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ABSTRACT 

We employ a classical, nonlinear Lorentz-Duffing oscillator model to predict third harmonic 

conversion efficiencies in the ultrafast regime, from a variety of metal nanostructures, including 

smooth, isolated metal layers, a metal-dielectric photonic band gap structure, and a metal grating. 

As expected, the plasmonic grating yields the largest narrow-band conversion efficiencies. 

However, interference phenomena at play within the multilayer stack yield comparable, broad-

band conversion. The method includes both linear and nonlinear material dispersions that in turn 

sensitively depend on linear oscillator parameters. Concurrently, and unlike other techniques, the 

integration scheme is numerically stable. By design, one thus avoids the introduction of explicit, 

third-order nonlinear coefficients and also takes into account linear and nonlinear material 

dispersions simultaneously, elements that are often necessary to fully understand many of the 

subtleties of the interaction of light with matter.  

PACS: 42.65.Ky; ; 42.25.Gy; 42.25.Bs; 78.68.+m; 71.45.Gm; 73.20.Mf 
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1. Introduction 

The classical, Lorentz oscillator model of atomic media is an immensely pedagogical tool 

that serves to represent most linear and nonlinear optical phenomena [1]. As such, it is also a 

natural springboard for the description and understanding of many quantum phenomena. In this 

paper we use the nonlinear Lorentz-Duffing model to examine primarily third harmonic 

generation (THG) from several geometrical arrangements that include relatively thin, isolated 

layers of metal, a metal-dielectric photonic band gap structure, and a metal grating, however, 

without neglecting second harmonic generation (SHG). In centrosymmetric materials like metals, 

SHG is most often examined as the direct product of the interaction of an incident field with free 

electrons only, with secondary contributions of bound electrons applied only to the linear 

dielectric constant. In reality, just as the linear dielectric constant is affected by both free 

electrons and interband transitions from electrons in the valence band, SHG can also arise from 

both conduction and inner-core electrons [2], due to a combination of spatial symmetry breaking 

(the mere presence of interfaces), the magnetic portion of the Lorentz force, to a lesser extent the 

interaction of third harmonic and pump photons (down-conversion), and other effective 

nonlinearities induced by quantum tunneling mechanisms [3-5] if metal components are in close 

proximity. By the same token, the third-order nonlinearity, (3)χ ,  arising from bound charges 

generates most of the third harmonic signal, subject to screening due to a free-electron spill-out 

effect and other geometrical considerations [5, 6]. To a much smaller degree the interaction of 

pump and second harmonic photons also produces cascaded THG. Therefore, in our approach 

the classical, nonlinear oscillator model will be pivotal in these systems, where a combination of 

free (Drude) and bound (Lorentz) electrons generally suffices to describe second and third order 

processes.  
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In general, the nonlinear polarization of a medium may be written according to a well-

established, ascending hierarchy of electric and magnetic dipoles and multipoles [7, 8]. In 

practical terms this means explicit introduction of a nonlinear polarization that requires a priori 

knowledge of second, third and higher order nonlinear coefficients, in either scalar or tensorial 

form. On the other hand, the nonlinear Lorentz-Duffing oscillator model is a more natural, 

possibly more instructive starting point that implicitly accounts for linear and nonlinear material 

dispersion [1], that turns the polarization into an independent parameter and is able to describe an 

entire class of nonlinear optical phenomena, including, perhaps most notably, intrinsic (or 

mirror-less) optical bistability [9]. A charge e is under the action of a number of linear and 

nonlinear forces that tend to shift its position as it orbits around the nucleus. Accordingly, an 

imbalance between internal and external forces causes the electron to depart from its equilibrium 

position. As an example, for bound electrons that occupy a given orbital in a centrosymmetric 

material like silver, Newton’s second law may be written as:  

( )* * *( ) ( ) ( ) ( ) ( ) ( ) ( , ) ( , )em t m t k t m b t t t e t t
c

γ+ + − • = + ×r r r r r r E r r H r   ,                 (1)   

where ( )tr  is the displacement from orbital equilibrium; E, H  are the applied electric and 

magnetic fields, respectively; *m  is the electron’s effective mass; k is the spring constant 

associated with a linear restoring force; b is a coefficient associated with a nonlinear, third-order 

restoring force; c is the speed of light in vacuum; γ is the damping coefficient. As we will see 

later, the motion of nearly-free, conduction electrons is accounted for by supplementing Eq.(1) 

with an equation similar to Eq.(1), but without linear and nonlinear spring restoring forces.  

 Before delving into the complex aspects of calculating conversion efficiencies for 

specific, yet emblematic geometries, it is worthwhile recalling some of the most salient points 
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that relate to the form of Eq.(1), specifically regarding nonlinear material dispersion. An 

alternative discussion of the derivation of nonlinear material dispersion based on the nonlinear 

oscillator model may be found in references [1, 10, 11]. For clarity, we temporarily neglect SHG 

but will reintroduce it later in the general treatment of second and third order processes in 

centrosymmetric materials. For THG, incident pump photons of frequencyω  generate photons 

having three times the pump frequency. Therefore, it is reasonable to expect that both pump and 

third harmonic photons are present simultaneously. As a result, at the electron position the total 

field may be thought of as a superposition of fundamental frequency (FF) and third harmonic 

(TH) fields as follows:  

3
3

3
3

. .

. .

i t i t

i t i t

e e c c

e e c c

ω ω
ω ω

ω ω
ω ω

− −

− −

= + +

= + +

E E E

H H H
.              (2)     

Here 3 3, , ,ω ω ω ωH E H E are complex field envelopes that for the moment are assumed to be 

constant in time, an assumption that we will later discard. By the same token, a simplified 

solution for the electron displacement from its equilibrium position may also be written as a 

superposition of FF and TH amplitudes, so that:  

3
3 . .i t i te e c cω ω

ω ω
− −= + +r r r .         (3) 

Substituting Eqs.(2-3) into Eq.(1), retaining lowest order terms, neglecting the nonlinear, 

magnetic term, and equating terms that oscillate at the same frequency, one obtains: 

( ) ( )

2
* 2 2 2 2

0 0

3 3 2 2* 2 2
00

| |
( ) ( )

( 9 3 )9 3

e b
m i i

e b
im i

ω ω ω ω

ω ω ω ω ω

ω ω γ ω ω ω γω

ω ω γ ωω ω γ ω

≈ +
− − − −

≈ + •
− −− −

r E r r

r E r r r
          ,   (4)  
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where 2
0 *

k
m

ω =  is the oscillator’s resonance frequency. In turn, approximate solutions may now 

be pursued for the amplitudes ωr  and  3ωr . For instance, the first of Eqs.(4) becomes: 

* 2 2 2
0 2 2

0

( ) 1 | |
( )

e
bm i

i

ω ω

ωω ω γω
ω ω γω

=
 

− − − − − 

r E
r

 .     (5) 

If the field is not too intense, and/or if tuning is not too close to resonance such that the condition 

2 2 2
0| | /( ) 1b iω ω ω γω− − <<r  is satisfied at all times, a stipulation not required in an approach 

that includes the integration of Eq.(1), the denominator of Eq.(5) may be expanded so that: 

2
* 2 2 2 2

0 0

1 | | ...
( ) ( )

e b
m i iω ω ωω ω γω ω ω γω

 
= + + − − − − 

r E r            .                 (6)  

To first order in the field amplitude we have: 

3
2

* 2 2 *3 2 2 3 2 2
0 0 0

| |
( ) ( ) ( )

e be
m i m i iω ω ω ωω ω γω ω ω γω ω ω γω

= +
− − − − − +

r E E E .   (7) 

Eq.(7) is then used to solve for the second of Eq.(4). Upon substitution we find: 

( ) ( )
3

3 3 *3 2 2 2 2 3* 2 2
0 00 ( 9 3 )( )9 3

e be
m i im iω ω ω ω ωω ω γω ω ω γωω ω γω

= + •
− − − −− −

r E E E E                      (8)  

Recognizing that ,3 ,3eω ω ω ω=p r is the dipole moment, and that ,3 ,3Neω ω ω ω=P r is the total 

polarization density per unit volume (N is the oscillator density), we may write: 

(1) (3) 2| |ω ω ω ω ω ωχ χ= +P E E E      ,    (9a) 

and 

( )(1) (3)
3 3 3ω ω ω ω ω ω ωχ χ= + •P E E E E                                          (9b) 

where 
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2 4
(1) (3)

* 2 2 *3 2 2 3 2 2
0 0 0

;
( ) ( ) ( )

Ne Nbe
m i m i iω ωχ χ

ω ω γω ω ω γω ω ω γω
= =

− − − − − +
  ;  (10) 

and  

4
(3)
3 *3 2 2 3 2 2

0 0( ) ( 9 3 )
Nbe

m i iωχ
ω ω γω ω ω γω

=
− − − −

.       (11) 

Put another way, the solution of Eq.(1) implicitly contains linear and nonlinear material 

dispersions [1] that are predetermined by the choice of linear material parameters like density, 

plasma frequency, damping rates, effective mass, and resonance frequency, at least in a context 

where the approximations used to arrive at Eqs.(6-8) remain valid. 

Although an approach using Eq.(1) is often mentioned as desirable due to the apparently 

general, comprehensive nature of the solution, a technique to solve Eq.(1) is practically never 

employed because typical integration schemes of Eq.(1) based on a straightforward finite 

difference approach are deemed unstable [12, 13], unless special precautions are taken. For 

example, the authors of Refs.[12, 13] suggest that the cubic nonlinearity should be “balanced” by 

the introduction of an artificial, nonlinear quintic term characterized by a coefficient having sign 

opposite to that of the cubic term, in order to provide a counter-weight that removes runaway 

solutions. Therefore, the usual tactic is to avoid direct integration of Eq.(1), and opt instead for 

the use of a system of steady-state Bloch equations that describe either a two- or a multi-level 

atom tuned far from resonance in order to emulate a classical oscillator [14]. This approach 

allows the derivation of a standard, nonlinear saturable absorption term that is expanded 

perturbatively in ascending powers of the electric field intensity [12, 13], similar to what one 

obtains by expanding Eq.(5), thus justifying the use of saturable absorption in the nonlinear 

Duffing oscillator model given by Eq.(1) [15, 16]. Below we will present an alternative, 
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numerically stable approach that combines a spectral, fast Fourier transform (FFT), time-domain 

beam propagation method to solve Maxwell’s equation and a modified predictor-corrector 

technique to solve Eq.(1). 

The nature and the size of the coefficient b in Eqs. (10-11) remains to be ascertained. One 

usually argues that the nonlinear restoring force becomes important when it is of the same order 

of magnitude as the linear restoring force, i.e. 2 3
0 0 0| | | |bω ≈r r , which yields 

2
0
2
0| |

b ω
≈

r
 [1]. 

Ordinarily, for dielectric materials the value of 0| |r  is chosen to coincide with the atomic 

diameter, or approximately 3Å, which simultaneously represents the lattice constant and the 

maximum possible excursion of a valence electron orbiting the atom. For noble metals, 

0| |r should probably be chosen to correspond to the size of the given orbital of provenance, (for 

example, 0| |~ 0.5År for 4-d shell electrons in silver, and 5d-shell in gold) which may be 

ascertained by calculating the electronic wave functions [17, 18]. One possibility may be to 

obtain an optimized value of b, given a known estimate of (3) ( 0)χ ω =  [19]. Alternatively, one 

may adopt a nonlinear polarization model of the usual type, (3) 3NL χ=P E , as we will do later, and 

retrieve a generic (3)χ value that yields the same conversion efficiency as does the choice 

2
0
2
0| |

b ω
≈

r
. Nevertheless, the combination of: (i) imprecise knowledge of the electron’s effective 

mass in the given orbital, which presumably has more inertia compared to nearly-free conduction 

electrons; (ii) the fact that at high frequencies more than one bound electron per atom may be 

available [20]; and (iii) as yet unaccounted-for oscillator strengths and structure-related 

geometrical factors make the recovery of accurate (3)χ values somewhat arduous.  
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We now consider an example. In Fig.1 (a) we plot the dielectric data of silver, as reported 

in Palik’s handbook [21], along with a possible fit using one Drude and two Lorentz oscillators, 

as follows: 

2 2 2
1 2

2 2 2 2 2
01 01 02 02

( ) 1 pf p p

fi i i
ω ω ω

ε ω
ω γ ω ω ω γ ω ω ω γ ω

= − − −
+ − + − +

  


          
.    (12) 

Here 1/ω λ= , where λ  is in microns, 0.0573fγ = , 01 02 1.42γ γ= =  , 6.965pfω = , 1 4.25pω = , 

2 5.5pω = , 01 3.75ω = 02 5ω = . A comparison of the curves reveals reasonably good agreement  
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Fig.1: (a) Bulk silver data and the function in Eq.(12). (b) Palik’s data compared to a Drude-only contribution. Both 
figures (a) and (b) suggest the importance of the Lorentz contributions at short wavelengths. Nonlinear susceptibility 
for self-phase modulation and nonlinear absorption (c), and third harmonic generation (d), obtained from Eqs.(10) 
and (11), respectively.  The nonlinear dispersion curves are very sensitive to the linear fit and the effective mass m*. 
Using Eq.(12) we estimate *

1 98b em m≈ and *
2 58b em m≈ . The label “Lorentz” in (a) is to be understood as connoting a 

smooth transition region where the bound oscillators are increasingly important. 
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over most of the range illustrated (from ~150nm to ~1200nm). The increasingly darker shading 

in Fig. 1(a) connotes progressively greater bound electron contributions. In Fig. 1(b) we plot the 

dielectric constant in Eq.(12) without the Lorentz oscillator portions. The plot clearly shows that 

bound electrons contribute significantly and become increasingly important to the dielectric 

constant beginning in the near-IR, as the shading in Fig. 1(a) is meant to illustrate. In Figs.1 (c) 

and (d) we show the nonlinear dispersion curves obtained from the dielectric function in Eq.(12) 

using Eqs.(10-11). Looking ahead at the scaled equations of motion Eqs.(25-26),  as an 

illustration of the approach, we may use Eq.(12) to estimate the effective masses for each of the 

two Lorentz oscillators using the definitions of the scaled plasma frequencies, 

2 2 2 * 2
04 /( )pj j r bjn e m cω π λ= . For example, given that 2 2 2 * 2 2

1 01 14 /( ) 4.25p r bn e m cω π λ= =  and 

2 2 2 * 2 2
2 02 24 /( ) 5.5p r bn e m cω π λ= = , with 1μmrλ =  and 22 3

01 02 5 10 / cmn n= = × , we have 

*
1 98b em m≈  and *

2 58b em m≈ . Then, assuming  15 1
0 8 10 secω −≈ ×  and  0 =0.5År , both (3)

ωχ and (3)
3ωχ  

are of order 10-19(m/V)2 in the relatively flat spectral regions λ>500nm. Near resonance, 

(3)
ωχ increases by two orders of magnitude.  

The sensitivity of the nonlinear dispersion curves in Fig.1 may be ascertained by limiting the 

wavelength range of interest, for example, down to 500nm, and by dropping the second Lorentz 

oscillator in Eq.(12). In that case, one would find that despite continued agreement between the 

linear data and Eq.(12) minus the second oscillator, the amplitudes of the nonlinear dispersion 

curves can change by as much as one order of magnitude, significantly impacting the predicted 

conversion efficiencies. On the other hand, adding one more Lorentz oscillator to the two already 

in place in Eq.(12), to attempt to fit the data beyond 150nm, causes minimal changes to the 

nonlinear dispersion curves of Fig.1. Therefore, how one approaches the problem is of particular 
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importance in view of the fact that the reported values of (3)χ may differ by several orders of 

magnitude, depending on pulse duration and the structure investigated [22]. We note that our 

approach does not include a description of hot electrons temporarily elevated from the valence to 

the conduction band, a process usually handled by introducing a two-temperature model [22, and 

references therein]. Here we assume these effects remain latent through the use of low-repetition 

rate, femtosecond pulses. The extension of the model to include thermal effects is easily 

accomplished, will not be treated here, but will be the subject of later refinements of the model. 

2. Method of Solution 

Before illustrating the full nonlinear problem we outline the method of solution by 

examining the propagation of a field coupled to a single Lorentz oscillator that contains a generic 

nonlinear term NLP . Neglecting effects due to the magnetic portion of the Lorentz force, we have: 

2
2
0

1

1 4

NL

c t

c t c t
Ne
m

π

γ ω

∂
∇× = −

∂
∂ ∂

∇× = +
∂ ∂

+ + + =

HE

E PH

P P P P E 

.        (13) 

As noted previously, the stability of the integration scheme of Eqs.(13) is an issue if 

( )~NL •P P P P , unless either saturable absorption or artificial, higher-order contributions are 

introduced. Our approach is based on calculating the fields’ spatial derivatives with high 

accuracy using FFTs, while material equations are integrated using a modified, second-order-

accurate, predictor-corrector method. Without loss of generality, we assume the incident field is 

TM-polarized (Fig. 2), and decompose the E and H fields as products of generic, complex 

envelope functions and terms that contain free-space carrier wave-vector and angular frequency 
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that correspond to initial conditions for a pulse located in free space approaching the structure. 

The preservation of all spatial and temporal derivatives accounts for dynamical changes to the 

instantaneous phases and amplitudes of the fields. The E field is polarized on the y-z plane, the 

H field is polarized along the x-direction, as in Fig.2, and may be written as follows: 

( )
( )

( ) 2 2 ( ) 3 3 ( )
ˆ ˆ ˆˆ

( ) 2 2 ( ) 3 3 ( )
ˆ ˆ ˆ ˆ

( , ) ( , ) ( , ) . .

( , ) ( , ) ( , ) . .

i t i t i t
TMy TMy TMyy

i t i t i t
z TMz TMz TMz

E t e E t e E t e c cE

E E t e E t e E t e c c

ω ω ω ω ω ω

ω ω ω ω ω ω

− − −

− − −

 + + + 
 = =    + + +   

k•r k•r k•r

k•r k•r k•r

j r r r
E

k r r r
,    (14) 

( )( ) 2 2 ( ) 3 3 ( )
ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) . .i t i t i t
x TMx TMx TMxH H t e H t e H t e c cω ω ω ω ω ω− − −= = + + +k•r k•r k•rH i r r r .      (15) 

Then, for each harmonic component, the field, current, and polarization envelopes obey coupled 

equations of motion of the type: 

( )

( )

( )

( ) ( )

( )

ˆˆ ˆ
ˆ ˆˆ

ˆ ˆ
ˆ ˆ ˆ ˆ

ˆˆ
ˆˆ ˆ ˆ

2
ˆ 2 2

ˆ ˆ ˆ ˆ0 2

2ˆ
ˆ

sin cos
ˆ ˆ

cos 4 ( )
ˆ

sin 4 ( )
ˆ

2

2

yx z
x z i y i

y x
y x i y y

xz
z x i z z

y p NL
y y y y

r

z
z

EH Ei H E E
y z

E Hi E H J i P
z

HE i E H J i P
y

J
i J i P E P

J i J

β θ θ
τ

β θ π β
τ

β θ π β
τ

πω
β γ β γβ β

τ ω

β γ β
τ

∂∂ ∂
= + + − +

∂ ∂ ∂
∂ ∂

= + + − −
∂ ∂

∂∂
= + − − −

∂ ∂

∂
= − + + − + +

∂

∂
= − + +

∂

 

 ( )
2

2
ˆ ˆ ˆ0 2

ˆ
ˆ

ˆ
ˆ

p NL
z z z

r

y
y

z
z

i P E P

P
J

P J

πω
γβ β

ω

τ

τ

− + +

∂
=

∂
∂

=
∂



  . (16) 

We have used the scaled coordinates: ˆ /
r

z z λ= , ˆ / ry y λ= , ˆ / rx x λ= , / rctτ λ= , scaled 

frequencies 2 / rβ πω ω=  (for the FF field), 0 02 / rβ πω ω= , and damping coefficient 

( )/r cγ γ λ= , where λr=1µm is a conveniently chosen reference wavelength such that 
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2 /r rcω π λ= ; iθ  is the angle of incidence; ˆ
NL

yP and ˆ
NL

zP  are generic, nonlinear polarization 

components yet to be determined. Eqs.(16) are solved in the time domain using a modified FFT 

pulse propagation method [23], which we discuss in some detail next. Examination of the electric 

and magnetic field equations shows that they may be put into a Schrödinger-like form, namely: 

ˆ

ˆ

ˆ

ˆˆ ˆ
ˆ

ˆ ˆ
ˆ

ˆˆ
ˆ

ˆ ˆ

ˆ

ˆ

x

y

z

yx z
H x

y x
E y

xz
E z

EH EV H
y z

E HV E
z

HE V E
y

τ

τ

τ

∂∂ ∂
= − +

∂ ∂ ∂
∂ ∂

= +
∂ ∂

∂∂
= −

∂ ∂

.       (17) 

The potentials in Eqs.(17) are ( )ˆ ˆ ˆˆ1 sin cos /
xH z i y i xV i E E Hβ θ θ= + + , 

( )ˆ ˆ ˆ ˆ ˆ1 cos 4 ( ) /
yE x i y y yV i H J i P Eβ θ π β= + − − , and ( )

ˆ ˆ ˆ ˆ ˆ1 sin 4 ( ) /
zE x i z z zV i H J i P Eβ θ π β= + − − . As 

a result, the equations are solvable using the classic, split-step, beam propagation method 

adapted for the time domain [23]. The split-step algorithm usually calls for separation of free-

space and material equations with differential equations that are first order in time. Eqs.(17) are 

already first order in time, have no approximations, can be immediately separated into free-space 

and material equations, and integrated in the time domain. The formal solutions of the free-space 

propagator may be derived from the free-space equations, obtained by setting the effective 

potentials equal to zero. Then, Eqs.(17) are Fourier transformed in space resulting in: 

ˆ
ˆ ˆˆ ˆ

ˆ
ˆˆ

ˆ
ˆ ˆ

x
y z z y

y
z x

z
y x

H ik E ik E

E
ik H

E ik H

τ

τ

τ

∂
= − +

∂
∂

=
∂
∂

= −
∂


 







    .      (18) 

Eqs.(18) may be integrated simultaneously using a midpoint trapezoidal method, so that: 
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( ) ( )

( )

( )

ˆ ˆ
ˆ ˆ ˆ ˆˆ ˆ

ˆ
ˆ ˆ ˆ ˆ

ˆ
ˆ ˆˆ ˆ

( ) (0) (0) ( ) (0) ( )
2 2

( ) (0) (0) ( )
2

( ) (0) (0) ( )
2

y z
x x z z y y

z
y y x x

y
z z x x

ik ikH H E E E E

ikE E H H

ik
E E H H

δτ δτδτ δτ δτ

δτδτ δτ

δτ
δτ δτ

= − + + +

= + +

= − +

     

   

   

.   (19) 

Solving for ˆ ( )xH δτ : 

( )

( )
( )

( )

2 2 2
ˆ ˆ

ˆ ˆ ˆˆ
ˆ ˆ 2 2 2 2 2 2

ˆ ˆˆ ˆ

1
4 (0) (0)

( ) (0)

1 1
4 4

y z

z y y y
x x

y z y z

k k

ik E ik E
H H

k k k k

δτ

δτ
δτ

δτ δτ

 +
 −
  − = +
   + +
   + +
   
   

 
    ,  (20) 

Eq.(20) is then substituted back into the second and third of Eqs.(19) to extract the electric fields. 

All fields are then inverse Fourier transformed.  

The propagation step inside the medium is performed by integrating the material 

equations, also derived from Eqs.(17) and written in terms of generic envelope functions as: 
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Although we have neglected magnetic currents and polarizations, which typically characterize 

magnetically active and negative index materials, for example, they may be reintroduced in 

straightforward fashion by adding magnetic sources. Then, an approach similar to the solution of 
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Eq.(18) may be employed to solve Eqs.(21). For instance, one may first obtain estimates (the 

prediction step) of all fields, currents, and polarizations at τ =δτ with an Euler method, using 

only their initial values at τ=0. Using these predictions, the solutions for the currents at 

τ = δτ are immediate and second-order accurate, as follows: 
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.   (22) 

ˆ ˆ, , ( )P y zE δτ  and ˆ ˆ, , ( )NL
P y zP δτ  are first-order accurate, predicted estimates of the fields and nonlinear 

polarizations at time τ=δτ. Once the currents are known, the polarizations may be found using 

the usual, second-order-accurate trapezoidal rule: 

( )ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ, , , ,( ) (0) ( ) (0)
2y z y z y z y zP P J J δτδτ δτ= + +   .    (23) 

In turn, knowledge of more accurate currents and polarizations at time δτ allows second-order 

accurate estimates of all electric and magnetic fields. The process is then repeated several times, 

although one or two cycles usually suffice for the results to converge (the correction step). 

In order to solve the full nonlinear problem, the linear data represented by Eq.(12) may be 

reproduced dynamically in a numerical integration scheme by solving a set of coupled equations 

that contains: (1) an equation that describes the polarization of conduction electrons, fP ; and (2) 

for this case two equations, each similar to Eq.(1), to account for the bound electron 

polarizations, 1P , and 2P , respectively. Bound-electron contributions are pivotal in the region 
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labeled “Lorentz” on Fig.1a [24, 25], both for linear and nonlinear contributions to the dielectric 

constant, and thus harmonic generation. The linear equations are then modified to include 

nonlinear contributions in the high intensity regime [24, 25]: 

( ) ( )

( ) ( ) ( ) ( )

22
0

* * 2 * 2 * 2
0 0 0 0

* 2
0 0 0

5
3

1 10 1
9

f r F r r
f f f f f f

F
f f f f f f

f r f r

n e E e e
m c m c m c m c

E
n e m c n e

λ λ λγ

λ λ

 + = + ∇ ∇ • − ∇ • + × 
 

 − ∇ • + •∇ − ∇ • ∇ ∇ • 

P P E P E P P H

P P P P P P

  

   
,              (24) 
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To summarize, Eq.(24) amounts to an augmented Drude or hydrodynamic model that describes a 

nearly-free electron gas inside the metal; Eqs.(25-26) account for two separate bound electron 

species, each subject to internal and external forces. Each electron species has its own damping 

rate ( 01 02, ,fγ γ γ   ), effective mass ( * * *
0 1 2, ,b bm m m ), density ( 0 01 02, ,fn n n ), and in the case of bound 

electrons, resonance frequency ( 01 02,ω ω  ), and associated, scaled, nonlinear third-order 

coefficient (
2 2

1 1 2 22 2 2 2 2 2
01 02

,r rb b b b
n e c n e c

λ λ
= =  ). For simplicity we choose to operate in two spatial 

dimensions plus time, where ˆˆ
ˆẑ y

∂ ∂
∇ ≡ +

∂ ∂
k j , as the fields may be polarized in that direction but 

are assumed to be independent of the scaled coordinate x̂ . In addition to the usual linear driving 

term that characterizes a pure Drude model, i.e. the first term on the right hand side of Eq.(24), 

22
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*
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f rn e
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λ 
 
 

E , there are other free-electron contributions all leading to or influencing SHG and 
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THG, that may be summarized as follows: the nonlinear magnetic Lorentz force, * 2
0

r
f

e
m c

λ
×P H ; an 

explicit quadrupole-like, nonlinear Coulomb term that arises from the continuity 

equation, ( )* 2
0

r
f

e
m c

λ
− ∇ •E P ; two nonlinear convective terms, 

( ) ( )
0

1
f f f f

f rn eλ
 − ∇ • + •∇ P P P P    ; a linear electron gas pressure (nonlocal) pressure term, 

( )f∇ ∇ • P , and finally a nonlinear electron gas pressure terms, ( ) ( )f f∇ • ∇ ∇ •P P , having 

strictly quantum origins. By the same token, the fields in Eqs.(25-26) may each be expanded 

around an equilibrium, electron position, giving rise to additional, quadrupole-like, nonlinear 

force terms arising from Coulomb sources [2, 24, 25]. Upon expansion into their harmonic 

components, each of Eqs.(24-26) splits into three, separate equations. For instance, Eq.(25) may 

be written as follows [24, 25]: 
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and similarly for Eq.(26). Finally, having opted for a dynamic description of the nonlinear 

response with the nonlinear term ( )( )
1,2 1,2 1,2 1,2 1,2

NL b= •P P P P  in order to retain simultaneously linear 

and nonlinear dispersions, the general expansion of the third-order nonlinear polarization for just 

one of the bound oscillators becomes: 

,1 ,1 ,1 ,1 ,1
1,3 1,3 1,3

NL
i ijkl j k l

j k l
P b P P P

= = =

= ∑ ∑ ∑         , (28) 

and similarly for the second oscillator. ,1ijklb is now a tensor, in full analogy with the expansion of 

the nonlinear polarizations in terms of ijklχ  [1]. For example, for a material like GaAs, which has 

cubic symmetry of the type 43m , Eq.(28) reduces to: 
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                      (29) 

The situation is comparable for noble metals, except that for isotropic crystal symmetry the 

relations between the tensor components allow one to more simply write: 
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                  .                      (30) 

Considerable care should be exercised when decomposing Eqs.(30) into its harmonics, and while 

substituting those components (which include up- and down-conversion terms, self- and cross-

phase modulation terms) back into Eqs.(24-27), thus making these equations valid even under 

conditions of pump depletion.  

3. Results 
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In Fig. 2 we show the structures we use for the application of our model: a bare silver 

layer (top panel), a symmetric, transparent metal-dielectric stack (middle panel) [26, 27], and an 

opaque plasmonic grating (bottom panel). No effort is made to optimize conversion efficiency of 

one structure with respect to another. Rather, these structures are chosen primarily for their 

simplicity, because in at least two cases, the thin metal layer and the multilayer stack, no 

experimental results have yet been reported, and also because the layered structures offer 

something that plasmonic structures usually do not, namely large field penetration depth inside 

the bulk of the metal. In contrast, plasmonic structures present us with large local fields near the 

surface of the metal, leaving the evanescent tail of the field to harvest the effects of the bulk’s 

nonlinearity. These choices thus alleviate the burden on an eventual experimental effort and 

should make a subsequent comparison with predictions simpler to interpret. Each panel contains 

the corresponding linear transmission, reflection, and absorption spectra obtained at normal 

incidence. Worthy of note are: (i) the typical broadband transmission spectrum of the multilayer 

stack, which may be extended well into the infrared range; and (ii) the grating’s narrow 

plasmonic reflection resonance. The stack’s high transmittance ensures that the electric fields 

propagate and localize inside each metal layer, thus creating an opportunity to exploit the metal’s 

bulk nonlinearity [28, 29, 30]. By the same token, at resonance the plasmonic grating confines 

the field in close  
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Fig.2: Top panel: a single silver layer, t=10nm; Middle panel: symmetric metal-dielectric stack composed of four 
Ag layers of thickness d1=12.5nm, and Ta2O5 layers such that d2=80nm and d3=40nm; Bottom panel: Silver grating 
with p=1030nm, a=300nm, h1=45nm, h2=200nm. The respective transmission, reflection, and absorption spectra at 
normal incidence are depicted to the right of each object. The field is incident from the left, and polarized as shown. 

 

proximity of the surface, producing an intense field near internal and external corners. A bound 

wave travels along the grating, with an evanescent tail that spills just inside the metal, which in 

turn absorbs all the incident energy resulting in near-zero reflections. In Fig. 3 we show the 

results of vectorial, nonlinear calculations performed using incident Gaussian pulses 

approximately 50fs in duration for the layered structures, and approximately 700fs for the 

grating, in order to resolve the narrow resonance. Peak intensities are ~2GW/cm2, 

and
2 2

60
1 2 2 2 2 2

0 01

10rb b
r n e c

ω λ −= = =  . We compare reflected, TH conversion efficiencies at normal  
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Fig.3: Reflected THG conversion efficiency vs. incident pump wavelength for the three structures depicted in Fig.2.  
The calculations are carried out for two free-standing silver layers to highlight the dramatic impact of thickness on 
harmonic generation, and for two slightly different multilayer stacks. The multilayer stack labeled MD-PBG1 is the 
one illustrated in Fig.2. The curve labeled MD-PBG2 refers to a stack with silver layers are d1=12.5nm, and Ta2O5 
layers are d2=125nm and d3=62.5nm. Thicker Ta2O5 layers red-shift the band gap structure to yield maximum 
absorption near 1070nm, for a fairer comparison with the grating. All things being equal, the plasmonic grating 
outperforms the multilayer stack by a mere order of magnitude. The stack compensates the larger, plasmonic-
assisted field enhancement by penetrating inside the metal layers to take full advantage of its large nonlinearity. 

 
incidence for the three types of structures depicted in Fig. 2. The increased conversion efficiency 

as a function of decreasing wavelength for the smooth 10nm- and 50nm-tick metal layers may be 

understood simply in terms of increased penetration depth, which is more pronounced for thinner 

layers and shorter wavelengths, or a combination of both. However, in the visible range two 

orders of magnitude separate the predicted TH conversion efficiencies of the two metal layers, 

while the discrepancy is three orders of magnitudes at 1500nm, increasing further for thicker 

layer. The dependence of conversion efficiency on layer thickness may be ascertained from Fig. 

4 for a representative incident wavelength of 850nm.  
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Fig.4: Reflected and transmitted THG conversion efficiency vs. silver layer thickness, assuming the pump is tuned 
at 850nm; the layer is assumed to remain uniform and the dielectric constant retains the bulk characteristics reported 
in Palik’s handbook, even for very thin layers. At this wavelength, maximum THG occurs for layer thickness of 
~5nm, reflected THG saturates at ~50nm, and transmitted THG decreases exponentially with thickness. 
 

A comparison of the medal-dielectric stack’s linear spectra in Fig. 2 with the curve 

labeled MD-PBG1 in Fig. 3 (i.e., its THG conversion efficiency) reveals that the linear 

absorption peak near 850nm coincides with an absolute maximum in THG. The situation repeats 

for the curve labeled MD-PBG2, whose geometry is similar to that of MD-PBG1, and is 

described in the caption of Fig. 3, and again for the grating. This behavior is not unique to these 

systems, and it simply highlights the sensitivity of both linear absorption ( ( ) 2~ Im ( ) | |ωε ω E ) 

and nonlinear frequency conversion ( (3) 2
3~ ω ωχ E ) to field intensity.  

The results in Fig. 3 suggest that plasmon-assisted THG mediated by the grating yields 

the largest predicted conversion efficiencies among the structures we have examined. However, 

it is relatively narrow-band, and it exceeds both stacks’ conversion efficiencies by a mere order 

of magnitude. The figure also suggests that off-resonance even the 10nm-thick metal layer out-
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performs the plasmonic grating by several orders of magnitudes. When it comes to nonlinear 

frequency conversion in plasmonic structures, off-resonant conditions [31] and isolated 

nanoparticles [32] are often employed as typical benchmarks to highlight extraordinary 

enhancement or performance. However, Fig. 3 suggest that these choices often lead to scenarios 

that may give the impression of performance that is far more favorable than more realistic 

benchmarks actually suggest, such as either a 5nm- or a 10nm-thick silver layer. 

The angular dependence of THG from thick silver and aluminum mirrors was predicted 

and experimentally reported for an incident wavelength of 1064nm in reference [33] using 4.5ps 

pulses that were part of a pulse train hundreds of nanoseconds in duration. Those predictions 

were based on knowledge of the linear dielectric response [10, 11] and the calculation of the 

Fresnel coefficients, with a reflected THG peak near 63° for TM-polarized light. Our 

calculations are in good qualitative and quantitative agreement with those in reference [33] for 

incident wavelength of 1064nm and both TE- and TM-polarized light. Results for λin=850nm are 

plotted in Fig. 5(a) for TE- and TM-polarizations. The peak of maximum TH conversion 

efficiency for incident TM-polarized light matches the linear absorption maximum that occurs as 

a result of increased field penetration with respect to TE-polarized light, and shifts gradually to 

smaller angles as incident pump wavelength decreases, reaching ~56° at 632nm.  

The qualitative differences that we predict between thick and thin metal layers are 

apparent: the 10nm-thick layer − Fig. 5(b) − displays maximum conversion efficiency at normal 

incidence, once again matching the linear absorption data obtained from the Fresnel coefficients, 

which are now similar for TE-and TM-polarizations, along with a concurrent increase by two 

orders of magnitude in conversion efficiency compared to the 100nm-thick layer. The curves in 

Fig. (5c) show that reflected conversion efficiencies from the multilayer stack are approximately 
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three orders of magnitude larger compared to the 100nm-thick layer, and one order of magnitude 

larger compared to the 10nm-thick silver layer, thanks to simultaneously improved field 

penetration and larger local fields for both polarizations, that 
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Fig.5: TM- and TE-polarized reflected THG conversion efficiency vs. incident angle for: (a) 100nm-thick and (b) 
10nm-thick silver layers; (c) the metal-dielectric stack depicted in Fig.2. The pump is tuned at 850nm. Only the 
thick metal mirror yields discernable differences in conversion efficiencies between the two polarization states.  
THG transmission curves are not shown because transmission is almost identical to the THG reflection curve for the 
10nm-thick layer (b), and negligible for both the 100nm-thick mirror (a) and the multilayer stack (c). 

 

tend to concentrate inside the metal and thus to exploit its bulk nonlinearity. Finally, we adopt 

the nonlinear polarization model that assumes (3) 3NL χ=P E and compare conversion efficiencies 

obtained using the nonlinear oscillator model, Eq.(1). Our calculations show that the choice 
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6
1 2 10b b −= =  corresponds to (3) 19 210 (m/V)χ −≈  in the non-resonant region, as predicted by 

Eqs.(10-11), Figs. 2(c)-(d), if bound-electron effective masses are chosen as suggested above. 

This result is in relatively good agreement with the results obtained on silver mirrors in reference 

[33]. 

 For completeness, in Fig. 6 we show the results for SHG for the structures we have 

investigated. Just as was the case for THG, the grating― Fig. 6(d) ―, which is illuminated at 

normal incidence, yields the largest narrow-band conversion efficiency at the plasmonic 

resonance near 1070nm, and it is two orders of magnitude larger than the reflected SHG arising 

from the 100nm-thick silver mirror, Fig. 6(c). The silver mirror’s maximum conversion 

efficiency occurs near 68°, and is larger than the conversion efficiency peaks generated by either 

the 10nm-thick layer― Fig. 6(a) ―or the transparent multilayer stack ― Fig. 6(b) ―, 

notwithstanding improved field penetration, testimony to the fact that SHG remains mostly a 

surface phenomenon. The fact that maximum conversion efficiency of the arrangements that 

contains only flat metal layer occurs off-axis is due to the nature of the intrinsic second order 

nonlinearities [34, 35], is related to the maximum longitudinal field discontinuity, and brings up 

the question of what is a sensible benchmark for the purpose of comparing conversion 

efficiencies and assessing performance. A reasonable benchmark for SHG arising from the 

grating is probably the peak produced by the simplest, most efficient structure, which in this case 

appears to be the silver mirror peak at 68°. We should note that these considerations are not 

always made, resulting in rather suggestive claims [36]. For example, quantum-well multilayer 

stacks of the type discussed in reference [36] display a non-zero (2)
zzzχ along the (longitudinal) 

direction of propagation. Under these conditions, it may be easily demonstrated that the bare 
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sample emits a SH signal most efficiently at large angles, and none at all at normal incidence, 

similarly to what happens in metals, because the effective second order nonlinearity arising from 

combined surface and volume sources has a dominant, longitudinal component. If the quantum 

well is then dressed with a metallic metasurface and illuminated at normal incidence, the more 

appropriate reference point for comparison should probably be the optimal conditions displayed 

by the bare sample, i.e. the SH peak that occurs at large incident angles, rather than what occurs 

at normal incidence. More realistic comparisons of the type we have discussed clearly suggest 

that photonic band gap structures, resonant plasmonic gratings and metasurfaces may indeed 

provide  
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Fig.6: (a) SHG vs. incident angle for 10nm-thick silver; (b) the multilayer stack described in the caption of Fig.2; 
and (c) a 100nm-thick silver mirror.  Both the 10nm layer and the multilayer stack display significant levels of 
transmitted SHG, while transmitted SHG for the 100nm-thick layer is of order 10-13. The incident wavelength is 
850nm in (a)-(c). (d) Transmitted and reflected SHG spectra for the grating described in Fig.2. In this case incident 
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pulse duration is approximately 700fs, in order to resolve the resonance. The overall enhancement the grating 
provides with respect to the flat-layered structure is nearly two orders of magnitude, which may be considered 
typical for either plasmonic or photonic band gap structures. 
a few orders of magnitude of enhanced performance thanks to a combination of improved field 

enhancement and penetration depth, provided one compares to sensibly chosen benchmarks. 

4. Conclusions 

 In conclusion, we have used a nonlinear Lorentz-Duffing oscillator model to predict 

second and third harmonic conversion efficiencies from isolated metal layers, metal-dielectric 

multilayer stacks, and a metal grating that do not display an intrinsic second-order bulk 

nonlinearity. One of the main advantages of using the nonlinear oscillator model is that it 

naturally accounts for linear and nonlinear dispersions simultaneously. At the same time we have 

also illustrated a numerical integration scheme that combines fast Fourier transforms and a 

modified predictor-corrector method to reliably and accurately integrate the relevant nonlinear, 

coupled Maxwell-Lorentz system without the need to introduce either artificial nonlinearities or 

saturable absorption. Our results suggest that the plasmonic metal gratings may indeed 

outperform all other structures investigated, albeit at the cost of bandwidth and increased 

sensitivity to fabrication imperfections. Increased penetration depth and field localization inside 

the metal layers boost the performance of layered structures across a broad range of wavelengths, 

suggesting that reasonable and appropriate benchmarks should be sought when comparing the 

enhancement of plasmonic gratings to other types of structures.  
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