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Abstract
We study the geodesic connectedness of a globally hyperbolic spacetime (M, g) admitting
a complete smooth Cauchy hypersurface S and endowed with a complete causal Killing
vector field K . The main assumptions are that the kernel distribution D of the one-form
induced by K on S is non-integrable and that the gradient of g(K,K) is orthogonal to D.
We approximate the metric g by metrics gε smoothly depending on a real parameter ε and
admitting K as a timelike Killing vector field. A known existence result for geodesics of
such type of metrics provides a sequence of approximating solutions, joining two given
points, of the geodesic equations of (M, g) and whose Lorentzian energy turns out to be
bounded thanks to an argument involving trajectories of some affine control systems related
with D.
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1 Introduction

The existence of a shortest path between any two given points on a Riemannian manifold
or more generally on a locally compact length space is a basic result in metric geometry.
It is a consequence of Ascoli-Arzelá theorem once metric completeness is assumed (see,
e.g., [6, Section 2.5]). In contrast with Riemannian ones, Lorentzian metrics do not define
a length metric structure due to their indefiniteness as bilinear symmetric tensors and their
length functional is defined only for causal curves and not on the whole set of rectifiable
curves between two points. On the other hand, taking the square root of the absolute value of
g(γ̇ , γ̇ ) allows one to consider all the absolutely continuous curves between two points but
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produces a length functional which might have minimum value equal to zero between any
couple of points due the possible presence of piecewise smooth (not future-pointing) null
curves between them. It is then not surprising that establishing the existence of a geodesic of
a Lorentzian metric between any two points is a highly non-trivial problem. A generalization
of the notion of length structure in the setting of causality theory and Lorentzian geometry
has been recently proposed in [15]. In particular, a classical existence result for future-
pointing causal geodesics between two points admits an extension [15, Theorem 3.30]. The
assumption that replaces completeness in this case is global hyperbolicity as in the classical
causality theory (see, e.g., [4, Theorem 6.1]).

It is quite surprising that global hyperbolicity which, on a non-compact spacetime (M, g)

is equivalent to the compactness of its causal diamonds (see [14]), also plays a fundamental
role in the proof, obtained in [7], of the full geodesic connectedness of a spacetime (M, g)

when g admits a complete Killing vector field K , which is timelike (i.e., g(K,K) < 0), and
there exists a smooth, spacelike, complete Cauchy hypersurface in M . An analogous result
has been obtained in [3] when the complete Killing vector field K is everywhere lightlike
(i.e., g(K,K) = 0 and Kp �= 0 for all p ∈ M).

In this work, we consider the case when K is causal, i.e., g(K,K) ≤ 0, Kp �= 0 for all
p ∈ M . As far as we know, this case is open, apart from a recent result where a compact
spacetime endowed with a causal Killing vector field satisfying the null generic condition
and having globally hyperbolic universal covering is studied (see [2, Corollary 3.6]).

Let us give some further details on the geometric setting that we consider in connection
with the ones in [3, 7].

Let (M, g) be a globally hyperbolic spacetime endowed with a complete causal Killing
vector field K and a (smooth, spacelike) Cauchy hypersurface S1. Then there exists a dif-
feomorphism ϕ : S × R → M defined by the restriction of the flow K to S × R and the
induced metric on S × R is

ϕ∗g = g0 + ω ⊗ dt + dt ⊗ ω − �dt2, (1)

where g0 is the Riemannian metric induced by g on S that will be assumed to be complete,
ω is the one-form metrically equivalent to the orthogonal projection of K on S, i.e., ω(v) =
g(v, K) for all v ∈ T S and � : S → R is the non-negative function on S defined as
� = −g(K,K)|S (see [7, Theorem 2.3], [3, Proposition 2.2]).

Henceforth, we will identify (M, g) with the spacetime S × R endowed with the met-
ric (1) that will be denoted with g as well. Moreover, we will assume that S (with the
Riemannian metric g0) is complete.

Notice that if K is timelike then �(x) > 0 for all x ∈ S and the spacetime is called
standard stationary; if K is lightlike then � ≡ 0, ω does not vanish at any point and the
metric on M becomes equal to

g0 + ω ⊗ dt + dt ⊗ ω.

A metric like (1) is a Lorentzian one if and only if

�(x) + |ωx |20 > 0 for all x ∈ S, (2)

being |ωx |0 the g0-norm of ωx in TxS (see [10, Proposition 3.3]).

1We refer to [4, Section 3.2] for causality notions as global hyperbolicity and the definition of a Cauchy
hypersurface.
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Before stating our main result, we observe that if ωx �= 0 for all x ∈ S and Dx :=
ker(ωx), then

D :=
⋃

x∈S

Dx is a distribution on S and rankD = m − 1, (3)

with m = dim(S). In the following we will denote by d0 the distance on S induced by the
complete Riemannian metric g0 and by ω� the vector field g0-metrically equivalent to ω.

Theorem 1 Let (M, g) be a globally hyperbolic spacetime admitting a complete causal
Killing vector field K and a smooth, spacelike, complete Cauchy hypersurface S. With the
notations in (1), let us assume that

(i) there exists a constant L ≥ 0 such that �(x) ≤ L for all x ∈ S;
(ii) g0(∇�,ω�) = 0;
(iii) D in (3) is non-integrable;
(iv) there exist ν > 0, a point x̄ ∈ S, a constant C = Cx̄ > 0 and α ∈ [0, 1) such that

ν ≤ |ωx |0 ≤ C
(
d0(x̄, x)α + 1

)
, for all x ∈ S. (4)

Then (M, g) is geodesically connected.

As already recalled, the case when K is lightlike everywhere has been studied in [3,
Theorem 1.2], where it is proved that any couple of points p0 = (x0, t0), p1 = (x1, t1) in
S ×R can be connected by a geodesic provided that there exists a C1 curve σ on S between
x0 and x1 such that ω(σ̇ ) is constant. We notice here that the existence of a curve σ between
any two points in S satisfying ω(σ̇ ) = const. (in particular 0) follows by assuming the non-
integrability of the distribution defined pointwise by the kernel of the one-form ω thanks to
Chow-Rashevskii theorem (see, e.g., [1, Theorem 3.31]). On the other hand, [3, Example
(c), p.22] shows that the integrability of ω is quite a natural obstruction to the existence of
a geodesic between any couple of points of a spacetime endowed with a lightlike Killing
vector field.

A class of examples satisfying the assumptions in Theorem 1 is the following. Let us
consider a product manifold S × R where S = R

3 is endowed with spherical coordinates
(r, θ, φ). Let g be the Lorentzian metric on S × R defined as

dr2 + 2a(r, θ)(dθ + dφ)dt + r2(dθ2 + sin2 θdφ2) − �(r)dt2,

where � = �(r) is a smooth, non-negative, bounded function which is 0 on the interval
[0, R] and a is a bounded function such that a(r, θ) ≥ ν1 > 0, having nowhere vanishing
partial derivative ar . The vector field ∂t is a causal Killing vector field which is lightlike on
[0, R] × S2 ×R and timelike otherwise. The one-form ω is given by a(dθ + dφ) and, being
ω ∧ dω = −aradr ∧ dθ ∧ dφ, it is a contact form on S and then its kernel distribution is
non-integrable. Notice that ∇� = �′(r)∂r , thus it is contained in the kernel of ω. We notice
also that (S × R, g) is globally hyperbolic with complete Cauchy hypersurfaces S × {t},
t ∈ R, see Remark 7.

We emphasize that Theorem 1 extends [3, Theorem 1.2] and its proof is independent of
it. On the other hand, the idea of approximating the metric g with metrics gε, ε > 0, such
that the vector field K is Killing and timelike for each metric gε , is the same as in [3] and in
[8]. A novelty of the present work is the use of some affine control systems associated with
D and drifts depending on ε, on the t-components t0, t1 ∈ R of the fixed points and collinear
with the vector field g0-metrically equivalent to ω. Thanks to appropriate curves constructed
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by concatenating solutions of these control systems, we get a bound from above of the
critical values of some special (in a sense that will be explained in Section 3) connecting
geodesics of the approximating metrics gε . We mention that similar affine control systems
(but with a fixed drift) have been recently used in [9] to study multiplicity of geodesics
between two points on some singular Finsler spaces.

The paper is organized as follows: in Section 2 we introduce some preliminary remarks
involving the distribution D and the causality of M . Then, in Section 3 we adapt control
systems to stationary perturbations (M, gε), ε > 0, of (M, g). Exploiting the result in [7],
we consider a special family γε = (ρε, tε) of geodesics of gε joining two points (x0, t0),
(x1, t1) ∈ M and we construct, by means of a control system having the drift smoothly
depending on ε, a family σε of curves connecting x0 to x1 and having bounded g0-energy.
In Section 4 we show that the family {γε} is bounded in the C1-topology, so that, up to pass
to a subsequence, for any sequence εn → 0, {γεn} converges (in the C∞-topology) to a
geodesic of (M, g) joining (x0, t0) and (x1, t1).

Let us finally specify some notations. We do not explicitly write the point where a vector
field or a tensor is applied, except for some cases where the point might appear as an index
(as, e.g., ωx). If we look at a vector field X on a manifold S as a vector field along a curve
σ , then we write X(σ). An exception is when it is clear from the context that a vector field
must be restricted to a given curve (as, e.g., in the expression g0(∇ρ̇ ρ̇, ω�), where ρ is a
curve). On the other hand we always write the evaluation of a function on S at a point x (as,
e.g., �(x)) and of a one-form or a (1, 1)-tensor field at a vector v ∈ T S (as, e.g., in ��(v)).
Analogously, for a function defined on T S, as the Finsler type functions F± in (6), we write
F±(v) without specifying the point x ∈ S where v is applied.

2 Non-Integrability of ω and Causality

In [5, 11] the homotopy properties of the trajectories of an affine control system on a man-
ifold S are studied. A trajectory σ : [0, b] → S is an absolutely continuous curve solving
the system

σ̇ = V (σ) +
d∑

i=1

uiXi(σ ), σ (0) = x0 ∈ S

for some functions u = (u1, . . . , ud) called controls, where V,X1, . . . , Xd are vector fields,
with V playing the role of a drift (which in some cases — as in the sub-Riemannian one —
is the null vector field) and X1, . . . , Xd satisfy the bracket generating condition (see, e.g.,
[1, Definition 3.1]). The regularity assumption on the controls determines the topology on
the space � of the trajectories. Henceforth, we will consider L2 controls and, called u the
d-tuple (u1, . . . , ud) ∈ L2([0, b],Rd), for some b > 0, we will denote by ‖u‖2 the L2

norm of u, i.e., ‖u‖2 :=
(∑d

i=1

∫ b

0 u2i (s) ds
)1/2

.

The end-point map is the differentiable (see [1, Proposition 8.5]) map

F : � → S, σ �→ σ(b) ∈ S,

i.e., F associates to each trajectory its endpoint. The set

�(x) = F−1(x), x ∈ S

is the set of trajectories joining x0 to x.
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Now let {X1, . . . Xd} be a set of globally defined smooth vector fields on S, with d ≥
rankD, which generate D as in (3) (see [1, Corollary 3.27]) and W a smooth vector field
on S. Let us consider the affine control system

σ̇ = −W(σ) +
d∑

i=1

uiXi(σ ), σ (0) = x0 ∈ S. (5)

Remark 2 Being D non-integrable and of rank m − 1 by (iii), for all x1 ∈ S there exist
controls u1, . . . , ud ∈ L2([0, 1],R) and a solution of (5) parametrized on [0, 1] which is a
curve in

�x0x1(S) := {σ : [0, 1] → S : σ is absolutely continuous,
∫ 1

0
g0(σ̇ , σ̇ )ds < +∞, σ (0) = x0, σ (1) = x1}.

This is a consequence of a far more general result [5, Theorem 5]; we notice that by (iii) in
Theorem 1 and since the rank of D is m − 1, the exponent pc in [5, Theorem 5] is equal
to +∞ and then p = 2 is allowed in our setting (see last remark at the end of the proof of
Proposition 2 in [5]).

We recall that on a Lorentzian manifold (M, g) a tangent vector w ∈ T M is time-
like (resp. lightlike; spacelike; causal) if g(w,w) < 0 (resp. g(w,w) = 0 and w �= 0;
g(w,w) > 0 or w = 0; w is either timelike or lightlike). It is well known that the set of
causal vectors at each tangent space has a structure of double cone called causal cones. In
the spacetime (S × R, g) the function (x, t) ∈ S × R �→ t ∈ R is a temporal function, i.e.,
it is smooth and strictly increasing when composed with any future-pointing causal curve
in (S × R, g). The notion of being future-pointing for a vector or a curve is related to the
opposite of the gradient of the function (x, t) ∈ S × R �→ t ∈ R. In fact, it can be proved
that −∇t is timelike and then it gives a time-orientation to (S × R, g) in the sense that it
allows us to choose, continuously and globally, one of the two causal cones at Tp(S × R),
p ∈ S × R. The selected ones (containing −∇t) constitute the set of future-pointing causal
vectors in T (S ×R); with our convention on the signature of the metric g, they are non-zero
vectors w ∈ T (S × R), such that g(w,w) ≤ 0 and dt (w) > 0, so that ∂t is future-pointing
as well. Thus, a causal vector w ∈ T (S × R) is future-pointing if and only if g(w, ∂t ) ≤ 0.

Remark 3 Let M = S × R be endowed with a metric g as in (1). Taking W equal to one of
the two vector fields

W± := ± ω�

|ω�|20
,

then W±
x �∈ Dx for all x ∈ S. By Remark 2, there exists a solution σ± of (5) with W = W±.

Thus, ω(σ̇±) = −ω
(
W±) = ∓1. By [10, Proposition 3.12, Corollary 3.16] any trajectory

σ± of (5) with W = W± can be lifted to a future-pointing (resp. past-pointing) lightlike
curve γ ± starting from a p0 = (x0, t0) ∈ S × R and given by

γ ±(s) =
(

σ±(s), t0±
∫ s

0
F±(

σ̇±(r)
)
dr

)
,

where

F±(v) := g0(v, v)

∓ω(v) + √
�g0(v, v) + ω2(v)

. (6)
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Notice that F−(v) = F+(−v), hence F+, F− are defined on TxS if �(x) > 0, while
if �(x) = 0, F+ and F− are respectively defined on those vectors v ∈ TxS such that
ωx(v) < 0 and ωx(v) > 0. This implies that any point p0 and any integral line of ∂t can be
joined by at least one causal curve.

Recall that, given p, q ∈ M , we say that p is in the causal past of q, and we write p < q,
if there exists a future-directed causal curve from p to q. Moreover, we denote by p ≤ q

either p < q or p = q. For each p ∈ M , the causal past J−(p) and the causal future
J+(p) are defined as

J−(p) = {q ∈ M : q ≤ p} and J+(p) = {q ∈ M : p ≤ q}.
Moreover, fixed p0 = (x0, t0) ∈ M = S × R and x1 ∈ S, let us define

A := {t ∈ R : (x1, t) ∈ J+(x0, t0)}
B := {t ∈ R : (x1, t) ∈ J−(x0, t0)},

which are non-empty by Remarks 2 and 3. Let then set

�+(x0, x1) := infA

�−(x0, x1) := supB.

Remark 4 Notice that being the line t ∈ R �→ (x1, t) ∈ S × R causal and future-pointing,
(x1, t) ∈ J+(x0, t0) for all t > �+(x0, x1) and (x1, t) ∈ J−(x0, t0) for all t < �−(x0, x1).
Moreover, since a globally hyperbolic spacetime is causally simple (see, e.g., [4, Proposition
3.16]), if (M, g) is globally hyperbolic then J±(x0, t0) are closed and

(
x1,�

±(x0, x1)
) ∈

J±(x0, t0).

The following proposition holds.

Proposition 5 Let M = S × R be endowed with a metric g as in (1). Assume that (M, g)

is globally hyperbolic and (iii) in Theorem 1 holds. Then for all p0 = (x0, t0) ∈ M and
x1 ∈ S, �+(x0, x1) ∈ [t0,+∞) and �−(x0, x1) ∈ (−∞, t0]. Moreover, if x1 �= x0 then
�+(x0, x1) > t0 and �−(x0, x1) < t0.

Proof We notice that by the first part of Remark 4, if x1 = x0 then �+(x0, x1) ≤ t0
and �−(x0, x1) ≥ t0; since the function t : S × R → R is strictly increasing (resp.
decreasing) along all the future-pointing (resp. past-pointing) causal curves we then get
�±(x0, x1) = t0. By Remark 3, �+(x0, x1) ∈ [t0, +∞) when x0 �= x1. Now we
notice that �+(x0, x1) cannot be equal to t0, otherwise by the second part of Remark 4(
x1,�

+(x0, x1)
) ∈ J+(x0, t0) and there would exist a future-pointing causal curve between

(x0, t0) and (x1, t0), in contradiction with the strict monotonicity of the function t along
future-pointing causal curves. A similar reasoning holds also for �−(x0, x1).

3 Control Systems Adapted to Stationary Approximations

The function � in (1) is non-negative, thus �(x) + ε > 0 for all ε > 0, x ∈ S and the
corresponding metric gε on S × R

gε := g0 + ω ⊗ dt + dt ⊗ ω − (� + ε)dt2 (7)
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has larger future-causal cones than g (g ≺ gε , for all ε > 0); moreover, gε ≺ gε′ for
all 0 < ε < ε′. In particular, the vector field ∂t becomes timelike for gε , remaining a
Killing vector field, thus (S × R, gε) is a standard stationary spacetime for each ε > 0 (see
Section 1).

By computing the Euler-Lagrange equation of the energy functional

γ �→ 1

2

∫ 1

0
gε(γ̇ , γ̇ ) ds

(defined on the space of piecewise smooth curves parametrized on [0, 1] and connecting two
given points p0, p1 ∈ S ×R), it follows that a curve γε = (ρε, tε) is a geodesic of the metric
gε if and only if it is smooth and satisfies the following system of differential equations:

{
∇ρ̇ε ρ̇ε − ṫε�

�(ρ̇ε) + ω�(ρε)ẗε + 1

2
ṫ2ε ∇�(ρε) = 0

ω(ρ̇ε) − (�(ρε) + ε)ṫε = Cγε,ε,
(8)

for some constant Cγε,ε, where ∇ is the covariant derivative associated to the Levi-Civita
connection of metric g0 and �� is the (1, 1)-tensor field g0-metrically equivalent to � :=
dω. We point out that the second equation in (8) is equivalent to the conservation law
h(γ̇ ,K) = const. that any geodesic of a pseudo-Riemannian metric h endowed with a
Killing vector field K must satisfy.

Remark 6 In particular, for ε = 0 the above equations give the geodesic ones for the
metric g.

Remark 7 We emphasize that assumptions (i) and (iv) in Theorem 1 imply that the standard
stationary spacetimes (S×R, gε) are globally hyperbolic for all ε > 0 and the hypersurfaces
S × {t1} are Cauchy hypersurfaces for each t1 in R (see [17, Proposition 3.1 and Corollary
3.4]). Moreover, given a family of metrics gε on S × R as in (7), ε ≥ 0, if one of them is
globally hyperbolic with Cauchy hypersurfaces S × {t1}, say gε̄ , ε̄ > 0, then all of them
with ε ∈ [0, ε̄) are globally hyperbolic with the same Cauchy hypersurfaces. This follows
simply observing that a future-pointing (resp. past-pointing) causal curve in (S × R, gε),
ε ∈ [0, ε̄), is future-pointing (resp. past-pointing) and timelike in (S × R, gε̄).

From [7, Theorem 1.1] we know that for all ε > 0 and for all (x0, t0), (x1, t1) ∈ M , there
exists a geodesic γε = (ρε, tε) of (S × R, gε) connecting (x0, t0) to (x1, t1). In particular,
these geodesics γε have the S-components ρε which are minimizers of the functional

Jε : �x0x1(S) → R,

Jε(ρ) = 1

2

∫ 1

0

(
g0(ρ̇, ρ̇) + (�(ρ) + ε)ṫ2

)
ds + Cγ,ε(t1 − t0), (9)

where �x0x1(S) has been introduced in Remark 2. Let us observe that curves γ (s) =(
ρ(s), t (s)

)
and constants Cγ,ε in (8) and (9) are linked by the equation

Cγ,ε = gε(γ̇ , K) = ω(ρ̇) − (�(ρ) + ε)ṫ (10)

so that t ∈ H 1([0, 1],R) is the function such that t (0) = t0, t (1) = t1 and

ṫ = ω(ρ̇) − Cγ,ε

�(ρ) + ε
(11)

1415Trajectories of Affine Control Systems and Geodesics



with

Cγ,ε =
(∫ 1

0

ω(ρ̇)

�(ρ) + ε
ds − (t1 − t0)

)(∫ 1

0

1

�(ρ) + ε
ds

)−1

(12)

(see [12, pp. 347–351], [7, p. 526]). From (11) and (12) we infer that actually Jε is a func-
tional depending only on the S-component of a curve. As shown in [13, Theorem 3.3], once
a splitting S×R ofM is chosen,Jε coincides with the restriction of the energy functional of
the stationary metric gε , defined on the Sobolev manifold of the H 1-curves between (x0, t0)

and (x1, t1) (parametrized on the interval [0, 1]) to its submanifold constituted by the curves
γ satisfying the conservation law (10) a.e. on [0, 1].

Our aim is to prove that a subsequence γεn , εn → 0, of these connecting geodesics
converges in C∞-topology to a geodesic of the metric g between (x0, t0) and (x1, t1) (see
Section 4). In order to do this, here we seek for a family of curves σε connecting x0 to x1 and
having bounded g0-energy: these curves will be used to control from above the minimum
values of the functionals Jε . To this end, we modify the control system (5) introducing a
family of drifts smoothly depending on the parameter ε. For ε ≥ 0, let Wε be the vector
field on S defined as

Wε := 2(� + ε)(t1 − t0)
ω�

|ω�|20
. (13)

We notice that if t1 − t0 �= 0 then, for all ε > 0, (Wε)x �∈ Dx , while for ε = 0, (W0)x ∈ Dx

at those x where �(x) = 0 and, if t1 = t0, then Wε ≡ 0 for all ε ≥ 0.
Let us then consider for ε ≥ 0 the control systems

τ̇ = Wε(τ) +
d∑

i=1

uiXi(τ ), τ (0) = x0 ∈ S, (14)

with control functions u = (u1, . . . , ud) ∈ L2([0, 1/2],Rd), so that the trajectories belong
to the Sobolev manifold of absolutely continuous curves τ : [0, 1/2] → S between x0 and
τ(1/2) with

∫ 1/2
0 g0(τ̇ , τ̇ ) ds < +∞. For any ε ≥ 0 we denote by �ε the set of trajectories

of (14) endowed with the H 1-topology and by Fε the associated end-point map, hence
Fε(τε) = τε(1/2) for all τε ∈ �ε .

For the following result we use some ideas contained in the proof of [18, Proposition
3.1].

Lemma 8 Let t1 �= t0 and x1 ∈ S. Denote by τ0 : [0, 1/2] → S a trajectory of (14)
for ε = 0 and some control functions u0 = (u01, . . . , u0d) ∈ L2

([0, 1/2],Rd
)
, such that

τ0(1/2) = x1. Then, there exists ε̄ ∈ (0, 1] such that, for each ε ∈ (0, ε̄), (14) with fixed
control functions u0 admits a solution τε defined on [0, 1/2] and such that

lim
ε→0

Fε(τε) = F0(τ0) = x1. (15)

Proof Taken x1 ∈ S, the existence of u0 and τ0 follows from [5, Theorem 5], see Remark 2.
From (13), (i) in Theorem 1 and the first inequality in (4), we have that the vector fields

Wε are uniformly bounded on S:

|Wε|0 ≤ 2(L + 1)|t1 − t0|1
ν
, for all ε ∈ [0, 1]. (16)

Since the image of τ0 is compact, we can cover it by a finite number of coordinate charts
{(Ul, ϕl)}, l ∈ {1, . . . , h}, and look at the system (14) on the open subsets ϕl(Ul) ⊂ R

m.
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Let {sl}, l ∈ {0, . . . , h}, be a partition of the interval [0, 1/2] such that τ0([sl−1, sl]) ⊂ Ul

for each l ∈ {1, . . . h}. Identifying then the vector fields Wε , Xi with their images by dϕl

on ϕl(Ul) we have that they all are bounded and Lipschitz on ϕl(Ul). Let L̄ be a common
Lipschitz constant for the above vector fields on all the subsets ϕl(Ul). Thus, following
the proof of [16, Lemma D.3], thanks to the uniform bound (16) and the equi-Lipschitz
property, we see that, for each ε ∈ (0, 1], the trajectories τε of (14) are defined on the same
interval [0, b), b < 1/2, and contained in U1. Being such trajectories uniformly 1

2 -Hölder
continuous on [0, b) (as it can be easily seen by using the integral representation of the
solutions of (14)), they can be extended at b.

We will actually prove that

lim
ε→0

τε(r) = τ0(r), uniformly on [0, b]. (17)

Using that {Wε}ε∈(0,1] are equi-Lipschitz,
|Wε(τε(s)) − W0(τ0(s))|

= |Wε(τε(s)) − Wε(τ0(s)) + Wε(τ0(s)) − W0(τ0(s))|
≤ L̄|τε(s) − τ0(s)| + 2ε|t1 − t0|

ν
.

Then for all r ∈ [0, b] and for C := 2|t1−t0|
ν

,

|τε(r) − τ0(r)| =
∣∣∣∣∣

∫ r

0
[Wε(τε) − W0(τ0)] ds +

∫ r

0

d∑

i=1

u0i[Xi(τε) − Xi(τ0)] ds
∣∣∣∣∣

≤ L̄

∫ r

0

(
1 +

d∑

i=1

|u0i |
)

|τε(s) − τ0(s)| ds + Cεr .

Hence, by the Gronwall inequality

|τε(r) − τ0(r)| ≤ Cεre
∫ r
0 h(s) ds ≤ CεbeL̄

√
b(

√
b+‖u0‖2), for all r ∈ [0, b],

where h(s) := L̄(1 + ∑d
i=1|u0i (s)|). Since τε(b) → τ0(b), as ε → 0, we can repeat

the above reasoning, starting at s = b and, in a finite number of steps, we obtain that
the trajectories τε uniformly converge to τ0 on [0, s1] and do not leave U1. Then we can
repeat the same argument on the interval [s1, s2] and so on, covering the whole interval
[0, 1/2].

In order to concatenate the curve τε in Lemma 8 with trajectories of (14) with Wε ≡ 0
and starting from x1, we consider the system

ν̇ =
d∑

i=1

uiXi(ν), ν(0) = x1 ∈ S. (18)

For any ε > 0, we denote by νε : [0, 1
2 ] → S a trajectory of (18) such that νε(1/2) = xε :=

Fε(τε) (recall [5, Theorem 5]). Since the end-point map is continuous in the H 1-topology
(see, e.g., [1, Proposition 8.5]) we get the following result:

Lemma 9 For all δ > 0 there exists ε̄ > 0 such that for all ε ∈ (0, ε̄):
∫ 1/2

0
|ν̇ε|20 ds < δ. (19)
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Proof We can modify the fields Xi outside a given compact subset of S containing x1 and
the points xε , for ε small enough, in order to get bounded vector fields X̃i . Then we consider
the system

ν̇ =
d∑

i=1

uiX̃i(ν), ν(0) = x1 ∈ S. (20)

By the continuity of the end-point map, there exists a neighborhood in L2([0, 1/2],Rd) of
the zero control and ε̄ > 0 such that, for any ε ∈ (0, ε̄), a control uε in such a neighborhood
and an associated trajectory νε of (20) connecting x1 to xε do exist. We then have

∫ 1/2

0
|ν̇ε|20 ds =

∫ 1/2

0

∣∣∣∣
d∑

i=1

uiX̃i(ν)

∣∣∣∣
2

0
ds ≤ d M2‖uε‖22,

where M := maxi∈{1,...,d}
(
maxx∈S |X̃i(x)|0). This implies that (19) holds and the curves

νε are in a small compact set containing x1, hence they are also trajectories of (18).

Using, for each ε ∈ (0, ε̄), a curve τε as in Lemma 8 and one νε as in Lemma 9, we
define the curves σε : [0, 1] → S

σε(s) =
{

τε(s) for all s ∈ [0, 1/2]
νε(1 − s) for all s ∈ (1/2, 1]. (21)

which connect x0 to x1.

Lemma 10 Let {σε}ε∈(0,ε̄) be the family of curves in (21). Then there exists C̄ > 0 such
that for all ε ∈ (0, ε̄): ∫ 1

0
|σ̇ε|20 ds ≤ C̄.

Proof From (19), it is enough to prove that there exist C > 0 and ε̄ > 0 such that
∫ 1

0
|τ̇ε|20 ds ≤ C̄, for all ε ∈ (0, ε̄).

By Lemma 8, the trajectories τε are definitively contained in a compact subset K of S thus,
recalling that Wε is g0-orthogonal to D, we obtain

∫ 1/2

0
|τ̇ε|20 ds =

∫ 1/2

0

∣∣Wε(τε)|20 ds +
∫ 1/2

0

∣∣∣∣
d∑

i=1

u0iXi(τε)

∣∣∣∣
2

0
ds

≤ 2(L + 1)2(t1 − t0)
2

ν2
+

∫ 1/2

0

( d∑

i=1

|u0i |
∣∣Xi(τε)

∣∣
0

)2

ds

≤ 2(L + 1)2(t1 − t0)
2

ν2
+ d M2

X‖u0‖22 (22)

where MX := maxi∈{1,...,d}
(
maxx∈K |Xi(x)|0

)
.

For all ε ∈ (0, ε̄) we pair the family σε in (21) with a function t : [0, 1] → R assuming
values t0 and t1, t1 �= t0, at the endpoints and so that (10) and (11) are satisfied for a zero
constant:

t (s) =
{

t0 + 2s(t1 − t0) if s ∈ [0, 1/2]
t1 if s ∈ (1/2, 1]. (23)
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Let also σ̄ be a trajectory of

σ̇ =
d∑

i=1

uiXi(σ ),

for some control functions ū1, . . . , ūd parametrized on [0, 1] and connecting x0 to x1.
Finally we set ηε(s) := (

σε(s), t (s)
)
, such that

σε is given in (21) and t in (23), if t1 �= t0,

σε ≡ σ̄ and t ≡ t0, otherwise. (24)

Proposition 11 For each ε ∈ (0, ε̄), let ηε = (
σε, t) be defined as in (24). Then ηε satisfies

(11) with Cηε,ε = 0.

Proof Let us consider first the case t1 �= t0. Being τε a trajectory of (14) for s ∈ [0, 1/2],
we get

ω(τ̇ε) = ω
(
Wε(τε)

) = 2(�(τε) + ε)(t1 − t0).

Then t (s) satisfies (11) on [0, 1/2] since by (10) Cηε,ε = 0. On the other hand, both ω(σ̇ε)

and ṫ vanish on the interval (1/2, 1] and then Cηε,ε is 0 also there. If t1 = t0, as ω( ˙̄σ) = 0,
both Cηε,ε and ṫ vanish, thus (11) holds.

Remark 12 For each ε ∈ (0, ε̄) let γε = (ρε, tε) be a geodesic between (x0, t0) and (x1, t1),
being ρε a minimizer of Jε in (9). Then, taking ηε = (

σε, t) as in Proposition 11, if t1 �= t0,
from Lemma 10 and assumption (i) in Theorem 1, we obtain

Jε(ρε) ≤ Jε(σε) = 1

2

∫ 1

0
|σ̇ε|20 ds + 2(t1 − t0)

2
∫ 1/2

0
(�(σε) + ε) ds

≤ C̄

2
+ 2(t1 − t0)

2(L + 1)

for all ε ∈ (0, ε̄). Recall that, in the case t1 = t0, the family of curves ηε is a constant (w.r.t.
ε) equal to (σ̄ , t0), hence Jε(ρε) ≤ 1

2

∫ 1
0 | ˙̄σ |20 ds for all ε ∈ (0, ε̄).

4 Geodesic Connectedness

In this section we prove Theorem 1. Let us start by showing that thanks to Remark 12 the
minimizers ρε constitute a family of bounded curves in �x0x1(S).

Lemma 13 Under assumptions (i)–(iv) in Theorem 1, for each ε > 0, let γε : [0, 1] →
S × R, γε = (ρε, tε) be a geodesic of (S × R, gε), with gε as in (7), between (x0, t0) and
(x1, t1), such that ρε is a minimizer of Jε in (9). Then there exists ε̄ > 0 such that the family
of curves {ρε}ε∈(0,ε̄) ⊂ �x0x1(S) is bounded in the H 1-topology and therefore, up to pass
to a subsequence, for any sequence εn → 0, {ρεn} uniformly converges to some continuous
curve ρ connecting x0 to x1.
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Proof From (10) and (iv) in Theorem 1 we get

|Cγε,ε| ≤ C

(∫ 1

0
|ρ̇ε|0 ds

)α+1

+ C

∫ 1

0
|ρ̇ε|0 ds +

∫ 1

0

(
�(ρε) + ε

)|ṫε| ds

≤ 2C

⎛

⎝1 +
(∫ 1

0
|ρ̇ε|0 ds

)α+1
⎞

⎠

+
(∫ 1

0

(
�(ρε) + ε

)
) 1

2
(∫ 1

0

(
�(ρε) + ε

)
ṫ2ε ds

) 1
2

≤ 2C

⎛

⎝1 +
(∫ 1

0
|ρ̇ε|0 ds

)α+1
⎞

⎠+ √
L + 1

(∫ 1

0

(
�(ρε) + ε

)
ṫ2ε ds

) 1
2

and from (9) and Remark 12 we get that
∫ 1
0|ρ̇ε|0 ds is bounded w.r.t. ε ∈ (0, ε̄). Taking into

account that the curves ρε connect the fixed points x0 and x1, by Ascoli-Arzelà theorem
we have that any sequence εn → 0 admits a subsequence εnk

such that {ρεnk
} uniformly

converges to a continuous curve ρ connecting x0 to x1.

Remark 14 We notice that the proof of Lemma 13 implies that the family{∫ 1
0

(
�(ρε) + ε

)
ṫ2ε ds

}

ε∈(0,ε̄)
is bounded as well.

Let us now rewrite the geodesic (8) for the metrics gε , ε > 0, and g (recall Remark 6) as
a system of second-order differential equations in normal form.

Proposition 15 Let ε ≥ 0; a curve γ : [0, 1] → M , γ (s) = (
ρ(s), t (s)

)
, is a geodesic of

the metric gε if ε > 0, or of the metric g if ε = 0, if and only if t satisfies the following
equation

ẗ = g0(ρ̇, ∇ρ̇ ω�)

�(ρ) + ε + |ω�(ρ)|20
+ g0(�

�(ρ̇), ω�) − g0(∇�, ρ̇)

�(ρ) + ε + |ω�(ρ)|20
ṫ

− g0
(∇�(ρ), ω�(ρ)

)

�(ρ) + ε + |ω�(ρ)|20
ṫ2

2
, (25)

and ρ satisfies the first equation in (8) with ẗ replaced by the expression in (25).

Proof Let us assume that γ is a geodesic of gε or g. Taking the product of the first equation
in (8) by the vector field ω� along ρ (recall also Remark 6), we obtain:

g0(∇ρ̇ ρ̇, ω�) − ṫg0(�
�(ρ̇), ω�) + g0

(
ω�(ρ), ω�(ρ)

)
ẗ

+1

2
g0

(∇�(ρ), ω�(ρ)
)
ṫ2 = 0. (26)

By the second equation in (8), we get

d

ds
ω(ρ̇) = g0(∇�, ρ̇)ṫ + (�(ρ) + ε)ẗ,
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whenever ε > 0 or ε = 0 and�◦ρ is not a constant equal to 0, otherwise we get d
dsω(ρ̇) = 0

on [0, 1]. Using
g0(∇ρ̇ ρ̇, ω�) = −g0(ρ̇, ∇ρ̇ ω�) + d

ds
ω(ρ̇) (27)

and plugging in (26), we get (25) on [0, 1].
For the other implication, we notice that by assumption ρ satisfies the first equation in (8).
For the second one, by (27) and (26) we get

d

ds

(
ω(ρ̇) − (�(ρ) + ε)ṫ

)

= g0(∇ρ̇ ρ̇, ω�) + g0(ρ̇, ∇ρ̇ ω�) − g0(∇�, ρ̇)ṫ − (�(ρ) + ε)ẗ

= ṫg0(�
�(ρ̇), ω�) − g0

(
ω�(ρ), ω�(ρ)

)
ẗ − 1

2
g0

(∇�(ρ), ω�(ρ)
)
ṫ2

+g0(ρ̇, ∇ρ̇ ω�) − g0(∇�, ρ̇)ṫ − (�(ρ) + ε)ẗ,

and then using (25) for replacing ẗ , we get

d

ds

(
ω(ρ̇) − (�(ρ) + ε)ṫ

) = 0,

i.e., the second equation in (8) is satisfied too.

Remark 16 Notice that (25) is invariant by affine reparametrization (and then the first equa-
tion in (8) also remains invariant by affine reparametrization when ẗ is replaced with its
value in (25)).

Remark 17 Equation (25) and the first equation in (8) with ẗ replaced by (25) make clear
that the geodesic equations of the metrics gε and g smoothly depend on ε on the interval
[0, +∞).

We are now ready to prove Theorem 1.

Proof of Theorem 1 We at first notice that by condition (ii) (25) reduces to

ẗ = g0(ρ̇, ∇ρ̇ ω�)

�(ρ) + ε + |ω�(ρ)|20
+ g0(�

�(ρ̇), ω�) − g0(∇�, ρ̇)

�(ρ) + ε + |ω�(ρ)|20
ṫ . (28)

Let now γε = (ρε, tε), εn, ρεn and ρ be as in Lemma 13, and let �t := t1 − t0. For all

n ∈ N, let also s
(1)
εn be the smallest instant in [0, 1) such that

�t =
∫ 1

0
ṫεn ds = ṫεn (s

(1)
εn

).

For s ≥ s
(1)
εn , integrating ẗεn on [s(1)

εn , s] and recalling that by the first inequality in (4),
�(ρεn) + εn + |ω�

ρεn
|20 ≥ ν2, we get from (28):

|ṫεn (s)| ≤ |�t | + 1

ν2

∫ s

s
(1)
εn

∣∣g0(ρ̇εn , ω
�)

∣∣ dr

+ 1

ν2

∫ s

s
(1)
εn

∣∣g0(��(ρ̇εn), ω
�) − g0(∇�(ρεn), ρ̇εn)

∣∣|ṫεn | dr . (29)
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By the smoothness of ω�, ��, � and the fact that the curves ρεn are contained in a com-
pact subsetK of S, there exists a non-negative constantC1, depending onK but independent
of n, such that

∣∣g0(ρ̇εn ,∇ρ̇εn
ω�)

∣∣ ≤ C1|ρ̇εn |20, for all s ∈ [0, 1].
∣∣g0(��(ρ̇εn), ω

�) − g0(∇�(ρεn), ρ̇εn)
∣∣ ≤ C1|ρ̇εn |0, (30)

From (29) and (30) we obtain

|ṫεn (s)| ≤ |�t | + C1

ν2

∫ s

s
(1)
εn

∣∣ρ̇εn |20 dr + C1

ν2

∫ s

s
(1)
εn

|ρ̇εn |0|ṫεn | dr,

for all s ∈ [s
ε
(1)
n

, 1] and n ∈ N. By the Gronwall inequality we then get

|ṫεn (s)| ≤
⎛

⎝|�t | + C1

ν2

∫ s

s
ε
(1)
n

∣∣ρ̇εn |20 dr
⎞

⎠ exp

⎛

⎝C1

ν2

∫ s

s
ε
(1)
n

|ρ̇εn |0 dr
⎞

⎠ , (31)

for all s ∈ [s(1)
εn , 1] and n ∈ N. From Lemma 13, {∫ 1

0|ρ̇εn |20 ds} is bounded, thus there exists
a non-negative constant C2 ≥ 0 such that

|ṫεn (s)| ≤ (|�t | + C2)e
C2 , for all s ∈ [s(1)

εn
, 1] and n ∈ N.

For each n ∈ N, let now s
(2)
εn be the smallest instant in

[
0, s(1)

εn

)
such that

|ṫεn (s
(2)
εn

)| = |�t | if |tεn (s
(1)
εn

) − t0| > |�t |,

|ṫεn (s
(2)
εn

)| =
∣∣∣∣∣

∫ s
12)
εn

0
ṫεn dr

∣∣∣∣∣ otherwise.

Repeating the reasoning as in the step above, we get (31) for all s ∈ [s(2)
εn , s

(1)
εn ] and n ∈ N

and then

|ṫεn (s)| ≤ (|�t | + C2)e
C2 , for all s ∈ [s(2)

εn
, s(1)

εn
] and n ∈ N. (32)

In this way we construct, for each n ∈ N, a sequence {s(k)
εn }k≥1 ⊂ [0, 1) such that s(k)

εn →
0 as k → +∞ and such that (32) holds on each interval [s(k+1)

εn , s
(k)
εn ] and each n ∈ N. As

the functions ṫεn are continuous at 0, (32) is valid for ṫεn (0) and all n ∈ N, as well. Summing
up, we have obtained

|ṫεn (s)| ≤ (|�t | + C2)e
C2 , for all s ∈ [0, 1] and n ∈ N. (33)

Being tεn (0) = t0 for all n, we infer from (33) that {tεn} is bounded in H 1([0, 1],R)

and then, up to a subsequence, {tεn} uniformly converges on [0, 1] to a function t̃ ∈
H 1([0, 1],R) such that t̃ (0) = t0, t̃(1) = t1.

Let us finally show that the curve γ (s) := (ρ(s), t̃(s)), s ∈ [0, 1], which connects (x0, t0)

to (x1, t1), is a geodesic of the metric g. Recalling that the values of Jεn on its critical points
ρεn coincide with 2Eγεn

, where Eγεn
is the constant of motion equal to gεn(γ̇εn , γ̇εn), we get

from (7):
|ρ̇εn |20 = 2Jεn(ρεn) − 2ω(ρ̇εn)ṫεn + (�(ρεn) + εn)ṫ

2
εn
. (34)

Recalling that the curves ρεn are contained in the compact set K, by Remark 12, (i) in
Theorem 1, (33) and (34), we get

|ρ̇εn |20 ≤ C3(1 + |ρ̇εn |0),
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for some constant C3 > 0. Hence, {|ρ̇εn (s)|0} is bounded on [0, 1]. Thus, recalling (33),
up to pass to a subsequence, the initial vectors {(ρ̇εn (0), ṫεn (0)

)} converge to a vector v0 ∈
T(x0,t0)(S ×R). By Proposition 15 and Remark 17 we conclude, by the smooth dependence
of solutions of (25) and the first equation in (8) (with ẗε replaced by the expression in (25))
from initial conditions and the parameter ε, that the sequence {(ρεn, tεn)} converges in the
C∞-topology to a geodesic γ̄ : [0, a) → M of the metric g. Since {(ρεn, tεn)} uniformly
converges to γ on [0, 1], by the C1-bounds on ρεn and tεn obtained above, we conclude that
a > 1 and γ̄ = γ on [0, 1].

As a final remark we notice that from Remark 4, if

�−(x0, x1) < t1 < �+(x0, x1),

then the geodesic γ between (x0, t0) and (x1, t1) is necessarily spacelike.
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