decision-maker. Analogously, we train the models for the sensitive
classification task fs(·), i.e., the sensitive-feature classifiers. The counterfactual module
generates k counterfactuals for each original sample. Whether the sample is associated
with a negative outcome (i.e., f(x) = 0), it belongs to a privileged group (i.e., s = 1),
and it is correctly predicted to belong to the same sensitive class (i.e., fs(x) = 1), then
the sample and its counterfactuals are added to the set A. Alternatively, if the sample
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is associated with a negative outcome (i.e., f(x) = 0), it belongs to an unprivileged
group (i.e., s = 0), and it is correctly predicted to belong to the same sensitive class (i.e.,
fs(x) = 0), then the sample and its counterfactuals are added to the set B. The union of
the sets A and B correspond to the previously mentioned negatively predicted set (i.e.,
X−). In detail, for each sample, a tuple of objects is stored, including (i) the original
sample x, (ii) the predicted target label f(x), (iii) the sensitive feature of the sample as
it is predicted by the dedicated classifier fs(x), (iv) the set of counterfactual samples
Cx, (v) and the predictions of the sensitive labels performed on the counterfactuals
fs(cx) ∀ cx ∈ Cx. The process is summarized by Algorithm 1.

The sets set A and set B are evaluated using the counterfactual metric CFlips
(see Equation 4.7). Specifically, the metric CFlips applies for each tuple in A and
B to all the counterfactuals therein. The CFlips values are then averaged to obtain
an overall value for A and B, respectively. The evaluation pipeline is graphically
depicted in Figure 4.1. The procedure can be repeated for different values of k and
the different counterfactual generation strategies. To efficiently compute the metric
CFlips for several values of k, two vectors (i.e., for A and B) of size k can be created
to accumulate the CFlips values before averaging them. These vectors can be used
to plot how CFlips vary over the number of considered counterfactuals (see plots in
Section 5.4.1). The optimized procedure is condensed into Algorithm 2. The same
procedure can be used for the nDCCF evaluation and is condensed into Algorithm 3.
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Algorithm 1: Algorithm for model training and counterfactual generation
Input:

• the Train and Test datasets Dtrain and Dtest, where Dtrain = {Xtrain,Ytrain,Strain},
and Dtest = {Xtest,Ytest,Stest},

• the target label Classifier = f(·),
• the sensitive label Classifier = fSi(·),
• the classification loss Loss(·)
• the number of train epochs Epochs,
• the number of counterfactuals to be generated for each sample NCF ,
• the counterfactual generator g(·).

Result:

• the set A composed of tuples of objects related to the samples associated with a
negative outcome (i.e., f(x) = 0), belonging to an privileged group (i.e., si = 1),
and correctly predicted to belong to the same sensitive class (i.e., fSi(x) = 1),

• the set B composed of tuples of objects related to the samples associated with a
negative outcome (i.e., f(x) = 0), belonging to an unprivileged group (i.e.,
si = 0), and correctly predicted to belong to the same sensitive class (i.e., fSi(x) = 0).

Randomly initialize θ1 for target output classifier f(·), and θ2 for sensitive label
classifier fSi(·);

for epoch← 1 to Epochs do
Xtrain,Ytrain,Strain←Dtrain;
Ŷtrain← f(Xtrain);
Ŝtrain← fSi(Xtrain);
θ∗

1← argmin
θ1

Loss(Ŷtrain,Ytrain);

θ∗
2← argmin

θ2

Loss(Ŝtrain,Strain);

endfor
for x(l),y(l),s

(l)
i ∈Dtest do

ŷ(l)← f(x(l));
ŝ(l)← fs(x(l));
Cx(l) = {g(x(l)) : f(cx) = y∗ };
ŝCF ← fs(c(l)

x ) for c(l)
x ∈ Cx(l) ;

if ŷ(l) = 0 then
if ŝ(l)=1 ∧ s

(l)
i =1 then

A←A∪{⟨x(l),Cx(l) , ŷ(l), ŝ(l), ŝCF ⟩};
end
if ŝ(l)=0 ∧ s

(l)
i =0 then

B ←B∪{⟨x(l),Cx(l) , ŷ(l), ŝ(l), ŝCF ⟩};
end

end
endfor
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Algorithm 2: Counterfactual Flips (CFlips) Evaluation
Input:

• the number of counterfactuals to be generated for each sample NCF ,
• the set A composed of tuples of objects related to the samples associated with a

negative outcome (i.e., f(x) = 0), belonging to an privileged group (i.e., si = 1),
and correctly predicted to belong to the same sensitive class (i.e., fSi(x) = 1),

• the set B composed of tuples of objects related to the samples associated with a
negative outcome (i.e., f(x) = 0), belonging to an unprivileged group (i.e.,
si = 0), and correctly predicted to belong to the same sensitive class (i.e., fSi(x) = 0).

Result:

• the vector CFlipspriv of size NCF that contains averaged CFlips values, across all
samples, of counterfactuals in A sorted in descending order of similarity, as returned
by the counterfactual generator. The ith element of CFlipspriv is the average of
CFlips values considering i counterfactuals for all the samples.

• the vector CFlipsunpriv of size NCF that contains averaged CFlips values, across all
samples, of counterfactuals in B sorted in descending order of similarity, as returned
by the counterfactual generator. The ith element of CFlipsunpriv is the average of
CFlips values considering i counterfactuals for all the samples.

Initialize CFlipspriv = [0,0, . . . ,0], and CFlipsunpriv = [0,0, . . . ,0];
for k← 1 to NCF do

np← 0;
for lip ∈ A do

x(i),Cx(i) , ŷ(i), ŝ
(i)
i , ŝi−CF ← lip;

np← np +1;
CFlipspriv[k]←CFlipspriv[k]+CFlips(x(i),sorted(Cx(i))[: k], ŝi−CF [: k]);

end
CFlipspriv[k]←CFlipspriv[k]/np;
nunp← 0;
for liunp ∈ B do

x(i),Cx(i) , ŷ(i), ŝ
(i)
i , ŝi−CF ← liunp;

nunp← nunp +1;
CFlipsunpriv[k]←CFlipsunpriv[k]+ CFlips(x(i),sorted(Cx(i))[: k], ŝi−CF [: k]);

end
CFlipsunpriv[k]←CFlipsunpriv[k]/nunp;

end
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Algorithm 3: normilized Cumulative Counterfactual Fairness (nDCCF) Eval-
uation

Input:
• the number of counterfactuals to be generated for each sample NCF ,
• the set A (see Algorithm 2),
• the set B (see Algorithm 2).

Result:

• the vector nDCCFpriv of size NCF that contains averaged nDCCF values, across all
samples, of counterfactuals in A sorted in descending order of similarity, as returned
by the counterfactual generator. The ith element of nDCCFpriv is the average of
nDCCF values considering i counterfactuals for all the samples.

• the vector nDCCFunpriv of size NCF that contains averaged nDCCF values, across
all samples, of counterfactuals in B sorted in descending order of similarity, as
returned by the counterfactual generator. The ith element of nDCCFunpriv is the
average of nDCCF values considering i counterfactuals for all the samples.

Initialize nDCCFpriv = [0,0, . . . ,0], and nDCCFunpriv = [0,0, . . . ,0];
for k← 1 to NCF do

np← 0;
for lip ∈ A do

x(i),Cx(i) , ŷ(i), ŝ(i), ŝCF ← lip;
np← np +1;

nDCCFpriv[k]← nDCCFpriv[k]+ DCCF(x(i),sorted(Cx(i) )[:k],̂sCF [:k])
IDCCF [:k] ;

end
nDCCFpriv[k]← nDCCFpriv[k]/np;
nunp← 0;
for liunp ∈ B do

x(i),Cx(i) , ŷ(i), ŝ(i), ŝCF ← liunp;
nunp← nunp +1;

nDCCFunpriv[k]← nDCCFunpriv[k]+ DCCF(x(i),sorted(Cx(i) )[:k],̂sCF [:k])
IDCCF [:k] ;

end
nDCCFunpriv[k]← nDCCFunpriv[k]/nunp;

end





Chapter 5

Fairness under Unawareness is not a
reliable fairness setting

This section details our experimental settings, designed to answer the research questions
defined in Section 1.2. Two different models are trained: on the one hand, we train a
model for making decisions for a specific task (i.e., income prediction or loan prediction),
and on the other hand, we train the sensitive-feature classifiers to predict the sensitive
group the samples belong to.

Specifically, we focus on the samples predicted as negative by the main task classifier.
Next, we exploit counterfactual reasoning: starting from these samples classified as
negative, we aim to modify features to cause a flip concerning the final prediction
class (i.e., the prediction class goes from 0 to 1 by modifying one or more features).
Subsequently, these new counterfactual samples feed the classifier for the sensitive
features to predict the demographic group they belong to. In this way, we check if
the counterfactual modifications have caused a flip concerning the sensitive group to
which the sample belongs. The intuition here is that counterfactual-generated data
are more explanatory in showing the model unfairness resulting from proxy features.
The system’s fairness can be evaluated by analyzing, for each test sample, any existing
correlations between the target classification task and the protected classes inferred
from counterfactuals.

5.1 Experimental Evaluation

Before addressing the initial three research questions, we provide a concise exposition
of the comprehensive experimental setup for our study. This includes an elucidation of
the utilized datasets, preprocessing procedures, metrics, evaluation protocols, and a
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Table 5.1 Adult, Adult-debiased, Crime, and German datasets’ characteristics. |X| to the
number of feature w/o the sensitive one (i.e., gender and crime).

Dataset Split |D| |X| Target (Y ) Y = 1

Adult Train 40699 13 income ≥ $50,000
Test 4523 13 income ≥ $50,000

Adult-debiased Train 40699 6 income ≥ $50,000
Test 4523 6 income ≥ $50,000

Crime Train 1794 98 Violent State <median
Test 200 98 Violent State <median

German Train 900 17 credit score Good
Test 100 17 credit score Good

detailed exploration of hyperparameters for each component of our framework. This
meticulous presentation ensures the provision of all necessary information for a rigorous
reproduction of the thesis’s findings.

5.1.1 Datasets and Preprocessing

Experiments are conducted on three popular datasets, used as benchmarks in several
works [7, 66, 72, 84, 138]. Despite their small dimension, as stated by Rossini et al.
[149], these datasets are useful to evaluate fairness approaches because they represent
real-world problems and provide a wide range of attributes that can be used to develop
ethical standards. These are: Adult [108], a real-world dataset used for income
prediction1, German [99], a real-world dataset for default prediction2, and Crime [145],
a real-world Census dataset for violent state prediction3 (i.e., a state is violent if the
number of crimes in a state is higher with respect to the median (|Cx|) of all the states).
For Adult and German, the sensitive attribute we considered is gender, with male and
female corresponding to the privileged and unprivileged group respectively. For the
Crime dataset, the sensitive attribute we considered is race that indicates the race
with the largest number of crimes committed in a specific state. As a second sensitive
feature, for Adult, we chose maritalStatus, with married and not married as privileged
and unprivileged; for German, we chose age as > 25 years and <= 25 years as privileged
and unprivileged. In this dataset, each sample consists of the name of the state and
the number of crimes associated with each race, i.e., white, black, asian, and hispanic.

1Adult: https://archive.ics.uci.edu/ml/datasets/adult
2German: https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
3Crime: https://archive.ics.uci.edu/ml/datasets/US+Census+Data+(1990)

https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
https://archive.ics.uci.edu/ml/datasets/US+Census+Data+(1990)
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Table 5.2 Overview of relevant dataset information, including sensitive feature distribution,
target distribution, name of privileged group, and ex-ante Statistical Parity respectively for
the Adult, Adult-debiased, German, and Crime datasets.

Dataset Si privileged (Si = 1) Φ(S)† Φ(Y )†† ex-ante SP∗

Adult gender male 0.68/0.32 0.25/0.75 0.199
maritalStatus married 0.48/0.52 0.25/0.75 0.378

Adult-deb. gender male 0.68/0.32 0.25/0.75 0.199
maritalStatus married 0.48/0.52 0.25/0.75 0.378

Crime race white 0.58/0.42 0.50/0.50 0.554
German gender male 0.69/0.31 0.70/0.30 0.075

age > 25 year 0.81/0.19 0.70/0.30 0.149
† Probability distribution of the privileged and unprivileged group:

P(Si = 1)/P(Si = 0)
†† Probability distribution of the target variable:

P(Y = 1)/P(Y = 0)
∗ A priori Statistical Parity, based on Independence criteria:

P(Y = 1 | Si = 1)−P(Y = 1 | Si = 0)

For our task, we split races into two groups White and Others where Others groups
the crimes of Black, Asian, and Hispanic races. This reproduces the setting of [7]. The
privileged group is the White one, and the unprivileged is Others (i.e., Blacks, Asians,
and Hispanics). More details for each dataset setting can be found following.

Adult Dataset

Adult4 is a popular UCI Machine Learning dataset extracted from the 1994 US Census
database. The prediction task is to determine whether a person earns more than 50K
a year. The sensitive attributes consider for this dataset are gender which indicates
the sex of an individual, and marital status, whether an individual is married or not.

In the Adult dataset, there are other sensitive characteristics (i.e., age, relationship,
and race). Since Fairness Under Unawareness, the setting most coherent with current
AI regulations, requires bereaving the dataset of sensitive information during training,
we decided not to use these features to learn the model. For that reason and due to
the dimension of the dataset, we decided to create two different settings:
(a) - Adult: the original dataset where we only discarded the sensitive features gender
and marital-status; (b) - Adult-debiased: where we remove all the sensitive features

4https://archive.ics.uci.edu/ml/datasets/adult

https://archive.ics.uci.edu/ml/datasets/adult
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(i.e., gender, age, marital status, and race), and all the features highly correlated with at
least one of the sensitive features. From the whole set of sensitive features we chose to
investigate but not to use in the training phase, only gender and marital-status as classic
sensitive information for benchmarking debiasing models [72, 95, 132]. As regards the
non-sensitive features used for training the models, 6 out of 15 were used: education
num, occupation, work class, capital gain, capital loss, hours per week. The remaining
non-sensitive features are filtered out because they show a high correlation with the
sensitive features (Pearson’s correlation coefficient greater than 0.35). Furthermore,
the feature work class is condensed into three classes: Private, Public, and Unemployed.
We replace the categories in work class Private, SelfEmpNotInc, SelfEmpInc, with
Private, the categories FederalGov, LocalGov, StateGov, with Private, and the category
WithoutPay with Unemployed. The Adult dataset is imbalanced, as shown in Table 5.2.
This can emphasize some biases [72, 173, 175]. The target label income >= 50K
is strongly unbalanced towards the privileged class (male, married). More detailed
statistics, including the number of samples, the sensitive feature distribution, and the
ex-ante statistical parity, are summarized in Table 5.1 and Table 5.2.

German Dataset

German5 is another popular UCI Machine Learning dataset extracted from a German
bank loan approval history. Demographic and financial characteristics of individu-
als who applied for a loan are collected in this dataset, along with the decision to
grant them a loan or not. The prediction task is the binary decision of approving
a loan based on the probability of repaying it. The sensitive characteristics taken
into account are gender and age. As for the Adult dataset, German contains other
sensitive characteristics (e.g., race) beyond those exploited in this study. Also, in this
case, we do not include these features for learning the model for guaranteeing the
fairness under awareness setting. We exploit 17 non-sensitive features to train the
predictive models (i.e., existingchecking, duration, credithistory, purpose, creditamount,
savings, employmentsince, installmentrate, otherdebts, residencesince, property, otherin-
stallmentplans, housing, existingcredits, job, peopleliable, telephone). As for the Adult
dataset, German is imbalanced [72, 173, 175]. Table 5.2 shows that the privileged group
is overrepresented for both the sensitive features. Moreover, the ex-ante statistical
parity metric indicates that the advantaged target label (Y = 1) is strongly associated
with the privileged group (Si = 1) compared to the unprivileged group (Si = 0), which

5https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)

https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
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confirms that the data is imbalanced and strongly biased. Useful statistical details are
reported in Table 5.1 and Table 5.2.

Crime dataset

The Communities and Crime dataset combines socio-economic data from the 1990 US
Census, law enforcement data from the 1990 US LEMAS survey, and crime data from
the 1995 FBI UCR. It was created by Michael Redmond and is provided by the UCI
machine learning repository (Dua & Graff, 2017). The dataset contains 128 attributes
such as county, population, per capita income, and number of immigrants.

The task consists of predicting whether the number of violent crimes per population
for a given community is above or below the median. For our task, we reproduced the
setting of [7]. Thus, we condense and then split races into two groups White and Others
where Others groups the crimes of Black, Asian, and Hispanic races. This reveals who
among the two groups (i.e., white, others) committed more crimes in the state. The
privileged group is the White one, and the unprivileged is Others (i.e., Blacks, Asians,
and Hispanics). More details for each dataset setting can be found following. Useful
statistical details are reported in Table 5.1 and Table 5.2.

5.1.2 Evaluation Metrics

The evaluation includes two different groups of metrics: accuracy-based and bias-
based metrics. The accuracy-based metrics are mainly based on the confusion matrix,
which quantifies how many samples are correctly classified or misclassified for both
the negative and positive classes. For self-consistency, this section details all the
considered metrics. Some are just recalled, reporting the formulas. The others, used in
cutting-edge fairness research, are described. The first metric is the Accuracy, which
quantifies the overall number of correct classifications over the predictions:

Accuracy = TP+TN
TP+FP+TN+FN (5.1)

The Recall metric measures the number of positive correctly classified samples with
respect to all the real positive ones:

Recall = TP
TP+FN (5.2)

Precision measures the ratio of samples correctly classified as positive over the ones
classified as positive:
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Precision = TP
TP+FP (5.3)

The F1 score is the harmonic mean between recall and accuracy:

F1 = 2
1

Precision + 1
Recall

= 2 · Precision ·Recall
Precision+Recall = 2 ·TP

2 ·TP +FP +FN
(5.4)

The primary goal of the F1 score is to combine the precision and recall metrics into a
single metric. Indeed, this metric is useful for evaluating classification methods when
dealing with imbalanced data. The Area Under the Receiver Operating Characteristic
Curve (AUC) is a metric that measures the capability of a classifier to separate the
positive class from the negative class correctly. It can be formulated as follows:

AUC =
∑

x−∈X−
∑

x+∈X+(1(f(x−) < f(x+)))
|X|−+|X|+

(5.5)

where X+ is the set of positive sample, X− is the set of negative sample, f(·) is the
result of model prediction, and 1(·) an indicator function [25].

To quantify the presence of bias in the decision of the two classifiers several fairness
metrics were used that consider the Independence and Separation statistical criteria.
For the Independence statistical criteria, we used Difference in Statistical Parity (DSP)
and Disparate Impact (DI). DSP measures the difference between the probability that
samples belonging to the privileged group and to the unprivileged group are classified
in a positive outcome class [97]. It is the equivalent of the difference between the sum
of the TP rate and FP rate of the privileged and unprivileged group (see Equation 5.6
as reminder of Equation 3.3). A model is considered Fair w.r.t. DSP if the measure is
equal or, at least, very close to zero.

DSP =
∣∣∣P(Ŷ = 1|Si = 1)−P(Ŷ = 1|Si = 0)

∣∣∣
=

∣∣∣(TPratepriv +FPratepriv)− (TPrateunpriv +FPrateunpriv)
∣∣∣ (5.6)

For the Separation statistical criteria, we used Difference in Equal Opportunity
(DEO) and Difference in Average Odds (DAO). The former, i.e., DEO, measures the
difference between the probability of instances in a privileged group and the probability
of instances in an unprivileged group being correctly classified in a positive outcome
class [97]. The formulation of the DEO metric is shown in Equation 5.7, as reminder
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of Equation 3.7.

DEO =
∣∣∣P(Ŷ = 1|Y = 1,Si = 1)−P(Ŷ = 1|Y = 1,Si = 0)

∣∣∣
=

∣∣∣TPratepriv−TPrateunpriv

∣∣∣ (5.7)

The latter, i.e., DAO, measures the difference between the probability of instances
in a privileged group and the probability of instances in an unprivileged group being
correctly classified in a positive outcome class, as DEO does. Furthermore, DAO
also considers the difference between the probability of instances in a privileged group
and the probability of instances in a privileged group being incorrectly classified in a
positive outcome class. DAO gives a broader intuition of how imbalanced the classifier
accuracy is between the two groups [97]. The formulation of the DAO metric is shown
in Equation 5.8, as reminder of Equation 3.8.

DAO = 1
2

(∣∣∣P(Ŷ = 1|Y = 0,Si = 1)−P(Ŷ = 1|Y = 0,Si = 0)
∣∣∣

+
∣∣∣P(Ŷ = 1|Y = 1,Si = 1)−P(Ŷ = 1|Y = 1,Si = 0)

∣∣∣)
= 1

2

(∣∣∣FPratepriv−FPrateunpriv

∣∣∣ +
∣∣∣TPratepriv−TPrateunpriv

∣∣∣)
(5.8)

In either case, for DEO and DAO, a model is considered fair if the measure is equal
or, at least, very close to zero.

5.1.3 Evaluation Protocol and Reproducibility

Following, we will give all the details of our experimental pipeline to reproduce our
experiments starting in each setting.

Dataset Splitting

The datasets were split with a random 90/10 hold-out method to partition train and
test sets, with stratification based on the target variable Y and the sensitive features
S. For the Adult dataset, we have 40699 train samples and 4523 test samples, for the
Crime dataset, 1794 train samples and 200 test samples, and for the German dataset,
900 train samples and 100 test samples (see Table 5.1). For reproducibility, we used
the Scikit-learn implementation for splitting with a random seed set to 426.

6https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.
train_test_split.html

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
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Decision-Maker Hyperparameter Tuning and optimization

The target label classifiers, i.e., LR, SVM, DT, RF, MLP, XGB, and LGB (see
Section 4.3.1), have been tuned using a grid search strategy7. For hyperparameter
tuning and validation, the train data was further split using a k-fold cross-validation
strategy, with the number of folds set to five. The best models hyperparameters
have been chosen to optimize the Area under the ROC curve metric (AUC) since
AUC indicates how well the classifier can separate the positive from the negative class
(see Equation 5.5). For reproducibility, the list of explored hyperparameter values is
reported in Table 5.3.

Debiased Decision-Makers Hyperparameter Tuning and Optimization

The Debiasing classifiers, i.e., AdvDeb, LFERM, and FairC (see Section 4.3.1), have
been tuned using the same evaluation protocol, with a grid search for the hyperparam-
eter values and a 5-fold cross-validation strategy. Conversely, in this evaluation, the
best models have been chosen to optimize AUC and Fairness with an overall metric
that considers both:

AUCFAIR = AUC · (1−DAO) (5.9)

It is straightforward notice that any other Fairness metric could replace DAO. In this
work, DAO is chosen to balance fairness in terms of correct predictions for negative and
positive samples. The list of explored hyperparameter values is reported in Table 5.3.

Sensitive Feature Classifier Hyperparameter Tuning and optimization

The sensitive label classifiers, i.e., XGB (see Section 4.3.3), are tuned using the same
approach, exploiting a grid search exploration7 for hyperparameter values and a 5-fold
cross-validation strategy. Due to the imbalanced nature of the datasets concerning the
sensitive classes, the models optimizing the F1 score are chosen (see Equation 5.4).
Explored hyperparameter values are shown in Table 5.3.

Counterfactual generation

For the sake of reproducibility, the generation of counterfactual samples makes use
of DiCE, as discussed in Section 4.3.2. To avoid the results depending on a single
counterfactual generation strategy, we considered three different strategies, i.e., Random,

7https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.
GridSearchCV.html

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
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Table 5.3 Hyperparameter list, values and type for the classification models reported in this
work.

Algorithm Hyperparameter Values Type

All Model seed {42} Integer

Logistic Regression

penalty {l1,l2} String
tol {0.0001,0.00001} Float
C {10−4+( 8

20 i) for i in range(1,21)} Float
fit_intercept {True, False} Boolean
class_weight { balanced, None} String
solver {newton-cg, lbfgs, liblinear, sag, saga} String
warm_start {True, False} Boolean

Support Vector Machines

C {0.1, 1, 10} Float
class_weight {balanced, None} String
gamma {scale, auto} String
kernel {linear, rbf, sigmoid} String

Decision Tree

ccp_α {0.1, 0.01, 0.001} Float
max_features {’sqrt’, ’log2’} String
max_depth {i for i in range(1,10)} Integer
max_samples_split {i for i in range(1,10)} Integer
max_samples_leaf {i for i in range(1,5)} Integer
criterion {gini, entropy} String

Random Forest

bootstrap {True, False} Boolean
max_depth {None, 10, 20, 40, 60, 80, 100} Integer
max_features {auto, sqrt} String
min_samples_split {2, 5, 10} Integer
min_samples_leaf {1, 2, 4} Integer
n_estimators {50, 100, 200, 400} Integer

Multi-Layer Perceptron

hidden_layer_sizes {(32, 64, 128), (32, 64), (64,)} Tuple[Int]
activation {tanh, relu} String
solver {sgd, adam} String
alpha {0.0001, 0.05} Float
learning_rate {constant, adaptive} String

eXtreme Gradient Boosting

min_child_weight {1, 5, 10} Integer
gamma {0.01, 0.1, 0.5} Float
learning_rate {0.1, 0.01, 0.001} Float
max_depth {3, 5, 6} Integer
subsample {0.4,0.6,0.8,1.0} Float
colsample_bytree {0.6, 0.8, 1} Float
n_estimators {50, 100, 300,500} Integer
reg_alpha {0.1, 0.01, 0.02} Float

Light Gradient Boosting

learning_rate {0.1, 0.05} Float
num_leaves {3, 10, 30, 50, 100, 200} Integer
reg_alpha {None, 0.01, 0.05, 0.1} Float
colsample_bytree {0.6, 0.8,1} Float
max_depth {-1, 3, 5, 8, 10} Integer
reg_lambda {None, 0.01, 0.02, 0.03} Float
n_estimators {50, 100, 300} Integer

Adversarial Debiasing

adversary_loss_weight {0.01, 0.05, 0.1} Float
num_epochs {50, 70, 150, 250, 500} Integer
batch_size {64, 128, 256, 512} Integer
hidden_units {64, 128, 256} Integer
number_of_layers {1}∗ Integer

Linear Fair Empirical Risk Minimization C {0.01, 0.1, 1} Float
kernel {linear} String

Fair Classification C {0.001, 0.01, 0.1, 1} Float

∗ AIF360 implementation of Adversarial Debiasing does not allow to change the number of layers.
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Genetic, and KDtree. For the Random strategy, the seed has been set to 42, the posthoc
sparsity parameter to 0.1, and the posthoc sparsity algorithm to linear search. For
the Genetic strategy, we set the initialization to kdtree, the proximity weight to 0.2,
the sparsity weight to 0.2, the diversity weight to 5, the categorical penalty to 0.1,
the counterfactual generation loss to hinge-loss, the feature weights to inverse Mean
Absolute Deviation (MAD), the posthoc sparsity parameter to 0.1, the posthoc sparsity
algorithm to binary search, and the max iterations to 500. For the KDtree strategy, we
set the sparsity weight to 1, the feature weights to inverse Mean Absolute Deviation
(MAD), the posthoc sparsity parameter to 0.1, and the posthoc sparsity algorithm to
linear search. For each sample in the test set, an overall number of 100 counterfactuals
was requested (see Algorithm 1). For reproducibility reasons, we use all the previously
listed default parameter values of the DiCE tool, except for the posthoc sparsity
algorithm set to binary search in the Genetic strategy for speeding up the search due
to the expensive experimental time.

5.2 Unawareness doesn’t mean privatization of sen-
sitive information (RQ1)

Predicting sensitive characteristics of users, such as their personal or private information,
is a complex and ethically sensitive task that must be handled with great care and
adherence to privacy laws and ethical guidelines. Predicting or attempting to infer
sensitive information about individuals without their consent or in violation of privacy
regulations is unethical and potentially illegal. The Fairness under Unawareness
setting tries to guarantee fair model behaviour by discarding sensitive information.
Discarding sensitive features can be considered a sort of high-level user privatization
of sensitive information. However, for fairness purposes, it cannot guarantee that the
model predicts without considering characteristics (i.e., non-sensitive features) that can
be correlated or can have non-linear dependencies with the sensitive features. These
types of characteristics are known in the literature as proxy features. Identifying them
is still a hard task. So our first research question is:

RQ1

Is there a principled way to identify if proxy features exist in a dataset?

Thus, the first stage of our experiments aims to assess how well the sensitive-feature
classifier can identify if a subject belongs to the privileged or unprivileged group,
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Table 5.4 Complete results on the Adult, Adult-debiased, Crime, and German test set of the
Sensitive Feature Classifiers.

Sensitive feature Classifier
Dataset Si metric RF MLP XGB

Adult

gender

AUC↑ 0.9402 0.9363 0.9413
ACC ↑ 0.8539 0.8559 0.8463
Precision ↑ 0.9043 0.9065 0.9549
Recall ↑ 0.8762 0.8768 0.8107
F1 ↑ 0.8900 0.8914 0.8769

maritalStatus

AUC↑ 0.9883 0.9882 0.9907
ACC ↑ 0.9830 0.9825 0.9828
Precision ↑ 1.0000 0.9986 1.0000
Recall ↑ 0.9644 0.9649 0.9640
F1 ↑ 0.9819 0.9814 0.9816

Adult-deb

gender

AUC↑ 0.8028 0.8010 0.7896
ACC ↑ 0.7482 0.7480 0.7444
Precision ↑ 0.7699 0.7832 0.8111
Recall ↑ 0.8942 0.8664 0.8100
F1 ↑ 0.8274 0.8227 0.8106

maritalStatus

AUC↑ 0.7286 0.7103 0.7708
ACC ↑ 0.6655 0.6611 0.6918
Precision ↑ 0.6598 0.6547 0.6677
Recall ↑ 0.6211 0.6169 0.7098
F1 ↑ 0.6398 0.6353 0.6879

Crime race

AUC↑ 0.9893 0.9885 0.9910
ACC ↑ 0.9450 0.9500 0.9450
Precision ↑ 0.9412 0.9417 0.9412
Recall ↑ 0.9655 0.9741 0.9655
F1 ↑ 0.9532 0.9576 0.9532

German

gender

AUC↑ 0.7106 0.5091 0.7139
ACC ↑ 0.7300 0.6900 0.6900
Precision ↑ 0.7234 0.6900 0.7879
Recall ↑ 0.9855 1.0000 0.7536
F1 ↑ 0.8344 0.8166 0.7704

age

AUC↑ 0.8876 0.4756 0.8363
ACC ↑ 0.8600 0.8100 0.8100
Precision ↑ 0.8526 0.8100 0.8605
Recall ↑ 1.0000 1.0000 0.9136
F1 ↑ 0.9205 0.8950 0.8862

without exploiting sensitive features in the training phase. We trained a sensitive
feature classifier for each dataset. The investigated sensitive features are gender or
race and results are shown in Table 5.4.
• The first observation is that every Sensitive-Feature Classifier shows to be accurate

for all the datasets. Among them, XGB is the algorithm that exhibits the best
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performance in terms of AUC while RF shows the most promising ACC and F1
performance. For the Adult, Adult-debiased, and Crime datasets, MLP performance
is comparable to XGB and RF, while showing a low AUC on the German dataset
indicating it is not reliable and useful for our analysis. We recall we seek models
with high F1 and AUC since it indicates that the classifiers provide accurate and
balanced predictions.

• The careful reader may have noticed that, on the Adult-debiased, the sensitive-
feature classifiers exhibit the worst performance in comparison with the original
Adult dataset, and for each sensitive feature setting (i.e., gender and marital Status).
This behaviour is due to the debiasing process, as the Adult-debiased dataset has
been deprived of features highly correlated with the sensitive ones. Noteworthy, the
prediction capability remains high despite the absence of sensitive and sensitive-
correlated features. This simple analysis demonstrates how each classifier can deeply
model non-linear relations with the remaining features “deprivatizing” the sensitive
information.

Final comments. Results show that, due to proxy features, it is possible to train a
classifier capable of predicting sensitive characteristics. Moreover, it is still possible to
predict sensitive information even when only low correlated features with the sensitive
information are available (i.e., Adult-debiased).

5.3 Unawareness doesn’t guarantee a model-agnostic
fair behaviour (RQ2)

The results of the first research question (i.e., RQ1) can be considered trivial or unuseful
since the existence of proxy features is something already known in the literature [32,
83, 94]. However, this first experimental session laid the foundation for going ahead
with our investigation.

The Fairness Under Unawareness setting aims to ensure fair treatment by removing
sensitive features from training data. However, as demonstrated previously, it is
possible to predict sensitive information due to the existence of proxy features. The
purpose of this second analysis can be summarized through the following research
question:
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Table 5.5 Complete accuracy and fairness results on the Adult, Adult-debiased, Crime, and
German test set of the Decision Maker Classifiers.

Decision-Maker f(·)

Dataset metric LR DT SVM LGBM XGB RF MLP LFERM ADV FairC

Adult

AUC ↑ 0.9078 0.8484 0.9073 0.9304 0.9314 0.9118 0.9119 0.9031 0.9123 0.8770
ACC ↑ 0.8099 0.8161 0.8541 0.8658 0.8698 0.8534 0.8494 0.8428 0.8512 0.8395
Precision ↑ 0.5782 0.6879 0.7570 0.7655 0.7737 0.7371 0.7222 0.7324 0.7500 0.7382
Recall ↑ 0.8608 0.4719 0.6057 0.6610 0.6708 0.6351 0.6378 0.5763 0.5995 0.5459
F1 ↑ 0.6918 0.5598 0.6729 0.7094 0.7186 0.6823 0.6774 0.6450 0.6663 0.6277

DSP ↓ (gender) 0.2947 0.1461 0.1769 0.1850 0.1884 0.1854 0.1902 0.1448 0.1151 0.0528
DEO ↓ (gender) 0.0546 0.0760 0.0644 0.0379 0.0635 0.0216 0.0529 0.0194 0.1399 0.2451
DAO ↓ (gender) 0.1241 0.0722 0.0692 0.0569 0.0680 0.0545 0.0708 0.0386 0.0879 0.1274

DSP ↓ (MS) 0.6290 0.2833 0.3562 0.3648 0.3601 0.3750 0.3430 0.2713 0.3779 0.0162
DEO ↓ (MS) 0.4656 0.3461 0.3464 0.2893 0.2874 0.3014 0.3168 0.1875 0.3851 0.3710
DAO ↓ (MS) 0.4736 0.2343 0.2554 0.2148 0.2122 0.2388 0.2300 0.1467 0.2859 0.2112

Adult-deb

AUC ↑ 0.8233 0.7895 0.7944 0.8596 0.8578 0.8336 0.8271 0.8017 0.8309 0.7981
ACC ↑ 0.7367 0.8017 0.8061 0.8371 0.8375 0.8267 0.8156 0.7953 0.8196 0.8054
Precision ↑ 0.4790 0.8294 0.8389 0.8038 0.8063 0.7621 0.7540 0.7079 0.7529 0.7526
Recall ↑ 0.7119 0.2516 0.2694 0.4532 0.4532 0.4371 0.3800 0.2962 0.4050 0.3202
F1 ↑ 0.5727 0.3860 0.4078 0.5796 0.5802 0.5556 0.5053 0.4176 0.5267 0.4493

DSP ↓ (gender) 0.1567 0.0438 0.0534 0.1093 0.1056 0.1058 0.0863 0.0639 0.0957 0.0575
DEO ↓ (gender) 0.0695 0.0492 0.0353 0.0470 0.0400 0.0703 0.0173 0.0179 0.0326 0.0529
DAO ↓ (gender) 0.0693 0.0272 0.0227 0.0356 0.0304 0.0461 0.0188 0.0186 0.0282 0.0315

DSP ↓ (MS) 0.1793 0.0945 0.0948 0.1702 0.1663 0.1501 0.1249 0.0336 0.1316 0.1241
DEO ↓ (MS) 0.1450 0.0468 0.0720 0.0676 0.0645 0.0460 0.1266 0.0489 0.1108 0.1128
DAO ↓ (MS) 0.0880 0.0240 0.0362 0.0409 0.0355 0.0232 0.0633 0.0262 0.0591 0.0570

Crime

AUC ↑ 0.9248 0.8991 0.9288 0.9168 0.9099 0.9096 0.9203 0.9100 0.9008 0.8024
ACC ↑ 0.8700 0.8200 0.8700 0.8400 0.8500 0.8400 0.8650 0.8400 0.8100 0.7500
Precision ↑ 0.8627 0.8265 0.8776 0.8400 0.8500 0.8400 0.8544 0.8333 0.8444 0.7500
Recall ↑ 0.8800 0.8100 0.8600 0.8400 0.8500 0.8400 0.8800 0.8500 0.7600 0.7500
F1 ↑ 0.8713 0.8182 0.8687 0.8400 0.8500 0.8400 0.8670 0.8416 0.8000 0.7500

DSP ↓ (race) 0.6535 0.6190 0.6396 0.6363 0.6568 0.6363 0.6622 0.6125 0.5501 0.2258
DEO ↓ (race) 0.3294 0.4039 0.3843 0.2824 0.2941 0.2824 0.3294 0.2941 0.1882 0.1373
DAO ↓ (race) 0.3438 0.3827 0.3390 0.3525 0.3656 0.3525 0.3599 0.3278 0.2732 0.0862

German

AUC ↑ 0.8186 0.7219 0.8110 0.7614 0.7871 0.7936 0.8162 0.7605 0.7371 0.8152
ACC ↑ 0.7600 0.7600 0.7600 0.7500 0.7900 0.7600 0.7600 0.7200 0.7300 0.7400
Precision ↑ 0.8485 0.7805 0.7738 0.7848 0.8025 0.7674 0.7738 0.7188 0.7792 0.7619
Recall ↑ 0.8000 0.9143 0.9286 0.8857 0.9286 0.9429 0.9286 0.9857 0.8571 0.9143
F1 ↑ 0.8235 0.8421 0.8442 0.8322 0.8609 0.8462 0.8442 0.8313 0.8163 0.8312

DSP ↓ (gender) 0.1187 0.0271 0.0449 0.1632 0.0519 0.0626 0.0449 0.0355 0.1809 0.0449
DEO ↓ (gender) 0.1400 0.0500 0.0300 0.1900 0.0400 0.0800 0.0300 0.0200 0.2200 0.0500
DAO ↓ (gender) 0.1657 0.0537 0.0892 0.1117 0.0296 0.0878 0.0892 0.0746 0.1267 0.0728

DSP ↓ (age) 0.2827 0.0845 0.0344 0.1676 0.0006 0.1397 0.2112 0.0000 0.0273 0.1956
DEO ↓ (age) 0.3020 0.0693 0.0570 0.0740 0.0847 0.0570 0.2049 0.0000 0.0108 0.2049
DAO ↓ (age) 0.1851 0.0347 0.0853 0.0995 0.0651 0.0967 0.1195 0.0000 0.0849 0.1252

RQ2

Does the Fairness Under Unawareness setting ensure that decision biases are
avoided?

Therefore, our second analysis is structured as follows. Before evaluating fairness
metrics, we evaluated the accuracy performance of the classifiers exploited to implement
the Decision Maker. Subsequently, we evaluated each classifier’s performance on classic
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fairness metrics (i.e., DSP, DEO, and DAO) even if in an unawareness setting to check
whether it is useful for fairness purposes.
• Table 5.5 indicates that all classifiers work well in terms of accuracy metrics. However,

as expected, adopting Fairness Under Unawareness – i.e., removing all the sensitive
information and, for Adult-debiased, also removing highly correlated features – has
caused a worsening of the performance for all the classifiers (see the comparison
between Adult and Adult-debiased results). This observation suggests that sensitive
and sensitive-correlated information may be “necessary" to predict the target label
correctly.

• Table 5.5 also reports the fairness evaluation computing the Difference in Statistical
Parity (DSP), Difference in Equal Opportunity (DEO), and Difference in Average
Odds (DAO). It is worth noticing that removing the considered sensitive information
(i.e., gender, marital status (MS), race, and age) has not improved model equity.
This result shows that not removing proxy features makes the Fairness Under
Unawareness setting useless since the model can implicitly learn them. A clear
example is the Adult-debiased dataset, where DSP, DEO, and DAO values are
generally better than the Adult dataset. This is probably caused by the removal
of highly correlated features with the sensitive ones. However, some degree of
discrimination is still present due to non-linear dependencies with proxy features.
Furthermore, despite adopting the in-processing debiasing constrained optimization
and fair hyperparameters tuning strategy, the debiased Decision Maker does not
seem to improve fairness performance consistently (e.g., ADV or FairC in Adult).
As a last remark, we can notice how not always debiasing the dataset corresponds
to an improvement of fairness metrics. Thus, in some cases, in order to find a
setting that enforces accuracy, it can worsen their performance by disclosing implicit
non-linear discriminative bias.
Final comments. The classifiers seem to be affected by discrimination even when the

sensitive information is omitted. Accordingly, imposing Fairness Under Unawareness
setting is not sufficient to avoid decision biases and discrimination.

5.4 Counterfactual Reasoning for (un)fairness as-
sessment (RQ3)

Throughout the first two research questions, we have seen how sensitive information
can be recovered with latent nonlinear relationships known as proxy features making
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(a) CFlips for the Adult dataset
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(b) CFlips for the Adult-debiased dataset
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(c) CFlips for the Crime dataset
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(d) CFlips for the German dataset
LR DT SVM LGBM XGB RF MLP LFERM ADV FairC

Fig. 5.1 CFlips (i.e., Counterfactual Flips, see Definition 4.7) for samples of the unprivileged
and privileged sensitive group. The groups are others (Si = 0) and white (Si = 1) for the
Crime dataset, and female (Si = 0) and male (Si = 1) for the Adult, Adult-deb, and German
dataset.



86 Unawareness is not a reliable fairness setting

unuseful privatizing the dataset with fairness under unawareness setting. Furthermore,
this setting does not guarantee the model to be absent from discriminative behaviours
even when we omit highly correlated features. Another challenge is that some fairness
metrics may conflict with each other without giving a deeper quantification of the
(un)fairness of the model, making developers confused and disoriented. With our
analysis, we want to give a framework that can enhance the clarity for AI practitioners.
This experiment aims to unveil potential decision biases by counterfactual reasoning
and wants to answer the following research question:

RQ3

Is counterfactual reasoning suitable and effective for discovering hidden decision
biases?

Figure 5.1 reports the CFlips values (see Definition 4.7) for each classifier and
category – i.e., privileged, see Eq. 4.14, and unprivileged, see Eq. 4.15, with XGB as
fSi

(·) and other sensitive features classifiers are postponed to Section 5.4.1. Following,
in Table 5.6 and Table 5.7, we exploit the CFlips, nDCCF, and their ∆ between the
privileged and unprivileged group for both the Genetic and KDtree Counterfactual
strategy. Before starting to comment on the analysis, we want to remind the reader
that the CFlips metric tells us how frequently a change in the decision (from negative
to positive) for a sample is followed by a change in the sensitive-feature classification
(e.g., from female to male and vice versa) while the nDCCF metric rewards CF samples
in the ranking that did not flip based a higher rank.
• The proposed metric seems to operate as expected since some hidden discriminatory

behaviours emerge. For instance, the counterfactuals belonging to the unprivileged
category, i.e., female or others, have a much higher CFlips than counterfactuals
of privileged samples, i.e., male or white. This high percentage of flips for the
unprivileged category means that the counterfactuals for the female (and "others"
race) group must show male (and white) characteristics to get a positive decision.
In this respect, Adult and Crime are characterized by the highest CFlips values and
the largest difference between the privileged and unprivileged groups (see Table 5.6).
We underline that CFlips and ∆CFlips results complement, they explain (e.g.,
highlighting if privileged group characteristics lead to a positive outcome) but also
overturn the DEO metric in Table 5.5, shedding light on how the discriminatory
classifiers work.
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• The debiasing models perform particularly well (see the DEO metric in Table 5.5)
on datasets where sensitive features can be easily identified, i.e., the datasets
characterized by accurate sensitive-feature classifiers. Notwithstanding, the ∆CFlips
in Table 5.6 highlights that a certain degree of discrimination persists for the datasets
i) with features with a low correlation with the sensitive features or ii) composed
by just a few samples. For instance, for the Crime dataset, even though all the
sensitive-feature classifiers exhibit high accuracy, only FairC succeeds in decreasing
discrimination at the expense of a significant loss in accuracy.

• The Adult-debiased dataset shows a smaller number of CFlips than Adult, especially
for LR and SVM. However, even the most accurate XGB and LGBM show an
evident discrepancy between the privileged and unprivileged groups. This might
indicate that both classifiers learned correlations between the proxy features and the
target. The German dataset has a similar trend with MLP and SVM as the most
affected by unfairness. Finally, German’s small test set size and the low accuracy of
XGB as fSi

(·) drive MLP, and LFERM to have 0 flips in the female category.

• Figure 5.2 analyzes the impact of the number of generated counterfactuals and the
validity of the metric ∆CFlips when different sensitive features are present in the
same dataset. The figure shows that the values of ∆CFlips are stable and reliable if
the metric is computed on at least 20 counterfactuals for each sample. A different
behaviour can be observed for LFERM in Adult-gender and FairC in Crime-race
that start with an optimal performance, and then their ∆CFlips increases linearly.
This trend needs further investigation, but it could be related to the higher number
of counterfactuals. Indeed, with several counterfactuals, some could be farther from
the original sample, and this distance probably entails a higher ∆CFlips. However,
in fairness research, measuring the distance of a sample from the decision boundary
of the classifier is a timely challenge [77]. It is worth mentioning that the analysis
can be conducted for different features on the same dataset, even when it contains
more than one sensitive feature (see gender and maritalStatus plots for the Adult
dataset).

• The counterfactual generation strategies reveal some important findings: there exist
similar real samples (i.e., similar people) for which the switch to the privileged
group led to a positive outcome. Indeed, KDtree searches among dataset samples
– i.e., cx ∈ D – thus CFlips≥ 0 is critical. Genetic strategy, instead, analyzes the
unexplored space and confirms the discriminatory behaviour.
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Table 5.6 (GENETIC) CFlip and nDCCF results at different |k| number of Counterfactuals
for each negatively predicted Test set sample (0∗ there are no negative predicted unprivileged
samples which result in no CF samples for the unprivileged group). We mark the best-
performing model for each fairness metric in bold font.

CFlips@|k| (%) nDCCF@|k|

Privileged Unprivileged ∆CFlips ↓ Privileged Unprivileged ∆nDCCF ↓

Dataset Si model @10 @50 @100 @10 @50 @100 @10 @50 @100 @10 @50 @100 @10 @50 @100 @10 @50 @100

LR 12.332 10.886 10.212 66.353 72.932 77.165 54.021 62.046 66.953 0.8678 0.8849 0.886 0.3522 0.2913 0.2497 0.5156 0.5936 0.6363
DT 8.721 9.442 9.563 67.553 73.179 74.152 58.832 63.737 64.589 0.911 0.9067 0.8988 0.3371 0.284 0.2685 0.5739 0.6227 0.6303
SVM 6.752 7.533 7.742 77.095 80.973 81.372 70.343 73.44 73.63 0.9306 0.9258 0.9171 0.2474 0.2042 0.1948 0.6832 0.7216 0.7223
LGBM 9.195 8.541 8.781 65.918 76.605 79.697 56.723 68.064 70.916 0.9049 0.9124 0.9049 0.3611 0.2633 0.2272 0.5438 0.6491 0.6777
XGB 10.011 8.788 9.07 64.796 76.243 79.512 54.785 67.455 70.442 0.8968 0.9088 0.9014 0.3708 0.2677 0.2298 0.526 0.6411 0.6716
RF 7.18 7.226 7.577 68.926 77.217 80.578 61.746 69.991 73.001 0.9246 0.9269 0.9181 0.3296 0.2527 0.2164 0.595 0.6742 0.7017
MLP 8.787 8.53 9.135 68.991 78.262 80.487 60.204 69.732 71.352 0.9071 0.9129 0.9025 0.3355 0.2453 0.2163 0.5716 0.6676 0.6862
ADV 30.046 34.488 34.968 36.11 38.694 43.041 6.064 4.206 8.073 0.7016 0.6668 0.6537 0.6427 0.6199 0.5812 0.0589 0.0469 0.0725
LFERM 31.459 28.632 24.965 31.764 47.464 57.47 0.305 18.832 32.505 0.6857 0.7062 0.7314 0.6864 0.5632 0.4701 0.0007 0.143 0.2613

Adult gender

FairC 58.841 60.464 56.68 17.891 22.141 27.338 40.95 38.323 29.342 0.4135 0.3981 0.4219 0.8238 0.789 0.7415 0.4103 0.3909 0.3196

LR 8.438 10.838 13.192 54.816 57.521 57.047 46.378 46.683 43.855 0.9239 0.9012 0.8736 0.464 0.4332 0.4303 0.4599 0.468 0.4433
DT 6.334 14.796 17.298 31.092 49.802 54.639 24.758 35.006 37.341 0.9451 0.8723 0.8398 0.7224 0.5539 0.4936 0.2227 0.3184 0.3462
SVM 11.937 16.377 17.379 31.305 33.869 35.385 19.368 17.492 18.006 0.8871 0.8468 0.8295 0.6661 0.6616 0.6449 0.221 0.1852 0.1846
LGBM 4.596 9.384 12.817 66.779 74.088 73.366 62.183 64.704 60.549 0.958 0.9185 0.8818 0.3744 0.2879 0.2804 0.5836 0.6306 0.6014
XGB 1.803 3.152 6.523 81.289 88.9 84.48 79.486 85.748 77.957 0.9804 0.9711 0.9386 0.2183 0.1378 0.1599 0.7621 0.8333 0.7787
RF 3.616 6.067 8.473 71.126 81.269 81.498 67.51 75.202 73.025 0.9652 0.9452 0.9186 0.31 0.2151 0.201 0.6552 0.7301 0.7176
MLP 0.402 0.935 1.934 92.918 96.854 96.337 92.516 95.919 94.403 0.9951 0.9917 0.9766 0.0889 0.0452 0.0435 0.9062 0.9465 0.9331
ADV 16.369 20.067 23.123 44.722 52.645 57.043 28.353 32.578 33.92 0.8493 0.8119 0.7787 0.5803 0.4998 0.4536 0.269 0.3121 0.3251
LFERM 8.943 13.316 16.561 47.036 54.87 55.83 38.093 41.554 39.269 0.9248 0.8809 0.8452 0.5618 0.4791 0.4584 0.363 0.4018 0.3868

AdultDeb gender

FairC 1.326 2.723 4.359 80.127 85.728 88.23 78.801 83.005 83.871 0.9864 0.976 0.9556 0.1921 0.1533 0.1293 0.7943 0.8227 0.8263

LR 2.857 3.429 3.667 75.286 81.943 85.143 72.429 78.514 81.476 0.9688 0.9656 0.9568 0.2659 0.2011 0.1678 0.7029 0.7645 0.789
DT 7.2 6 6.32 65.211 75.239 79.254 58.011 69.239 72.934 0.9258 0.9376 0.9289 0.3648 0.2738 0.2321 0.561 0.6638 0.6968
SVM 6.25 5.917 5.63 73.239 80.789 84.493 66.989 74.872 78.863 0.938 0.94 0.9359 0.2868 0.2149 0.1776 0.6512 0.7251 0.7583
LGBM 5.652 5.913 5.696 74.571 80.143 83.55 68.919 74.23 77.854 0.9424 0.9407 0.9357 0.2875 0.2215 0.1854 0.6549 0.7192 0.7503
XGB 5 5.455 5.045 73.38 80.141 83.613 68.38 74.686 78.568 0.9492 0.9467 0.9427 0.2938 0.2214 0.1851 0.6554 0.7253 0.7576
RF 8.261 7.478 7.652 65.417 73.972 77.918 57.156 66.494 70.266 0.9181 0.9245 0.9171 0.3813 0.2907 0.2477 0.5368 0.6338 0.6694
MLP 5.263 6.211 6.053 73.562 79.014 82.452 68.299 72.803 76.399 0.9509 0.9401 0.9337 0.2899 0.231 0.1953 0.661 0.7091 0.7384
ADV 7.576 7.03 7.273 69 77.571 80.643 61.424 70.541 73.37 0.9295 0.9295 0.9209 0.3396 0.2519 0.2164 0.5899 0.6776 0.7045
LFERM 3.913 6.174 6.696 64.412 71.588 75.103 60.499 65.414 68.407 0.9592 0.9408 0.929 0.3695 0.305 0.2686 0.5897 0.6358 0.6604

Crime race

FairC 23.256 22.093 22.289 30.769 41.731 49.218 7.513 19.638 26.929 0.7654 0.7742 0.7689 0.7248 0.6189 0.5455 0.0406 0.1553 0.2234

LR 31.364 35.455 39.081 27.500 27.500 27.250 3.864 7.955 11.831 0.6977 0.6582 0.6228 0.7302 0.7306 0.7267 0.0325 0.0724 0.1039
DT 27.273 26.727 29.455 33.333 48.667 51.333 6.06 21.94 21.878 0.7486 0.7391 0.71 0.7246 0.5633 0.5217 0.024 0.1758 0.1883
SVM 22.5 31 32 30.000 70.000 70.000 7.5 39 38 0.8009 0.7185 0.6944 0.7722 0.4044 0.3569 0.0287 0.3141 0.3375
LGBM 3.333 4.333 4.25 17.500 16.500 17.000 14.167 12.167 12.75 0.9706 0.9598 0.9528 0.8383 0.8379 0.8273 0.1323 0.1219 0.1255
XGB 30 35.091 36.727 26.667 25.000 28.667 3.333 10.091 8.06 0.6891 0.6563 0.6364 0.7945 0.7686 0.7271 0.1054 0.1123 0.0907
RF 32 33.2 35.046 40.000 46.000 47.303 8 12.8 12.257 0.6957 0.6751 0.6537 0.6779 0.5816 0.5530 0.0178 0.0935 0.1007
MLP 23 29.4 30.097 0∗ 0∗ 0∗ 23 29.4 30.097 0.7726 0.7184 0.7039 0∗ 0∗ 0∗ 0.7726 0.7184 0.7039
ADV 5 7.667 6.583 15.714 14.857 17.286 10.714 7.19 10.703 0.9573 0.9315 0.9295 0.8299 0.8458 0.8243 0.1274 0.0857 0.1052
LFERM 15 19 24 0∗ 0∗ 0∗ 15 19 24 0.8408 0.8156 0.7676 0∗ 0∗ 0∗ 0.8408 0.8156 0.7676

German gender

FairC 24 27 29.019 0.000 4.000 5.000 24 23 24.019 0.7679 0.734 0.7124 1.0000 0.9705 0.9505 0.2321 0.2365 0.2381

• Considering the CFlips metric we can notice that for the unprivileged group we gen-
erally have higher values. This indicates that samples belonging to the unprivileged
group need to take the characteristics of the privileged group to reach a positive
outcome (i.e., f(cx) = 1). This is confirmed by the nDCCF metric where we can
see how the (most similar) counterfactuals of the unprivileged group should take on
the characteristics of the privileged group to pass to a favourable prediction.

• From a group-based point of view, we are interested in evaluating the difference
between the two proposed metrics between the privileged and unprivileged group
(i.e., ∆CFlips and ∆nDCCF) and see for which model the value of the ∆ is near to
zero. We point out that for models with highly accurate sensitive feature classifiers
(i.e., Adult and Crime), debiasing models seem to perform best in Fairness and
thus succeed in fulfilling their debiasing task. This is confirmed by both standard
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Table 5.7 (KDtree) CFlip and nDCCF results at different |k| number of Counterfactuals for
each negatively predicted Test set sample, (0∗ there are no negative predicted unprivileged
samples which result in no CF samples for the unprivileged group). We mark the best-
performing model for each fairness metric in bold font.

CFlips@|k| (%) nDCCF@|k|

Privileged Unprivileged ∆CFlips ↓ Privileged Unprivileged ∆nDCCF ↓

Dataset Si model @10 @50 @100 @10 @50 @100 @10 @50 @100 @10 @50 @100 @10 @50 @100 @10 @50 @100

LR 7.754 8.584 9.11 81.273 84.21 85.137 73.519 75.626 76.027 0.9229 0.9162 0.9049 0.2053 0.1701 0.1573 0.7176 0.7461 0.7476
DT 6.971 6.927 7.371 76.419 82.602 84.523 69.448 75.675 77.152 0.9296 0.9305 0.9207 0.2567 0.1941 0.1707 0.6729 0.7364 0.75
SVM 6.306 6.427 7.158 80.971 85.209 86.517 74.665 78.782 79.359 0.9343 0.9351 0.9232 0.2088 0.1632 0.1465 0.7255 0.7719 0.7767
LGBM 6.55 7.077 7.663 82.009 84.902 86.064 75.459 77.825 78.401 0.9352 0.9307 0.9192 0.1889 0.1602 0.1469 0.7463 0.7705 0.7723
XGB 6.761 7.14 7.666 81.677 84.796 86.076 74.916 77.656 78.41 0.9334 0.9299 0.9189 0.192 0.1616 0.1472 0.7414 0.7683 0.7717
RF 6.44 7.578 8.076 80.218 83.325 84.767 73.778 75.747 76.691 0.9362 0.9268 0.9155 0.2161 0.1795 0.1627 0.7201 0.7473 0.7528
MLP 7.153 7.464 7.94 81.455 84.484 85.888 74.302 77.02 77.948 0.93 0.9266 0.9161 0.1965 0.1654 0.1498 0.7335 0.7612 0.7663
ADV 25.411 18.854 17.847 52.22 66.941 71.783 26.809 48.087 53.936 0.7368 0.7946 0.8029 0.5015 0.37 0.3159 0.2353 0.4246 0.487
LFERM 15.141 11.82 11.882 66.288 77.278 80.16 51.147 65.458 68.278 0.8385 0.8715 0.8689 0.3719 0.262 0.2255 0.4666 0.6095 0.6434

Adult gender

FairC 37.337 27.402 25.323 37.832 55.442 61.712 0.495 28.04 36.389 0.6137 0.7005 0.7208 0.6442 0.4916 0.4238 0.0305 0.2089 0.297

LR 17.578 19.789 20.026 42.592 44.051 45.165 25.014 24.262 25.139 0.8422 0.8066 0.8018 0.5742 0.5612 0.5473 0.268 0.2454 0.2545
DT 25.93 42.627 41.962 31.724 44.805 55.245 5.794 2.178 13.283 0.779 0.6248 0.6037 0.6637 0.5775 0.4877 0.1153 0.0473 0.116
SVM 15.283 16.551 16.574 42.549 43.343 44.088 27.266 26.792 27.514 0.8427 0.8211 0.8184 0.5705 0.5621 0.5524 0.2722 0.259 0.266
LGBM 9.811 14.834 15.608 45.253 69.258 75.566 35.442 54.424 59.958 0.907 0.8626 0.8457 0.568 0.3686 0.2978 0.339 0.494 0.5479
XGB 8.955 12.959 14.183 49.229 70.872 76.837 40.274 57.913 62.654 0.9149 0.88 0.8601 0.5303 0.3479 0.2805 0.3846 0.5321 0.5796
RF 10.354 14.39 15.675 45.517 65.841 73.207 35.163 51.451 57.532 0.9024 0.8645 0.8469 0.5564 0.3953 0.3239 0.346 0.4692 0.523
MLP 5.241 8.797 7.754 71.167 85.204 89.1 65.926 76.407 81.346 0.9414 0.917 0.9141 0.3445 0.194 0.1534 0.5969 0.723 0.7607
ADV 8.608 14.501 13.277 51.118 72.431 78.922 42.51 57.93 65.645 0.917 0.8695 0.8663 0.4993 0.3248 0.2613 0.4177 0.5447 0.605
LFERM 7.028 10.736 13.216 65.974 73.594 73.763 58.946 62.858 60.547 0.933 0.9022 0.8737 0.3571 0.2864 0.2755 0.5759 0.6158 0.5982

AdultDeb gender

FairC 7.191 12.942 11.435 64.482 78.892 85.475 57.291 65.95 74.04 0.9266 0.8833 0.8827 0.4124 0.2565 0.1892 0.5142 0.6268 0.6935

LR 5.714 8.762 9.143 85.139 87.722 88 79.425 78.96 78.857 0.9489 0.9207 0.9077 0.1603 0.1319 0.1257 0.7886 0.7888 0.782
DT 10.4 12.96 14.6 75.07 80.113 80.789 64.67 67.153 66.189 0.8765 0.8695 0.8512 0.258 0.2126 0.2007 0.6185 0.6569 0.6505
SVM 9.167 10.667 11.75 82.877 86.466 86.959 73.71 75.799 75.209 0.9011 0.8937 0.8788 0.1716 0.1424 0.1351 0.7295 0.7513 0.7437
LGBM 4.348 8.522 9.783 81.806 85.444 86.236 77.458 76.922 76.453 0.9528 0.9221 0.9033 0.1892 0.1551 0.1443 0.7636 0.767 0.759
XGB 5.455 8.727 9.727 83.288 86.329 86.63 77.833 77.602 76.903 0.9308 0.9149 0.8992 0.1767 0.1463 0.1396 0.7541 0.7686 0.7596
RF 10.87 13.043 14.261 78.75 81.694 82.486 67.88 68.651 68.225 0.8861 0.8736 0.857 0.2214 0.1926 0.1822 0.6647 0.681 0.6748
MLP 4.5 8.4 10 80.972 84.389 85.347 76.472 75.989 75.347 0.9611 0.926 0.9028 0.194 0.164 0.1526 0.7671 0.762 0.7502
ADV 8.485 9.818 10.667 81.389 83.889 84.861 72.904 74.071 74.194 0.9134 0.9034 0.8895 0.1912 0.1685 0.1577 0.7222 0.7349 0.7318
LFERM 9.13 14 15.174 71.857 77.971 78.886 62.727 63.971 63.712 0.9119 0.8709 0.8516 0.291 0.2371 0.2224 0.6209 0.6338 0.6292

Crime race

FairC 33.023 32.512 34.186 39.808 48.885 52.577 6.785 16.373 18.391 0.6808 0.6787 0.6607 0.6207 0.5395 0.4981 0.0601 0.1392 0.1626

LR 23.182 26.545 26.818 45.000 56.000 62.000 21.818 29.455 35.182 0.761 0.7407 0.732 0.5683 0.4618 0.4006 0.1927 0.2789 0.3314
DT 28.182 27.818 28.273 60.000 57.333 61.333 31.818 29.515 33.06 0.7362 0.7272 0.7174 0.4351 0.4332 0.3958 0.3011 0.294 0.3216
SVM 23.333 26.333 27.417 40.000 56.000 65.000 16.667 29.667 37.583 0.7731 0.7459 0.7295 0.6805 0.5024 0.4122 0.0926 0.2435 0.3173
LGBM 26.667 29.167 29.417 37.500 50.000 58.250 10.833 20.833 28.833 0.7616 0.7249 0.7124 0.6265 0.5235 0.4519 0.1351 0.2014 0.2605
XGB 22.727 27.818 27.909 46.667 53.333 60.167 23.94 25.515 32.258 0.7976 0.7424 0.7301 0.5489 0.4807 0.4211 0.2487 0.2617 0.309
RF 23 27.6 26.6 55.000 58.000 64.000 32 30.4 37.4 0.7951 0.7414 0.7379 0.5127 0.4424 0.3874 0.2824 0.299 0.3505
MLP 30 29.6 30 0∗ 0∗ 0∗ 30 29.6 30 0.726 0.7145 0.7024 0∗ 0∗ 0∗ 0.726 0.7145 0.7024
ADV 28.333 30 29.833 40.000 56.286 61.429 11.667 26.286 31.596 0.74 0.7128 0.7027 0.6109 0.4703 0.4155 0.1291 0.2425 0.2872
LFERM 20 23 23.5 0∗ 0∗ 0∗ 20 23 23.5 0.7702 0.7609 0.7567 0∗ 0∗ 0∗ 0.7702 0.7609 0.7567

German gender

FairC 27 29.4 28.7 20.000 50.000 60.000 7 20.6 31.3 0.745 0.7174 0.7127 0.7760 0.5517 0.4571 0.031 0.1657 0.2556

fairness metrics and our new proposed metrics (∆CFlips and ∆nDCCF). In contrast,
debiasing models rarely give the best results when considering datasets with low
correlation with sensitive information (i.e., Adult-debiased and German - with
worst sensitive classifiers performance). As a matter of fact, for Adult-debiased,
SVM performs better than other debiasing models. Indeed, ∆CFlips and ∆nDCCF,
differently from standard fairness metrics, reward SVM as the best-performing
model. A similar trend can be seen in German. However, since there are no correctly
predicted female samples for MLP and LFERM models, we have 0 CFlips for the
unprivileged group. Thus, the small size of the dataset made the evaluation of the
metrics impracticable.

• Table 5.7 reports the results of our metrics with counterfactuals generated with
the KDtree strategy. KDtree generates counterfactuals by choosing from samples
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that already belong to the dataset. Therefore, unlike Genetic, which generates
new samples, KDtree does not explore an unknown space. This means that each
counterfactual is chosen from the known data space (i.e., cx ∈ D), so KDtree
measures how similar samples behave. We can see that the trend is similar to the
Genetic strategy but with higher CFlips and nDCCF. In this case, enlarging the
number of counterfactuals for each sample worsens the metric values since more
distant counterfactual samples are chosen.

Final comments. In the various plots emerges that the unprivileged samples, to achieve
favorable decisions, must take on the characteristics of privileged samples. The results
demonstrate that counterfactual reasoning effectively discovers decision biases and
complements SOTA fairness metrics.

5.4.1 Ablation

In Section 5.4, we have evaluated the performance of the models based on our proposed
metrics. However, these metrics have been evaluated only with k equal to 10, 50, and
100 and only with XGB as the sensitive feature classifier. Now, we study the effect of
the number of generated counterfactuals on different sensitive feature classifiers (i.e.,
RF and MLP). Furthermore, nDCCF can be affected by the ranking criterion of the
counterfactual generator. This point deserves a broader discussion as follows.

As mentioned in Section 4.2, a counterfactual sample cx is a deviation from a starting
vector x of a quantity ϵ that is computed k times (the number of counterfactuals). For
each sample, using a function g(·), we generate a set of counterfactuals Cx such that
g(x) = Cx. This set is ranked according to a model-specific utility function u(·) (e.g.,
euclidean distance or absolute distance of the counterfactual sample from the original
one8). Indeed, g(x) returns a set of counterfactuals such that Cx = ⟨c1

x,c2
x, . . . ,ck

x⟩ with
u(ci

x) > u(cj
x) and i < j. However, the ranking of this set depends on the strategy

used by the counterfactual generator. In this regard and to be totally agnostic from
that strategy, we reranked the list of counterfactual samples based on the absolute
difference between the expected model prediction of a counterfactual sample and that
of the original sample (i.e., u(cx) =−|E[f(x)]−E[f(cx)]|, s.t. ∀ci

x,cj
x ∈ Cx, with i < j,

u(ci
x) > u(cj

x)). We narrow our analysis to the Adult dataset (see Figure 5.2).
• Comparing the different sensitive feature classifiers, it is evident that the metrics can

be considered stable also due to the high performance of each classifier. Furthermore,
considering the ∆CFlips and ∆nDCCF, we can notice that for each Decision Maker,
8A counterfactual that is closer to the original sample has greater utility than one further away.
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Fig. 5.2 Ablation study at a different number of generated CF (i.e. | Cx |) for each sample and
with three different sensitive feature classifiers fSi(·) (i.e., RF, MLP, and XGB). The result
refers to Adult dataset, with gender as sensitive information and Genetic as counterfactual
generation strategy.

we reach a stable result after 20 generated counterfactuals except for LFERM.
LFERM seems to increase the value of each metric by enlarging the number of
counterfactual samples. Investigating motivations from a distance perspective may
be a viable option, but it is a current challenge and limitation of fairness research [77].
Another interesting point is the similarity between the two metrics. It seems that
the trend of the ∆CFlips with the increasing of |Cx| is consistent with the one of
∆nDCCF.

• Considering the sorted version of ∆nDCCF, we can observe three different trends:
(i) the Decision Maker has a behaviour similar to the sorted version meaning that
the discrimination is also in the proximity of the positive decision boundary side,
(ii) models like LFERM and FairC, instead, have an opposite behaviour in the
proximity of the positive decision boundary, and (iii) AdvDeb starts with greater
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discrimination for counterfactual samples closer to the decision boundary and then
becomes fairer with the distance increasing.

Final comments. The findings show that counterfactual reasoning is appropriate for
identifying decision-making biases and enhancing SOTA fairness indicators. Studying
classifiers’ decision boundaries can also reveal further information about the discrimi-
nation behaviour of the model.



Chapter 6

An Explainable and Responsible
Pipeline grounded in
Counterfactual Reasoning

This section underscores the critical role of Explainable AI (XAI) and Counterfactual
Reasoning in the context of loan decision-making, focusing on the detection of proxy
features and the provision of transparent explanations. As AI systems increasingly
play a pivotal role in financial services, the need for transparency and fairness in
decision-making becomes paramount. The detection of proxy features is essential in
identifying and mitigating biased decision outcomes, ensuring equitable access to credit
and adhering to anti-discrimination regulations. Explainable AI techniques contribute
to making these proxy feature detection mechanisms accessible to both stakeholders
and end-users.

In this context, Counterfactual Reasoning emerges as a powerful tool for explaining
loan decisions. By generating counterfactuals, one can highlight the specific factors
that led to an adverse or favourable loan outcome, offering a clear and interpretable
narrative for stakeholders and applicants. These counterfactual explanations not only
aid in building trust but also provide actionable insights to improve financial literacy
and empower individuals to make more informed financial decisions.

The importance of this research lies in its potential to enhance fairness, accountabil-
ity, and transparency in loan decision-making processes. By combining Explainable AI
and Counterfactual Reasoning, this study contributes to the ongoing efforts to address
the challenges of algorithmic bias, ensuring that loan decisions are based on justifiable
and non-discriminatory criteria. Furthermore, it advances our understanding of the
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role of XAI and counterfactual explanations in promoting responsible AI adoption in
the financial sector, ultimately fostering trust and equity among all stakeholders.

6.1 Counterfactual Explanation in Machine Learn-
ing

In logic and philosophy, a counterfactual is an event that did not actually occur and
is, therefore, only assumed or imagined. The Counterfactual explanation is another
type of explanation technique that, since it does not require opening the black box,
can be considered as a model-agnostic explanator based on example. A counterfactual
explanation describes a causal situation in the form: “If X had not occurred, Y would
not have occurred”. For example, in a loan application case, following the example of
Watcher et al. [165] if the user’s loan application has been rejected for inadequate
income, a counterfactual explanation can be as “You were denied a loan because your
annual income was £30,000. If your income had been £45,000, you would have been
offered a loan”. Multiple counterfactuals are possible since multiple desirable outcomes
can be achievable in different ways. However, the counterfactual is considered as "the
smallest change to the feature values that changes the prediction to a predefined output".

According to McGrath et al. [121], a counterfactual explanation can be described
as a generic causal situation:

“Score y was returned because variables x had values (x1,x2, ...)
associated with them. If x instead had values (x′1,x′2, ...), and all other
variables had remained constant, score y′ would have been returned.”

The counterfactual explanation does not depend on the type of the model, so every
model f can be treated as a black box. The Counterfactual explanation is generated
by calculating the smallest possible change (∆x) that can be made to the input x to
flip the outcome from y to y′.

As proposed by Wachter et al. [165], the optimization of the loss function L is
formulated as:

L(x,x′,y′,λ) = λ(f̂(x′)−y′)2 +d(x,x′)

argmin
x′

max
λ
L(x,x′,y′,λ)

where x is the actual input feature vector, x′ is the changed and counterfactual
vector, y′ is the desired output, f̂(...) is the trained model, λ is a weight balancing
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the counterfactual between racing the exact desired output and making the smallest
possible change to the input vector x, and d(x,x′) is the distance metric that measures
∆x. The distance metric d(x,x′) can be written as:

d(x,x′) =
p∑

j=1

| xj−x′j |
MADj

with MAD

MADj = mediani∈{1,...,n}

(∣∣∣xi,j−medianl∈{1,...,2}(xl,j)
∣∣∣) ,

The work of McGrath et al. [121] suggests two different uses of counterfactual expla-
nations in the Loan application scenario. The first one is the Positive Counterfactuals,
which is interpreted as a safety margin from the opposite decision boundary to consider
in case of acceptance. It can also respond to the question "How much was I accepted
by? and is considered as tolerance or better knowledge for future loan applications.
The second one is the Weighted Counterfactuals that consider each feature differently;
for example, there is a case in which some feature must be fixed or immutable. It can
be divided into two different strategies: Global feature importance and the Nearest
Neighbors approach. With Global feature importance, they use the analysis of variance
(ANOVA F-values) between each feature and target to obtain a smaller set of features
for the explanation by creating a weight vector that promotes highly discriminative
features. The K-Nearest Neighbors find cases that are near the sample considered, but
that achieve the desired results.

Hashemi et al. [98], in their work, propose a model criticism and explanation
framework based on adversarial generated counterfactual examples. PermuteAtack, the
proposed algorithm, uses a gradient-free optimisation based on genetic algorithms. The
algorithm generates sensible and realistic counterfactual examples using permutation
as adversarial perturbations. The perturbations keep the range, and the distribution of
each feature the same as the training set data. Counterfactual samples using Adversarial
perturbations seem to be useful to increase the model behaviour understanding and
offer helpful feedback to the customers to improve the credit scores.
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Table 6.1 Demonstrative example of ρ computation based on E and ∆ for a numerical, ordinal,
and categorical feature of the Adult-debiased dataset.

numeric ordinal Category (workclass) gender
capital gain education-num Private Public Unemployed E[fs(x)|x]

cx1 5000 6 1 0 0 fs(cx1) 0.7
x1 2000 2 0 0 1 fs(x1) 0.1
ϵx1 3000 4 1 0 -1 δx1 0.6
cx2 2800 5 0 1 0 fs(cx2) 0.3
x2 600 5 1 0 0 fs(x2) 0.7
ϵx2 2200 0 -1 1 0 δx2 -0.4

. . .

ϵx3 1200 -1 0 1 -1 δx3 -0.6
ρ(E ,∆) 0.91 0.93 0.78 -0.99 -0.36

6.2 Detecting Proxy Features Through Counterfac-
tuals Reasoning (RQ4)

In RQ1, we highlighted how it is possible to determine if a dataset contains proxy
features. Here, we define a strategy to identify them in the dataset. Specifically, we
want to identify the features that drive the Decision Maker to a positive outcome and
that, at the same time, lead to a Flip in the sensitive information. Thus, the following
section aims to answer the following research question:

RQ4

Is it possible to define a strategy for identifying the proxy features?

To answer the mentioned question, we propose a methodology grounded in counter-
factual reasoning. Thus, we propose to study the relationship that can occur between
feature change and sensitive feature classifier flip exploited in Chapter 5. Thus, we
investigate the Pearson correlation between the perturbation ϵ (i.e., ϵ = cx−x) and the
distance δ as the difference between the posterior conditional probability of predicting
a counterfactual sample and the original sample as belonging to the privileged group
(i.e., δ = P[fs(cx) = 1|cx]−P[fs(x) = 1|x]). For a numerical or ordinal feature i, ϵi

can be expressed as the difference between the counterfactual and the feature of the
sample cxi−xi. For a categorical feature j, ϵj can be expressed in a one-hot encoding
form as -1 to the category that is removed and 1 to the category that is engaged. We
identify with E = {ϵi|∀xi ∈ X−} and ∆ = {δi|∀xi ∈ X−}, respectively, the set of all
perturbations of Cx and the difference between all conditional probability that we can
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Fig. 6.1 Features correlation rank with a gender Flip (i.e., ρ(E ,∆) on the x-axis) on the
Adult-debiased dataset with Genetic strategy as g(·), MLP as f(·) and XGB fs(·) for only
sample, and, thus, counterfactuals, belonging to X−.

express with the expected values of E[fs(cx)] and E[fs(x)], in both cases ∀x ∈ X−.
Thus, it is possible to identify the most influential features for fs(·) evaluating the
Pearson correlation between E and ∆: ρ(E ,∆) (a demonstrative example in Table 6.1).
• In Figure 6.1 we can find the rank of features correlation with a Flip in fs(·) with

MLP as f(·) decision boundary for the generation of cx and XGB as fs(·) for
the Adult-debiased dataset. The analysis is restricted to only samples negatively
predicted in order to specifically quantify the proxy-features that lead to a positive
prediction with also a change in the sensitive information. In detail, a negatively
correlated feature (e.g., Adm-Clerical) is a feature that has an opposite direction with
respect to E[fs(x) | f(x = 0)] while a positively correlated one (e.g., Craft-repair)
has the same direction.

• For a binary classification task a negative correlation between E and ∆ can be
considered a positive correlation w.r.t. −∆. Considering a single δ, each conditional
probability of the counterfactual sample, as well as of the dataset sample, can
be rewritten as P[fs(cx) = 1|cx] = 1−P[fs(cx) = 0]. This means that δ = (1−
P[fs(cx) = 0])− (1−P[fs(x) = 0]). It is easy to demonstrate that −δ = P[fs(cx) =
0]−P[fs(x) = 0] where the class 0 in the second term correspond to the opposite
class. For instance, in Figure 6.1 the ones negatively correlated with the privileged
group are positively correlated with the unprivileged group. This shows how our
approach is straightforward, effective, and flexible.
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Final comments. Counterfactual reasoning not only can accurately detect and quantify
biases in the decision process but also can quantify the contribution of each feature with
a positive, or negative, outcome.

6.3 Explaining a Loan Decision

Several definitions are provided in the literature on what explainable means when we
talk about a Machine Learning algorithm. The most relevant one for our purpose is
provided by Bracke et al. [21] "explanations can answer different kinds of questions
about a model’s operation depending on the stakeholder they are addressed to". This
definition introduces an interesting characteristic of the explanation that has to consider
the point of view of a specific stakeholder. Thus, the following section aims to answer
the following research questions:

RQ5

Can counterfactual reasoning be useful to explain a loan decision?

RQ6

What is the most suitable explanation strategy depending on each stakeholder
in the loan domain?

Accordingly, in a credit score scenario, for example, the explanation for a given
decision might be different if addressed to customers rather than to the risk management
functions. From the customer’s point of view, which is the most interesting in our
analysis, the explanation should describe the motivations behind a decision in a
way that is easy to understand. Naturally, as mentioned above, the decisions are
made by algorithms. Thus, it is crucial to know how these algorithms work. The
ML algorithms belong to two main classes: interpretable and uninterpretable. More
specifically, the former implements a white-box model, the latter a black-box one. On
this perspective, Sharma et al. [155] distinguish model-agnostic and model-specific
explanations. Model-agnostic methods provide an explanation that is not dependent
on the ML model adopted and are geneally used for black-box models. A surrogate
model is thus implemented with the aim of simulating the behaviour of the original
algorithm.

Today, explaining how a black box model works is still a challenging task. However,
several methods have been proposed to explain black-box models. Two of the most
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Fig. 6.2 Workflow for generating explanation and counterfactual explanation for loan applica-
tion

important are LIME and SHAP. LIME trains local surrogate models explaining single
data[146]. It generates a perturbation of initial data, creating a new dataset and
observing how the prediction changes through training an interpretable model. The
analysis of the outcome of the perturbated data allows us to interpret the original
model. SHAP [115] is inspired by the cooperative game theory based on the Shapley
Values. Each feature is considered a player that contributes differently to the outcome
(i.e., the algorithm decision).

SHAP does not compute all the possible combinations between all the features but
performs only a random set of combinations for efficiency constraints. SHAP provides
a ranked list of the features that contributed to the outcome ordered from the most to
the least important. However, this explanation probably is not so clear for a customer
who does not have experience with how an algorithm works. For this reason, if we
want to improve the user’s trust and general user experience with the system, we need
to make the explanation more understandable.

In that direction, we guess that an effective solution could be to transform the
output produced by software like LIME or SHAP into a natural language sentence. We
propose the pipeline described in Figure 6.2. Customer characteristics are the input,
and then the algorithm makes a decision, e.g. the computation of the CS, and shows,
using SHAP, the features that contributed the most to the decision. At this point,
another module takes as input the decision and the SHAP output and generates a
natural-language explanation: e.g. Dear Giulio, your loan application has been rejected
since you don’t have an account with us, the credit amount you asked for is too high
compared to your income, and the duration is too long.

An interesting opportunity in this context could be provided by a counterfactual
explanation that explains how the output of the algorithm could be changed [157].
For example, the system can add: In the case you decide to open an account with
us, to reduce the credit amount to 10,000$, and to reduce the duration to 12 months,



100 An Explainable and Responsible Pipeline grounded in Counterfactual Reasoning

the application will probably be accepted. Conversely, model-specific explanations are
based on the analysis of the structural information and the internal components of the
algorithm that should be interpretable natively. From a technical perspective, these
algorithms are easier to explain, but in this case, as well, most users will not be able
to understand them. Therefore, the scenario is quite similar to the previous one, and
here, the exploitation of natural language can improve comprehensibility.

6.3.1 A Recommendation Lending case (RQ5)

A further interesting contribution in this direction is provided by a counterfactual
analysis obtained by a feature perturbation step (see Section 6.3). This explanation
shows how to modify the loan request to get the loan accepted [157]. For example,
the system can add: Reduce the credit amount to 10,000€, shorten the duration to 18
months, . . . , and the loan request will probably be accepted.

However, how can we generate this kind of natural language explanation? In the
next section, we propose a template-based formal model able to transform the SHAP
values into a natural language sentence. The model we designed for generating Natural
Language explanations is inspired by Musto et al. [130].

The principal insight is that our natural language explanation can be generated by
exploiting a template composed of some slots that can be filled with features, adverbs,
and adjectives according to the output produced by SHAP. We remember that the
SHAP output consists of a set of couples <feature, score> (e.g., <income, 0.8>).

Let us consider the example in Figure 6.2: The credit amount is too high based on
the salary and the duration is too long. In that case, the template for the explanation
is <feature> <verb> <adverb> <adjective> <motivation> followed by a new set
of <feature> <verb> <adverb> adjective> without motivation. The problem is to
properly fill each slot and compose the whole explanation.

In the above-mentioned example, the number of features taken into account for
generating the explanation are three: the credit amount, the salary, and the duration
each of which is associated with adverbs and/or adjectives (e.g., too high, too long,
etc.). The number of features used for generating the explanation can be set as desired.
However, since the explanation has to be as useful as possible, too many features can,
in some cases, cause a loss of effectiveness and efficiency.

In our model, the generation of the natural language explanation exploits a set of
rewriting rules using the Back-Naur Form (BNF) as described in the following. Even
though these templates and rules can be exploited also in other domains, the terminal
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symbols (e.g., the credit amount, the duration, long, short, etc.) are specific to a loan
application.

<explanation> ::= <sentence> | <explanation> <conjunction> <sentence>
<statement> ::= <feature> <verb> <adverb> <adjective>
<sentence> ::= <statement> <motivation>
<motivation> ::= <motivation> <conjunction> <motivation>
<motivation> ::= <adverbial phrase> <feature>
<adverbial phrase> ::= ‘based on’ | (etc.)
<adverb> ::= ‘too’ | ’so’ | ’few’ | ’almost’ | ’enough’ (etc.)
<adjective> ::= ‘high’ | ’long’ | ’short’ | ’little’ | (etc.)
<conjunction> ::= ‘and’ | ’but’ | , |(etc.)
<feature> ::= ‘the credit amount’ | ’the duration’ | ’the salary’ | (etc.)
<verb> ::= ‘is’ | ’are’ | ’has’ | ’have’ | ’is not’| (etc.)

These rewriting rules can be applied for generating, for example, the explanation
The credit amount is too high based on the salary and the duration is too long.

A further problem is the choice of adverbs and adjectives. For the adverbs, we
defined a matching between value intervals and the intensity of the adverb. As an
example, if the SHAP value of a feature is 0.8 (the highest interval), the corresponding
<adverb> will be ’too’ emphasizing how this feature has a strong impact on the loan
application decision. Obviously, the association between the <feature> and the type
of <adjective> is not arbitrary, but it depends on the type of <feature> is considered.
Therefore, for each feature, we defined a vocabulary of compatible adjectives.

6.3.2 Counterfactual explanation

In the previous subsection, we have described how a loan recommendation platform
can generate an explanation for each decision given by a provider.

To make our explanation more effective, we propose to the user some indications
useful for revising her request and getting the loan application accepted. This is
obtained through a counterfactual explanation.

The counterfactual explanation consists of a set of corrective actions to the char-
acteristics of the requested loan, based on the results of a counterfactual analysis.
Providing a counterfactual explanation is an opportunity for the loan provider that
provide an additional service to enhance customer satisfaction and make the customer
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aware of his or her chances of getting a loan. This service will result in a Responsible
and Trustworthy use of AI systems towards customers.

The counterfactual analysis performs a perturbation on the feature space of the
customer’s loan application. The perturbation will generate a new sample that will
be considered as a new application. Subsequently, the counterfactual analysis will
detect the new nearest sample to the original one that the ML algorithm will accept.
The result of this analysis will consist of detecting the change in the loan’s customer
characteristics and recommending corrective actions.

The approach we adopted for generating the counterfactual explanation is the same
one described in the previous section, namely a set of BNF rewriting rules.

Following the previous example, a counterfactual explanation can be: "Reduce the
credit amount to 10,000€, shorten the duration to 18 months".
The BNF template is:

<counterfactualexplanation>::= <sentence>|<counterfactualexplanation>
<conjunction> <counterfactualexplanation>
<sentence>::= <action><feature><value>
<action> ::= ’reduce’|’expand’|’shorten’|etc.
<feature> ::= ’the credit amount’|’the duration’|etc.
<value> ::= ’10,000€’|’18 months’|
<conjunction> ::= ‘and’ | ’but’ | , |(etc.)

The counterfactual explanation has a small set of rules, in fact, it includes a feature,
the corrective actions, and optionally the desirable new feature value. Since the
counterfactual analysis works by perturbing all the features of a determined instance,
the recommended actions should impact the minimum set of features that allow a
change of the algorithm decision.

The action is chosen according to the relation between the old and the new feature
value. For example, if the old value for the feature duration was 24 and the new value
after the perturbation is 18, the verb (action) chosen will be reduce. Regarding the
values, if the new value is equal to the original one, the respective feature will not be
included in the explanation since there is no corrective action to be done, otherwise,
the new perturbed value will be shown in the explanation.



6.3 Explaining a Loan Decision 103

6.3.3 A General Responsible Pipeline for the Credit Score
and Credit Behavior Domain (RQ6)

In the last few years, the research has been focused more on applying ML models to
predict customer creditworthiness rather than predicting whether the customer will
effectively repay the loan. In this section, we propose a general Creditworthiness-
Assessment Platform pipeline that deals with both tasks. Furthermore, this pipeline is
characterised by an explainer module that can handle stakeholder-specific explanations
(RQ6).

In Figure 6.3, the Creditworthiness Assessment Platform prediction depicts the
general architecture of the platform. First, the system can exploit two kinds of user
data: static and dynamic. The former does not change over time (or change slowly).
Data such as demographics, income, and gender belong to this first group. It is worth
noticing that some of those features are considered sensitive by the legislation. The
second group belongs to features that change very frequently over time. In this scenario,
these features are user transactions. Static and dynamic features are the input to two
distinct modules: the Credit Scoring Model (CSM) and the Early Warning Detector
(EWD).

The CSM is a binary classifier. Given a set of static user characteristics, it can
decide whether that user will be able to repay its debt. The decision of the bank
to grant or not the loan to a specific customer depends on this module. The task
addressed by this module is particularly crucial because, as stated earlier, some user
features are considered sensitive. Indeed, the last EU Commission regulation (April 21,
2021) considered the financial domain one of the most regulated [46]. The law proposal
presents a pyramidal division of risk-based application of AI systems from minimal
risk to unacceptable risk. Financial applications of AI systems (e.g., credit scoring)
are considered high-risk applications. AI systems should comply with key ethical and
trustworthy requirements since they need to pass different assessment steps. Therefore,
it is really important that the algorithm implemented by the CSM does not put in
place any kind of discrimination.

The second key component is the EWD. The Early Warning Monitoring System
will rely only on accepted credit requests. Customer card transactions periodically
feed the system (e.g., daily, weekly, or at predefined intervals) that models customer
trends in terms of expenses and the available balance ratio for each transaction. Given
the transaction, the model will predict a potential future bankruptcy. Once the EWS
has triggered the Business Intelligence team; they will analyse the model’s output and
decide if it corresponds to a False Positive or a True Positive situation. More in detail,
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Fig. 6.3 Creditworthiness Assessment Platform prediction pipeline

the input of this module consists of the user transactions. When a customer makes
a payment, purchase, or whatever financial transaction, this module checks whether
that action could in some way jeopardise her ability to repay the debt. In contrast to
the output of the Credit Scoring Model, which generally does not change over time,
the prediction of the EWD is extremely fickle. In this case, EWD considers all the
customer’s history. Thus, the decision to trigger or not the warning depends on all the
actions the user has done so far. The more the warning is true and early, the more the
component is effective.

To comply with current regulations, the Business Intelligence team can use explana-
tory tools (e.g., Shapley values) to understand better which transactions have been
responsible for this warning. Indeed, regulations require the bank to be aware of poten-
tial poor decisions and perform human-controlled actions in critical and life-changing
situations.

The last component is the Explainer. Once the model performs the prediction
task, the customer will be provided with an explanation, especially in case of rejection.
In previous work [52, 60, 62], we provide different pipelines for generating natural
language-based explanations, using both Shapley values and Counterfactual reasoning.
As a game theory approach, the Shapley values give ranked feature importance of the
most discriminating features for the decision task. It corresponds to the first stage of a
user-friendly explanation. Shapley values theory is recognized as an effective tool for
unveiling complex model decisions and a useful business intelligence analysis tool.

In contrast, counterfactual reasoning is used to discover a polarity between attribute
and feature values to generate a natural-language-based explanation. Furthermore,
the counterfactual exploration could provide plausible actions to receive the required
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credit. Again, in this case, the legislation plays a crucial role. More specifically, in the
EU, the GDPR sets off the right to explanation: users have the right to ask for an
explanation about an algorithmic decision made about them. In the UK, the Financial
Conduct Authority (FCA) requires firms to explain why a more expensive mortgage
has been chosen if a cheaper option is available. The G20 has adopted the OECD AI
Principles for a trustworthy AI, which underlined that users should understand AI
outcomes and be able to challenge them.

These are the motivations behind putting this component in the architecture. For
this component, the shape is dashed since we propose only a possible implementation
depicted in the previous section (i.e., Section 6.3.2). The module will be able to provide
two kinds of explanation based on the type of stakeholder faced: a technical explanation
for bank professionals, and a user-friendly explanation for the customer. The former is
based on SHAP which is inspired by the cooperative game theory based on the Shapley
Values [116]. Each feature is considered a player that contributes differently to the
outcome (i.e., the algorithm decision). SHAP provides a ranked list of the features
that contributed the most to the least to the outcome. In this case, the bank analyst
can understand what are the features that impacted the most algorithm decisions.

The second form of explanation is in natural language. An effective solution could
be to transform the output produced by SHAP into a natural language sentence. The
natural language generation might be based on a set of rules that transform the Shapley
values into natural language sentences.

In conclusion, the platform provides different steps that cope with Fairness and
Explainability requirements. Considering the Creditworthiness Assessment step, the
model should provide evidence of fair decisions based on a specific metric of fairness
before being placed on the market. Several metrics can be used to evaluate the
algorithm’s fairness [66]. However, choosing which one to optimize is a complex
task since each metric can belong to different statistical criteria (i.e., Independence,
Separation, and Sufficiency) and to different fairness concepts (e.g., group fairness,
individual fairness, sub-group fairness). Choosing the right fairness metrics remains a
challenging task [27].

6.3.4 Limitations and Future Works

While the counterfactual reasoning and fairness auditing framework presented in this
thesis provides a robust mechanism for bias detection and model explanation, it has
several limitations that need to be addressed.
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One key limitation of the current methodology lies in the interpretability of counter-
factual explanations. Although counterfactuals offer actionable insights by presenting
alternative scenarios, they are often limited by the need for domain knowledge or
expertise to fully understand their implications. The complexity of the generated
explanations may be challenging for non-technical users, particularly when dealing
with high-dimensional or non-linear models [165]. Additionally, the current model
focuses primarily on structured data, leaving out unstructured text or multimedia
inputs that are increasingly prevalent in machine learning systems. The reliance on
manually predefined sensitive attributes and the challenge of defining proxy features
also limits the generalization of the approach to real-world applications, where biases
are often hidden in complex relationships within the data [8]. Finally, the reliance on
static counterfactual generation methods limits the dynamic nature of the explanation.
Real-world scenarios often require explanations to adapt to evolving data streams,
user interactions, and context shifts, which are not fully addressed in the current
pipeline [73].

Recent advances in Natural Language Processing (NLP), particularly with the devel-
opment of Large Language Models (LLMs) such as GPT-4 and BERT, offer promising
avenues for improving the accessibility and usability of explanations [23]. LLMs have
demonstrated exceptional capability in generating natural language explanations that
are coherent, contextually relevant, and easy to understand by non-experts [11].

In the context of fairness and bias auditing, LLMs can be leveraged to generate
natural language counterfactuals, where instead of altering structured features like
income or age, the system could generate narrative alternatives describing different
hypothetical scenarios [88]. These LLM-driven explanations could help bridge the
gap between technical and non-technical stakeholders, offering more user-friendly
explanations of model behaviour. Moreover, LLM-based summarization techniques
can be applied to reduce the verbosity and complexity of explanations by providing
concise, high-level insights into why certain decisions were made by the model [147].

There are several promising directions for future research to extend the current
framework:

i. Natural Language Generation (NLG) for Counterfactual Explanations:
NLG techniques can be explored to automatically generate explanations in plain
language that adapt to the needs of different user groups, including non-experts.
Future work could investigate the integration of NLG techniques to enhance user
comprehension of complex decisions in domains such as finance or healthcare [161].
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ii. User-Centric Evaluation: A user study would be invaluable to evaluate the
effectiveness of counterfactual explanations generated by the model. Future
research could include designing experiments to assess how well users understand
these explanations, their perceived fairness, and whether the explanations foster
trust in AI systems [79].

iii. Interactive Explanations: Another area for future research is the development
of interactive explanation systems. These systems would allow users to query the
model or adjust the generated counterfactuals to explore alternative explanations
interactively. Such systems could leverage the capabilities of LLMs to provide
real-time dialogue-based interactions with users, fostering greater transparency
and engagement [100].

iv. Fairness in Unstructured Data: Extending the current fairness auditing
framework to handle unstructured data such as text, images, or audio would
significantly increase its applicability. Combining structured data counterfactual
reasoning with multimodal LLMs could open up avenues for analyzing bias in more
complex datasets, such as those used in social media platforms or recommendation
systems [163].

By addressing these limitations and incorporating the advances in NLP and interactive
user feedback, future work can help develop more transparent, fair, and accountable
AI systems.





Chapter 7

Closing Remarks

This dissertation started with an analysis of the four most mentioned topics of our work:
regulation, fairness under unawareness, counterfactual reasoning, and explainability
(i.e., Chapter 1, Chapter 2, and Chapter 3). We ended up synthesizing all of them,
proposing approaches that leverage and combine all of them. The bunch of problems
that motivated this three-year work has given us a chance not only to study and
propose some potential solutions but also to unveil new opportunities.

In Chapter 4, we present a novel methodology to detect bias in Decision-Making
models, when regulation requires an unawareness setting, by analyzing the sensitive
behaviour of (counterfactual) samples belonging to the positive side of the decision
boundary. In detail, we exploit two different counterfactual generation strategies
to do so. Specifically, the newly generated counterfactuals could belong to another
sensitive group, thus suggesting potential discrimination in the decision process. To
comprehensively assess the proposed methodology, in Chapter 5 we conducted experi-
ments with ten decision makers (including state-of-the-art debiasing models) and three
sensitive-feature classifiers. To measure the extent of the discriminatory behaviour, we
introduce a new metric to find how many counterfactuals belong to another sensitive
group. The contribution of this dissertation section is manifold: (i) we demonstrate
that fairness under unawareness assumption is not sufficient to mitigate bias, (ii) we
propose a methodology for the bias auditing task, and (iii) we show that counterfactual
reasoning is an effective methodology to unveil the bias,

In the future, we plan to define a strategy to generate fair and actionable coun-
terfactual samples to develop a model that could be effectively fair in the context of
fairness under unawareness.

Chapter 6, as the last part of this dissertation, proposes the use of counterfactual
reasoning as the main methodology to quantify proxy features and explain ML models.
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Specifically, we define a procedure to identify proxy features leveraging counterfactual
reasoning and we define a model to generate a natural language explanation for ML
decisions in the context of loan recommendation platforms through a counterfactual
analysis. This results in a set of corrective actions to be performed by the user.

The defined model finds a straightforward application in a scenario of a conver-
sational recommender system. The user expresses her request in natural language,
and the platform compares the different offers and provides an explanation for each of
them. The user can thus ask for help on how to modify her request for getting the
loan. Eventually, the platform, thanks to the counterfactual analysis and explanation,
can provide a set of actions for getting the application accepted. However, the conver-
sational system should preserve from discovering the complete set of decision criteria
and avoid adverse action from unfair users. Furthermore, the type of explanation can
depend on both business purposes and the stakeholders targeted. Shapley’s values,
even if very informative on the features that most influence the decision of ML models
could not help customers, especially in the loan domain, to have a quantitative idea
about why a certain decision occurred based on his characteristics. Another problem
is the construction of the natural language-based explanation which polarity could
not be easily extrapolated. All these issues can be easily overcome through the use of
counterfactual reasoning.

In future works, we plan to implement the whole pipeline and conversational
environment. Then, extensive experimental evaluations and user studies have to be
carried out to assess the effectiveness of the model both in terms of the capability of
generating NL explanations and in terms of improved user/stakeholder experience.
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