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ADHESION AND DEBONDING IN A MODEL OF ELASTICS STRING

G. M. COCLITE, G. FLORIO, M. LIGABÒ, AND F. MADDALENA

Abstract. We consider a 1D semilinear wave equation (and the corresponding initial boundary value
problem of Neumann type) modeling the dynamics of an elastic string. We include a source term mod-
eling the interaction of the string with a rigid substrate by an adhesive layer. This force is characterized
by a jump to zero when a critical value of the displacement is reached. We obtain conditions for the
initial value problem in order to guarantee the regularity of the solution and the adhesion phenomenon.
Finally, we consider a regularization of the source term and numerically analyze the problem. We study
the qualitative properties of the solutions for different initial conditions.

1. Introduction

Mathematical modeling of phenomena in life sciences and manufacturing engineering is a difficult
task due to the complexity of the underlying physical mechanisms involved. Growth, fracture and
wetting [1, 2, 3, 4] are examples of this kind of problems. In particular, the problems related to
adhesion and debonding are extremely important because of their applications [5], for instance in the
delamination phenomenon in laminated composite materials [6]. Costitutive models on the adhesive
materials have to be assumed in order to analyze the mechanical systems. For instance, rigorous
approaches (based on the calculus of variations) to the static problem of adhesion in elastic thin
structures under various constitutive assumptions on the adhesive material have been performed in
[7, 8, 9, 10]. On the other hand, the analysis of the evolution requires the use of multidimensional
hyperbolic equations involving mathematical issues not yet well understood.

In this paper we address a prototypical dynamical problem by studying the adhesion of an elastic
string glued to a rigid substrate. We will assume a discontinuous softening behavior of the adhesive
material, i.e. the adhesive stress jumps to zero when a critical value of the displacement is reached. It
is interesting to notice that the choice of a costitutive model for the adhesive layer is fundamental an
must be carefully considered. For instance, it has been shown in [11] that a discontinuity in the source
term, like the one previously mentioned, can induce non-trivial consequences: it is possible to build
explicit examples with solutions that exhibit instability under different regularizations of the source
term. Thus, we want to extend the analysis performed in [11].

The paper is organized as follow. In Section 2 we present the initial boundary problem and the
costitutive model for the adhesive layer. In Section 3 we obtain the conditions that must be imposed
of the initial conditions in order to ensure the regularity of the solutions and guarantee that there is
not a debonding phenomenon. In Section 4, after introducing a regularization of the source term, we
numerically study the properties of some solutions of the problem. Finally, in Section 5 we draw some
conclusions.
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Figure 1. Potential Φ(u) in Eq. (2.2).

2. The model

Let us consider a one dimensional material body, i.e. a string, whose rest configuration at the initial
time t = 0 coincides with the interval [0, L] and the displacement field is denoted by

u : [0,∞)× [0, L]→ R.

We consider the mechanical system with the following energy density:

(2.1) e[u] =
1

2
ρ(∂tu)2 +

1

2
Ke(∂xu)2 + Φ(u),

where ρ > 0 denotes the mass density, Ke denotes the elastic stiffness of the string, and Φ(u) denotes the
adhesion potential modeling the energetic contribution of the glue layer. We assume for the potential
Φ a behavior like in Fig. 1:

(2.2) Φ(u) =

{
u2, if |u| ≤ u∗,
(u∗)2, if |u| > u∗.

This corresponds to a discontinuous softening behavior of the adhesive material: the adhesive stress
jumps to zero when a critical value of the displacement (denoted u∗) is reached.

The Euler equation associated to the above energy density (2.1) is

(2.3) ρ∂2
ttu−Ke∂

2
xxu = −Φ′ (u) ,

equipped with Neumann boundary conditions. For sake of notational simplicity, the mass density ρ
and the extensional stiffness Ke are assumed both equal to 1. The string interacts with an underlying
rigid support through an infinitesimal layer of adhesive material characterized by an internal energy
u 7→ Φ(u) with the threshold u∗ set to 1.

The balance of momentum delivers the semilinear initial boundary value problem

(2.4)


∂2
ttu = ∂2

xxu− Φ′ (u) , t > 0, 0 < x < L,

∂xu(t, 0) = ∂xu(t, L) = 0, t > 0,

u(0, x) = u0(x), 0 < x < L,

∂tu(0, x) = u1(x), 0 < x < L,

where u0 ∈ H1(0, L), u1 ∈ L2(0, L) and Φ′ has a jump discontinuity in u = ±1 such that

u ∈ (−∞,−1) ∪ (1,∞)⇒ Φ′(u) = 0,

0 < u < 1⇒ 0 < Φ′(u) ≤ lim
u→1−

Φ′(u),
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−1 < u < 0⇒ 0 > Φ′(u) ≥ lim
u→−1+

Φ′(u).

According to our conventions, we will consider

(2.5) Φ(u) =

{
u2, if |u| ≤ 1,

1, if |u| > 1,

and

(2.6) Φ′(u) =

{
2u, if |u| ≤ 1,

0, if |u| > 1.

The energy associated to the problem (2.4) is

(2.7) E(t) =

ˆ L

0

(
(∂tu(t, x))2 + (∂xu(t, x))2

2
+ Φ(u(t, x))

)
dx.

3. Conditions for adhesion and regularity

A natural question is whether, given certain assumptions on u0 and E(0), it is possible to find a
condition such that the adhesion of the string is ensured. Moreover, one would like to find conditions so
that the solution is regular. In this section we will tackle this problem. In particular, we will consider
dissipative solutions u of the problem (2.4) (see Appendix A) and proof two theorems.

3.1. Adhesion.

Theorem 3.1. Let u be a dissipative solution of (2.4). If

(3.1) ‖u0‖L∞(0,L) < 1, E(0) < 1,

then

(3.2) ‖u‖L∞((0,∞)×(0,L)) < 1.

Proof. Since u is continuous at least for a short time interval [0, τ ] we have

|u(t, x)| < 1, (t, x) ∈ [0, τ ]× [0, L].

Define τ∗ as follows

τ∗ = sup {τ > 0 such that for every (t, x) ∈ [0, τ ]× [0, L] |u(t, x)| < 1} .
We claim that

(3.3) τ∗ =∞.
Observe that

Φ(u(t, x)) = u2(t, x), (t, x) ∈ [0, τ∗)× [0, L].

Therefore

E(t) =

ˆ L

0

(
(∂tu(t, x))2 + (∂xu(t, x))2

2
+ (u(t, x))2

)
dx, t ∈ [0, τ∗),

and, in particular,

E(t) ≥
‖u(t, ·)‖2H1(0,L)

2
, t ∈ [0, τ∗).

Since u is dissipative, using the Sobolev embedding H1(0, L) ⊂ L∞(0, L) (see [?, Theorem 8.5]), we
have

‖u(t, ·)‖2L∞(0,L) ≤
‖u(t, ·)‖2H1(0,L)

2
≤ E(t) ≤ E(0) < 1, t ∈ [0, τ∗),

that proves (3.3) �
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3.2. Regularity.

Theorem 3.2. Let u be a dissipative solution of (2.4). If

(3.4) u0 ∈W 2,∞(0, L),

and there exists a time τ such that

(3.5) supp(u(t, ·)) ⊂⊂ (0, L), t ∈ [0, τ),

then

u ∈W 2,∞((0, τ)× (0, L)),(3.6)

E(T ) = E(0), 0 ≤ T < τ.(3.7)

Proof. Thanks to (3.5) we can see u as the solution of the Cauchy problem

(3.8)


∂2
ttu = ∂2

xxu− Φ′ (u) , t > 0, x ∈ R,
u(0, x) = ũ0(x), x ∈ R,
∂tu(0, x) = ũ1(x), x ∈ R,

where ũ0 and ũ1 are the trivial extensions of u0 and u1 to R. Following [11, Section 4.1], using the
first order reformulation of the problem and the d’Alembert and the Duhamel Formulas, we have that

(3.9) ∂xu(t, x) = ∂xũ0(x+ t), [0, τ)× R.

as a consequence

(3.10) ∂2
xxu ∈ L∞((0, τ)× R).

Since

∂2
ttu = ∂2

xxu− Φ′(u)

we have also

(3.11) ∂2
ttu ∈ L∞((0, τ)× R).

Clearly, (3.10) and (3.11) imply (3.6).
Finally, due to (3.6) we can multiply the equation in (3.8) by ∂tu and get (3.7). �

4. Numerical examples

In this section we will study the problem (2.4) with different initial conditions in order to analyze
the properties of the solutions. As we will see, they exhibit a rich phenomenology. As already stated
in the Introduction, it has been shown [11] that the source term of the form (2.6) introduces some
problems in the well-posedness of the problem. Therefore, in order to avoid confusion, we will consider
a particular class of approximating functions and study the corresponding solutions.

4.1. Approximation of Φ′. Let us consider the approximation

(4.1) Φ̃′(u) = u

(
Erf

(
u+ u∗

ε

)
− Erf

(
u− u∗

ε

))
where

(4.2) Erf(u) =
2√
π

ˆ u

0
e−s

2
ds.

We show an example of Φ̃′ in figure 2 where we have fixed u∗ = 1 and ε = 10−4.



ADHESION AND DEBONDING IN A MODEL OF ELASTICS STRING 5

-� � �

��
�̃0

<latexit sha1_base64="BOMZ7dd56tjRH5CwE8llTyB6ujQ=">AAAB/3icbVC7TsNAEDzzDOEVoKQ5ESGoIhshQRlBQxkk8pASKzpfNskp57O5WyNFVgq+ghYqOkTLp1DwL5yNC0iYajSzq52dIJbCoOt+OkvLK6tr66WN8ubW9s5uZW+/ZaJEc2jySEa6EzADUihookAJnVgDCwMJ7WBynfntB9BGROoOpzH4IRspMRScoZX8Hgo5gLTXGIvZSb9SdWtuDrpIvIJUSYFGv/LVG0Q8CUEhl8yYrufG6KdMo+ASZuVeYiBmfMJG0LVUsRCMn+ahZ/Q4MQwjGoOmQtJchN8bKQuNmYaBnQwZjs28l4n/ed0Eh5d+KlScICieHbJPQn7IcC1sG0AHQgMiy5IDFYpyphkiaEEZ51ZMbD1l24c3//0iaZ3VPLfm3Z5X61dFMyVySI7IKfHIBamTG9IgTcLJPXkiz+TFeXRenTfn/Wd0ySl2DsgfOB/fgeCWiw==</latexit><latexit sha1_base64="BOMZ7dd56tjRH5CwE8llTyB6ujQ=">AAAB/3icbVC7TsNAEDzzDOEVoKQ5ESGoIhshQRlBQxkk8pASKzpfNskp57O5WyNFVgq+ghYqOkTLp1DwL5yNC0iYajSzq52dIJbCoOt+OkvLK6tr66WN8ubW9s5uZW+/ZaJEc2jySEa6EzADUihookAJnVgDCwMJ7WBynfntB9BGROoOpzH4IRspMRScoZX8Hgo5gLTXGIvZSb9SdWtuDrpIvIJUSYFGv/LVG0Q8CUEhl8yYrufG6KdMo+ASZuVeYiBmfMJG0LVUsRCMn+ahZ/Q4MQwjGoOmQtJchN8bKQuNmYaBnQwZjs28l4n/ed0Eh5d+KlScICieHbJPQn7IcC1sG0AHQgMiy5IDFYpyphkiaEEZ51ZMbD1l24c3//0iaZ3VPLfm3Z5X61dFMyVySI7IKfHIBamTG9IgTcLJPXkiz+TFeXRenTfn/Wd0ySl2DsgfOB/fgeCWiw==</latexit><latexit sha1_base64="BOMZ7dd56tjRH5CwE8llTyB6ujQ=">AAAB/3icbVC7TsNAEDzzDOEVoKQ5ESGoIhshQRlBQxkk8pASKzpfNskp57O5WyNFVgq+ghYqOkTLp1DwL5yNC0iYajSzq52dIJbCoOt+OkvLK6tr66WN8ubW9s5uZW+/ZaJEc2jySEa6EzADUihookAJnVgDCwMJ7WBynfntB9BGROoOpzH4IRspMRScoZX8Hgo5gLTXGIvZSb9SdWtuDrpIvIJUSYFGv/LVG0Q8CUEhl8yYrufG6KdMo+ASZuVeYiBmfMJG0LVUsRCMn+ahZ/Q4MQwjGoOmQtJchN8bKQuNmYaBnQwZjs28l4n/ed0Eh5d+KlScICieHbJPQn7IcC1sG0AHQgMiy5IDFYpyphkiaEEZ51ZMbD1l24c3//0iaZ3VPLfm3Z5X61dFMyVySI7IKfHIBamTG9IgTcLJPXkiz+TFeXRenTfn/Wd0ySl2DsgfOB/fgeCWiw==</latexit><latexit sha1_base64="BOMZ7dd56tjRH5CwE8llTyB6ujQ=">AAAB/3icbVC7TsNAEDzzDOEVoKQ5ESGoIhshQRlBQxkk8pASKzpfNskp57O5WyNFVgq+ghYqOkTLp1DwL5yNC0iYajSzq52dIJbCoOt+OkvLK6tr66WN8ubW9s5uZW+/ZaJEc2jySEa6EzADUihookAJnVgDCwMJ7WBynfntB9BGROoOpzH4IRspMRScoZX8Hgo5gLTXGIvZSb9SdWtuDrpIvIJUSYFGv/LVG0Q8CUEhl8yYrufG6KdMo+ASZuVeYiBmfMJG0LVUsRCMn+ahZ/Q4MQwjGoOmQtJchN8bKQuNmYaBnQwZjs28l4n/ed0Eh5d+KlScICieHbJPQn7IcC1sG0AHQgMiy5IDFYpyphkiaEEZ51ZMbD1l24c3//0iaZ3VPLfm3Z5X61dFMyVySI7IKfHIBamTG9IgTcLJPXkiz+TFeXRenTfn/Wd0ySl2DsgfOB/fgeCWiw==</latexit>

u
<latexit sha1_base64="pNB2xLisdVDPetTfX40wM4o9v0A=">AAAB83icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48JmAckS5iddOKQ2QczPUII+QKvevImXv0gD/6Lu+seNLFORVU3XV1BoqQh1/10SmvrG5tb5e3Kzu7e/kH18KhjYqsFtkWsYt0LuEElI2yTJIW9RCMPA4XdYHqb+d1H1EbG0T3NEvRDPonkWApOqdSyw2rNrbs52CrxClKDAs1h9WswioUNMSKhuDF9z03In3NNUihcVAbWYMLFlE+wn9KIh2j8eR50wc6s4RSzBDWTiuUi/t6Y89CYWRikkyGnB7PsZeJ/Xt/S+NqfyyixhJHIDpFUmB8yQsu0AWQjqZGIZ8mRyYgJrjkRasm4EKlo00oqaR/e8verpHNR99y617qsNW6KZspwAqdwDh5cQQPuoAltEIDwBM/w4ljn1Xlz3n9GS06xcwx/4Hx8A4HckX4=</latexit><latexit sha1_base64="pNB2xLisdVDPetTfX40wM4o9v0A=">AAAB83icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48JmAckS5iddOKQ2QczPUII+QKvevImXv0gD/6Lu+seNLFORVU3XV1BoqQh1/10SmvrG5tb5e3Kzu7e/kH18KhjYqsFtkWsYt0LuEElI2yTJIW9RCMPA4XdYHqb+d1H1EbG0T3NEvRDPonkWApOqdSyw2rNrbs52CrxClKDAs1h9WswioUNMSKhuDF9z03In3NNUihcVAbWYMLFlE+wn9KIh2j8eR50wc6s4RSzBDWTiuUi/t6Y89CYWRikkyGnB7PsZeJ/Xt/S+NqfyyixhJHIDpFUmB8yQsu0AWQjqZGIZ8mRyYgJrjkRasm4EKlo00oqaR/e8verpHNR99y617qsNW6KZspwAqdwDh5cQQPuoAltEIDwBM/w4ljn1Xlz3n9GS06xcwx/4Hx8A4HckX4=</latexit><latexit sha1_base64="pNB2xLisdVDPetTfX40wM4o9v0A=">AAAB83icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48JmAckS5iddOKQ2QczPUII+QKvevImXv0gD/6Lu+seNLFORVU3XV1BoqQh1/10SmvrG5tb5e3Kzu7e/kH18KhjYqsFtkWsYt0LuEElI2yTJIW9RCMPA4XdYHqb+d1H1EbG0T3NEvRDPonkWApOqdSyw2rNrbs52CrxClKDAs1h9WswioUNMSKhuDF9z03In3NNUihcVAbWYMLFlE+wn9KIh2j8eR50wc6s4RSzBDWTiuUi/t6Y89CYWRikkyGnB7PsZeJ/Xt/S+NqfyyixhJHIDpFUmB8yQsu0AWQjqZGIZ8mRyYgJrjkRasm4EKlo00oqaR/e8verpHNR99y617qsNW6KZspwAqdwDh5cQQPuoAltEIDwBM/w4ljn1Xlz3n9GS06xcwx/4Hx8A4HckX4=</latexit><latexit sha1_base64="pNB2xLisdVDPetTfX40wM4o9v0A=">AAAB83icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48JmAckS5iddOKQ2QczPUII+QKvevImXv0gD/6Lu+seNLFORVU3XV1BoqQh1/10SmvrG5tb5e3Kzu7e/kH18KhjYqsFtkWsYt0LuEElI2yTJIW9RCMPA4XdYHqb+d1H1EbG0T3NEvRDPonkWApOqdSyw2rNrbs52CrxClKDAs1h9WswioUNMSKhuDF9z03In3NNUihcVAbWYMLFlE+wn9KIh2j8eR50wc6s4RSzBDWTiuUi/t6Y89CYWRikkyGnB7PsZeJ/Xt/S+NqfyyixhJHIDpFUmB8yQsu0AWQjqZGIZ8mRyYgJrjkRasm4EKlo00oqaR/e8verpHNR99y617qsNW6KZspwAqdwDh5cQQPuoAltEIDwBM/w4ljn1Xlz3n9GS06xcwx/4Hx8A4HckX4=</latexit>

Figure 2. Approximation the the source term Φ in Eq.(4.1) with u∗ = 1 and ε = 10−4.

4.2. Examples. In the following examples the numerical integration of the problem (2.4) is performed
using the method of lines with a spatial discretization based on a grid ranging from 300 to 1000 points
and up to sixth-order finite differences. We have verified that the Neumann boundary conditions are
satisfied with an error smaller than 10−10. We have also tested different values of ε in Φ̃′. In the
examples we have fixed ε = 10−4.

Example 4.1.

Let us take initial value such that u(0, x) = u0(x) is in C2([0, L]):{
u0(x) = ξ0

(
x3

3 − L
x2

2

)
, 0 ≤ x ≤ L,

u1(x) = ξ1, 0 ≤ x ≤ L.
(4.3)

In Figures 3 and 4 we plot, respectively, the solution of 2.4 with initial conditions (4.3) and its first
order derivatives with respect to time and space coordinates. In the simulation we have used the values
ξ0 = 0.006, ξ1 = 1.2, L = 10 and a total time evolution T = 10. In Figure 3 we have also inserted
the plans with u = ±1 in order to show the regions where the solution has reached and exceeded the
critical values. From the results, it is evident that the initial conditions allow a part of the system to
pass u = 1. It is possible to see that these two values depend on ξ0 and ξ1. On the other hand, the
simulations show that the system also exhibits another feature: the debonding process is reversed and
u takes values less than 1. The values t∗ (time) and x∗ (position) where again u = 1 and the debonding
is reversed are more evident by inspecting the behavior of ∂tu and ∂xu. Interestingly, ∂xu is not very
sensible to the debonding process.

Example 4.2.

We consider initial values such that u is in C1([0, L]) for t = 0:{
u0(x) = ξ0b c(x), 0 ≤ x ≤ L,
u1(x) = ξ1, 0 ≤ x ≤ L.

(4.4)

where b is a constant defined as

(4.5) b =
1

−1
4L
√

4a2 − L2 + a2
(
− tan−1

(
L√

4a2−L2

))
+ aL

,

and

c(x) =− 1

2
x
√
a2 − x2 +

1

2
a2 tan−1

(
x
√
a2 − x2

x2 − a2

)
+ ax, 0 ≤ x ≤ L/2,(4.6)
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Figure 3. Solution of (2.4) with initial conditions (4.3). See text for the numerical
values used in the simulation.

Figure 4. Left: derivative with respect to time of u shown in Figure 3. Right:
derivative with respect to space of u shown in Figure 3. See text for the numerical
values used in the simulation.

c(x) =− 1

4
L
√

4a2 − L2 + a2

(
− tan−1

(
L√

4a2 − L2

))
+

1

2

(
(L− x)

√
a2 − (L− x)2 + a2 tan−1

(
L− x√

a2 − (L− x)2

)
+ 2ax

)
, L/2 < x ≤ L,(4.7)

with a > L/2. We notice that the second space derivative of c is not continuous in x = L/2. We have
performed two different simulations. In Figures 5 and 6 we plot, respectively, the solution of (2.4) with
initial conditions (4.4) and its first order derivatives with respect to time and space coordinates. In
the simulation we have used the values ξ0 = 0.7, ξ1 = 1.1, a = 6, L = 10 and a total time evolution
T = 3. In Figures 7 and 8 we find the solution for the same system but with ξ1 = 1.4. As in the
previous example, we observe that the inversion point (where the debonding is reversed) acts as a
source for the direct observation of propagation along the characteristics. Moreover, we explicitly
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Figure 5. Solution of (2.4) with initial conditions (4.4). See text for the numerical
values used in the simulation.

Figure 6. Left: derivative with respect to time of u shown in Figure 5. Right: deriv-
ative with respect to space of u shown in Figure 5. See text for the numerical values
used in the simulation.

observe propagation along the characteristics from the initial point (t = 0, x = L/2) where ∂xu is not
C2. From other numerical experiments (not shown in the paper) we can deduce that this phenomenon
is ubiquitous whenever there are two (or more) points in the x-domain at t = 0 with ∂xu not in C2.

Example 4.3.

We consider now the initial conditions:{
u0(x) = ξ0(−1

2 + b c(x)) + 1, 0 ≤ x ≤ L,
u1(x) = ξ1, 0 ≤ x ≤ L.

(4.8)

where we have defined b and c in Equations (4.5)-(4.7). Thus, we fix the discontinuity point of the
second derivative of u with respect to x (at t = 0) when u(0, L/2) = 1. Moreover, we set ξ0 = 0.7,
ξ1 = −1.2 (the initial velocity is reversed), a = 6, L = 10 and a total time evolution T = 3. As in the
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Figure 7. Solution of (2.4) with initial conditions (4.4). See text for the numerical
values used in the simulation.

Figure 8. Left: derivative with respect to time of u shown in Figure 7. Right:
derivative with respect to space of u shown in Figure 7. See text for the numerical
values used in the simulation.

previous cases, in Figures 9 and 10 we plot, respectively, the solution of (2.4) with initial conditions
(4.8) and its first order derivatives with respect to time and space coordinates. We notice that the point
(t = 0, x = L/2) is now both an inversion point and a discontinuity point for the initial second space
derivative of u. Thus we again observe the explicit propagation along the characteristics. Moreover,
the value of ξ1 is large enough to observe a complete debonding phenomenon with u < −1 after some
time. This is evident form the behavior of ∂tu in Figure 4.7. We also notice that there are not new
sources of characteristics.

We stress that we have numerically tested that separating the inversion point and the discontinuity
point gives rise to two separated characteristics sets. This is evident from the results obtained in the
following example.

Example 4.4.
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Figure 9. Solution of (2.4) with initial conditions (4.8). See text for the numerical
values used in the simulation.

Figure 10. Left: derivative with respect to time of u shown in Figure 9. Right:
derivative with respect to space of u shown in Figure 9. See text for the numerical
values used in the simulation.

Let us consider the initial conditions{
u0(x) = ξ0(1

2 + b c(x)), 0 ≤ x ≤ L,
u1(x) = ξ1, 0 ≤ x ≤ L.

(4.9)

In Figures 11 and 12 we show, respectively, the solution of (2.4) with initial conditions (4.9) and its first
order derivatives with respect to time and space coordinates [same parameters used for the simulations
with the conditions in Equation (4.8)]. Moreover, in this case there is not a complete debonding, even
in the example where a large negative value of ξ1 has been chosen. As a consequence, we can observe
a new set of characteristics in the plots of ∂tu and ∂xu.

Example 4.5.
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Figure 11. Solution of (2.4) with initial conditions (4.9). See text for the numerical
values used in the simulation.

Figure 12. Left: derivative with respect to time of u shown in Figure 11. Right:
derivative with respect to space of u shown in Figure 9. See text for the numerical
values used in the simulation.

We have also considered the case of initial condition where ∂tu(0, x) = u1(x) is in C([0, L]):{
u0(x) = ξ0(−1

2 + b c(x)) + 1, 0 ≤ x ≤ L,
u1(x) = ξ1b

d
dx [c(x)], 0 ≤ x ≤ L.

(4.10)

The discontinuity point of the second derivative of u with respect to x (at t = 0) appears for x = L/2
when u(0, L/2) = 1. We have fixed ξ0 = 0.7, ξ1 = 0.8, a = 6, L = 10 and a total time evolution T = 3.
In Figures 13 and 14 we show, respectively, the solution of (2.4) with initial conditions (4.10) and its
first order derivatives with respect to time and space coordinates. We observe the propagation of the
discontiuity in both partial derivatives.

Example 4.6.
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Figure 13. Solution of (2.4) with initial conditions (4.10). See text for the numerical
values used in the simulation.

Figure 14. Left: derivative with respect to time of u shown in Figure 13. Right:
derivative with respect to space of u shown in Figure 13. See text for the numerical
values used in the simulation.

Finally, we have considered the case of initial condition where u at t = 0 is in C([0, L]). In order to
perform the numerical simulation we have mollified the initial data in the following way:{

u0(x) = ξ0fη(x), 0 ≤ x ≤ L,
u1(x) = ξ1, 0 ≤ x ≤ L,

(4.11)

where

fη(x) =
2(

L
2 − η

)
L
×


x2, 0 ≤ x < L

2 − η,
−L/2−η

η x2 + LL/2−ηη x− L (L/2−η)2

2η , L
2 − η ≤ x <

L
2 + η,

(x− L)2, L
2 + η ≤ x ≤ L,

(4.12)
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Figure 15. Solution of (2.4) with initial conditions (4.11). See text for the numerical
values used in the simulation.

Figure 16. Left: derivative with respect to time of u shown in Figure 15. Right:
derivative with respect to space of u shown in Figure 15. See text for the numerical
values used in the simulation.

and η is the mollification parameter. We have fixed ξ0 = 0.5, ξ1 = 1.5, η = 0.3, L = 10 and a total time
evolution T = 3. In Figures 15 and 16 we show, respectively, the solution of (2.4) with initial conditions
(4.11) and its first order derivatives with respect to time and space coordinates. Also in this case, we
directly observe the presence of characteristics due to debonding and an hint of the propagation due to
the jump of the value of the first derivative in t = 0, x = L/2. We have verified an analogous behavior
of the solution u when the value of η is reduced.

5. Conclusions

In this paper we have considered a prototypical model for the description of adhesion and decohesion
phenomena in an elastic string interacting with a rigid substrate by an adhesive layer. The use of a
costitutive model based of a source term involving a jump discontinuity introduces some difficulties in
the well-posedness for the derivation of solutions of the initial boundary problem. On the other hand,
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we have been able to obtain conditions ensuring the regularity of these solutions and the possibility
to prevent the string to detach from the substrate. Moreover, the numerical analysis of the dynamics
has been based on a regularization of the source term. Thus, we have studied different classes of
initial conditions and studied their propagation along the characteristics. It is natural to think about
extensions of this work using the same costitutive law. One would naturally consider two and three
dimensional systems in order to study laminated composite materials. Moreover, the introduction
of temperature and, therefore, the adoption of a thermoelastic model would represent an interesting
generalization.
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Appendix

Appendix A. Dissipative solutions

Given the problem (2.4), we can define a dissipative solution as in the following:

Definition A.1. We say that a function u : [0,∞)× [0, L]→ R is a dissipative solution of (2.4) if

(i) u ∈ C([0,∞)× [0, L]);
(ii) ∂tu, ∂xu ∈ L∞(0,∞;L2(0, L));

(iii) for every test function ϕ ∈ C∞(R2) with compact support

ˆ ∞
0

ˆ L

0

(
u∂2

ttϕ+ ∂xu∂xϕ+ Φ′ (u)ϕ
)
dtdx

−
ˆ L

0
u1(x)ϕ(0, x)dx+

ˆ
R
u0(x)∂tϕ(0, x)dx = 0;

(A.1)

(iv) (energy dissipation) for almost every t > 0

ˆ L

0

(
(∂tu(t, x))2 + (∂xu(t, x))2

2
+ Φ(u(t, x))

)
dx

≤
ˆ L

0

(
(u1(x))2 + (u′0(x))2

2
+ Φ(u0(x))

)
dx.

(A.2)
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