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Abstract
Industry 4.0, is the well-known term used to represent the fourth industrial revolution,
characterized by the integration of digital technologies, automation, and data-driven decision-
making into manufacturing and industrial processes. An important aspect, on which both
researchers and companies are investigating, is the practical implementation of Industry 4.0 in
logistics, considering case studies and best practices from leading companies. As a matter of
fact, this doctoral thesis improve some of the most time-consuming and expansive operations in
logistics by using the most promising control and optimization techniques. The thesis begins by
providing a comprehensive overview of the Industry 4.0 framework and discusses the potential
benefits of adopting Industry 4.0 principles (i.e., improved efficiency, reduced costs, and enhanced
flexibility) in the logistic sector. Then, after the analysis of the main classification used for the
logistic applications, the work is developed following two different functional contexts, that are
the internal and the external logistics, applied to several application operational scenarios. In
particular, for the first part, the two main problems tackled are the ones related to automated
storage systems (i.e., systems designed to automate the process of storing and retrieving goods or
materials within a warehouse or storage environment) that are the development of the automated
bin packing algorithm and the optimization of the design of a particular kind of automated
warehouse named Vertical Lift Module warehouse. On the other hand, the addressed in the second
part are related to the management of the delivery planning and online replanning operations:
starting with the enhancement of the cargo inside the container (i.e., the container loading
problem), to the optimization of the vehicles routing both offline and in real-time, and finally
with the design of a control systems for the application of drones in the last mile delivery of items.

For each problem, after a deep analysis of the related state-of-the-art literature for the setting
of the benchmarks to overcome and the choosing of the best resolution method, the related work
has been developed also taking into account the company’s needs so as to formulate the most
complete set of business rules, bridging the gap between companies and academia and satisfying
the main requirements of innovations requested by the principles of Industry 4.0. Each problem is
thus studied, formalized, and tested taking both the academics’ and companies’ points of view so
as to provide the most complete solution possible. After the examination of the previous issues,
the thesis is concluded by presenting a future outlook for logistics in the Industry 4.0 era. It
highlights the importance of adaptability and continuous innovation to thrive in this digitally
driven landscape.

Overall,it is worth mentioning that this research contributes valuable insights for academics
and industry professionals, aiming to navigate the transformation of logistics and supply chain
management in the age of Industry 4.0 and has been rewarded of several prizes and publications
international distinguished conferences, and journal articles.



Impara da ieri, vivi per oggi, spera per il domani.
La cosa più importante è non smettere mai di farsi domande

Albert Einstein

A me stessa, per la mia tenacia e perseveranza.
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Chapter 1

Introduction

I
Industry 4.0 is an actual trend whose aim is the integration of new technologies to improve

working conditions, create new business models, and increase productivity and production quality
in industrial plants. The term "Industry 4.0" was established in 2011 by Henning Kagermann,
Wolf-Dieter Lukas, and Wolfgang Wahlster, during a speech held at the 2011 Hanover Fair,
in which they announced the Zukunftsprojekt Industrie 4.0, a project for the industry of the
future that included investments in infrastructure, schools, energy systems, research bodies, and
companies to modernize the German production system and bring German manufacturing back
to the top of the world making it globally competitive [1],[2]. Nowadays, the concept Industry 4.0
is broadly used worldwide to represent a new industrial revolution based on the use of enabling
technologies such as robotics and automation, sensors, connectivity, and programming to advance
the industrial sector. As suggested by its name, this is the fourth revolution that the Industry has
experienced over the years. Each industrial revolution has brought radical changes to industries’
paradigms. In particular:

1. the first industrial revolution occurred in 1760. It is characterized by the invention of
the steam engine which led to the introduction of the mechanization of production and
tools as the mechanical frames that were driven by the power of water and steam on
mechanical equipment. This revolution led to an increase in the ability to produce goods
and consequently brought to rapid economic growth;

2. the second industrial revolution, in 1870, regards the use of electricity and oil as energy
sources, leading to increased mass production and the introduction of new technologies like
the telegraph and telephone;

3. the third industrial revolution, started in 1970s, was driven by information technology
and electronics, further enhancing automation and production quality through increasingly
powerful computers and the introduction of the first industrial robots;

4. the fourth industrial revolution, Industry 4.0, includes a further evolution of industrial
automation. This revolution differs from previous ones by leveraging digital technologies and
the IoT. The IoT refers to the extension of the internet to the world of objects and physical
locations, enabling connection and interaction between smart devices. In Industry 4.0,
machines are interconnected and communicate with each other, performing self-diagnosis
and preventive maintenance. This improves the efficiency and reliability of production
processes and in particular, the production planning and control activities whose aim is to
define what, how much, and when to produce, buy, and deliver so that the company can
match manufacturing performance with customer demands [3].

As it emerges from the above discussion, one of the main elements of Industry 4.0 is digitization,
in fact, through digitization, production processes become smarter and more flexible. More in
detail, the digitization of industrial operations and processes consists in real-time data collection
from sensors and connected devices, providing greater visibility and control over production
processes. This data can be analyzed and used to optimize operations, predict failures, adopt
preventive measures, and personalize products based on individual customer needs [4]. As a
matter of fact, with the emergence of Industry 4.0, the traditional factory is transformed into a
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smart factory which is characterized by digitized and interconnected production, where processes
are optimized through the use of advanced technologies such as artificial intelligence, augmented
reality, and 3D printing, and robots and humans work closely together, exchanging information
and learning from each other leading to increased production efficiency, flexibility, and product
quality. Since 2011, the main topics of Industry 4.0 have been extensively studied and analyzed.
For this reason, the new trend of research is slowly moving from Industry 4.0 towards the recent
concept of Industry 5.0 where the new milestone is to leverage the creativity of human experts in
collaboration with efficient, intelligent, and accurate machines, in order to obtain resource-efficient
and user-preferred manufacturing solutions supported by new Information Technologies (ITs)
such as edge computing, digital twins, collaborative robots, Internet of every things, blockchain,
6G and beyond networks [5].

The concept of Industry 4.0 has extended also to logistics, leading to Logistic 4.0, which
consists in the combination of the aforementioned technologies with the processes of planning,
implementing, and controlling the efficient and effective flow of goods, materials, and information
from the point of origin to the point of consumption. Moreover, Logistics 4.0 aims at optimizing
and improving the management of various activities within the supply chain such as production,
inventory management, transportation, warehousing, packaging, and distribution. Effective
logistics management requires the use of technology, such as Transportation Management Systems
(TMS), Warehouse Management Systems (WMS), and supply chain visibility tools, to track
and manage inventory, optimize transportation routes, and streamline operations. In order
to concretize the general concept of Logistic 4.0, several problems and operations have been
analyzed, studied in their vulnerabilities and weaknesses, and then improved with some of the
most promising control systems and optimization methods. This evolution plays a critical role in
meeting customer demands, optimizing operational efficiency, reducing costs, enhancing customer
satisfaction, and ultimately contributing to the success and competitiveness of businesses in
various industries. Among the various classifications of logistics’ activities, one of the most
commonly used taxonomies considers the following two different branches [6]:

• internal logistics, also known as inbound logistics or intralogistics, deals with the organization,
management, and control of physical and information flows within a company. These flows
include managing raw material stocks, internal material handling, product distribution, and
reverse logistics for handling returns. It involves activities such as inventory management,
warehousing, material handling, production planning, and transportation of goods between
different departments or production stages. The goal of internal logistics is to optimize
processes and reduce costs, ensuring an efficient flow of goods within the company;

• external logistics, also known as outbound logistics, pertains to the transportation and
distribution of goods from the company’s facilities to the end customers or other external
stakeholders. This branch includes activities such as order processing, transportation
management, and delivery to the final destination. External logistics often includes working
with external partners such as carriers, freight forwarders, and distributors to ensure timely
and efficient delivery of products to customers. The focus is on meeting customer demands,
optimizing transportation routes, and managing the overall supply chain network beyond
the company’s own operations.

In summary, internal logistics deals with the internal movement and management of goods
within the company’s facilities, while external logistics deals with the management and control
of transportation and distribution of goods to customers or other external stakeholders. Both
internal and external logistics are integral parts of the overall supply chain management, and
effective coordination between the two is crucial for seamless operations and customer satisfaction.

2



The objective of this thesis is consistent with the primary objective of logistics, i.e., to follow
the lifecycle of goods from their storage inside the warehouse to their delivery to the final
customers, aiming at optimizing the whole process so as to save time and money, and ensuring
the correctness of the operations. In particular, in this manuscript, after a detailed analysis of
the state of the art on Logistics 4.0 and related problems, specific and challenging internal and
external logistics problems are discussed, and innovative control and optimization methods are
proposed and tested for their solution.

Part 1 of the thesis focuses on internal logistics and in particular on the optimization and
automation of storage systems and related activities. The tackled problems are:

• automation of the bin packing;
• optimal design of Vertical Lift Modules (VLM) warehouses.

Both of such problems basically focus on the optimization of the space occupation, respectively
in bins and VLM warehouses. The aim here is to solve them in an automated and time efficient
way. As for the former problem, this thesis aims at solving the literature’s well-known three-
dimensional bin packing problem (3D-BPP) with the addition of several logistic requirements, for
its practical application. The 3D-BPP regards the efficient packing of a set of items of various
sizes into a minimum number of containers, or "bins", while adhering to certain constraints. It
represents one key problem in logistics, that is the optimization of the arrangement of goods
within a loading unit, such as a pallet or a container. This thesis proposes a novel matheuristic
technique that provides stable and compact bin configurations in less than half a minute per
bin on average, facing the high computational complexity of the problem. In fact, the 3D-BPP
is known to be NP-hard, which means that finding an optimal solution becomes increasingly
difficult as the number of items increases. The proposed approach allows considering compatibility
constraints for the items (e.g., final customer and category of the items), and the use of robotized
layer picking in automated warehouses. In effect, layers composed by only one type of items
(i.e., monoitem layers) can be directly picked and placed on the pallet by a robotic arm without
the intervention of any operator. Consequently, the adoption of this approach in warehouses
could drastically improve the efficiency of the packing process. As for the second problem, the
contribution of this thesis consists in the definition of an innovative matheuristics to support the
automated and efficient design of a particular type of automated warehouses named Vertical Lift
Module warehouses. A VLM is a closed structure composed of a set of shelvings that house a
variable number of sliding trays and a lift-mounted module that handles the trays. Each tray
is partitioned into sectors where the items are stored. The items are placed on/retrieved from
the trays by the logistic operators through an access bay predisposed in the VLM. Automated
warehouses like these are designed to meet any specific need, regardless of industry or commodity
category, making them ideal for improving the internal logistics for production or distribution.
On the one hand, they follow the principle of "the goods to the man", i.e., the order preparation
strategy in which goods arrive directly to the operator through automated systems so as that
the stored goods are available and easy-to-pick to the operators and thus leading to a drastic
reduction of the effort and the time required for picking an order and to an improvement of the
working conditions by reducing injuries caused by heavy loading or unloading of the orders and
leading to greater ergonomics and safety in the workplace. On the other hand, VLM warehouses
allow for optimizing the total available space by making full use of the available height and thus
exploiting the generally unused space. Designing a VLM for logistics companies is a complex
and time-consuming task since the current manual approach relies on experienced operators
and iterative processes and lacks of specialized software and tools. The main challenge in this
operation lies in optimizing space utilization while adhering to various design constraints. In this
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context, this thesis proposes a two-phases matheuristic algorithm able to efficiently optimize the
whole configuration of the VLM, from the placement of the items to the allocation of the trays
into columns. The considered objective is to automate and optimize the VLM design process,
taking into account space utilization, logistical constraints, and operational requirements such as
weight limits and item rotation, and determine the number of trays and column configurations.

Part 2 focuses on external logistics and in particular on the delivery planning and online
replanning problems. More in detail, the tackled problems are:

• the multi-drop Container Loading Problem (CLP);
• the integrated Vehicle Routing Problem (VRP) and Container Loading Problem;
• the delivery planning and Dynamic Vehicle Routing Problem (DVRP);
• the control of a hybrid truck-drone delivery system for the last mile delivery.

As for the first problem, i.e., the multi-drop container loading problem, its purpose in the
logistic process is the packing of multiple bins, associated to multiple deliveries to one or more
customers, into a finite number of Transport Units (TUs). Differently from the traditional CLP,
the multi-drop CLP has been rarely handled in the literature, while effective algorithms to
automatically solve this problem are needed to improve the efficiency and sustainability of internal
logistics. To this aim, this thesis proposes a novel algorithm that solves a delivery-based mixed
integer linear programming formulation of the problem. The algorithm efficiently determines the
optimal composition of TUs by minimizing the unused space, while fulfilling a set of geometric
and safety constraints, and complying with the delivery allocation.

As for the second tackled problem, i.e., the combined optimization of CLP and of the vehicles’
routes, the aim is to support logistic companies in reducing planning times and freight delivery
costs, in what is called "the integrated vehicle routing and container loading problem" or "delivery
planning". As a matter of fact, in delivery planning, given a set of delivery requests, both the
routes and load configurations of TUs are to be established. In the literature, this combined
problem is defined as Three-dimensional Loading Capacitated Vehicle Routing Problem with Time
Windows (3L-CVRPTW). However, these problems are generally tackled separately and referred
to as the vehicle routing problem and the container loading problem, respectively. Moreover,
only a few contributions present solution approaches for real logistic systems, and these methods
are mainly based on heuristics. In this work, a novel matheuristic algorithm is defined for the
integrated solution of the vehicle routing problem and container loading problem. Using the
predefined model of the container loading problem, the approach aims to minimize the total
travel costs and the clients’ time windows violations in the routes’ definition, while optimizing
the configuration of the cargo inside each TU.

As for the third tackled problem, i.e., optimization of the delivery process combined with
the implementation of the dynamic vehicle routing problem, the aim is to facilitate the delivery
planning and online rerouting in case of unexpected events that may occur during the shipping
operations (i.e., traffic congestion, delays at some customers, etc). An algorithm is presented that
automatically generates feasible routing and loading plans for a set of TUs, and then updates
in real-time the nominal route in case of unexpected events. More specifically, the algorithm
is composed of two phases that cooperate together sequentially: the first phase considers the
delivery plan described in the second section and thus provides to the second phase the number
and type of transport units to be used, the composition of the bins in each transport unit, and the
corresponding route that, in case of unexpected events (e.g., accidents, slowdowns, etc.) affecting
one or more routes, re-routes the involved trucks guaranteeing the maximum efficiency in regards
to travel cost, travel time, and quality of service.
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Finally, the last considered problem regards the last-mile delivery (i.e., the problem of
transporting from a distribution center or local hub to the end destination, typically a customer’s
home or a retail store) in a brand new environment related to the smart cities. In particular, a
novel problem is addressed that regards the optimal control of the drones’ missions in a hybrid
architecture that combines the use of a drone and a truck to perform a sequence of pick-ups
and deliveries. The drone can perform three different pick-up and delivery missions: truck to
point (i.e., pick-up from the truck and delivery to the customer), point to point (i.e., delivery to
a customer and pick-up from the subsequent customer), and point to truck (i.e., reentry from
a customer to the truck). To accomplish the desired mission, the drone is optimally guided by
a receding horizon Linear Quadratic Regulator (LQR) in all its operating modes (i.e., ascent
from customer and from truck, and descent to truck mode, free flight with/without payload
mode, descent for pick-up/delivery mode). The choice of this particular control strategy is the
optimality of the RH-LQR, as a matter of facts it seeks to find a control policy that optimizes a
performance criterion over a finite time horizon while taking into account the system’s dynamics
and constraints. This results in a locally optimal control strategy for the given horizon. This
control strategy has several advantages: it can adapt to changes in the system dynamics or
constraints, it ensures that the system operates within specified limits, making it suitable for
applications where constraints are critical, such as robotics and process control, its designs ensure
closed-loop stability for linear time-invariant systems (this means that the controlled system
will remain stable under the chosen control law), moreover, it can be applied to a wide range of
systems, both continuous and discrete, linear and nonlinear, as long as a suitable model of the
system dynamics is available.

All the problems tackled in this thesis are relevant in the industry and their effective solution
can lead to several improvements such as savings in time and money, ensuring the optimal of
processes, reducing human errors, and, in some cases, correcting them in real-time. The research
approach adopted when addressing the various problems started with the study and analysis of
the existing literature methods, from the most consolidated to the most recent ones. Based on
the literature gaps and the industrial needs novel approaches were implemented and validated.
The main challenges faced during those activities were related to the definition and formalization
of the wide set of logistic constraints required by the company that were still not completely
formalized in the literature (e.g., very few contributions took into account a complete combination
of the container loading problem with the vehicle routing problem with time windows, or also the
compatibility constraints of the items in the composition of bins), and in the implementation of
methods who were able to ensure high-quality solutions in low computation time. For the latest
requirement, the focus has been on matheuristics which allows the combination of the advantages
of exact solutions and heuristics [7]). Moreover, the work conducted in this PhD thesis has gained
interest in the scientific community. In particular, the preliminary version of the layer building
BPP solution approach has been awarded the prize "IEEE Italy Section - ABB Master Thesis
Award". The subsequent advancements of the research and the corresponding outcomes led to the
publication/preparation of three international journal papers [8]–[10] and four conference papers
[11]–[14].

The remainder of this thesis is structured as follows: Chapter 2 contains the problem statement
and the nomenclature of the problems tackled in this work and a detailed analysis of the most
important literature contributions related to the field of interest of this thesis (i.e., bin packing
problem, container loading problem, vehicle routing problem, etc.). Then the remaining chapters
are dedicated to the various tackled problems and the proposed solutions. The corresponding
structure is as follows: the abstract and the introduction give an overview of the topic of the
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chapter, then the subsequent sections are dedicated to the mathematical formulations of the
problems and to the description of the proposed algorithm, which is then validated in the
experimental results section. Finally, the conclusions close the chapter, providing insights on the
achieved results and possible extensions of the proposed methodology. More in detail, Part 1
regards internal logistics and is composed by two chapters: Chapter 3 on the automated layer
building bin packing and Chapter 4 on the optimization of the Vertical Lift Modules (VLM)
warehouses. Differently, Part 2 regards external logistics and includes four chapters: Chapter 5
addresses the multi-drop container loading problem, Chapter 6 combines the container loading
problem with the vehicle routing problem, providing a static method for the delivery planning,
Chapter 7 joins the delivery planning of the previous chapter with the online replanning of the
fleets, while Chapter 8 considers the automatic control of drones and trucks in the last-mile
delivery problem. Finally, Chapter 9 provides the conclusions and possible further developments
of this doctorate thesis.
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Chapter 2

State of the Art

II

This Chapter, provides a wide discussion of the literature related to the problems analyzed in
this thesis. The examination of the existing milestones of knowledge serves as a foundation for
comprehending the landscape in which the research presented in this thesis operates. By surveying
and synthesizing the relevant literature, it is possible to gain a comprehensive perspective on the
concepts, methodologies, and innovations that have shaped the fields of control and optimization
methods applied to Industry 4.0 and Logistics 4.0.

More in detail, the first purpose of this chapter is to provide a context for understanding
the lineage and evolution of the problems addressed in this research, tracing the development of
ideas and approaches, identifying the key milestones and seminal works that have contributed
developing the current state of the art. Secondly, the second aim is to identify gaps, challenges,
and unexplored territories within the existing knowledge, pointing the attention toward areas
where further investigation and innovation are warranted. Finally, this chapter aims at supporting
the validation of the relevance and significance of this research by establishing connections between
this research work and the broader academic and industrial landscape, and by evaluating the
existing methodologies and solutions. In this way it is possible to better position this research in
its broader related context and highlight the novelty and contributions it provides.

Consequently, this chapter contains, in the following sections, a comprehensive review of the
state-of-the-art on: (1) the three-dimensional (3D) Bin Packing Problem, (2) the Vertical Lift
Modules warehouse optimization problem, (3) the multi-drop multi-container loading problem,
(4) the integrated vehicle routing and container loading problem, and (5) the last mile delivery
problem.

2.1 The Bin Packing Problem
The bin packing problem definition relies on the Cutting-Stock problem, firstly proposed in [1]
and in [2]. In particular, the authors discussed the problem of cutting standard pieces of stock
material into pieces of specified sizes while minimizing material waste and the related costs. This
problem was then extended to various applications and redefined leading to the broad category of
Cutting and Packing (C&P) problems. One of the most famous categories in C&P problems is
the class of one-dimensional Single Bin-Size BPP (1D-SBSBPP) and consists in packing a set of
strongly heterogeneous items of given weights to a minimal number of bins of identical capacity
(i.e., only one bin type) such that for each bin the total capacity of the small items does not
exceed the bins’ capacity. Further classes identified by the widely accepted typology of [3] are
for example the two- and the three-dimensional Single Bin-Size Bin Packing Problem (2D- and
3D-SBSBPP), the Multiple Bin-Size BPP (MBSBPP) if the bins are weakly heterogeneous, and
the Residual BPP (RBPP) if the assortment of bins is strongly heterogeneous.

In this thesis, the focus is on the 3D-SBSBPP for two different internal logistic applications,
i.e., the automated palletizing of freights presented in Chapter 3 and the definition of the
VLMs’ configuration presented in Chapter 4), for which several formulations are presented in the
literature. The classic ones consider only geometric conditions, i.e., items must not overlap and
must lie inside the bins; while more recent formulations include additional conditions of practical
utility, such as the stability of the configuration and the family or category of items (i.e., items
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of the same family/category have common fundamental characteristics and can be grouped in
the same bin; for example, chemical products should not be combined with food). In Table 2.1,
similarly to the early classification presented in [4], it is specified for each article discussed in this
section the logistic requirements defined in the proposed contribution (i.e., rotation of the items,
stability, load bearing, weight, family/category, shape, overhang, robotized layer picking). As it
emerges from the following review of the state of the art, the problem is typically formulated by
employing linear programming (LP), integer linear programming (ILP), and mixed-integer linear
programming (MILP) (see, e.g., the reviews [5], [6], [7]). Nevertheless, the contributions on real
logistic applications of the 3D-SBSBPP mainly consider the MILP formulation since it properly
allows to represent geometric and safety constraints, see e.g., [8], [9], [10]. As for the resolution
of the problem, due to its NP-hard nature, the majority of contributions consider heuristic or
matheuristic approaches that allow to obtain good quality solutions.

Table 2.1: Logistic requirements considered in publications on packing problems

Publication Rotation Stability Load Weight Family/ Shape Overhang Robotized Space
Bearing Category layer picking sectorialization

Moura and Oliveira (2005) [11] X X
Saraiva et al. (2015) [8] X X
Trivella and Pisinger (2016) [9] X
Paquay et al. (2018) [12] X X X X X
Elhedhli et al. (2019) [13] X X X X X
Gzara et al. (2020) [14] X X X X X
Zaho et al. (2020) [15] X X
Jiang et al. (2021) [16] X
The automated bin packing [17] X X X X X X X
The VLMs configuration optimization [18] X X X X

One of the first attempt to define and solve the 3D-SBSBPP as an optimization problem
was proposed by [19], [5], and [20], all aiming at minimizing the number of filled containers
given a set of items. Since these preliminary approaches are impractical for companies, due to
long computational times and the presented geometric constraints, several studies have proposed
extended formulations and advanced heuristics or adaptive approaches to produce sub-optimal
feasible solutions in a reasonable computational time.

2.1.1 The Automated Bin Packing Problem
The formulation of the automated packing problem tailored to the internal logistics requirements
can be defined by taking inspiration from several literature contributions, since basically it requires
the definition of the cutting-and-packing classical version with the addition of specific logistic
constraints. The resulting problem is evidently complex and the related solution is non-trivial.
Consequently, the main aims of the literature contributions are on the one hand the definition of
a wide set of detailed logistic constraints and on the other hand the definition of efficient methods
to minimize the computational time for their solution.

Some examples are provided by the authors of [11] who propose a greedy randomized
adaptive search procedure, based on the wall building algorithm (firstly proposed in [21]) without
formulating the 3D-SBSBPP as a programming problem, but only providing a list of instructions
to be executed by operators. The algorithm allows to decompose the 3D-SBSBPP into two
sub-problems. The first aims at composing the items into vertical walls, while the second aims at
composing the obtained walls into bins; both minimize the free space in the bin. The authors
focus on the resolution of the problem for only one container type and multiple heterogeneous
items, and consider geometric, stability, and rotation constraints. Differently from [11], the
authors of [22] assume the 3D-SBSBPP to be similar to the parallel-machine scheduling problem.
The problem is modeled as a MILP problem including only geometric constraints. The authors
consider a heuristic procedure to define a new lower bound based on an LP-relaxation of the
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MILP problem, which is improved by including valid inequalities based on some similarities with
the parallel-machine scheduling problems. Three further important literature contributions about
the 3D-BPP are [23], [24], and [25]. The first two present a two-level tabu search where the
first-level aims at reducing the number of bins, while the second one optimizes the packing of bins
following a procedure based on the interval graph representation of the packing, which reduces
the size of the search space. The last contribution aims at solving large BPPs in two and three
dimensions. The authors propose a straightforward heuristics based on the container loading
problem method following a wall building approach and on a one-dimensional BPP approach
applied then for 2D and 3D-BPP taking into account several logistic constraints such as stability,
load bearing, and weight.

Subsequently, [8] considers items as physical boxes and therefore pays particular attention to
their physical characteristics, including the weight and material of the considered items. Similarly
to [11], the authors do not provide a mathematical formulation of the 3D-BPP, but they present
an algorithm for the composition of the bins that aims at minimizing the free space in the bins
and the total number of composed bins. The approach first builds horizontal layers of identical
items and, then, generates packing schemes by greedily loading layers according to a selection
criterion. Further, [9] considers the problem of 3D bin packing including both geometric and load
bearing constraints. The goal is to find the minimum number of bins ensuring that the loaded
items’ average mass center falls as close as possible to an ideal point, for example the center of
the bin. The authors propose a MILP formulation of the problem and a multi-level local search
heuristics for its resolution. The method leads to good results in terms of bin balancing and
computational time on literature examples tests.

In two recent works [10] and [12] the authors succeed in providing a complete formulation of the
problem and efficient resolution methods for industrial applications. More in detail, [12] defines a
mixed integer programming problem able to find a solution to the three-dimensional Multiple Bin
Size Bin Packing Problem with bins of different shapes to fit inside an aircraft. For the resolution
of this specific problem, three heuristics are adopted, i.e., Relax-and-Fix, Insert-and-Fix and
Fractional Relax-and-Fix. Some tests are performed on test cases specifically designed for this
type of problem, showing good results of the heuristics. Nevertheless, this work disregards some
important aspects such as the compatibility among the different families/categories of items to be
packed and the possibility to create configurations with only one type of items both for layers and
bins. Such precautions are fundamental in a real company environment and can further reduce
the computational time and simplify the picking process of the items from the warehouse.

Further recent contributions [26], [15] and [16] introduce the adoption of new resolution
approaches derived from the Internet technology field. The first one uses a hybrid genetic approach
for the resolution of the heterogeneous BPP transportation and distribution to various locations
by satisfying practical constraints, such as box rotation, fragility, container stability, weight,
overlapping, and shipment placement. The second one uses a constrained deep reinforcement
learning method for the resolution of an online 3D-BPP formulated as a constrained Markov
decision process which includes physical stability and rotation constraints, while the last one
exploits multimodal deep reinforcement learning in order to reduce the computational complexity
of the classical version of the BPP (i.e., without the logistic constraints) and solve medium-scale
instances of 100 items while most existing methods are only able to handle up to 50 boxes in
short computational times.

Further particularly recent approaches are presented in [13] and [14], which address the
mixed-case pallettization problem, i.e., an extension of the classic 3D-BPP that incorporates
practical logistic features, such as bin stability, item support, family/category groupings, isle
friendliness, and load bearing. To solve such a problem, a column-generation solution approach is
proposed, where the pricing sub-problem is a two-dimensional layer-generation problem.
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2.1.2 The VLMs Configuration Problem
Vertical lift module warehouses are a recent and versatile automated solution whose innovative
structure, particularly suitable for items of small dimensions, allows a higher level of productivity
with respect to other systems based only on trays (e.g., carousels). In fact, the presence of a
picking bay allows for reducing operators’ walking, even if the replenishment is still carried out
manually [27]. According to Battini et al.[28] there are multiple advantages to the use of VLM in
automated warehouses such as the higher volume utilization with respect to classical warehouses,
the reduction of damages in the storing of products, the reduction of distances traveled by
operators, lower labor costs, greater control over inventory, provision of an ergonomic solution, as
it results in improved working conditions for operators, while also reducing the potential cost
associated with injuries, and ensuring safe storage of products, preventing their possible theft
or damage. On the other hand, VLMs also have some weaknesses, such as the higher, potential
downtime for the picker, who must wait for the current tray to be stored and the next one to be
retrieved. To improve such idle time, modifications are being developed on VLMs, such as the
optimization of the positioning and placement of items in columns that can lead to higher system
throughput. Some allocation strategies for this kind of warehouse were studied by Roodbergen et
al. [29] and can be classified as follows:

• dedicated allocation: each product type is allocated to a fixed location. The replenishment
of that product always takes place at the same location.

• random allocation: all locations have the same probability of receiving trays or products,
for each type of load;

• nearest free allocation space: the first available empty location is used to store products;
• full-turnover storage: the locations are determined based on the frequency of load demand.

Frequently demanded products are allocated close to the pick-up points, otherwise at more
distant locations. The turnover frequencies must necessarily be known in advance;

• class-based storage assignment: this method splits the available space in the warehouse into
areas. Each load can be assigned to a location through priority criteria, such as frequency
of demand. To implement a class-based storage approach, one must consider:

1. area division of the warehouse, i.e., determining the number of classes;
2. area dimensioning, i.e., determining the number of products to be allocated in an area;
3. product allocation, i.e., determining in which area to allocate each type of product.

In general, besides the type of strategy implemented, VLMs are more difficult to reconfigure
than traditional storage systems and have higher maintenance costs since the composition of the
tray is predetermined [30]. For this reason, the optimal planning of the items’ position inside a
VLM is a crucial operation in the optimization of the entire warehouse both in terms of time and
cost. Moreover, the problem of optimal storage allocation is considered NP-hard due to the large
number of model parameters considered such as items’ characteristics and their relationships,
different layouts of the trays, grouping, placing, and routing strategies. In the related literature,
Meller and Klote [27] discuss the advantages of modeling the throughput of VLMs, particularly
in supporting the respective design processes, and provide different models for its computation
and evaluation in a VLM pod, i.e., the combination of multiple modules. Also Dukic et al. [30]
focus on the throughput computation, but extend their study to dual tray VLMs. This problem
is also discussed in [31], [32] using different optimization models and economic evaluations are
provided. Additional works related to VLMs’ throughput optimization regard order batching, as
discussed in [32], where the aim is to optimize the grouping of items’ orders, so as to minimize
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the picking time and total completion time in VLMs. Finally, in the study by Rosi et al. [33]
a simulation based model is developed for the performance analysis of a single-tray VLM with
various configurations. As it emerges, the literature on VLMs is particularly limited and it is
generally focused on the optimization of VLMs throughput and proposing solutions that aim at
minimizing trays’ movements [28]. Differently, little attention is devoted to the formulation and
solution of the VLM internal configuration design problem.

As anticipated in the previous section, for the problem formulation, a well-know class of models
that could be adapted to the optimal allocation of items inside a tray and of trays inside the VLM
is represented by the Cutting and Packing (C&P) problems whose general aim is to pack a given
set of items with different sizes into the minimum number of containers can be adapted to the
optimization of the space within a tray and a VLM. Also in this case, it has to be highlighted that
although it might be possible to set up an effective mathematical programming (MP) model and
to solve it with general-purpose software, various logistic requirements can be hardly formulated
and included in a unique MP model. Then, for the solution of the problem an alternative effective
approach, as highlighted by the literature [34], consists in using the MP solver as a basic tool
within a heuristic framework. This combination leads to the matheuristic approach, where the
heuristic is built around the MP model. Matheuristics has recently gained attention, as proved
by the various publications [35], [36] and dedicated sessions in related conferences, due to its
effectiveness in efficiently solving complex problems. In fact, various applications of matheuristics
are present in the literature such as packing problems, windfarm layout optimization, vehicle
routing, etc. [34].

2.2 The Delivery Management Problems
As for external logistics, the research on distribution problems is attracting ever-growing attention,
driven by the rising demand for freight transport, particularly from distribution centers to final
customers. The main challenges within this domain are mainfolds most challenging are related to
the definition of efficient load plans and the dynamic routing of vehicles in real-time and in a
variable scenario is even more complex. As a matter of facts, efficient load planning remains a non-
trivial activity in logistics. It involves the delicate art of optimizing the arrangement of goods within
transportation units, such as containers, trucks, or vans. Achieving this optimization is critical
not only for minimizing transportation costs and times but also for reducing the environmental
footprint of logistics operations. The literature related to load planning encompasses a range of
techniques, from heuristic and metaheuristic approaches to mathematical programming models,
each aimed at addressing the complexities of item packing and spatial constraints. On the other
hand, dynamic vehicle routing (i.e., the routing which operates particularly in real-time or in a
dynamic environment), presents its own set of implementation challenges. This problem domain
involves adapting the routes and schedules of delivery vehicles on the fly, and responding to
dynamic factors such as traffic conditions, weather, changing customer demands, and unexpected
disruptions. The effective resolution of dynamic routing problems is crucial for ensuring timely
deliveries, optimizing fuel consumption, and providing exceptional service to customers. In
addition to these challenges, a particular application field has been taken into account which
considers the integration of drones into the logistics and distribution network. This is motivated
by the fact that numerous studies have emphasized the importance of drones and their flexibility
in various applications, from agriculture to disaster management. Drones offer unique advantages,
such as high speed, low energy consumption, and the ability to navigate in three dimensions,
making them invaluable in scenarios where traditional vehicles face limitations. However, in
external logistics, drones have their own constraints, such as limited delivery range and payload
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capacity. Therefore, the combination of drones and trucks for last-mile deliveries holds the
potential to enhance the efficiency of the entire process.

In the next sections of the chapter, it is presented the literature that addresses these pivotal
aspects of external logistics and distribution. In particular, various methodologies and algorithms
developed to tackle load planning, dynamic routing, and truck-drone systems are explored. This
knowledge provides a strong foundation for the subsequent chapter of the thesis, aiming at
strengthen the innovation of the research contributions and the solutions proposed.

2.2.1 The Container Loading Problem
As it can be evicted from the analysis conducted until now, the BPP is often referred to CLP
whose contribution is used for solving the BPP, in fact, the title of the milestone by Chen [19] is
"An analytical model for the container loading problem". In the literature, the classical container
loading problem is commonly defined as the problem of finding the optimal packing of a set of
bins, known as boxes, into containers, so that bins do not overlap and lie entirely inside the
containers, while minimizing the non-occupied space, since the main aim is to pack rectangular
objects into bigger rectangular boxes. The resulting optimization problem thus focuses on the
spatial arrangement of bins in the containers, considering only geometric constraints [37]. On the
other hand to make the proposed solutions relevant to real-world applications and differentiate it
from the BPP, several further variants of the CLP have been defined.

According to Bortfeldt and Wäscher [38], CLPs can be classified into two different categories
according to the definition of the objective function: “input value minimization problems”, in which
enough containers are available to accommodate all small items, and “output value maximization
problems”, in which only a subset of the small items can be packed since the availability of
containers is limited. In the first class of problems there are Single Stock-Size Cutting Stock
Problem, Multiple Stock-Size Cutting Stock Problem, Residual Cutting Stock Problem, Single
Bin-Size Bin Packing Problem, Multiple Bin-Size Bin Packing Problem, Residual Bin Packing
Problem and Open Dimension Problem, while the second class of problem is composed by Identical
Item Packing Problem, Single Large Object Placement Problem, Multiple Identical Large Object
Placement Problem, Multiple Heterogeneous Large Object Placement Problem, Single Knapsack
Problem, Multiple Identical Knapsack Problem and Multiple Heterogeneous Knapsack Problem.
Both categories have different typologies that vary according to the heterogeneity, number, and
dimensions of boxes and containers.

Moreover a broad well-known classification of the literature contributions is based on the
number of containers included in the optimization problem, thus distinguishing the single- and
multi-CLP. Weight and static stability are commonly considered in the single-container case,
while dynamic stability has received less attention to date [4]. In most cases, heuristic [11], [39],
[40] and meta-heuristic [41]–[43] approaches have been followed, while mathematical models and
exact algorithms have usually addressed only basic problems [44]–[47].

A second main classification of the literature contributions on the CLP can be made by
considering the number of delivering destinations associated to the bins, thus distinguishing
between mono- and multi-drop CLP [48]. Some heuristic [49], [50] and exact [48] algorithms have
been proposed to arrange customer bins partitioned sections of the container. However, in the
cited works [48]–[50] only one container is considered; moreover, all the constraints – except the
geometric and the Last-In-Fist-Out (LIFO) constraints – are generally neglected.

Specifically, the multi-drop scenario can be addressed in two ways. On the one hand, the
CLP is integrated with the vehicle routing problem: this results in the combined optimization of
the loading of bins into containers and the routing of containers along paths aimed at serving
different destinations with the minimum traveling cost. Such an approach suffers from a high

13



The Delivery Management Problems

combinatorial complexity as shown in [51]–[53]. On the other hand, for the sake of reducing
the problem complexity, the route of delivering operations is commonly assumed to be known
in advance. Thus, in the multi-drop scenario, the resulting optimization problem consists in
enhancing the CLP with a LIFO policy aimed at fulfilling the loading and unloading of containers.

Although the CLP is of practical applicability, only recently authors have focused on industrial
applications, thus better formalizing logistic constraints ([54], [55], [56]) even though most of
the contributions still require for integration of important constraints, such as vertical and
horizontal stability constraints, load balancing constraints, and LIFO (Last In-First Out) ordering
constraints. An innovative version of CLP is proposed by Castellucci et al. [54] who consider the
schedule of arrival for the boxes and the departure time of the trucks and design a dynamical
programming framework which handles the geometric and time characteristics of the problem
separately. Further, Xiang et al. [55] present a mathematical loading model whose goal is
maximizing the 3D space utilization and develop it by a dedicated placement heuristic integrated
with a dynamical space division method. Or also, Layeb et al[56] propose a resolution procedure
for the single CLP with additional constraints to deal with realistic situations using a new greedy
two-step look-ahead procedure that selects the free space deterministically followed by a block
search. Finally, note that in Lai et al. [49], who propose a heuristic graph-based approach, and in
Junqueira et al. [48], who formulate a mixed integer linear programming model for multi-customer
delivering, only one container is considered; moreover, all the constraints – except the geometric
and the multi-drop constraints – are neglected. Nevertheless, the CLP contributions still require
for integration of logistic constraints which are barely considered, such as vertical and horizontal
stability constraints, load balancing constraints, and LIFO ordering constraints. Moreover, CLPs
are mainly considered as problems detached from the planning of delivery routes.

2.2.2 The Combined Container Loading and Vehicle Routing Problem
The second class of combinatorial optimization problems related to external logistics analyzed
in this thesis is the one related to the planning of routes whose aim is to compute a set of
transportation routes to serve a set of customers with a limited number of vehicles. This problem
is generally known as Vehicle Routing Problem (VRP) whose objective is to minimize the cost of
the routes while satisfying transportation constraints [57]. The seminal version of this problem
was the so-called truck dispatching problem formulated in the 50s’ by Dantzig et al. [58], who
considered a set of distributed customers with their associated demand, and a fleet of vehicles
starting from a central depot. The objective is to find the minimal travel cost (e.g., distance or
time), such that each customer is visited and served by a vehicle exactly once. Only later in
70s’, Golden et al. coined the term “Vehicle Routing”in [59], which is a more general definition
of the problem. An exhaustive classification of the VRP typologies was proposed by Bai et al.
in [60] who classify the VRP formulation according to four main classes of features: scenario,
(i.e., number of stops/customers, customer service demand quantity, request times, and onsite
service/waiting times), time limits (i.e., time window restrictions and travel time), information
(i.e., the evolution of information, quality of information, and availability of information) and data.
Moreover, they add a further variant to the classification that is the one related to the Automated
Guided Vehicle (AGV) routing, which regards the driver-less transport system used in logistics
warehouses and marine container terminals. In particular, based on the type of information that
characterizes the route, the problem can be classified into static VRP and dynamic VRP and
both can be deterministic or stochastic depending on the uncertainty of available information.
The static VRP is obviously more suitable for route planning, while the dynamic VRP is more
appropriate for real-time re-routing purposes.

As for delivery planning purposes, the static VRP and CLP can be combined leading to the
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definition of the so-called Three-Dimensional Loading Capacitated Vehicle Routing Problem. To
the best of available knowledge, there are not so many contributions that present a complete
formulation of the 3L-CVRP with time windows. The works by Moura and Olivera [61] and
[62] present two detailed mathematical formulations: one for the VRPTW and one for the
CLP, and solve the problem using a genetic algorithm (GA). The framework integrates these
two problems using two different resolution approaches. The first one treats the problem in a
sequential approach, while the second uses a hierarchical approach. A more recent work about the
3L-CVRP has been presented by Rojas et al. [63], who explicitly explore the impact of three-axes
rotation of the bins on load capacity optimization. They develop a two-phase approach: the
first phase converts the 3L-CVRP demand into Capacitated Vehicle Routing Problem (CVRP)
demand with a heuristic and then finds the solution for the CVRP problem; the second phase
aims to obtain the loading of the vehicle with heuristics using rules to obtain the rotation of
the items. Moreover, Rajaei et al. [64] not only propose a complete column generation-based
heuristic algorithm for the resolution of the 3L-VRPTW but present a detailed analysis on the
literature’ most used features such as heterogeneous vehicles, the possibility to split deliveries,
time window constraints (this thesis consider the opening time as a soft constraint and the closing
time as a hard constraint), geometric bin feasibility, bin’s and transport units’ weight limit,
weight distribution on a transport unit, bins’ orientation, bin’ stacking and stability, reachability,
allocation-connectivity and allocation-separation (e.g., the possibility to split or not the cargo
according to the customer considered). Other recent works are from Krebs [65], Küçük [66],
Meliani[67], and Wang [68], that proposes different heuristic approaches such as the adaptive
large neighborhood search, clustering-based techniques or genetic algorithm.

2.2.3 The Dynamic Vehicle Routing Problem
As for the real-time re-routing of deliveries, the dynamic VRP (DVRP) can be more appropriate
than the static approach. Firstly introduced in the 80s’ by Psaraftis et al. [69], the DVRP reveals
of particular interest to improve the efficiency of transportation service. In fact, according to the
recent surveys by Psaraftis et al. [70], and by Pillac et al. [71], this kind of problem enriches the
classical version of the VRP considering the evolution of route information during its execution
and requires to dynamically update an offline scheduled route depending on the real-time state of
the transportation. As highlighted by Psaraftis et al. [70] in the related literature the dynamic
nature of VRP mainly regards changes in customer locations and or demands, while only a
limited number of contributions consider changes in travel and/or service times and changes in
vehicles availability. In fact, some recent contributions discussing the second and third class of
dynamic variations are [72], [73], and [74] consider the online re-routing problem in a dynamic
context. In particular, [72] considers dynamic requests and dynamic travel times and implements
a communication strategy between drivers and a central dispatch office in order to perform the
re-routing of the vehicles, [73] consider the possibility of having service disruptions due to vehicle
breakdowns while performing the real-time VRP with time windows and pickup/delivery service,
and manage it by considering the minimization of service cancellation and disruption cost in
their dynamic programming based algorithm, while [74] implements a knowledge-based approach
named PAM (disruption-handling Policies, local search Algorithm, and object-oriented Modeling)
for the handling of unexpected events during the urban distribution process. Moreover, in the
field of VRP several works use some machine learning and artificial intelligence algorithms to
solve the problem and use it in real-world simulations. For example, Xiang et al. [75] introduce a
demand coverage diversity based metaheuristic in the framework of an ant colony algorithm and
use a demand coverage diversity adaptation method in order to maintain the diversity of covered
customers in routes. Okulewicz and Mandziuk,[76] used the DVRP as a test problem to investigate
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the hypothesis that in case of hard optimization problems, the selection of the proper search space
is more relevant than the choice of the solving algorithm. In order to do that they implemented a
continuous optimization approach that can be parametrized with different optimization methods
such as Particle Swarm Optimization (PSO) and Differential Evolution (DE), and then compare
the solution achieved with the ones obtained with the Genetic Algorithm (GA). Frohner et al.
propose in [77] a white box linear regression model and a neural network-based black box model
whose aim is to predict the average time needed to deliver an order for a given time and day, using
historic route data collected over three months and Ng et al. [78] focus their attention on the
problem of inefficient vehicle routing caused by traffic congestion and implement multiple colonies
artificial bee colony algorithm for a capacitated VRP able to perform re-routing strategies in case
of traffic conditions so that the risk of late delivery is reduced. Sabar et al. [79] suggest the use
of a self-adaptive evolutionary algorithm because the solution scattered over the search space
computed in a parallel manner can better identify the dynamic changes. Due to the complexity
of the CLP, VRP, and DVRP, and given that fast computation time is fundamental in their
applications, especially for the real-time management of delivery routes, the majority of solution
approaches are heuristics such as tabu search, genetic algorithms, ant colony optimization, particle
swarm optimization, Markov decision processes, dynamic programming-based approaches, etc.
[70]. In particular, the most considered methods are: tabu search, neighbourhood search, insertion
methods, nearest neighbour, column generation, genetic algorithms, ant colony optimization,
particle swarm optimization, waiting-relocation strategies, Markov decision processes, dynamic
programming-based approaches, neural networks, and queuing-polling strategies. It has to be
highlighted that the effectiveness of the used heuristics largely depends on the specific considered
instance. As for dynamic VRP, according to [70], [80], in the case of variable customers requests
the most appropriate heuristics are: waiting-relocation strategies, Markov decision processes, and
dynamic programming-based approaches. Differently, in the case of changes in travel and/or
service time, according to [80] both ad-hoc heuristics, based on reoptimization, and evolutionary
algorithms, in particular genetic algorithms, are mainly appreciated.As a matter of fact, several
reviews highlight that evolutionary algorithms are largely employed in solving online problems
characterised by stochasticity in the related events, since generally they are fast and provide
simple rules to generate solutions of good quality. In addition, also several artificial intelligence
methods are used in this field, but according to Zhang [81] the potentiality of the GA led it to be
the most promising method since it can approach the optimal solution and shorten the operation
time, thus taking both the operation time and efficiency into account.

2.2.4 Drones’ Based Last Mile Delivery Problem
Numerous studies highlight the importance of drones and their flexibility in different applications
such as agriculture, logistics, disaster management, infrastructure, and many others. Thanks to
their high speed, low energy consumption, lightweight, and ability to move in three dimensions,
instead of along a discrete set of static roadways, drones can employ paths that are closer to
straight-line connections and can circumvent traffic congestion or accidents [82]. However, in the
external logistic sector, drones present some limits if compared to trucks, e.g., short delivery range,
low supported weight, and limited capacity. Consequently, the combined use of drones and trucks
for last-mile deliveries can bring several improvements with respect to the separate use of drones
and trucks [83]. In the related literature, the majority of contributions deal with the strategic
design of hybrid truck-drone delivery architectures and the offline planning of both trucks and
drones tasks. In fact, the recent surveys by Chung et al. [83] and by Madani et al. [84] highlight
that the existing works mainly present mathematical models aimed at offline planning. and
they can be roughly divided into traveling salesman problems with drones (TSPD) and vehicle
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routing problems with drones (VRPD). For instance, Weng et al. [85] focus on deliveries in smart
cities where parcels have to be delivered in restricted traffic zones aiming at determining the
path of the truck out of the restricted zone and the path of the drone inside the restricted zone
minimizing the execution time of the delivery. Similarly, Wang et al. [86] propose a novel routing
and scheduling algorithm, referred to as hybrid truck-drone delivery, to simultaneously employ
trucks, truck-carried drones, and independent drones to construct a more efficient truck-drone
parcel delivery system. As it can be deduced, articles that focus on the online control of drone
missions in a hybrid truck-drone delivery system are lacking, although this aspect is crucial for the
successful completion of parcel delivery. In particular, the efficient control of the whole mission of
the drone and the landing on a moving platform (i.e., the truck) are non-negligible problems. The
majority of contributions focus on landing on a static platform, while a limited number of papers
tackle the problem of landing on a dynamic platform. Promising contributions in this regard
are presented in Paris et al. [87] and in Falanga et al. [88] where the control strategy largely
relies on the use of artificial vision, while not specifically focusing on hybrid truck-drone delivery
systems applications. In general, the optimal control of drones involves various techniques and
algorithms, depending on the specific application and requirements. Some of the most commonly
used control techniques for drones include: Proportional-Integral-Derivative (PID) control that is
a widely used method for stabilizing drones. It adjusts the drone’s orientation by considering
the error between the desired and actual orientation angles [89],[90]; Model Predictive Control
(MPC) that uses a dynamic model of the drone to predict its behavior and computes control
inputs to optimize a future trajectory. MPC can handle complex constraints and is often used in
autonomous navigation [91], [92], nonlinear control techniques, are used to handle the complex
dynamics of drones, especially in challenging environments; sliding mode control techniques
that provide robust control by creating a "sliding surface" where the error converges to zero.
It is effective for handling disturbances and uncertainties; or also Linear-Quadratic Regulator
(LQR), i.e., an optimal control technique that minimizes a cost function to determine control
inputs. It’s often used for trajectory tracking and stabilization [93],[94],[95]. The choice of
the control technique depends on the specific application, the drone’s dynamics, environmental
factors, and the level of autonomy required. Many modern drone systems use a combination of
these techniques to achieve the desired performance and functionality. This thesis presents a
novel control technique for the last-mile delivery problem, where a drone and a truck are able
to autonomously collaborate in order to improve the efficiency of the delivery. The proposed
approach uses the receding horizon LQR to control the drone in the dynamic landing, managing
the real-time changes of the positions of the landing point. The choice of the LQR is motivated
by the fact that LQR Control is chosen for its ability to provide optimal control inputs, ensure
system stability, and handle disturbances and uncertainties. It is particularly effective for linear
systems, relatively easy to implement, and allows for fine-tuning control performance to meet
specific requirements. LQR Control is commonly used for regulation and stabilization tasks and
can be applied to systems by linearizing around an operating point. However, it may not be
suitable for highly nonlinear systems. On the other hand LQR with a sliding horizon combines
the benefits of optimal performance, adaptability, constraint handling, predictive capability, and
robustness in real-time control applications. It is particularly effective for controlling systems
with complex dynamics and nonlinearities, making it a valuable choice for trajectory tracking
and dynamic applications that require continuous adaptation and predictive control.

2.3 Logistics’ Basics and Nomenclature
Before detailing the different contributions developed during the Ph.D. and thus the different
chapters, this section is dedicated to the description of the main basic concepts and the
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nomenclature of the logistic contest considered in all the analyzed problems. In general, this
thesis aims at automatizing the different processes that are performed with goods, starting from
their storing in the warehouses to their delivery to the final customers. Once retrieved from the
warehouse, the goods are packed inside the minimum number of identical shipping bins, which
are then placed in the proper order inside the transportation means, both in terms of space and
arrival at the final customer.

It is assumed that items are goods to be delivered and packed in basic rectangular unit loads,
i.e., packages. Differently, bins or shipping bins are a set of items packed in second level unit
loads, i.e., pallet loads. The bin can be composed manually by expert operators, or automatically
by anthropomorphic robots that can handle single items or homogeneous sets of items organized
in layers (i.e., the so-called robotized layer picking). With the aim of facilitating the bin assembly
procedure by both operators and robots and reducing economic losses for the company, here
it is assumed that a bin is composed of stacked layers, which can be either homogeneous (i.e.,
containing only one type of items) or heterogeneous (i.e., containing different types of items).
Homogeneous layers are further distinguished into monoitem layers, i.e., composed by items
with the same identification number (ID), and monocategory layers, i.e., composed by the same
category of goods. Conversely, heterogeneous layers are defined as mixed layers that can include
items with different ID and category (e.g., food, chemical products, etc.), given that the categories
are compatible. A stability index is associated with each item, and such index ranges from 1 to
100: the higher the value, the more stable the item (note that the value is computed based on
the geometrical features of the item). In order to have a stable and compact configuration of the
pallet it is imposed that items are stacked by a decreasing value of the stability index starting
from the bottom layer up to the top one.

The dimensions of the base of bins depend on the pallet dimensions plus a tolerance excess
band both in width and length called overhang, while the bins’ maximum height depends on
the height of the unit load used to transport the bins, namely the Transport Unit (TU). A bin
generally contains multiple items, here assumed related to a single delivery, while one or multiple
deliveries compose a shipment order. In the loading of the bins inside the TUs it is considered the
overhang as the new length (or width) of the bin. In order to load them without compromising
their integrity during the transport, the aim is to balance the cargo both when the TU is moving
(so bins are not allowed to fall) and when they are still (so upper bins must not smash the lower
ones) considering the whole weight of the configuration (e.g., items and pallet) and also the bins
are associated with a corresponding stability index. It is assumed that the items are associated to
a single shipment order but they may actually be associated to different delivery orders. Actually,
depending on the type of shipment, this can include one or more customer deliveries, while each
delivery is associated only to a single customer. Consequently, the items have to be grouped by
delivery, ID, and category.

As for the shipment, it is supposed that each company has an infinite fleet but a finite number
of TUs available. Each TU differs from the other by its dimensions (i.e., length, width and height),
and by the maximum weight that it can support. It is preferable that the TUs arrive at each
client within a predetermined time window and contain the whole cargo corresponding to each
client, even though some exceptions can be eventually managed.

The nomenclature of the problems considered in this thesis and the corresponding meanings
are summarized in Table 2.2.
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Chapter 3

Automating Bin Packing: a Layer Building
Matheuristics for Cost Effective Logistics

III
Abstract

This chapter addresses the problem of automating the definition of feasible pallets’
configurations. This issue is crucial for the competitiveness of logistics companies and
is still one of the most difficult problems in internal logistics. In fact, it requires the fast
solution of a three-dimensional Bin Packing Problem (3D-BPP) with additional logistic
specifications that are fundamental in real applications. To this aim, this chapter proposes a
matheuristics that, given a set of items, provides feasible pallets configurations that satisfy
the practical requirements of items’ grouping by logistic features, load bearing, stability,
height homogeneity, overhang as well as weight limits, and robotized layer picking. The
proposed matheuristics combines a mixed integer linear programming (MILP) formulation of
the 3D-Single Bin-Size BPP (3D-SBSBPP) and a layer building heuristics. In particular, the
feasible pallets configurations are obtained by sequentially solving two MILP sub-problems:
the first, given the set of items to be packed, aims at minimizing the unused space in each
layer and thus the number of layers; the latter aims at minimizing the number of shipping
bins given the set of layers obtained from the first problem. The approach is extensively
tested and compared with existing approaches. For its validation both realistic data-sets
drawn from the literature and real data-sets, obtained from the Italian logistics leader E80
Group, are considered. The resulting outcomes show the effectiveness of the method in
providing high-quality bin configurations in short computational times.

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 The 3D-SBSBPP Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 The Matheuristics for the Automated 3D-SBSBPP . . . . . . . . . . . . . . 33
3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Comparison with a Literature Reference Matheuristics . . . . . . . . . . . . 41
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3.1 Introduction
The industrial sector is experiencing the so-called fourth industrial revolution, based on the
pervasive use of the enabling technologies of Industry 4.0 [1] to increase productivity and quality
standards of production processes [2]. In this context, the novel concept of Logistics 4.0 has
been introduced, aiming at adapting the general Industry 4.0 pillars to logistics (e.g., automated
warehouse, digitization of freight and information flows, and transport tracing) [3]–[8].

Among the various internal logistic activities, the packing of items on pallets is one of the
most complex and resource-consuming. It requires the resolution of the three-dimensional Bin
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Packing Problem (3D-BPP) with additional logistic specifications that ensure the stability and
safety of the cargo. Its automatic solution can allow the warehouse manager to rapidly obtain
feasible configurations of pallets with respect to specific cost functions and packing constraints, to
reduce the number of composed pallets and the time required for their packing, and to increase
the throughput of the company. Although commercial Warehouse Management Systems (WMSs)
offer a large variety of functionalities for the management of internal logistics, effective algorithms
that automate the definition of feasible pallets’ configurations are still lacking. In particular, the
available commercial solutions mainly offer 3D graphical tools that allow simulating the manual
composition of items into bins from a visual perspective only. In addition, in the related literature
(as detailed in Section 2.1.1 of Chapter 2.3) contributions to the definition and resolution of
the 3D-BPP for internal logistic applications are limited, especially when compared with their
two-dimensional counterparts, and they only include a restricted set of constraints that partially
represent the business rules adopted in real logistic systems. Furthermore, the few existing
literature contributions mainly address the 3D-BPP for simplified simulation scenarios and a
recent survey highlights the lack of realistic benchmark data-sets [9]. With the aim of facilitating
the transition from Logistics 3.0 to Logistics 4.0, in this chapter it is proposed a matheuristic
algorithm [10] that can be integrated in the WMS to automatically and efficiently provide feasible
pallets configurations. The proposed matheuristics allows defining feasible pallets configurations
while taking into account the practical requirements of items’ grouping by logistic features, load
bearing, stability, height homogeneity, overhang as well as weight limits, and robotized layer
picking. The method consists in a layer building heuristics that is based on the sequential solution
of two Mixed Integer Linear Programming (MILP) sub-problems: the former, given the set of
items to be packed, aims at minimizing the unused space in each layer and thus the number of
layers; the latter aims at minimizing the number of shipping bins given the set of layers obtained
from the first problem resolution.

It is important to highlight that the proposed matheuristics allows packing homogeneous
and heterogeneous items into multiple single-sized bins and properly including particular logistic
business rules, such as the robotized layer picking (i.e., the picking of entire layers composed by
only one type of item by robotic manipulators) and the grouping of items by specific logistic
features (i.e., delivery number, identification number, and category of product). The matheuristics
is extensively tested to evaluate its performance in terms of quality of results and computational
efficiency. Specifically, the first set of tests compares the outcomes and computational time of
the 3D-Single Bin-Size BPP (3D-SBSBPP) with the ones of the proposed algorithm including
only geometric, weight, and overhang constraints. The second set of tests provides a comparison
between this layer-building matheuristics and the literature algorithm proposed in [11], which
is one of the most recent and most complete matheuristics in terms of logistic requirements.
The third regards the performance analysis of the layer-building algorithm with a real data-set
obtained by an Italian industry leader of the logistic sector. The obtained outcomes show the
ability of the method to provide high quality results in short computational times. As it emerges
from the discussion of the literature review, only a few contributions address the 3D-SBSBPP
from the general perspective of the real logistic sector and present applications to real case studies.

In this chapter, it is proposed a matheuristics of practical applicability for the automatic
and efficient resolution of the 3D-SBSBPP. In particular, it is defined a novel MILP-based layer
building algorithm that efficiently determines feasible pallet configurations, minimizing the unused
space and fulfilling a set of geometric and logistic specifications, i.e., items’ grouping by logistic
features, load bearing, stability, height homogeneity, overhang and weight limits, and robotized
layer picking. In contrast with the contributions analyzed in Section 2.1.1, the proposed algorithm
allows the automatic management of the packing process, starting from the analysis of the
shipment list and allowing the definition of the most suitable configuration of bins to be delivered
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to the final customers in a short computational time. A synthetic comparison of this approach
with the related literature is reported in Table 2.1. In particular, differently from [12] and [13], it
allows the definition of multiple bins of homogeneous and heterogeneous items. With respect to
[14] and [15], this work takes into account also compatibility constraints among items, e.g., food
is not packed with chemical products, and fragility constraints. Moreover, similarly to [16], here
it is considered the decomposition of the problem into the two Layer Building and Bin Building
phases, but it as item support, bin stability, and load bearing for the application of the method
in the logistic field. The contributions of this chapter can be then summarized as follows:

• the formulation of the 3D-SBSBPP as a MILP-based layer building BPP that first optimizes
the layers composition and then the bin configuration. It includes not only geometric
constraints, but also logistic requirements, i.e., load bearing, stability, height homogeneity,
overhang and weight limits (see Table 2.1);

• the definion of a three-phase matheuristics based on the layer building formulation of the 3D-
SBSBPP that allows, in a short computational time, the proper and automatic management
of the packing process from the analysis of the shipment list to the definition of the most
suitable configuration of bins to be delivered to the final customer. The method allows
fulfilling further logistic constraints that are not included in the mathematical formulation
of the problem, i.e, the grouping of items by logistic features, such as, delivery number,
identification number, and category of product, and the robotized layer picking function
(see Table 2.1);

• the extensive computational tests campaign to compare the performance of the proposed
algorithm with respect to a reference method using both realistic data-sets drawn from
the literature and real data-sets. In particular, differently from related works that consider
testing instances with geometrical features only, it shows the effectiveness of the proposed
methodology on industry-size scenarios including practical constraints required by logistic
companies.

3.2 The 3D-SBSBPP Formulation
In this section it is presented the mathematical models on which the proposed matheuristics
relies, which is detailed in Section 3.3. In particular, the logistic 3D-SBSBPP is formulated with
two sub-problems based on [17], namely:

• Layer building sub-problem: given the set of items to be packed, this sub-problem aims
at minimizing the unused space in each layer and thus the number of items’ layers, while
fulfilling geometric constraints.

• Bin building sub-problem: given the set of layers obtained from the Layer Building sub-
problem, this sub-problem aims at minimizing the number of shipping bins, while fulfilling
geometric and safety constraints.

Table 3.2 shows all the parameters used in the proposed formulation, while the variables are
presented in Table 3.1.

3.2.1 Layer Building Sub-problem
In this sub-problem the goal is to arrange the given items into a minimum number V of layers
having the highest fill ratio and including items with similar heights. The layers are composed
in accordance with an iterative procedure. Initially, the first layer is composed extracting the
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Table 3.1: List of variables for the layer building an bin building sub-problems

Name Description Value
Layer Building

i, i′ indices of items [1,Nj ]
pi binary variable indicating if item i is inside (1) or outside (0) the layer {0,1}
xi x-axis coordinate of the left-bottom corner of item i in the layer R+

yi y-axis coordinate of the left-bottom corner of item i in the layer R+

lxi binary variable indicating whether the length of item i is parallel to the x-axis (1) or not (0) {0,1}
lyi binary variable indicating whether the length of item i is parallel to the y-axis (1) or not (0) {0,1}

le(i,i′) binary variable indicating whether item i is on the left (1) of item i′ or not (0) {0,1}
r(i,i′) binary variable indicating whether item i is on the right (1) of item i′ or not (0) {0,1}
f(i,i′) binary variable indicating whether item i is in front (1) of item i′ or not (0) {0,1}
b(i,i′) binary variable indicating whether item i is behind (1) item i′ or not (0) {0,1}

Bin Building
j, j′ indices of layers [1,V]
k index of bin [1,Mmax]
nk binary variable indicating whether bin k is empty (0) or not (1) {0,1}
vj,k binary variable indicating whether layer j is inside (1) or outside (0) bin k {0,1}
zj z-axis coordinate of the left-bottom corner of layer j R+

o(j,j′) binary variable indicating whether layer j is above (1) layer j′ or not (0) {0,1}
u(j,j′) binary variable indicating whether layer j is below (1) layer j′ or not (0) {0,1}

optimal subset from all the N items, which maximizes the fill ratio while fulfilling geometric
constraints, overhang limits and height homogeneity requirements, i.e., ensuring that the height
difference between the selected items is lower than a given threshold. For the second layer, the
optimal selection procedure is applied to the remaining available items. The optimization steps
are then iterated until all items are paired with a layer. For the composition of a generic layer j,
given the set Nj ⊆ N of Nj available items, the layer building model is formulated as follows:

min

(Θ+ O)(Λ+ Q) −
∑
i∈Nj

piθiλi

 (3.1)

subject to:
xi + θilxi + λi(1 − lxi) ≤ Θ+ O + (1 − pi)L,∀i (3.2)
yi + λi(1 − lyi) + θilyi ≤ Λ+ Q + (1 − pi)L,∀i (3.3)
le(i,i′) + r(i,i′) + b(i,i′) + f(i,i′) ≥ pi + pi′ − 1,∀i, i′, i′<i (3.4)
xi + θilxi + λi(1 − lxi) ≤ xi′ + (1 − le(i,i′))L,∀i, i′, i′<i (3.5)
xi′ + θi′ lxi′ + λi′(1 − lxi′) ≤ xi + (1 − r(i,i′))L,∀i, i′, i′<i (3.6)
yi + λi(1 − lyi) + θilyi ≤ yi′ + (1 − b(i,i′))L,∀i′, i′<i (3.7)
yi′ + λi′(1 − lyi′) + θi′ lyi′ ≤ yi + (1 − f(i,i′))L,∀i, i′, i′<i (3.8)
(ψi −ψi′)

(
le(i,i′) + r(i,i′) + f(i,i′) + b(i,i′)

)
≤ G,∀i, i′, i′<i (3.9)

(ψi −ψi′)
(
le(i,i′) + r(i,i′) + f(i,i′) + b(i,i′)

)
≥ -G,∀i, i′, i′<i (3.10)

lxi + lyi = 1,∀i (3.11)
0 ≤ xi ≤ Θ,∀i (3.12)
0 ≤ yi ≤ Λ,∀i (3.13)
le(i,i′), r(i,i′), b(i,i′), f(i,i′) ∈ {0, 1},∀i, i′, i′< i (3.14)
pi ∈ {0, 1},∀i (3.15)
lxi, lyi ∈ {0, 1},∀i. (3.16)
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Table 3.2: List of parameters for the layer building and bin building sub-problems

Name Description
Common

L an arbitrary large number
si stability index of item i
ci maximum load supported by an item i
γS weight factor to estimate the stability of layer j
γC weight factor to estimate the maximum load

supported by a layer j
Hj height of layer j
Aj area of layer j
Sj stability index of layer j
Wj weight of layer j
Cj maximum load supported by layer j

Layer Building
Mmax maximum number of available bins to be composed

N total number of items
Θ width of pallets
Λ length of pallets
Ψ maximum height of bins
O maximum width overhang
Q maximum length overhang
θi width of item i
λi length of item i
ψi height of item i
ωi weight of item i

Bin Building
F maximum load supported by a pallet
V total number of layers
G maximum height gap among items of the same layer
B maximum area gap among two consecutive

layers

The objective in (3.1) is to maximize the fill ratio of the layer (i.e., to minimize the horizontal
area of the pallet that is not occupied by selected items). Constraints (3.2)-(3.3) guarantee
that each item is contained in the dimensions of the layer allowing a overhang tolerance for the
x and y axis; moreover, they allow the rotation of the item by 90 degrees along the vertical
axis. Constraints (3.4)-(3.8) ensure the assignment of the relative position of two items without
overlapping, allowing the combination of the positions front, back, left, and right. Constraints
(3.9)-(3.10) ensure that the maximum gap between the items height inside one layer is lower than
a threshold, thus keeping layers as homogeneous as possible and contributing to the stability of
the overall configuration. Constraints (3.11) guarantee the unique assignment of the orientation
of each item i. Finally, constraints (3.12)-(3.13) and (3.14)-(3.16) specify the bounding and the
integrality conditions on the defined real and binary decision variables, respectively.

Summing up, the resulting MILP problem (3.1)-(3.16) consists in determining the 2Nj real
and Nj(2Nj + 1) binary variables characterizing the layers and listed in the first part of Table 3.1,
which minimize the objective function in (3.1) and meet the Nj equality constraints (3.11), the
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7
2 Nj(Nj + 3) inequality constraints (3.2)-(3.10), the 4Nj bounding constraints (3.12)-(3.13), and
the Nj(2Nj + 1) integrality constraints in (3.14)-(3.16).

The iterative resolution of (3.1)-(3.16) allows determining the composition of layers (the items
allocated to each layer and their location in terms of coordinates and vertical rotation) and, after
executing the above MILP problem, the parameters representing the physical features of layers
are then determined as follows:

Hj = max
i∈Nj

ψi,∀j (3.17)

Aj =
∑
i∈Nj

λiθi,∀j (3.18)

Sj = γS

∑
i∈Nj

si,∀j (3.19)

Cj = γC

∑
i∈Nj

ci,∀j (3.20)

Wj =
∑
i∈Nj

ωi,∀j. (3.21)

In particular, the height of a given layer is set equal to the height of the highest selected
item; the layer occupied area is the sum of the areas occupied by all the selected items; the layer
stability is defined as the sum (scaled by factor γS) of the values associated to the selected items;
the maximum load supported by the given layer is estimated as the sum (scaled by factor γC) of
the values associated to the selected items; the weight of the layer is given by the sum of the
weights of all the items contained in it.

3.2.2 Bin Building Sub-problem
In this sub-problem, given the set of the V layers obtained by solving the optimization problem
(3.1)-(3.16) and the corresponding parameters computed by (3.17)-(3.21), the aim is to minimize
the number of bins composed by the given layers, while fulfilling geometric and safety requirements.

The bin building problem is formulated as follows:

min
Mmax∑
k=1

nk (3.22)

subject to:
V∑

j=1
vj,k ≤ V nk,∀k (3.23)

Mmax∑
k=1

vj,k = 1,∀j (3.24)

zj +Hj ≤ Ψ+ (1 − vj,k)L,∀k, j (3.25)
o(j,j′) + u(j,j′) ≥ vj,k + vj′,k − 1,∀k, j, j′, j′<j (3.26)
zj +ψj ≤ zj′ + (1 − o(j,j′))L,∀j, j′, j′<j (3.27)
zj′ +ψj′ ≤ zj + (1 − u(j,j′))L,∀j, j′, j′<j (3.28)
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V∑
j′=1

Wj′o(j′,j) ≤ Cj ,∀j (3.29)

V∑
j=1

vj,k Wj ≤ F,∀k (3.30)

Sjo(j,j′) ≤ Sj′u(j′,j),∀j, j′, j′<j (3.31)
Sju(j,j′) ≥ Sj′o(j′,j),∀j, j′, j′<j (3.32)
(Aj −Aj′)o(j,j′) ≤ B,∀j, j′, j′<j (3.33)
(Aj −Aj′)u(j,j′) ≤ B,∀j, j′, j′<j (3.34)
0 ≤ zj ≤ Ψ,∀j (3.35)
nk ≥ nk+1,∀k ∈ {1, . . . ,Mmax − 1} (3.36)
o(j,j′), u(j,j′) ∈ {0, 1},∀j, j′, j′ < j (3.37)
vj,k ∈ {0, 1},∀k, j (3.38)
nk ∈ {0, 1},∀k. (3.39)

The objective in (3.22) is to minimize the number of bins to be composed, given the set of
layers. Constraints (3.23) ensure the consistency between binary variables vj,k (∀j) and nk for
each bin k, i.e., if any layer is assigned to a bin, the bin is considered not empty. Constraints
(3.24) make sure that each layer can be part at most of one bin. Constraints (3.25) guarantee
that the placement of each layer does not exceed the maximum height of the bin. Constraints
(3.26) concern the relative position that two consecutive layers can assume inside the bin (i.e., on
top or below). Constraints (3.27) - (3.28) are related to the non-overlapping of two layers placed
in the same bin. Constraints (3.29) limit the maximum load that a single layer can withstand.
Constraints (3.30) limit the maximum weight that a single pallet can withstand. The safety
constraints (3.31) and (3.32) ensure that the stability index of each layer is higher than or equal
to the stability index of the respective above layers, while (3.33) and (3.34) impose that the gap
of area between two consecutive layers must not be greater than the given threshold B. Finally,
constraints (3.35), (3.36) and (3.37)-(3.39) specify the bounding, the validity, and integrality
conditions on the defined real and binary decision variables, respectively.

Summing up, the resulting MILP problem (3.22)-(3.39) consists in determining the V real and
2Mmax(1 + V) + V(V − 1) binary variables characterizing the bins and listed in the second part
of Table 3.1, which minimize the objective function in (3.22) and meet the V equality constraints
(3.24), the Mmax(2 + 1

2 V(V + 1)) + V(2 + 3(V − 1)) inequality constraints (3.23) and (3.26)-(3.39),
the 2V bounding constraints (3.35), the 1

2 (Mmax(Mmax − 1)) validity constraints (3.36), and the
Mmax(1 + V) + V(V − 1) integrality constraints (3.37)-(3.39).

3.3 The Matheuristics for the Automated 3D-SBSBPP
In this section, it is described the proposed matheuristics for the logistic 3D-SBSBPP, which is
based on the mathematical models described in section 3.2. It is worth highlighting that, the
algorithm takes as input a shipment list that includes items with different IDs and different
categories, to be delivered to different clients. Thus, the algorithm is in charge of creating
monoitem, monocategory, and mixed layers. As shown in Figure 3.1, the proposed matheuristics
is composed by 3 different phases, namely, Grouping, Layer Building, and Bin Building, which
are represented in the flowchart by dashed boxes and are executed sequentially.
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Figure 3.1: High-level flow chart of the proposed matheuristics.

Grouping: this is a pre-processing phase aimed mainly at grouping items by delivery and ID.
This procedure receives as input the data related to a shipment including the list of deliveries
associated to various customers. First, this phase initializes all the parameters of the problem,
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i.e., the parameters related to items (N, θi, λi, ψi, si, ai, ωi), the class of parameters related
to pallets (V, Θ, Λ, Ψ, O, Q), and the parameters related to the creation of layers (G, B, U, T,
FRmono, FRmulti), where U and T are the maximum allowable layer picking weight and height,
and FRmono and FRmulti are the minimum admitted values of the fill ratio of monoitem layers
and of monocategory and mixed layers. The fill ratio indicates the percentage of the layers’ area
occupied by the respective items, while parameters O and Q are set according to the dimensions
of the input items, ensuring that at least the half base of the smallest item is placed inside the
bin. They are calculated as follows:

O = Q <
mini {θi, λi}

2 . (3.40)

Moreover, with the aim of facilitating the delivery and the loading/unloading of bins from
transport units to customers, items belonging to a specific delivery are grouped, so that such
items can be packed together inside the bins. Subsequently, given a delivery, the algorithm further
groups the items by ID.

Layer Building: the main purpose of this phase is to obtain feasible configurations of monoitem
layers, monocategory layers, and mixed layers. In particular, monoitem layers are created starting
from each monoitem set by means of a heuristic procedure that creates strips of items inside of
the layer by starting from its left bottom corner. A monoitem layer is created if the area of the
items fully covers the area of the layer (i.e., the fill ratio of the j-th layer is FRj ≥FRmono) and
also both the length and width of the items fit the length and width of the layer. In particular,
the items are sequentially positioned in the layer by iteratively assigning the coordinates of the
left bottom corner of each item. For the monoitem layers, the robotized layer picking is enabled
only if the total weight and the height of the layer are lower than or equal to the maximum
allowable layer picking weight (U) and maximum allowable layer picking height (T). If all the
items of the shipment are inserted in monoitem layers, the algorithm executes the subsequent
Bin Building phase, otherwise the remaining items are processed for creating monocategory
and mixed layers. Specifically, the items are first grouped by category. For each category, the
items are grouped in subsets Nj for which the summation of the items’ base area satisfies the
relation FRj ≥FRmulti. The optimization problem (3.1)-(3.16) is then iteratively solved over the
subsets Nj , until all items are assigned to a layer. Note that at each step a MILP solver iterates
until a solution is found or the computational time is greater than a given threshold ∆t (i.e., an
approximate solution is found). At each iteration, the obtained layer configuration is saved if it
satisfies the requirement on the fill ratio, i.e., FRj ≥FRmulti, otherwise the corresponding items
are recombined with the remaining items and novel subsets Nj , containing all the items that are
still not assigned to any bin, are defined. The eventual residual items of different but compatible
categories are combined in mixed layers following the same steps described for monocategory
layers. In the eventuality of residual compatible items, further mixed layers will be composed by
relaxing the height homogeneity and fill ratio requirements.

The algorithm then moves to the Bin Building phase in the following cases: (1) all the items
included in the monocategory sets are assigned to layers (both monocategory and mixed layers);
(2) not all items are assigned to a layer, but these residual items belong to incompatible categories
(i.e., categories that cannot be combined in the same layer, e.g., food and chemical products).

Bin Building: this phase aims at properly combining the layers computed in the previous phases
(i.e., monoitem, monocategory, and mixed layers) into a minimum number of bins. In particular,
this procedure is executed on a delivery basis, i.e., all the layers related to a given delivery
are grouped by compatible categories and used to solve the bin building problem (3.22)-(3.39)
presented in Section 3.2.2.
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It is important to notice that the proposed matheuristic algorithm provides feasible solutions
in a short computational time. The quality of the results and the scalability of the method are
obtained empirically. In the experimental results section, there is a discussion of both aspects
and a comparison of the results of the presented algorithm with those of the exact resolution.

3.4 Experimental Results
This section is devoted to the validation of the performance of the proposed matheuristics. All
tests are performed on a laptop equipped with a 2.20 GHz Intel Core i7-8750H CPU and 32 GB
RAM using C# language [18], combined with the Glop linear solver [19]. In particular, due to
the nature of the elements characterizing the 3D-SBSBPP, object-oriented programming has been
employed, in order to properly represent the structure and relations of the problem data.

In the following sub-sections the proposed matheuristics is tested first on a small data-set
where the results and performance of the algorithm are compared with the ones of the 3D-SBSBPP
basic formulation presented in Section 3.4.1.1. Then the method is compared with a reference
method using both realistic data-sets drawn from the literature and realistic industrial data-sets
[11]. Finally, the algorithm is tested on real data provided by the Italian logistic company E80
Group [20] to further investigate its performance.

The following performance indicators are considered to analyse the performance of the
algorithm.
Number of created layers and bins:

• M: total number of obtained bins;
• V: total number of obtained layers;

Fill ratio [%]:

• AvgFRV: layers’ average fill ratio;

AvgFRV = 100
V

V∑
j=1

(1 − (Θ+ O)(Λ+ Q) −
∑Nj

i=1 ai

(Θ+ O)(Λ+ Q) )

where ai is the base area of the i−th item obtained as θiλi.

• AvgFRM: bins’ average fill ratio;

AvgFRM = 100
M

M∑
k=1

(1 −
(Θ+ O)(Λ+ Q)Ψ−

∑Vk

j=1
∑Nj,k

i=1 di

(Θ+ O)(Λ+ Q)Ψ )

where di is the volume of the i−th item obtained as θiλiψi.
Computational time [s]:

• Tex: total computational time of the algorithm;

Stability indices S1k and S2k, firstly qualitatively described by [21] and used also by [12], are
formalized as follows:

• S1k: average number of items positioned below each item, in case this is not positioned
directly on the pallet, i.e., not considering the lowest layer, formulated as follows:
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S1k = 1
Vk − 1

Vk−1∑
j=1

(∑Nj+1,k

i′=1
∑Nj,k

i=1 µ(i,i′)

Nj+1,k

)

where µ(i,i′) is equal to 1 if item i is under item i′ otherwise is equal to 0
• S2k: average percentage of items which are not surrounded by other items in at least 3

sides inside of bin k, formulated as follows:

S2k = 100
Nk

Vk∑
j=1

Nj,k∑
i=1

min
{

1,max
{

0, 3−

(
min

{
1,

Nj,k∑
i′=1

b(i,i′),j

}
+ min

{
1,

Nj,k∑
i′=1

f(i,i′),j

}
+

min
{

1,
Nj,k∑
i′=1

le(i,i′),j

}
+ min

{
1,

Nj,k∑
i′=1

r(i,i′),j

})}}

where b(i,i′),j is equal to 1 if item i is behind item i′ in layer j otherwise is 0, f(i,i′),j is equal
to 1 if item i is in front of item i′ in layer j otherwise is 0, le(i,i′),j is equal to 1 if item i is
on the left of item i′ in layer j otherwise is 0, and r(i,i′),j is equal to 1 if item i is on the
right of item i′ in layer j otherwise is 0. As for the parameters, Nj is the number of items
in layer j, Vk is the number of layers of bin k, and Nk is the number of items of bin k.

The overhang index is formulated as:

• S3k: average value of the overhanging ratios over all the layers assigned to the k−th bin.
For each layer the overhanging ratio is computed dividing the actual layer overhanging area
by the maximum pallet overhanging area (i.e., (Θ+ O)(Λ+ Q) −ΘΛ).

In the set-up of each implemented scenario the parameters for the 3D-SBSBPP are set as
follows:

• satisfactory monoitem layer fill ratio FRmono = 99%;
• satisfactory monocategory or mixed layer fill ratio

FRmulti = 90%;
• maximum height gap among items of the same layer G=20 mm;
• maximum area gap among two consecutive layers

B=10000 mm2;
• maximum load supported by the layer picking U=1000 Kg;
• maximum height supported by the layer picking

T=1000 mm.

Finally, the only remaining set-up parameter for the proposed algorithm is the maximum
execution time in which the solver of Layer Building Phase has to find the best configuration for
the creation of each layer, that it is setted ∆t=90 seconds.
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3.4.1 Comparison with an Exact Method

In this subsection the proposed matheuristic algorithm is compared with the exact solution of
the logistic 3D-SBSBPP. Note that, as highlighted in the comparative review in [9], only a few
contributions are available in the literature that apply exact methods to the 3D-SBSBPP. This is
mainly due to the difficulties in representing patterns or practical packing constraints. For this
reason, in the following there is the report of the MILP formulation of the 3D-SBSBPP based
on the literature formulation by Chen et al. [17] that includes geometric, overhang, rotation,
and weight constraints and it is compared with the proposed approach including the same
requirements.

3.4.1.1 The Exact 3D-SBSBPP Formulation
This MILP formulation of the logistic 3D-SBSBPP aims at minimizing the number of shipping
bins used for packing a given set of items, while fulfilling a basic set of geometric and safety
constraints. Differently from the classical 3D-BPP in [22], this formulation takes additional
constraints into account. Specifically, a tolerance excess band (both in width and length) in the
size of the bin base dynamically calculated according to the dimensions of the items (see Section
3.3), rotation along the z axis, and weight limits for the pallet. The notation and meaning of
parameters and variables of the formulation are explained respectively in Tables 3.2 and 3.1.

The mathematical model is defined as follows:

min
Mmax∑
k=1

(Θ+ O)(Λ+ Q)Ψnk −
N∑

i=1
θiλiψi (3.41)

subject to:
N∑

i=1
pi,k ≤ N nk ,∀k (3.42)

Mmax∑
k=1

pi,k = 1,∀i (3.43)

N∑
i=1

pi,kωi ≤ F,∀k (3.44)

xi + θilxi + λi(1−lxi) ≤ Θ+ O + (1−pi,k)L,∀k, i (3.45)
yi + λi(1−lyi) + θilyi ≤ Λ+ Q + (1−pi,k)L,∀k, i (3.46)
zi +ψi ≤ Ψ+ (1−pi,k)L,∀k, i (3.47)
le(i,i′) + r(i,i′) + b(i,i′) + f(i,i′)+

o(i,i′) + u(i,i′) ≥ pi,k + pi′,k − 1,∀k, i, i′, i′<i (3.48)
xi + θilxi + λi(1−lxi) ≤ xi′ + (1−le(i,i′))L,∀i, i′, i′<i (3.49)
xi′ + θi′ lxi′ + λi′(1−lxi′) ≤ xi + (1−r(i,i′))L,∀i, i′, i′<i (3.50)
yi + λi(1−lyi) + θilyi ≤ yi′ + (1−b(i,i′))L,∀i, i′, i′<i (3.51)
yi′ + λi′(1−lyi′) + θi′ lyi′ ≤ yi + (1−f(i,i′))L,∀i, i′, i′<i (3.52)
zi +ψi ≤ zi′ + (1−o(i,i′))L,∀i, i′, i′<i (3.53)
zi′ +ψi′ ≤ zi + (1−u(i,i′))L,∀i, i′, i′<i (3.54)
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lxi + lyi = 1,∀i (3.55)
0 ≤ xi ≤ Θ,∀i (3.56)
0 ≤ yi ≤ Λ,∀i (3.57)
0 ≤ zi ≤ Ψ,∀i (3.58)
nk ≥ nk+1,∀k ∈ {1, . . . ,Mmax−1} (3.59)
nk ∈ {0, 1},∀k (3.60)
pi,k ∈ {0, 1},∀i, k (3.61)
le(i,i′), r(i,i′), b(i,i′) ∈ {0, 1},∀i, i′, i′<i (3.62)
f(i,i′), o(i,i′), u(i,i′) ∈ {0, 1},∀i, i′, i′<i (3.63)
lxi, lyi ∈ {0, 1},∀i. (3.64)

The objective in (3.41) is the minimization of the unoccupied space over the total number of
used bins. In addition, constraints (3.42) ensure the consistency between binary variables pi,k

(∀i) and nk for each bin k, i.e., if any item is assigned to a bin, the bin is considered not empty.
Constraints (3.43) make sure that each item can be part at most of one bin. Constraint (3.44)
make sure that the overall weight of items allocated to each bin is not greater than the maximum
weight supported by the pallet. Constraints (3.45)-(3.47) guarantee that each item is contained
in the dimensions of the bin allowing a overhang tolerance for the x and y axis; moreover, they
allow the rotation of the item by 90 degrees along the vertical axis. Constraints (3.48)-(3.54)
are related to the relative positions that two items can assume inside the bin: (3.48) ensure the
assignment of the relative position of two items allowing the combination of the positions front,
back, left, right, over, and under, while (3.49)-(3.54) guarantee that those items do not overlap.
Constraints (3.55) guarantee the unique assignment of the orientation of each item i. Finally,
constraints (3.56)-(3.59) and (3.60)-(3.64) specify the bounding and integrality conditions on the
defined real and binary decision variables, respectively.

Figure 3.2a shows an example of the relative position of two items (i and i′) laying on the
x/y plane, that is, item i is positioned on the front left side with respect to object i′ in the same
plane. Figure 3.2b represents the two different orientations that an item can assume with respect
to the value of the variables lxi and which may be 0 or 1 (for the sake of simplicity, the image is
in 2D because the rotation is done on the x/y and so the height of the item is not influent).

Summing up, the resulting MILP problem (3.41)-(3.64) consists in determining 3N real and
Mmax(N + 1) + N(3N − 1) binary variables, which minimize the objective function in (3.41)
and meet the Mmax

2 (4 + 7N + N2) + 3N(N + 1) inequality constraints (3.42) and (3.44)-(3.54),
the 2N equality constraints (3.43) and (3.55), the 6N bounding constraints (3.56)-(3.58), the
1
2 Mmax(Mmax − 1) validity constraints (3.59), and the Mmax(N + 1) + N(3N + 1) integrality
constraints in (3.60)-(3.64).

3.4.1.2 Result Achieved
A scalability analysis is performed testing both methods (i.e., for the matheuristic algorithm,
indicated as A, and for the exact method, indicated as Â) over instances with an increasing
number of identical items. The items’ dimensions are θ=300 mm (width), λ=200 mm (length),
ψ=600 mm (height) and ω=10.8 kg (weight).

In the tests the pallet dimensions are equal to the standard EUR1 Euro pallet ones, i.e., Θ=
800 mm (width of the pallet), Λ=1200 mm (length of the pallet). The maximum admissible
height for each bin is Ψ= 1800 mm, while the maximum weight supported by the pallet is F=1200
kg. These assumptions are realistic, especially for logistic companies that handle high quantities
of goods.
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Figure 3.2: (a) Example of the relative position of two items laying in the x/y plane. (b) Horizontal placement of
an item in the rotated and not rotated configuration.

Starting with an instance including 10 items and increasing at each test the number of items
by one unit, the computed results reveal that in 10% of scenarios the exact solution provides
a higher number of bins with respect to the matheuristics. On the contrary, the matheuristics
succeeds in including all items in a single bin. Moreover, as shown in Fig. 3.3, the computational
time of the matheuristics presents a growth rate significantly lower with respect to the exact
solution. In particular, with 32 items the computational time of the matheuristics is 699.0% lower
than the exact solution, thus demonstrating the efficiency of the proposed algorithm.
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Figure 3.3: Execution time of the proposed algorithm (A) and the exact method (Â) as a function of the items
number.

Further, the performance of the proposed matheuristics are tested and compared with the ones
of the exact method considering two additional scenarios, i.e., ScA and ScB. The two scenarios
respectively include two and three types of different items, whose dimensions and weights are
reported in Table 3.3. It is important to mention that in both scenarios the considered items
can fit in a single bin. The obtained results, reported in Table 3.3 are evaluated in terms of
computational time Tex, average fill ratio AvgFRM, and number of obtained bins M for the
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matheuristic algorithm A, and for the exact method Â. The outcomes show that in both cases
the matheuristics can provide a solution with AvgFRM=100% in shorter computational times
with respect to the exact method, and both assign all items to a single bin.

Table 3.3: Set-up and results for the comparison of the proposed algorithm (A) with the exact method (Â)

Input Output

Scenario IDs N λi [mm] θi [mm] ψi [mm] ωi [kg] Tex AvgFRM M
A Â A Â A Â

ScA 2 18 400 {400,600} {300,900} {5.6,10.8} 2.6 851.84 100 100 1 1
ScB 3 26 {200,400} {400,600} {300,900} {5.6,10.8} 5.4 1250.80 100 100 1 1

3.5 Comparison with a Literature Reference Matheuristics
In this subsection, the results achieved of the proposed matheuristics are compared with the ones
obtained by in [11] using a set of randomly generated industrial instances. In the related literature,
the principal well-known data-sets used to test the efficiency of 3D-SBSBPP algorithms lack most
of the logistic data considered in this work (i.e., items’ weight, stability index, supported load,
overhang, categories, IDs, height and area gap, layer picking) that are necessary to practically
implement the problem resolution. On the contrary, the work in [11] presents a matheuristics
using a layer based column generation approach combined with second order cone programming
and graphs, and includes all the requirements considered in this work except for the robotized
layer picking. Moreover, this approach, considered as literature benchmark, is the extension of the
one proposed by the same authors in [16], which proves that the algorithm largely outperforms
the best performing literature’s algorithms identified by [9], such as the ones in [22] and [23].

The data-set used for the comparison is obtained with the instance generator of [11] and is
composed of 4 classes with 7 different instances including 100, 150, 200, 500, 1000, 1500, and
2000 items. The 4 classes contain different percentages of small to large volume items as specified
in [16]. For what concerns the setup parameters, the pallet dimensions are Θ=1240 mm, Λ=840
mm and Ψ= 2200 mm, and F=1500 kg. Table 3.4 reports the average results achieved by testing
each combination of class and number of items over five instances; the symbols A and A∗ are
used to respectively indicate the proposed algorithm and the literature one. Columns I and II
report the class of the instance (i.e., Classes 1 to 4) and the corresponding number of items (N);
column III reports the minimum, the maximum, and the average number of bins (M) obtained
with the two algorithms for the five instances; column IV reports the average CPU times obtained
over the instances (AvgTex), and column V reports the minimum the maximum and the average
value of the average bins’ fill ratio (AvgFRM) achieved over five instances. The achieved results
show that this algorithm provides a higher fill ratio in terms of the average and the maximum
values, while, in some cases, it provides a lower value of the minimum value with respect to the
reference algorithm. In general, it is possible to notice that, on the one hand, the difference
between the minimum and the maximum fill ratio values is higher for the proposed algorithm,
meaning that it provides some very full configurations, and some other emptier because they are
filled with the few remaining items. On the other hand, the number of filled bins is similar in
the two methods, while the execution time is almost 70% higher with the proposed method in
the small scale instances, while it is notably 170% lower in the large scale instances. Concluding,
the developed comparison demonstrates that the proposed matheuristics can efficiently provide
feasible bins’ configurations with different set of instances both in terms of number of items and
features heterogeneity. Moreover, the proposed method generally outperforms the one in [11] both
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Table 3.4: Results for the comparison of the proposed algorithm (A) with the literature benchmark [11] (A∗)

N
M AvgTex [s] AvgFRM [%]

min max avg min max avg
A A∗ A A∗ A A∗ A A∗ A A∗ A A∗ A A∗

Class 1 100 1 1 2 2 1.4 1.8 21.90 6.02 78.2 28.47 89.23 59.40 80.5 35.37
150 2 2 2 2 2 2 20.50 21.83 28.78 41.92 80.43 45.60 58.38 44.27
200 3 3 5 3 3.3 3 3.50 40.89 16.51 37.88 83.44 39.71 53.69 39.07
500 5 5 6 6 5.2 5.4 204.10 545.08 15.35 49.34 82.03 59.80 48.83 55.62
1000 9 9 9 10 9 9.4 399.51 871.07 11.02 59.68 85.60 66.71 69.62 64.09
1500 13 13 14 14 13.5 13.8 1254.19 2456.04 27,87 63.81 94,16 68.55 69,12 64.89
2000 18 18 19 19 18.7 18.6 1744.52 3908.56 40.8 63.01 88.71 65.94 70.12 64.28

Class 2 100 2 2 2 2 2 2 21.02 3.27 26.4 29.05 85.4 30.46 75.4 29.74
150 2 2 3 2 2.3 2 32.09 22.93 25.62 41.59 86.21 45.93 76.23 43.83
200 2 2 3 3 2.5 2.8 29.13 47.25 47.32 38.16 81.32 59.93 68.46 43.29
500 5 5 7 6 6.5 6.1 103.98 392.30 34.96 49.87 89.56 60.04 58.02 57.24
1000 9 9 13 10 10.3 9.4 279.13 1080.03 14.56 58.9 82.33 65.56 57,84 62.97
1500 14 13 14 14 14 13.4 1384.21 2158.65 37.31 63.81 85.23 68.55 70.45 66.68
2000 18 18 19 19 18.6 18.4 1964.62 5201.74 20.54 62.87 80.32 66.46 68.58 64.76

Class 3 100 2 2 3 2 2.3 2 30.65 11.01 26.4 22.57 84.5 24.62 76.43 23.62
150 2 2 3 2 2.3 2 61.32 10.45 43.25 34.4 87.43 36.53 63.36 35.57
200 2 2 3 3 2.8 2.6 63.32 37.51 24.32 38.16 88.34 59.93 61.32 43.29
500 5 4 7 5 6.1 4.2 206.41 392.30 20.52 47.27 80.79 60.67 66.68 57.16
1000 8 8 9 8 8.4 8 212.23 1080.03 16.34 57.99 98,23 60.97 54.32 59.72
1500 11 11 12 12 11.6 11.2 517.25 2661.04 44,54 59.58 88.23 65.84 52.77 63.9
2000 15 15 16 16 15.7 15.8 1893.23 5201.74 19.00 59.48 80.91 63.42 53.63 60.62

Class 4 100 1 1 2 2 1.8 1.8 22.41 7.90 43.2 21.6 92.3 40.23 79.51 25.61
150 2 2 3 2 2.5 2 36.01 17.07 49.9 31.07 87.2 34.18 64.4 32.47
200 2 2 3 2 2.7 2 44.09 47.86 26.1 42.74 85.34 46.89 75.3 44.63
500 4 4 5 5 4.6 4.4 114.33 451.83 15.98 44.42 83.63 56.01 57.06 51.36
1000 8 8 9 10 9.1 8 577.21 1867.12 15.98 54.61 83.63 56.16 62.68 55.32
1500 10 10 11 11 10.5 10.6 875.34 2158.65 37.31 60.34 85.23 67.31 70.45 63.35
2000 15 15 16 16 15.6 15.4 2034.76 5201.74 20.49 55.23 84.91 59.08 79.63 57.4

in terms of computational time and fill ratio in large size industrial scenarios and consequently
also the principal literature algorithms.

3.5.1 Tests on Industrial Data
In this subsection, the proposed matheuristic method is further tested on more complex scenarios
based on real data provided by the Italian logistic company E80 Group [20]. These data are
related to the three scenarios Sc1, Sc2, and Sc3 –described in Table 3.5– corresponding to logistic
shipments with different level of item heterogeneity. The set-up of all scenarios is reported in
Table 3.5, where column I specifies the scenario, column II the number of corresponding IDs,
columns III-VI the interval for the length, width, height, and weight of the items included in the
scenario. Each scenario is tested on 3 different instances of size 84, 486, and 522, corresponding
to the three most common sets of deliveries. For the tests the pallet dimensions are assumed
equal to the standard EUR1 Euro pallet ones, i.e., Θ= 800 mm (width of the pallet), Λ=1200
mm (length of the pallet). The maximum admissible height for each bin is Ψ= 1800 mm, while
the maximum weight supported by the pallet is F=1200 kg.

Table 3.6 shows the performance evaluation of the matheuristics for each scenario: columns
I and II report the scenario (i.e., Sc1, Sc2, Sc3) and the corresponding number of items (N);
columns III and IV report the obtained number of layers (V) and bins (M); column V reports the
total computational time (Tex); column VI reports the average computational time needed by
the algorithm to compute each bin (AvgTM); column VII reports the average value of the average
bins’ fill ratio (AvgFRM). It is apparent that the higher the item heterogeneity, the higher the
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Table 3.5: Set-up for the test on industrial data

Scenario IDs λi [mm] θi [mm] ψi [mm] ωi [kg]
Sc1 80 [240,400] [170,300] [150,305] [5.6,17]
Sc2 30 [240,400] [170,300] [150,305] [5.6,17]
Sc3 11 [240,400] [170,300] [150,305] [5.6,17]

computational time. In particular, the worst performance in terms of computational time is
obtained in Sc1 that contains the lowest level of homogeneous items. Actually, in Sc1 the largest
part of the execution time is spent in the Layer Building Phase of the matheuristics, since a high
percentage of mixed layers is required to be computed.

Table 3.6: Results for the test on industrial data

Scenario N V M Tex[s] AvgFRV [%] AvgFRM [%]
Sc1 84 9 3 52 83.2 85.1

486 69 13 306 84.1 54.3
522 70 18 584.3 86.7 68.8

Sc2 84 10 2 91.1 88.8 63.7
486 57 11 50.4 94.5 82.6
522 62 16 66 99 99

Sc3 84 11 3 62.7 85.1 57.5
486 59 16 26 97.5 89.3
522 66 17 78.3 99 99

As for the quality of the solutions, first, the geometrical features of the composed bins are
evaluated in terms of fill ratio. From Table 3.6 it can be noticed that the average fill ratio of the
medium and large instances (i.e., with 486 and 522 items) is generally higher than the smallest
one (i.e., with 84 items); in particular, for scenarios Sc2 and Sc3 it is up to the 99% of the total
volume of the volume. In addition, it can be also noted that the average layers’ fill ratio (AvgFRV)
is always higher than the average bins’ fill ratio (AvgFRM). Both results are due to two different
reasons. First, the higher the number of items and the lower the number of IDs, the higher the
number of created monoitem and monocategory layers (and consequently bins). Since these layers
include items with the same geometric features and weight, the maximization of the fill ratio, i.e.,
eq. (3.1), can be more easily achieved with respect to the case of mixed items. Moreover, the
algorithm is set so that the minimum fill ratio for the monoitem and monocategory layers must be
higher than 90% and, in case this condition is not satisfied, the obtained layers are rejected and
their items are used to create mixed layers. On the other hand, even if the average layers’ fill ratio
is higher due to weight, height, and safety constraints of the bins’ building problem (Section 3.2.2),
there can be limits to the possible configurations admissible for the bins’ composition, especially
in the case of mixed bins, thus the average bins’ fill ratio can be lower than the average layers’
fill ratio, thus leading to lower values in the average bins’ fill ratio. To further highlight the
difference in bins’ fill ratio in the analyzed scenarios, Fig. 3.4 reports the 3D configuration of
four illustrative examples that respectively represent: (a) a bin with residual mixed layers, (b)
a full bin with mixed layers, (c) a full bin with heterogeneous monoitems layers, and (d) a full
bin with homogeneous monoitem layers. The more homogeneous the items inside of the bin, the
higher the fill ratio: the monoitem layers are generally the fullest ones (i.e., FRmono is equal to
99% as specified in the initial set-up of the algorithm). Additionally, Fig. 3.5 reports examples
respectively of mixed layers –i.e., (a) and (b)– and monoitem layers –i.e., (c)– configurations.
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(a) (b)

(c) (d)

Figure 3.4: Examples of mixed bin with few items (a), mixed bin with heterogeneous items (b), mixed bin with
homogeneous items (c), monoitem bin (d).

Note that the number reported inside each item represents the item ID.
Finally, the obtained results are assessed in terms of logistic requirements. In particular, the

stability indices (i.e., S1k and S2k) and the overhang index (i.e., S3k) are evaluated for each
layer of the composed bins. Table 3.7 shows AvgS1, AvgS2 and AvgS3 respectively representing
the average value of S1k, S2k, and S3k over all the composed bins in the considered scenarios.
According to [21] and [12], the higher the value of AvgS1 the higher the stability, while the lower
the value of AvgS2 the higher the stability. For scenarios Sc2 and Sc3, very low values of AvgS2
are obtained, against a higher value in Sc1 that includes more mixed layers than the other two
scenarios. As for AvgS1, it can be noticed that the corresponding values are particularly low,
especially in scenarios Sc2 and Sc3. As a matter of fact, both in scenario Sc2 and Sc3 the bins’
configurations are composed mainly by monoitem and monocategory layers, which are identical
layers. Consequently, each item lies only on a totally full layer, thus not compromising the
stability of the overall configuration (which has a high fill ratio and hence is more compact).
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(a) (b)

(c)

Figure 3.5: Examples of mixed layers (a, b) and a monoitem layer (c).

Lastly, the values obtained by AvgS3 demonstrate that the higher the number of IDs the higher
the overhang index. This implies that the overhang feature remarkably contributes to improve
the fill ratio of scenarios with item heterogeneity, thus providing benefit to the bin packing in
realistic scenarios.

3.6 Conclusion
The 3D Bin Packing Problem (3D-BPP) has a crucial role in Industry 4.0 and in particular in the
management of internal logistics, since it allows to save time and resources in the mobilization of
goods. Consequently, the 3D-BPP is largely studied in the literature both because of its NP-hard
nature and its high versatility in industrial applications. This work presents an innovative
matheuristic algorithm based on a layer-building approach that allows the automated resolution of
the 3D-BPP in a short computational time and suitably for the industrial context. In particular,
it has been proposed a mixed integer non-linear programming problem to formulate the 3D-BPP
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Table 3.7: Stability and overhanging indices

Scenario N AvgS1 AvgS2 [%] AvgS3
Sc1 84 1.41 21.08 0.47

486 1.31 18.83 0.44
522 1.23 17.21 0.38

Sc2 84 1.17 3.93 0.29
486 1.13 3.24 0.23
522 1.08 3.01 0.20

Sc3 84 1.05 2.50 0.18
486 1.02 2.00 0.16
522 1.01 1.90 0.13

including a complete set of industrial requirements and a matheuristic algorithm is presented to
efficiently solve the problem. Simulation results on both realistic and real data prove the efficiency
and effectiveness of the proposed algorithm in terms of computational time, optimization of the
bins’ configuration and number, and stability of the bins. Furthermore, the proposed algorithm
outperforms the results of the respective exact method. Future developments will consider the
extension of the proposed approach to the multiple bin size bin packing problem, i.e., the case of
multiple types of load aids with different sizes, and the inclusion of further logistic constraints
that can improve the stability of the packed bins and shape constraints. Moreover, with the aim
of implementing an approach even more suitable for the industrial sector, the implementation of
a multi-objective optimization approach to generate Pareto efficient solutions will be considered,
followed by a multi-criteria analysis to rank these solutions.
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Chapter 4

A Matheuristic Algorithm for the
Configuration of Automated Vertical Lift
Modules Warehouses

IV

Abstract

Nowadays, thanks to the advent of digitalization, logistic companies have experienced a rapid
increase in product demand and the expansion of production scales. This implies the need
for innovative and more efficient stocking solutions. In this chapter, the focus is on Vertical
Lift Module (VLM) warehouses, which are a technologically advanced automated solution
still not fully exploited in this context. The VLMs are based on the use of sliding trays to
implement the so-called parts-to-pickers solution and are particularly useful for the storage
of reduced dimensions items. Moreover, a VLM may require up to 90% less surface area
than a corresponding traditional warehouse. Thanks to their versatility and compactness,
they can find potential usage not only in industrial environments (e.g., storage of working
tools) but also for retail. For logistic companies, the design of a VLM is a non-trivial activity,
which is often manually developed in a trial-and-error fashion. In particular, the dimensions,
internal partitioning, and allocation of each tray in the VLM must be properly selected to
avoid space loss while satisfying various logistic constraints. In this context, the contribution
of the chapter consists in the definition of three Mixed-Integer Linear Programming models,
which are here defined to address the trays’ internal configuration and the trays’ allocation
problems, and a two-phase matheuristic algorithm (i.e., an algorithm that combines the
use of exact mathematical methods and heuristics) to streamline and automate the design
of the VLM internal configuration. The proposed algorithm receives as input the features
of a set of items to be allocated inside the VLM, a predetermined set of trays’ types (i.e.,
characterized by different geometric dimensions), parameters necessary to set the constraints
of the problem, and a priority rule for the allocation of trays, while it provides as output
the most space-efficient configuration of the VLM. In particular, the algorithm provides
the logistic operator with (1) the necessary types and quantities of trays, (2) their internal
partitioning, (3) the proper position of the items in each tray, and (4) the position of each
tray in each shelving of the VLM. In the chapter, an extensive test campaign is performed
and demonstrates the effectiveness of the algorithm under various realistic operative scenarios.
Moreover, a wide set of priority rules is presented and compared, to support the logistics
operator in selecting the most performing one depending on the considered scenario.
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Introduction

4.1 Introduction
The last decades have seen the establishment of Logistic 4.0 foundations, which are leading to the
improvement of traditional logistic methods by the integration of innovations brought by systems
digitization and automation [1], [2]. In this context, automated warehouses take place due to the
several advantages that can bring to the internal logistics sector such as a high rate of warehouse
space utilization, automated management, labor savings, and fast and accurate operations of
inputs and outputs. The application of automation to warehouses can improve all of their main
activities, i.e., (I) reception and management of products and customer orders, (II) storage of
products, (III) shipment of products, and (IV) picking of orders. Particular attention is devoted
to this last activity, i.e., the process of picking products from the warehouse based on customer
demand, due to its great influence on distribution centers’ performance. According to Dallari
et al. [3], a dedicated Order Picking System (OPS) can be conceived and implemented for the
optimization of this activity. The authors classify OPSs mainly into static and dynamic solutions.
The first type is characterized by the storage of goods in racks or devices that have a fixed
location, so these are usually simple to implement and inexpensive. The latter type instead is
characterized by the movement of goods to the picker (i.e., the operator) and automated systems
and computer software tools are used for supporting the correct functioning of the storage system,
thus their design and operation are more complex.

In this chapter, the focus is on dynamic OPS solutions and in particular, on Vertical Lift
Modules (VLMs) warehouses that on the one hand improve the labor conditions thanks to the
implementation of the so-called “the goods to the man" principle, and on the other hand, can
ensure greater compactness with respect to traditional warehouses and great versatility, e.g., they
can be used for tool storage, spare parts storage, shipment warehouse, and retail market. In
general, VLMs warehouses are closed structures that contain several shelvings organized into
columns and holding a set of sliding trays (see the illustrative immage reported in Fig.4.1). The
trays are partitioned into sectors to hold items and are moved by a liftmounted module that
travels between the shelvings in order to make the specific tray available to the operator. This
device is driven by an automatic control system, which interfaces with dedicated software, in
order to set the correct order for picking trays [4], [5]. For logistic companies, the design of a VLM
is a non-trivial and time-consuming activity, which is often manually developed, i.e., without the
support of ad-hoc software and tools, and requires experienced operators and various iterations.
In particular, the proper selection of the dimensions, internal partitioning, and allocation of each
tray in the VLM, to avoid space loss while satisfying various logistic and operational constraints,
is often developed in an unstructured and naive way.

The objective of this work is to define a matheuristic algorithm (i.e., a combination of exact
resolution methods and the use of heuristics), for the efficient and automated design of the
configuration of the VLM. The algorithm must be able to: (I) define the most efficient allocation
of the items in the trays, that minimizes the unused space in the warehouse while satisfying
various design constraints, such as weight limits, rotation of the items, and the definition of a
limited number of trays internal configurations with the assignment of separators to subdivide
the items; (II) allocate the full trays in the minimum number of columns taking into account
different priority rules defined by the company, and eventually allocate empty trays to complete
the columns configurations. The remainder of this chapter is organized as follows:

• Section 4.2 describes the problem statement, i.e., the description of the problems assumptions
and requirements in the design of VLMs warehouses;

• Section 4.3 presents a detailed explanation of the proposed two-phase matheuristic algorithm
and its steps;
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• Section 4.4 describes the proposed mathematical formulations for the trays internal
configuration and allocation in the VLM problems, detailing the objectives to be achieved
and the constraints to be met in accordance with the assumptions and requirements defined
in Section 4.2;

• Section 4.5 reports the tests performed with the proposed algorithm, with the aim of
validating the exact mathematical models and the entire algorithm;

• Section 4.6 provides the final considerations regarding the proposed solution and possible
future research developments.

4.2 Problem Statement
In the design of a VLM several problems need to be tackled in order to match and personalize
the request of each warehouse: the first of them is the selection of the proper location of the
warehouse. Such a decision depends mainly on the destination of use and obviously influences
the design and related requirements. For example, if the VLM has to be placed outdoors, its
dimensions are more flexible as they depend on the available space in the installation site, while
if it has to be placed indoors its dimensions are less flexible, as the dimensions of the columns are
constrained by the features of the building where the VLM has to be located. After selecting the
location of the warehouse to be designed, its final dimensions depend on: (1) the volume and the
total number of items that the customer needs to store; (2) the number of replenishment/picking
bays, also called access bays, where the operator can access the trays, which reduce the available
space for placing trays and items.

Figure 4.1: Illustrative image of a VLM warehouse.

The attention in this thesis is focused on the design of VLMs that have to be installed indoors
and, in order to create the most accurate and complete algorithm possible, expert producers of
logistics automation and VLM systems were surveyed to properly define the necessary logistic
requirements.
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It is assumed that the trays must have specific width and depth predefined by the company
and depending on the features of the VLM. The choice of the size of trays depends mainly on the
size of the items that must be allocated and therefore also on the possibility to place items in an
optional or mandatory direction. The internal space of the trays can be separated through the
positioning of dividers, both along the longitudinal and transversal axes of the tray, the space
delimited by dividers is defined as a sector. The positioning of the dividers along both axes
can not be done arbitrarily, but they have to be placed at predetermined positions multiple of
two different pitches, one for each axis. Moreover, the transversal dividers must be of the same
length as the tray, while the longitudinal dividers can start from one transversal divider and
reach one of the borders (see e.g., Figure 4.2, where longitudinal dividers are reported in red
color, while transversal dividers are reported in blue color). The different combinations in which
the transversal and longitudinal dividers are placed inside each tray constitute a “pattern", and
even if the combinations can be manifold, it is required that only a limited number of patterns
can be defined. Figure 4.2 represents one possible pattern, with two transversal dividers and
one full-length longitudinal divider, and another longitudinal one that extends only partially on
the tray. Note that, as reported in the figure, in the remainder of the chapter the x and y axes
respectively refer to the length and the width of the tray (and thus the VLM), while the height
corresponds to the z-axis.
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Figure 4.2: Example of pattern in a top-view bi-dimensional representation of the tray.

The business rules taken into account in the definition of the proposed matheuristics are as
follows:

1. minimization of unused volume inside each tray;
2. minimization of the number of trays used;
3. minimization of unused column space by inserting also empty trays (thus giving the

possibility to expand the warehouse after the design of the VLM);
4. the heights of the tray can be chosen among a finite number of available ones;
5. items can be rotated along the three axes;
6. the sum of the weight of items, tray, and equipment (dividers and borders) must be lower

than the maximum sustainable weight of the shelving;
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7. the dividers have to be placed at their predetermined widths and length, according to the
pitch defined by the company’s industrial requirement. Moreover, the transversal dividers
must be of the same length as the tray, while the longitudinal ones can start from one of
the transversal dividers and end at the border of the tray;

8. the volume occupied by the dividers and the gripping space (i.e., the space required for
picking up an object from its position within a tray) must be taken into account;

9. items of the same kind must be assigned to sectors thereof size;
10. between two consecutive trays a fixed vertical minimum clearance must be considered;
11. the number of patters of trays (i.e., allocation of dividers in the tray) is limited;
12. there must be space between trays at least equal to the space required for the pick-up

mechanism;
13. the number of trays per type, i.e, the number of trays with the same height, in each column

must respect the limitation given by the priority criterion defined by the selected priority
rule

14. the frequency of empty trays must be lower than the frequency of full trays, for each type
of tray.

It is highlighted that a priority rule defines the order in which the trays should be placed
inside the VLMs columns, and its choice can be done among a wide set of alternatives (details on
possible alternatives are provided in Section 4.5), so as to provide flexibility in the application in
different operational scenarios. An example of a priority rule can be the placement of trays in
accordance with a height-decreasing order.

4.3 The Proposed Matheuristics for VLMs Configuration
In this section, first, a high-level description of the different steps of the proposed two-phase
matheuristic algorithm is presented. Then, a detailed description of each phase and the related
sub-phases is provided. It is worth to highlight that the related optimization problems are detailed
in the subsequent Section 4.4.

As shown in Figure 4.3, the algorithm is characterized by the following 2 phases that have to
be executed sequentially:

1. Trays’ internal configuration phase: devoted to the definition of the proper configuration of
the items inside the trays according to the business rules. It takes as input the list of the
items and the VLM’s configuration parameters and computes as output the list of filled
trays and their configuration. It is composed of two different sequential sub-phases:

• Mono-item trays sub-phase
• Mixed-items trays sub-phase

2. Trays’ allocation phase: devoted to the composition of the VLM’s columns according to
the priority rules. It takes as input the filled trays computed with the trays’ internal
configuration phase and provides as output their configuration into one or more columns.
This phase is composed of three sub-phases:

• Pre-processing sub-phase
• Processing sub-phase
• Post-processing sub-phase
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Figure 4.3: The proposed two-phase matheuristics algorithm.

4.3.1 Trays’ Internal Configuration Phase
This is the first phase of the algorithm and it is devoted to the definition of the positioning
of the items inside the tray. To this aim, a selection of the proper trays’ heights among the
available ones has to be performed. Then, the patterns of separators inside the trays have to
be defined, together with the positions of the items. In order to speed up the algorithm, this
phase is decomposed into two different sub-phases: the mono-item trays sub-phase that executes
the initialization of data and reduces the computational complexity and the number of items
to be processed by the subsequent sub-phase, by creating trays with just one type of item (i.e.,
mono-item trays), and the mixed-items trays sub-phase that computes the configuration of the
mixed-items trays. The final outcome of this phase is the definition of the number of full trays
and their internal configuration. Details are as follows.
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A.1. Mono-item Trays Sub-phase.

First, the input parameters are set, i.e., the number N of items, the length li, width wi, height
hi, and weight wi of each i-th item, the width W length L and weight C that are the same for
all the j-th trays, the admissible heights Hk with k ∈K of the trays, the maximum weight Cmax
supported by the tray, the pitches dimensions sx and sy, the thickness t and the volume densities
ρx and ρy of the dividers and edges along the two axes, the grip space gi for each i-th item, the
admissible number of patterns P. Then the algorithm verifies if there are some input items whose
dimensions do not fit in the VLM: if they exceed the highest trays’ available height, or have some
dimensions that do not fit the machine parameters they are discarded, otherwise, if they exceed
the maximum tray splitting width they are considered for the definition of a tray containing a
single item. After this check, the three dimensions of the items are considered again analyzing
the items of the same type singularly. The algorithm calculates Nt, as the integer approximate
number of items contained in a single tray considering the area of the widest of the six faces of
the item and the area of the tray. This assumption allows for avoiding the assignment of the
highest dimension of the items to the height of the trays and consequently allows the insertion in
the VLM columns of a higher number of trays, moreover, it allows for reducing the computational
complexity of the optimization problem of subsection 4.3.1 by providing in advance the values for
some of the binary variables related to rotation and thus reducing the solution space. Then, with
Nt and the total number of items of the same type, the sub-phase checks if there are enough
items to create at least one mono-item tray (and thus the correlated pattern), or otherwise if the
items have to be inserted in the list of items to be allocated in mixed-items trays. Note that in
the list are also included the exceeding items that are not assigned to mono-item trays, when
the corresponding set presents a number of items that is not a proper multiple of Nt. Both the
configuration of mono-item and mixed-items trays is obtained by solving the MINLP problem of
subsection 4.3.1. The output of this sub-phase are: the assignment of an item i to a specific tray
j indicated by p∗

ij , the coordinates of the left bottom corner of each item in the corresponding
trays indicated by (x∗

i , y
∗
i , z

∗
i ), the height of the j-th tray indicated by η∗

j,k, the orientation of each
i-th item, indicated by l∗xi i.e., the length of the item is parallel to the x axis, w∗

yi, i.e., the width
of the item is parallel to the y axis, the number of defined patterns P1, and the list containing all
the non-allocated items and the corresponding parameters.

A.2. Mixed-items Trays Sub-phase.

This sub-phase, starting with the list of residual items (i.e., all the items which are not assigned
to any tray) obtained from the previous sub-phase and the number of patterns P1, performs
the clustering of the items by applying the k-means algorithm on two parameters: the length
and width of each item. The number of clusters is defined as the difference between the number
of patterns required by the company (P) and the number of patterns obtained in the previous
sub-phase (P1). Next, similarly to the previous sub-phase, the algorithm calculates Nc (i.e., the
number of items of the same cluster contained in a single tray) considering the dimensions of the
biggest item. If Nc is sufficient to create a single tray, the algorithm solves the MINLP model
of Section 4.4, otherwise, if the number of items is not sufficient or the configuration obtained
is not satisfactory, the items are collected in the list including all the remaining items. This
operation is performed iteratively for each produced cluster until all the items are assigned to
a mixed-items tray. It is worth noticing that Nc is calculated considering the biggest item of
the cluster because allows taking into account the space loss due to separators and the gripping
requirements. After this, the trays’ internal configuration phase is concluded and the information
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regarding the obtained trays, i.e., the number of trays for each available height (Zk, with k=1,..,
K), and the corresponding configuration of the items and separators are given as output i.e., for
each input item the values p∗

ij , x∗
i , y

∗
i , z

∗
i , η∗

j,k,l∗xi, l∗zi, w∗
yi, and h∗

zi are provided. Moreover, for
the sake of practical applicability, a picture of the disposition of the items and the dividers inside
each tray is provided to the operator.

4.3.2 Trays’ Allocation Phase
This phase takes as input the number and dimensions of the trays (T, K, and Zk) defined in the
trays’ internal configuration phase and executes the corresponding three sub-phases, i.e., pre-
processing, processing, and post-processing sub-phases, so as to define the final configuration of the
VLM and thus the ordering of the trays into each column, ensuring the highest possible occupation.

B.1. Pre-processing Sub-phase.

This sub-phase starts by sorting the input trays by height (Hk) in decreasing order. Then
the approximate number of columns is calculated. In particular, a counter takes track of the
number of filled columns: through a loop, the trays, ordered by height in descending order are
inserted one at a time in the column, if the tray fits the empty space in the columns it is placed
and removed from the list, otherwise, if the height of the tray to insert exceeds the maximum
allowable height of a column, the counter of the number of columns is incremented and a new
column is considered. This operation is repeated until the number of trays to insert is zero
and thus the outcome of this pre-processing operation is an approximate maximum number of
columns to fill, which will be used by the priority rules for selecting the right quantity of trays.

B.2. Processing Sub-phase.

Once obtained the number of columns in the pre-processing sub-phase, this sub-phase aims
at determining the exact position of the trays inside each column. In particular, the allocation
of the filled trays in each of the columns is performed according to the priority rule set at the
beginning of the algorithm, which then influences the frequency ϕ1, the threshold Φ, and the
number of tray per type Zr. Subsequently, for each column, the mathematical model for the
allocation of the filled trays, which is detailed in the following Section 4.4.2.1, is executed to
define the final allocation of the trays represented with the variable z∗1r.

B.3. Post-processing Sub-phase.

The objective of this sub-phase is to exploit the potentiality of the whole VLM’s structure by
reducing the empty space left after the placement of the filled trays. So, in this sub-phase, given
the maximum number of columns calculated in the pre-processing sub-phase, the composition of
the columns filled with the filled trays obtained in the processing sub-phase, the optimization
of the total space is executed by choosing the correct type and then adding the empty trays
into each column. This operation is performed iteratively using the mathematical model for the
optimization of the empty trays, which is detailed in the following Section 4.4.2.2. The end of
this phase coincides with the end of the whole algorithm, which provides as output the whole
configuration of the VLM both in terms of the internal configuration of the trays and their
disposition in the VLM’s columns (i.e., the values of z∗1r and z∗2r). It is worth mentioning that,
in order to increase the usability of the algorithm the two phases can be executed singularly so
that the company can choose to re-optimize only one of the two aspects.
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4.4 Mathematical Formulations of the VLM’s Configuration Problem
This section presents the models formulated for the proposed algorithm. In particular, the
first subsection presents the formulation of the optimization problem regarding the internal
configuration of the trays, while the second subsection presents the formulation of two optimization
problems regarding the allocation of the trays into columns.

It is worth mentioning that the following formulations are defined in a general way, without
considering the distinction between monoitem and mixed trays (for the first subsection) and the
business rule used (for the second subsection) since both do not depend strictly on the type of
input parameters.

4.4.1 Trays’ Internal Configuration Problem
This subsection presents the proposed formulation for the trays’ internal configuration problem.
In particular, the model is first formulated as a Mixed Integer Non-Linear Programming (MINLP)
model and then is linearized by means of the McCormick envelop convex relaxation, as reported in
Subsection 4.4.1.1 Table 4.1 and Table 4.2 reports the list of parameters, while Table 4.3 reports
the list of variables used in the problem formulation.

Table 4.1: Common Parameters

Parameter Description
N Number of items
T Number of trays
Hk Values of the admissible trays’ heights

Table 4.2: Tray’s internal configuartion Parameters

Parameter Description
Trays’ internal configuration parameters

M A big arbitrary number
K Maximum number of different heights of a tray
li Length of the i-th item
wi Width of the i-th item
hi Height of the i-th item
mi Weight of the i-th item
W Width of the trays
L Length of the trays
C Weight of the trays

Cmax Maximum weight supported by a tray
t Thickness of dividers and edges

sw Pitch of the dividers along the width of the tray
sl Pitch of the dividers along the length of the tray

ρx, ρy Volume density of the dividers and edges
gi Grip space for i-th item

α1,α2 Weight of the first/second term of
the objective function

The obtained problem may be written as follows:
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Table 4.3: Trays’ internal configuration variables

Variable Description
i Index of the i-th item
j Index of the j-th tray
k Index of the k-th possible height

pij

{
1 Item i is inside the tray j
0 otherwise

ηjk

{
1 height k assigned to tray j
0 otherwise

(xi, yi, zi) Coordinates of the bottom left front corner of item i

lxi

{
1 Length of i-th item parallel to the x axes
0 otherwise

lzi

{
1 Length of i-th item parallel to the z axes
0 otherwise

wyi

{
1 Width of i-th item parallel to the y axes
0 otherwise

aii′

{
1 Item i is on the left of item i′

0 otherwise

bii′

{
1 Item i is on the right of item i′

0 otherwise

cii′

{
1 Item i is in front of item i′

0 otherwise

dii′

{
1 Item i is behind item i′

0 otherwise

σi

{
1 The grip space is assigned along the x axes
0 The grip space is assigned along the y axes

fi Dimension of item i along the x-axis
Di Slack variable for the separation in sectors

q1i, q2i Quantization of the range of xi,yi{
∆1

ii′ ,∆2
ii′

Γ1
ij′ ,Γ2

ij′

{
Auxiliary variables for the linearization
of the non-linear cross products

min[α1 WL(
T∑

j=1

K∑
k=1

ηjkHk) + α2(
T∑

j=1

K∑
k=1

ηjk)] (4.1)

s.t.
xi = swq1i,∀i ∈ {1, . . . ,N} (4.2)
yi = slq2i,∀i ∈ {1, . . . ,N} (4.3)
T∑

j=1
pij = 1,∀i ∈ {1, . . . ,N} (4.4)
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K∑
k=1

ηjk ≤ 1,∀j ∈ {1, . . . ,T} (4.5)

fi = lilxi + wi(lzi − wyi + hzi) + giσi + t+ (4.6)
hi(1 − lxi − lzi + wyi − hzi)

xi +Di ≤ xi′ + (1 − aii′)M,∀i, i′ ∈ {1, . . . ,N}, i ̸= i′ (4.7)
xi′ +Di′ ≤ xi + (1 − bii′)M,∀i, i′ ∈ {1, . . . ,N}, i ̸= i′ (4.8)

Di ≥ fi,∀i ∈ {1, . . . ,N} (4.9)
Di ≥ fi′(1 − aii′ − bii′),∀i, i′ ∈ {1, . . . ,N}, i ̸= i′ (4.10)
yi + li(1 − lxi − lzi) + wiwyi + hi(lxi + lzi − wyi)+

gi(1 − σi) + t ≤ yi′ + (1 − cii′)M,∀i, i′ ∈ {1, . . . ,N}, i ̸= i′ (4.11)
yi′ + li′(1 − lxi′ − lzi′) + wi′wyi′ + hi′(lxi′ + lzi′ − wyi′)+

gi′(1 − σi′) + t ≤ yi + (1 − dii′)M,

∀i, i′ ∈ {1, . . . ,N}, i ̸= i′ (4.12)

aii′ + bii′ + cii′ + dii′ ≥ (pij + pi′j) − 1,
∀i, i′ ∈ {1, . . . ,N},∀j ∈ {1, . . . ,T}, i ̸= i′ (4.13)

xi +Di ≤ Lk + (1 − pij)M,∀i ∈ {1, . . . ,N},
∀j ∈ {1, . . . ,T} (4.14)

yi + li(1 − lxi − lzi) + wiwyi + hi(lxi + lzi − wyi)+
gi(1 − σi) + t ≤ W + (1 − pij)M,∀i ∈ {1, . . . ,N},

∀j ∈ {1, . . . ,T} (4.15)
zi + lilzi + wi(1 − lzi − hzi) + hihzi ≤ ηjkHk+

(1 − pij)M,∀i ∈ {1, . . . ,N},∀j ∈ {1, . . . ,T} (4.16)
lxi + lzi ≤ 1; ∀i ∈ {1, . . . ,N} (4.17)
lzi + hzi ≤ 1; ∀i ∈ {1, . . . ,N} (4.18)

lzi − wyi + hzi ≤ 1,∀i ∈ {1, . . . ,N} (4.19)
lzi − wyi + hzi ≥ 0,∀i ∈ {1, . . . ,N} (4.20)

1 − lxi − lzi + wyi − hzi ≤ 1,∀i ∈ {1, . . . ,N} (4.21)
1 − lxi − lzi + wyi − hzi ≥ 0,∀i ∈ {1, . . . ,N} (4.22)

lxi + lzi − wyi ≤ 1,∀i ∈ {1, . . . ,N} (4.23)
lxi + lzi − wyi ≥ 0,∀i ∈ {1, . . . ,N (4.24)

N∑
i=1

mipij + C + Csep + Csp ≤ Cmax,∀j ∈ {1, . . . ,T} (4.25)

where:

Csp = tηjkHk(ρxW + ρyL)

Csep = tηjkHk(ρy

N∑
i=1

(y′
i − yi)pij + ρx

N∑
i=1

(x′
i − xi)pij)
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The problem (4.1) - (4.25) aims at minimizing the linear combination of the unoccupied
volume inside the trays and the number of needed trays, respectively weighted by the constant
terms α1 and α2, as defined in eq. (4.1).

Constraints (4.2) and (4.3) impose that, due to sectorisation, the coordinates xi and yi of the
bottom left front corner of item i must be respectively equal to integer multiples of the pitches sw
and sl. Then, constraints (4.4) and (4.5) respectively impose that each item can be placed in only
one tray and that the height of each tray can assume only one height, among the available ones.
Equations (4.6) impose that the variables fi must be equal to the sum of the dimension of item
i along x-axis, the grip space along the x-axis, and the thickness of the separator. Constraints
(4.7)-(4.13) are the constraints necessary to model the relative position of the items and ensure
that the items and separators do not overlap. In particular, constraints (4.7)-(4.8) model the
relative positions between two items along the x-axis, i.e., if item i is on the left (aii′ = 1) or on
the right (bii′ = 1) of item i′ (see scenarios 4 and 5 of Fig. 4.4), the x-coordinates of the items
must be assigned taking into account the dimension of the items, and also the gripping space,
the separator size, and the sectorisation requirements. In fact, the variable Di is introduced to
satisfy the business rule imposing that the longitudinal dividers must extend throughout the
length of the tray. In particular, the variable Di is the sum of fi and the eventual additional
space necessary to place the i′-th item exactly in the next sector, without overlapping with the
separator. Then, constraints (4.9) and (4.10) are the bounding constraints of variables Di. The
physical meaning of these constraints is that, if item i is placed exactly under item i′ (i.e., cii′=1),
or exactly over item i′ (i.e., dii′=1), then Di and Di′ must be equal. The inequalities (4.11) set
the value of cii′ = 1 if item i is located in front of item i′, and finally the inequalities (4.12)
set the value of dii′ = 1 if item i is located in behind of item i′ (see Fig. 4.4 for all possible
configurations of items’ relative positioning). Then, constraints (4.13) ensure that if items i and
i′ are in the same tray they must have only on possible relative position.

Figure 4.4: Possible relative positions between item i and item i′ and variables assignment

Constraints (4.14)-(4.16) are geometric constraints, whose aim is ensuring that each item
is placed completely inside the corresponding tray. Their formulation is similar to the ones
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presented in [6], which has been adapted for this particular VLM use. In particular, inequality
(4.14) determines the position along the x-axis of each item i and takes into account also the
space requested by the longitudinal dividers, while (4.15) and (4.16) determine the position of
the item along the y and z axes taking into account item’s rotation and the grip space.

Constraints (4.17) - (4.24) are the consistency constraints that impose the right binary value
to the variables according to the rotation and the position of the item. Finally, constraints (4.25)
are the weight constraints that ensure the fulfillment of the weight limits for each tray. The
inequality takes into account the total weight of the inserted items (

∑N
i=1 mipij), the gross

weight of the tray’s base C, the weight of the left and bottom borders Csp, and the weight of the
dividers and the upper and right borders Csep. These values are obtained considering the tare,
calculated starting from the sum of the gross weight of the empty tray, the weight of the borders,
and the weight of the dividers. Assuming that the volume density is the same for the borders
and dividers, parameters ρx and ρy, corresponding to the volume density along the two axes,
are introduced. Moreover, it is highlighted that it is important to note that there is no direct
information available on the coordinates of the separators, as they are taken into account during
the placement of items.

4.4.1.1 Model Linearization
The optimization problem described above is a MINLP due to the presence of some non-linear
constraints, which contain some cross-products between decision variables. In particular, a
non-linearity is present in constraints (4.10) and (4.25) and can be linearized following the method
described in [7], by adding for each cross-product one auxiliary variable and four additional
constraints for each auxiliary variable. The first two cross-products are present in the left side of
equation (4.10):

di′(1 − aii′ − bii′)

and can be written as:
di′ − di′aii′ − di′bii′ = di′ − ∆1

ii′ − ∆2
ii′

where ∆1
ii′ is equal to di′aii′ ∀i, i′ ∈ {1, . . . ,N}, i ̸= i′ and is subject to following constraints:

∆1
ii′ ≤ L(aii′) (4.26)
∆1

ii′ ≥ 0 (4.27)
∆1

ii′ ≤ di′ (4.28)
∆1

ii′ ≥ di′ − L(1 − aii′) (4.29)

and ∆2
ii′ is equal to the di′bii′ ∀i, i′ ∈ {1, . . . ,N}, i ̸= i′ and is subject to the following constraints:

∆2
ii′ ≤ L(bii′) (4.30)
∆2

ii′ ≥ 0 (4.31)
∆2

ii′ ≤ di′ (4.32)
∆2

ii′ ≥ di′ − L(1 − bii′) (4.33)

The other two cross-products are present in the left side of equation (4.25):

Csep = tηjkHk(ρx

N∑
i=1

(y′
i − yi)pij + ρy

N∑
i=1

(x′
i − xi)pij)
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where it is assumed, due to sectorialization:

(x′
i − xi) = Di

(y′
i − yi) = lilyi + wiwyi + gi(1 − σi) + t)

which can be written using two new auxiliary variables Γ1
ij′ and Γ2

ij′ :

ρx

N∑
i=1

(y′
i − yi)pij = ρx

N∑
i=1

Γ1
ij′

ρy

N∑
i=1

(x′
i − xi)pij = ρy

N∑
i=1

Γ2
ij′

where Γ1
ij′ = Dipij ,∀i ∈ {1, . . . ,N},∀j ∈ {1, . . . ,T} subject to:

Γ1
ij′ ≤ Lpij (4.34)
Γ1

ij′ ≥ 0 (4.35)
Γ1

ij′ ≤ Di (4.36)
Γ1

ij′ ≥ Di − L(1 − pij) (4.37)

where Γ2
ii′ = (lilyi + wiwyi + gi(1 − σi) + t)pij ,∀i ∈ {1, . . . ,N},∀j ∈ {1, . . . ,T} subject to:

Γ2
ii′ ≤ Wpij (4.38)
Γ2

ii′ ≥ 0 (4.39)
Γ2

ii′ ≤ lilyi + wiwyi + gi(1 − σi) + t (4.40)
Γ2

ii′ ≥ lilyi + wiwyi + gi(1 − σi) + t − W(1 − pij) (4.41)

The final model is composed by the objective function:

min[α1 WLk(
T∑

j=1

K∑
k=1

ηjkHk) + α2(
T∑

j=1

K∑
k=1

ηjk)] (4.42)

Subject to:
(4.2)-(4.9), (4.17)-(4.24), (4.26)-(4.41)

Di ≥ di′(1 − ∆1
ii′ − ∆2

ii′),∀i, i′ ∈ {1, . . . ,N}, i ̸= i′ (4.43)

N∑
i=1

mipij + C + tηjkHk(ρx

N∑
i=1

Γ1
ij′ + ρy

N∑
i=1

Γ2
ij′)+

Csp ≤ Cmax,∀j ∈ {1, . . . ,T} (4.44)

4.4.2 Trays’ Allocation Problems
In this subsection, it is presented the two MILP models for the allocation of the trays inside
the VLM columns, both performed by optimizing one column at a time. As defined by the
business rules and the requirements of the problems, the input parameters required for solving
the problems are shown in Table 4.4, whereas the variables are shown in Table 4.5.
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Table 4.4: Trays’ allocation parameters

Parameter Description
Bkk′ Normalized difference between the r and r′

types of trays to be inserted in the columns
Zk Total quantity of the k-th type of tray
Z’k Total quantity of the k-th type of tray

inserted at each iteration
O Height of the column
Of Height of the free space in the column

Table 4.5: Trays’ allocation variables

Name Description
r Index of the r-th tray type
z1r Total quantity of the r-th full tray type in the column
z2r Total quantity of the r-th empty tray type in the column
γ Auxiliary binary variable

4.4.2.1 Filled Trays’ Allocation Problem
The objective function considers maximizing the space occupied by the trays in the column.

max
R∑

r=1
z1rHr (4.45)

subject to:
R∑

r=1
z1rHr ≤ O (4.46)

z1r + Z’r ≤ Zr∀r ∈ {1, ...,R} (4.47)

z1r − z1r′ − z1r(1 + Brr′) ≤ 0 ∀r ∈ {2, ...,R}, (4.48)
r′ ∈ {1, ..., r − 1}, r′ < r

R∑
r=1

z1r > 0 (4.49)

where

Brr′ = (Zr − Z ′
r) − (Zr′ − Z ′

r′)
|(Zr − Z ′

r) − (Zr′ − Z ′
r′)|

In particular, constraint (4.46) is the geometric constraint that ensures that the configuration of
the filled trays fits in the column. Constraints (4.47) are the overflow constraints that ensure
that the quantity of trays inserted in the column is consistent with the total quantity given as
input for each type of tray, whereas constraints (4.48) and (4.49) are the priority constraints: the
former ensures that the type with the highest priority gets more trays inside the column. This is
based on the ordering of trays according the given priority rule; while the latter imposes that the
quantity of the trays of at most one category must be a positive quantity, i.e., there must not be
empty columns.
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4.4.2.2 Empty Trays’ Allocation Problem
The objective function considers maximizing the space occupied by the trays in the column.

max
R∑

r=1
z2rHr (4.50)

subject to:

R∑
r=1

z2r · Hr ≤ Of (4.51)

R∑
r=1

z2r > 0 (4.52)

z2r∑R
r=1 z2r

≤ Zr

R + Mγ ∀r ∈ {1, ...,R} (4.53)

In particular, constraint (4.51) is the geometric constraint that ensures that the configuration
of the empty trays fits in the column. Constraints (4.52) and (4.53) are the frequency constraints:
the former ensures that the quantity of the specific type of trays is not null, while the latter
ensures that the frequency of empty trays of each type is at most equal to the frequency of
full trays in the column. Note that the presence of M and γ is used for evaluating the eligible
region even if this constraint is not satisfied. Moreover, constraint (4.53) is non-linear and so it is
substituted with the following linear constraint:

z2r − Zr

R ·
R∑

r=1
z2r ≤ Mγ ∀r ∈ {1, ...,R} (4.54)

The final model contains equations (4.50)-(4.52) and (4.54).

4.5 Experimental Results
This section shows the validation of the proposed algorithm through a wide set of tests conducted
implementing the matheuristics with Matlab2021b, on a PC equipped with an Intel(R) Core(TM)
i7-10510U CPU and 12 GB of RAM in Windows 11. Since the applications of VLM are still
not extensively discussed in the literature and to the best of available knowledge there are no
reference datasets available, the algorithm is tested considering realistic datasets provided by an
Italian logistic company.

4.5.1 Test of the Trays Internal Configuration Phase
To test the validity of the first part of the algorithm, described in Subsection 4.3.1, the following
dataset is considered. In particular, the parameters of the model are set as follows:

• Tray’s size

– L = 800mm;
– W = 600mm;
– H = 475mm;
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• Maximum weight supported by a tray Cmax=120kg:
• Pitch of the dividers along the width and the length of the tray:

– sw = 50mm;
– sl = 100mm;

• Weight of the first/second term of the objective function α1=α2=0.50;
• Arbitrarily large number: M = 10000;
• Dividers thickness: t = 20mm;
• Gripping space: gi = 20mm;
• Volume density of the dividers and edges: ρx = ρy = 0.0027g/mm3;
• Maximum running time: MaxTime = 7200s;
• Maximum number of patterns required by the company P = 32;

The items’ identification number (ID), mass, geometric dimensions, and quantities are reported
in Table 4.6.

Table 4.6: Items’ features

ID m [g] l [mm] w [mm] h [mm] N
1 150 40 100 13 1500
2 250 62 138 14 1500
3 1500 50 50 240 30
4 1500 40 40 180 100
5 1500 90 90 400 30
6 580 80 125 245 50
7 30 250 120 20 100
8 500 68 68 240 300
9 1500 125 125 100 30
10 200 125 125 10 30
11 300 230 230 100 20
12 300 230 230 10 20
13 1500 160 160 90 30
14 1500 250 130 230 40
15 130 300 340 20 130
16 500 90 90 40 50
17 500 180 180 40 30
18 500 90 90 105 50
19 500 190 190 110 20
20 500 290 290 40 20
21 20 170 170 40 30
22 1500 300 300 200 10
23 700 120 120 100 20
24 1000 140 280 150 40
25 100 50 400 50 40

As previously explained, the first sub-phase of the trays internal configuration phase deals
with the allocation of items with the same ID into mono-item trays. In particular, after the
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grouping of the data by ID, the algorithm starts by checking if there are some input items whose
dimensions do not fit in the VLM: if they exceed the highest trays’ available height, or have some
dimensions that do not fit the machine parameters they are discarded. Then, if some items exceed
the maximum tray splitting width they are considered for the definition of a tray containing a
single item, otherwise for each of the remaining items, the side of the item with the widest area
is used for calculating the approximate number Nt of items that can be contained within the
mono-item tray. Table 4.7 shows the obtained results, specifically, the first column represents
the item ID code, the second shows the quantity of the items (also reported in Table 4.6), the
third represents the potential capacity of the tray, thus the number of items contained within a
mono-item tray (Nt), the fourth represents the number of mono-item trays filled, and finally, the
fifth column reports the number of remaining items that will be considered in the mixed-items
trays internal configuration problem. According to the achieved results, the configurations of
mono-item trays created are 21 and the number of total filled trays is 91. Figure 4.5 reports 3

Table 4.7: Outcomes of the mono-item trays sub-phase

ID Nc Filled trays Residual Items
1 96 15 60
2 48 31 12
3 48 0 30
4 48 2 4
5 16 1 14
6 24 2 2
7 48 2 4
8 32 9 12
9 16 1 14
10 48 0 30
11 8 2 4
12 24 0 20
13 16 1 14
14 8 5 0
15 24 5 10
16 32 1 18
17 24 1 6
18 16 3 2
19 8 2 4
20 12 1 8
21 24 1 6
22 4 2 2
23 16 1 4
24 12 3 4
25 48 0 40

examples of filled mono-item trays, the first shows a tray with 12 items with ID 24, the second
shows a tray with 16 items with ID 9, and finally, the third shows a tray with 24 items with
ID 6. As it can be seen in Figure 4.5a and Figure 4.5b, the solver succeeds in allocating all the
items within the tray, as opposed to Figure 4.5c in which the solver, given the high computational
complexity, allocates 20 over 24 items.

Proceeding with the test of the trays internal configuration phase, the second sub-phase
receives as input the list of residual items not assigned to the mono-item trays (corresponding
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Figure 4.5: Example of single-type trays

to the fourth column in Table 4.7) and aims first at clustering the residual items, as explained
in Section 4.3.2. The number of clusters is calculated as the difference between the number of
patterns desired by the company (i.e., 32) and the number of mono-item tray configurations
created during the first sub-phase (i.e., 21). As in the previous step, first, it is calculated the
number of items per cluster that can be contained within the mixed trays (considering the
maximum dimension of the items contained in the cluster) while respecting the physical limits of
tray subdivision and its sustainable weight limits. Then the mathematical model is executed. Also
in this case, it can happen that the number of assigned items is lower than the firstly computed
one. For this reason, this sub-phase is executed iteratively, updating at each iteration the list of
residual items until all items are assigned. For this dataset, the clusterization is performed three
times and the obtained results are summarized in Table 4.8 where the first column represents the
clusters’ ID, the second column represents the number of items assigned to the corresponding
cluster, the third column the number of items of the cluster assigned to the tray, the fourth
column reports the number of filled trays, and finally the fifth column reports the number of
residual items of the cluster. As it can be evicted from the table, the number of clusters created
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at each iteration with the k-means algorithm (performed using width and length as grouping
parameters) changes at each clusterization. In the first clusterization, 11 clusters are considered.
However, after the solution of the item assignments MILP problem, only 7 configurations are
defined (see IV column in Table 4.8). Consequently, in the second clusterization, 4 clusters are
initially considered. The same holds for the third clusterization.

Figure 4.6a shows the division into clusters, in which each “dot" corresponds to one of the 25
IDs of the items while Fig. 4.6b shows how each color corresponds to the region of one cluster,
containing different types of items. The axes of Fig. 4.6b are respectively the length and the
width of the items, i.e., the parameters of the k-means algorithm.

Table 4.8: Resulting dataset after each clustering

Cluster ID N Nc Filled trays Residual Items
First clusterization

1 76 48 1 28
2 82 32 2 18
3 18 16 1 2
4 52 32 1 20
5 36 12 3 0
6 8 8 1 0
7 20 24 0 20
8 0 8 0 0
9 18 12 1 6
10 12 24 0 12
11 2 4 0 2

Second clusterization
I 68 16 4 4
II 2 4 0 2
III 32 16 2 0
IV 6 12 0 6

Third clusterization
A 12 6 2 12
B 0 0 0 0

As it can be evicted from Table 4.9 the first phase of the proposed matheuristics allows
the computation of consistent results with respect to the initial requirements. In fact, with
the combination of mathematical programming and heuristics, it is possible to obtain a short
computation time, which would have not been possible with just an exact resolution of the
problem.

Table 4.9: Outcomes of the trays internal configuration phase

Patterns Filled Comp.
Trays Time [s]

Mono-item trays 21 91 0.9
First clustering mixed trays 7 10 0.15

Second clustering mixed trays 4 8 30.43
Third clustering mixed trays 2 2 30.37

Total 32 109 31.46
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Figure 4.6: Clusters

With the aim of evaluating the performance of this phase of the algorithm, the average fill
ratio is computed. This metric computes the percentage of tray filling calculated on average over
the total number of trays, the results are as follows:

1. Mono-item trays: The average fill ratio over the total of the 91 mono-item trays is of
the 60%. This value is due to the imposition of constraints, especially those on dividers’
placement. In fact, it is evident, especially in Figures 4.5a - 4.5b, the fill ratio can actually
be considered to be 100% because the exact number of items contained within the trays
was calculated considering all the business constraints;

2. Mixed-items trays: it is computed the fill ratio separately for the two groups of trays
obtained with the two consecutive clusterings:

• the fill ratio of the 10 mixed trays obtained from the first-level clustering turns out to
be 71.5%;

• the fill ratio of the 2 mixed trays obtained from the second-level cluster turns out to
be 75.4%.

It is important to point out that the reported fill ratio is calculated by considering, for
each cluster, the maximum value of the geometric dimensions of the related items since
the vertical dividers are placed according to the dimension of the largest item placed in
that column, thus leading to a waste of space if there are items with a smaller dimension,
consequently, it is rounded up.

4.5.2 Trays’ Allocation
Based on company’s most frequent warehouses’ configurations, for the test of the second phase of
the matheuristics, 36 different evaluation scenarios have been created as the combination of 3
different columns’ heights O1=3000 mm, O2=9000 mm, O3=9000 mm, 4 different trays’ types
whose heights are H1=75 mm H2=125 mm, H3=225 mm, and H4=325 mm and whose total
quantity T and the quantity for each type of tray Zr range from 12 to 48, so that the scenarios
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Table 4.10: Priority Rules Description

Priority Name Description
Rule

A Largest height first Choose the tray with the largest height
B Largest height with increasing frequency Choose the largest height with increasing frequency, i.e., first choose the largest height r with φ1r ≥ 1.

Then choose the largest height r′ with φ1r′ ≥ φ1r.
C Largest height with pseudo-increasing Choose the largest height with pseudo-increasing frequency, i.e., first choose the largest height r with

frequency (first version) φ1r ≥ 1. Then choose the largest height r′ with φ1r′ ≥ 2. The ith chosen value should have frequency φ1r ≥ i
D Largest height with pseudo-increasing Choose the largest height with pseudo-increasing frequency, i.e., first choose the largest height r with

frequency (second version) φ1r ≥ 1. Then the ith chosen value should have frequency φ1r ≥ 4i/T
E Most frequent height Choose the most frequent height
F Largest height with increasing frequency It is equivalent to priority rule (B) but if less than Φ heights are selected, priority rule (A) is applied for the

and threshold on the frequency remaining heights to be chosen
G Largest height with pseudo-increasing frequency It is equivalent to priority rule (C) but if less than Φ heights are selected, priority rule (A) is applied for the

and most frequent height remaining heights to be chosen
H Largest height with pseudo-increasing frequency It is equivalent to priority rule (C) but if less than Φ heights are selected, priority rule (E) is applied for the

and threshold on the frequency (first version) remaining heights to be chosen
I Largest height with pseudo-increasing frequency It is equivalent to priority rule (D) but if less than Φ heights are selected, priority rule (E) is applied for the

and threshold on the frequency (second version) remaining heights to be chosen
L Decimal and less frequent height first Choose the trays with decimal height and ordered ascendingly by frequency, then choose the

largest integer height.
M Integer height and the largest size first Choose the trays with integer height and ordered decreasingly by height then choose the trays with decimal

height and ordered ascendingly by frequency
N Trays with the most frequent ratio O/Hj first Given the ratio of column height to the height of tray O/Hj choose the most frequent trays with the

higher ratio. Then give priority to the trays with the largest height.
O Trays with the highest ratio O/Hj first Given the ratio of column height to the height of tray O/Hj choose the trays with the highest values

of the ratio. Then give priority to the trays with the most frequent height.
P Largest height whose quantity of trays Choose the trays with the largest height. Then choose the largest height whose quantity Zr i

is more than Zr is higher than
∑r(Z’r) s higher than the average of the quantity of all the trays to be inserted

differ one from the other by their size and degree of heterogeneity. Particular attention in this
phase is given to the definition of the priority rules since their use can significantly improve the
performance of the whole algorithm and are crucial for its scalability in the different types of
implementation.

4.5.2.1 Priority Rules
The priority rules are defined as preference criteria for the ordering of the trays in each column
of the VLM. In particular, they are used to determine the order in which the tray should be
positioned. In general, they allow finding a trade-off between conflicting objectives, such as giving
higher priority to the trays with the largest dimensions or giving higher priority to the trays
whose dimensions more frequently recur in the dataset. Here, two different types of priority rules
are considered: the first type is derived from the work on the container loading problem presented
by Pisinger [8], and then adapted to this one-dimensional problem (it is only considered the
height of the tray); the latter is defined in accordance with the industrial needs. In the following
the list of priority rules is shown, while for each priority rule the detailed explanation can be
found in Table 4.10. In this case study, given the frequency φ1r of the generic tray of type r and
a generic integer number Φ used as threshold for selecting a predefined number of heights, the
priority rules taken from [8] and adapted for this application are the following:

A: Largest height first;
B: Largest height with increasing frequency;
C: Largest height with pseudo-increasing frequency (first version)
D: Largest height with pseudo-increasing frequency (second version)
E: Most frequent height;
F: Largest height with increasing frequency and threshold on the frequency (combination of A

and B);
G: Largest height with pseudo-increasing frequency and most frequent height (combination of

A and C);
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H: Largest height with pseudo-increasing frequency and threshold on the frequency (first
version) (combination of C and E);

I: Largest height with pseudo-increasing frequency and threshold on the frequency (second
version) (combination of D and E);

The newly implemented priority rules are:

L: Decimal and less frequent height first;
M: Integer height and the largest height first;
N: Trays with the most frequent ratio O/Hj first;
O: Trays with the highest ratio O/Hj first;
P: Largest height whose quantity of trays Zr is higher than

∑r(Z′
r).

4.5.2.2 Test
The graphs and tables below show the results obtained from the simulations with columns of
heights equal to O1= 3000mm, O2=9000mm, and O3=15000mm, four different types of trays
indicated by R1, R2, R3 and R4 characterized by combinations of different heights values, i.e.,
H1=75mm, H2=125mm, H3=225mm, H4=325mm, and their total quantity that can assume
the values T1=12, T2=24, T3=48. The combination of O, R, and T produces 36 different test
scenarios, that for the sake of clarity in the following will be identified with the letter and the
number of each of the three parameters, e.g., O1R2T1 indicates the scenario with the height of
the column equal to 3000mm, with 12 trays with 2 different heights.

For the evaluation of this phase it is considered the number of columns obtained with the
algorithm, the corresponding fill ratio, and the computation time. Evidently, depending on the
priority rule used for each scenario, the results can largely vary. Table 4.11 and Table 4.12 show
respectively the worst and the best performance achieved for each scenario, highlighting the
corresponding priority rule. More in detail, for each scenario, the two tables report the number
of filled columns, the number and the type of empty trays used, the percentage of occupied
space, and the execution time. As expected, the datasets composed of 4 types of trays, are the
ones with the most critical computation time. The worst performance does not depend on a
particular business rule since there is not any frequent business rule or any correlation with the
type of column and/or type of trays. Differently, the best performace reported in Table 4.12 show
that priority rule A is the most frequent one among the various cases. For this priority rule the
minimum percentage of space occupied by full trays is 20%, for the 15000 mm column considering
a small homogeneous scenario with one type of tray, and for the majority of cases, it is greater
than 40%, reaching 100% for the 3000 mm column considering a medium homogeneous scenario
with 3 types of full trays. From the achieved results, it can be evicted that the execution time is
mainly influenced by three main factors:

1. The number of tray types in input;
2. The column height;
3. The remaining free space generated by the allocation of full trays in the columns, used to

determine the number of empty trays.

Summarizing the obtained results, it can be stated that an occupancy rate of approximately 100
% is achieved with the use of empty trays. The lowest occupancy rate achieved is approximately
97 % for scenarios O2R1T1 and O2R1T3. As for the number of filled columns, the best result
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Table 4.11: Worst cases performance indices

Input Output Performance indices

O
(mm) R T Input Trays z2r

Priority
Rule

Number of
columns

Comp.
Time (sec)

Average
fill ratio
(full trays
only) %

Average
fill ratio
(empty trays
added) %

H (mm) Zr

3000

1
12 75 12 18 F 1 0.016 40 100
24 75 24 6 B 1 0.016 80 100
48 75 48 12 A 2 0.078 80 100

2
12 125; 75 5; 7 9; 2 M 1 0.024 48.3333 99.9667
24 325; 75 12; 12 0; 6 F 2 0.032 90 99.9833
48 325; 75 24; 24 0; 12 A 4 0.078 90 100

3
12 325; 225; 75 2; 4; 6 2; 0; 0 P 1 0.063 76.6667 99.9667
24 225; 125; 75 8; 8; 8 0; 4; 14 P 2 0.134 66.6667 100
48 225; 125; 75 8; 16; 24 0; 0; 22 C 3 0.140 75.5556 100

4
12 325; 225; 125; 75 1; 2; 4; 5 3; 0; 0; 0 H 1 0.047 65 99.9667
24 325; 225; 125; 75 2; 4; 8; 10 0; 0; 0; 21 P 2 0.203 65 100
48 325; 225; 125; 75 12; 12; 12; 12 0; 0; 0; 18 L 4 0.234 85 100

9000

1 12 75 12 78 D 1 0.016 13.3333 100
24 75 24 66 A 1 0.016 26.6667 100
48 225 48 24 M 2 0.018 66.6667 100

2
12 125; 75 6; 6 30; 30 C 1 0.125 16.6667 100
24 125; 75 12; 12 24; 24 N 1 0.078 33.3333 100
48 225; 125 24; 24 0; 56 L 2 0.070 53.3333 100

3
12 225; 125; 75 2; 4; 6 18; 12; 10 L 1 1.720 18.8889 99.9889
24 225; 125; 75 4; 8; 12 20; 4; 0 O 1 0.913 37.7778 99.9889
48 325; 125; 75 16; 16; 16 0; 0; 84 M 2 1.171 53.3333 100

4
12 325; 225; 125; 75 1; 2; 4; 5 14; 4; 7; 1 I 1 11.747 21.6667 99.9889
24 325; 225; 125; 75 2; 4; 8; 10 13; 1; 2; 0 M 1 3.468 43.3333 99.9889
48 325; 225; 125; 75 12; 12; 12; 12 0; 0; 0; 78 A 2 22.423 56.6667 100

15000

1 12 75 12 138 A 1 0.025 8 100
24 125 24 76 F 1 0.016 24 100
48 75 48 102 A 1 0.031 32 100

2
12 125; 75 5; 7 55; 53 D 1 0.219 9.6667 99.9933
24 125; 75 12; 12 48; 48 M 1 0.219 20 100
48 125; 75 24; 24 36; 36 I 1 0.141 40 100

3
12 225; 125; 75 2; 4; 6 25; 27; 30 L 1 9.647 11.3333 99.9933
24 225; 125; 75 4; 8; 12 33; 19; 5 A 1 6.27 22.6667 99.9933
48 225; 125; 75 8; 16; 24 31; 3; 0 I 1 2.407 45.3333 99.9933

4
12 325; 225; 125; 75 1; 2; 4; 5 17; 10; 20; 16 P 1 110.635 13 99.9933
24 325; 225; 125; 75 2; 4; 8; 10 26; 5; 5; 0 F 1 185.097 26 99.9933
48 325; 225; 125; 75 4; 8; 16; 20 18; 3; 1; 0 G 1 12.560 52 99.9933

achieved for the majority of the scenarios is 1, while the worst is 4 obtained in scenarios O1R2T3
and O1R4T3. Table 4.13 shows the different average percentages of free space and occupied space
left at the end of the processing sub-phase (i.e., with the insertion of only full trays) and the end
of the post-processing sub-phase (i.e., the complete columns with both empty and full trays) and
the computation time, all grouped by the type of used dataset (homogeneous if the total quantity
of trays T has been divided equally among the various height values, heterogeneous otherwise).
It can be noted that as the height of the column increases, on average, the free space produced
by the allocation of full trays increases; furthermore, as the height of the column increases, the
average execution time also increases. Moreover, it can be evicted that a homogeneous scenario,
on average, performs better than a heterogeneous scenario for the average space occupied by full
trays. From the execution time point of view, it ranges from a minimum of some milli-seconds for
scenarios with column O1, to a maximum of 17.8 seconds for scenarios with column O3.

4.6 Conclusion
The optimization of the configuration of the Vertical Lift Modules (VLM) warehouses concerned
both the computation of the optimal configuration for the allocation of items and the allocation
of the trays in columns, which strongly influences its performance, as it allows the minimization
of the unused space in the warehouse itself. This work proposes a novel matheuristic algorithm
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Table 4.12: Best cases performance indices

Input Output Performance indices

O
(mm) R T Input Trays z2r

Priority
Rule

Number of
columns

Comp.
Time (sec)

Average
fill ratio
(full trays
only) %

Average
fill ratio
(empty trays
added) %

H (mm) Zr

3000

1
12 125 12 8 A 1 0.001 60 100
24 325 24 0 A 3 0.001 93.3333 0
48 125 48 12 A 3 0.001 80 100

2
12 225; 75 6; 6 2; 4 A 1 0.001 70 99.9667
24 325; 75 12; 12 0; 6 A 2 0.001 90 99.9833
48 225; 75 24; 24 0; 6 B 3 0.001 93.3333 100

3
12 325; 225; 125 4; 4; 4 0; 0; 0 A 1 0.001 100 0
24 325; 225; 75 8; 8; 8 0; 0; 4 B 2 0.001 93.3333 99.9833
48 325; 125; 75 8; 16; 24 0; 0; 14 D 3 0.015 84.4444 100

4
12 325; 225; 125; 75 3; 3; 3; 3 0; 0; 3; 0 E 1 0.001 85 99.9667
24 325; 225; 125; 75 6; 6; 6; 6 0; 3; 1; 0 A 2 0.031 85 99.9833
48 325; 225; 125; 75 4; 8; 16; 20 0; 0; 0; 12 M 3 0.062 86.6667 100

9000

1
12 325 12 13 A 1 0.001 46.6667 97.2222
24 225 24 12 A 1 0.001 66.6667 100
48 325 48 2 A 2 0.001 93.3333 97.2222

2
12 325; 225 6; 6 9; 9 A 1 0.010 40 100
24 325; 225 12; 12 3; 3 A 1 0.001 80 100
48 225; 75 24; 24 2; 1 D 1 0.001 93.3333 99.9889

3
12 325; 225; 75 4; 4; 4 17; 1; 0 D 1 0.266 31.1111 99.9889
24 325; 225; 125 8; 8; 8 4; 4; 4 A 1 0.050 66.6667 100
48 325; 125; 75 8; 16; 24 4; 0; 0 A 1 0.030 84.4444 99.9889

4
12 325; 225; 125; 75 3; 3; 3; 3 14; 5; 2; 0 P 1 8.202 28.3333 99.9889
24 325; 225; 125; 75 6; 6; 6; 6 9; 3; 0; 0 D 1 1.297 56.6667 99.9889
48 325; 225; 125; 75 4; 8; 16; 20 3; 0; 1; 0 F 1 0.14 86.6667 99.9889

15000

1
12 225 12 48 A 1 0.001 20 100
24 325 24 18 A 1 0.001 56 98
48 325 48 36 A 2 0.001 56 98

2
12 325; 225 6; 6 19; 19 B 1 0.030 24 100
24 325; 225 12; 12 13; 13 A 1 0.020 48 100
48 325; 75 24; 24 12; 0 F 1 0.001 72 99.9933

3
12 325; 225; 75 4; 4; 4 25; 13; 2 F 1 1.828 18.6667 99.9933
24 325; 225; 125 8; 8; 8 12; 12; 12 I 1 0.859 40 100
48 325; 225; 125 16; 16; 16 4; 4; 4 B 1 0.099 80 100

4
12 325; 225; 125; 75 3; 3; 3; 3 23; 11; 11; 0 F 1 73.250 17 99.9933
24 325; 225; 125; 75 6; 6; 6; 6 24; 6; 0; 0 I 1 63.464 34 99.9933
48 325; 225; 125; 75 12; 12; 12; 12 13; 1; 0; 0 A 1 2.925 68 99.9933

Table 4.13: Average filling results

O
(mm)

Homogeneous Heterogeneous

Average
free space
(full trays
only) %

Average
free space

(empty trays
added) %

Average
occupied space
(full trays
only) %

Average
occupied space
(empty tray
added) %

Average
Execution time
(sec.)

Average
free space
(full trays
only)%

Average
free space
(empty trays
added) %

Average
occupied space
(full trays
only) %

Average
occupied space
(empty trays
added) %

Average
Execution time
(sec.)

3000 21.0375 0.56018 83.9384 99.5614 0.019667 23.4522 0.47943 77.9503 99.5671 0.02042

9000 48.454 0.59258 51.3876 99.6537 0.72521 51.2273 0.27664 48.6142 99.6438 0.39782

15000 61.4802 0.33755 38.3613 99.7062 3.8892 64.7417 0.17244 35.0998 99.7035 6.5418

that is composed of different mathematical models for the solution of this complex problem.
The model is versatile as it can be applied with several innovative logistic constraints, fulfilling
logistic companies’ requirements and VLMs’ features, such as the use of a limited number of
tray’s configurations (patterns) and the limitations on the placement of dividers inside trays. The
effectiveness of the model is tested on various scenarios. Results show that the exact mathematical
model turns out to be time-consuming for large instances, while with a limited number of items
(and consequently variables) it produces optimal solutions in a short computation time. In order
to extend the applicability of the model also to large datasets, future works will consider the
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definition of heuristics able to overcome the emerged limitations and the use of other resolution
approaches (i.e., genetic programming) to compare with the one just proposed.
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Chapter 5

A MILP Approach for the Multi-Drop
Container Loading Problem Resolution in
Logistics 4.0

V
Abstract

This chapter addresses the multi-drop container loading problem (CLP), i.e., the problem
of packing multiple bins, associated to multiple deliveries to one or more customers, into a
finite number of transport units (TUs). Differently from the traditional CLP, the multi-drop
CLP has been rarely handled in the literature, while effective algorithms to automatically
solve this problem are needed to improve the efficiency and sustainability of internal logistics.
To this aim, it has been proposed a novel algorithm that solves a delivery-based mixed
integer linear programming (MILP) formulation of the problem. The algorithm efficiently
determines the optimal composition of TUs by minimizing the unused space, while fulfilling
a set of geometric and safety constraints, and complying with the delivery allocation. In
particular, the proposed algorithm includes two steps: the first aims at clustering bins into
groups to be compatibly loaded in various TUs; the latter aims at determining the optimal
configuration of each group in the related TU. Finally, the proposed algorithm is applied
to several realistic case studies with the aim of testing and analysing its effectiveness in
producing stable and compact TU loading configurations in a short computation time, despite
the high computational complexity of the multi-drop CLP.

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
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5.1 Introduction
Taking advantage of the Industry 4.0 enabling technologies, the novel concept of Logistics 4.0 has
been recently introduced, aiming at improving the productivity level and quality standards of
demand, distribution, and inventory management [1], [2]. The new paradigms of mechanization,
automation, and physical internet are leading to an enhanced management of the internal logistics,
efficiently supporting the operative management of the physical flows that transit in the warehouse.
Nevertheless, although a large variety of systems for the management of the internal logistics
are available, effective container loading algorithms are still lacking. Such algorithms could
support warehouse managers in automatically addressing the container loading problem (CLP):
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the problem of packing multiple bins into a finite number of containers or transport units (TUs)
[3]-[4].

CLP is a combinatorial optimization problem which belongs to the class of cutting and packing
problems [5]. In the literature, the classical version of CLP is commonly described as finding the
optimal packing of a set of bins, known as boxes, into containers, so that bins do not overlap
and lie entirely inside the containers, while minimizing the non-occupied space. The resulting
optimization problem thus focuses on the spatial arrangement of bins in the containers, considering
only geometric constraints [3]. To make the proposed solutions relevant to real-world applications,
several further variants of the CLP have been defined. A first broad classification of the literature
contributions is based on the number of containers included in the optimization problem, thus
distinguishing the single- and multi-CLP. Weight and static stability are commonly considered
in the single-container case, while dynamic stability has received less attention to date [6]. In
most cases, heuristic [7]–[9] and meta-heuristic [10]–[12] approaches have been followed, while
mathematical models and exact algorithms have usually addressed only basic problems [13]–[16].

A second main classification of the literature contributions on the CLP can be made by
considering the number of delivering destinations associated to the bins, thus distinguishing
between mono- and multi-drop CLP [17]. For the sake of reducing the problem complexity, in the
multi-drop CLP the route of delivering operations is commonly assumed to be known in advance.
Thus, in the multi-drop scenario the resulting optimization problem consists in enhancing the
CLP with a Last-In-First-Out (LIFO) policy aimed at fullfilling the loading and unloading of
containers. Some heuristic [18], [19] and exact [17] algorithms have been proposed to arrange
customer bins partitioned sections of the container. However, in the cited works [17]–[19] only
one container is considered; moreover, all the constraints – except the geometric and the LIFO
constraints – are generally neglected.

Specifically, the multi-drop scenario can be addressed in two ways. On the one hand, the
CLP is integrated with the vehicle routing problem: this results in the combined optimization of
the loading of bins into containers and the routing of containers along paths aimed at serving
different destinations with the minimum traveling cost. Such an approach suffers from a high
combinatorial complexity as shown in [20]–[22]. On the other hand, for the sake of reducing
the problem complexity, the route of delivering operations is commonly assumed to be known
in advance. Thus, in the multi-drop scenario the resulting optimization problem consists in
enhancing the CLP with a Last-In-Fist-Out (LIFO) policy aimed at fullfilling the loading and
unloading of containers. Finally, note that in Lai et al. [18], who propose a heuristic graph-based
approach, and in Junqueira et al. [17], who formulate a mixed integer linear programming model
for multi-customer delivering, only one container is considered; moreover, all the constraints
(except the geometric and the multi-drop constraints) are neglected.

Summing up, CLP research is still lagging behind in jointly addressing the following type of
constraints in a multi-drop scenario: load-balancing, multiple delivery, compliance with loading
and unloading strategies, bins positioning including rotation and stackability, and bins static
and dynamic stability. To cope with this gap, it has been proposed a novel mixed integer linear
programming (MILP) delivery-based algorithm that efficiently determines the optimal composition
of TUs, minimizing the unused space, fulfilling a set of geometric and safety constraints, and
complying with the delivery allocation. In particular, it decomposes the resolution procedure
into two steps: the first aims at clustering bins into groups to be compatibly loaded in various
TUs; the latter aims at determining the optimal configuration of each group in the related TU.
Finally, the proposed algorithm is applied to several real case studies, showing that the proposed
technique produces stable and compact TU loading configurations within an acceptable time,
despite the high computational complexity of the multi-drop CLP.

The remainder of this chapter is organized as follows. Section 5.2 describes the basic concepts
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and assumptions and provides the mathematical formulation of the single-CLP with multi-drop
constraints. Section 5.3 describes the algorithm for efficiently solving the multi-CLP in a multi-
drop scenario. In Section 5.4 the proposed algorithm is applied to simulated case studies, showing
the resulting performance. Finally, Section 5.5 provides the conclusions and some possible future
research perspectives.

5.2 Mathematical Formulation of the Single-CLP with Multi-drop
Constraints

The resolution method proposed in this work for the logistics multi-drop CLP takes as inputs a
set of deliveries and their corresponding bins, and the type of TUs to be used for the shipment;
while it returns as outputs the most efficient configurations of the input bins in TUs. All the
bins related to a single customer are grouped into the so-called delivery. In effect, depending on
the type of shipment, this can include one or more customer deliveries, while each delivery is
associated only to a single customer. The deliveries associated to a given shipment can be loaded
inside one or multiple TUs, depending on the type of TUs used for the shipment. A sufficient
number of trucks are available to fully carry out the delivery of all the bins.

As for the composition of a single TU, the loading arrangement is determined in accordance
with a Last-In-First-Out (LIFO) strategy. This strategy ensures that, when bins for multiple
destinations are considered, the loading arrangement complies with the sequence by which each
destination is served. It is also assumed that the arrangement of bins must be orthogonal (i.e.,
the edges of bins must be parallel to the edges of the TU). The TU capacity defines both the
maximum weight and volume of bins that can be loaded. In addition, it is assumed that the
bins’ arrangement is done in accordance with the load balance (related to the position of the
load center of gravity), which affects the maneuverability of the TU. Finally, it is assumed that
the TU loading takes both the static (i.e., related to the capacity of the loaded bins to be in
equilibrium when TU is stationary) and dynamic (i.e., related to the capacity of the loaded bins
not to be displaced when the TU is moving) stability of bins into account.

In the rest of this section, the attention is focused on the mathematical formulation of the
single-CLP problem with multi-drop constraints. The problem is here first formulated as a Mixed
Integer Non-Linear Programming (MINLP) problem, which is then linearized by means of the
approach proposed in [23]. For the sake of clarity, the decision variables and the parameters of
the optimization problem are reported in Table 5.1 and Table 5.2, respectively.

The optimization problem aims at minimizing the unused space inside of the transport unit,
i.e., the difference between the maximum volume capacity of the TU and the total volume of the
bins assigned to the TU:

min
(

Vmax −
∑
i∈B

pi vi

)
(5.1)

while satisfying the following constraints:
1) Non-overlapping constraints: the coordinates of two generic bins i and i′ within the TU

must not overlap:
cxipi − xi′pi′ + W ξl

ii′ ≤ W − wi, ∀i,∀i′̸= i (5.2)

cxi′pi′ − xipi + W ξr
ii′ ≤ W − wi′ , ∀i,∀i′̸= i (5.3)

cyipi − yi′pi′ + L ξb
ii′ ≤ L − li, ∀i,∀i′̸= i (5.4)

cyi′pi′ − yipi + L ξf
ii′ ≤ L − li′ , ∀i,∀i′̸= i (5.5)

czipi − zi′pi′ + H ξo
ii′ ≤ H − hi, ∀i,∀i′̸= i (5.6)
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Table 5.1: List of Parameters of the CLP Formulation.

Symbol Description
B Number of bins
B Set of bins

Wmax Maximum weight supportable by TUs
L
W
H

Length, width, and height of TUs

Vmax Volume capacity of TUs
li
wi

hi

Length, width, and height of bin i

vi Volume of bin i
gi Weight of bin i
φi Fragility index of bin i
σi Priority index of bin i

γ
Maximum area gap
between two stacked adjacent bins i and i′

δ
Maximum height difference
between two laterally adjacent bins i and i′

λ1, λ2
Load balancing coefficients
along the TU trasversal axes

ω1, ω2
Load balancing coefficients
along the TU longitudinal axes

czi′pi′ − zipi + H ξu
ii′ ≤ H − hi′ , ∀i,∀i′̸= i. (5.7)

2) TU dimension bounding constraints: the coordinates of bins must not exceed the dimensions
of the TU:

c0 ≤ xi pi ≤ W − wi, ∀i (5.8)
c0 ≤ yi pi ≤ L − li, ∀i (5.9)
c0 ≤ zi pi ≤ H − hi, ∀i. (5.10)

3) Bins relative positions constraints: a generic bin i can assume only one relative position
with respect to a generic bin i′ in the TU, that is: to the left, right, front, back, under or over:

cξl
ii′ +ξr

ii′ +ξf
ii′ +ξb

ii′ +ξu
ii′ +ξo

ii′ =pi pi′,∀i,∀i′ ̸= i. (5.11)

4) Bin rotation constraints: bins can rotate 90◦ in the horizontal plane:

w′
i = ϱi li + (1 − ϱi) wi, ∀i (5.12)

l′i = ϱi wi + (1 − ϱi) li, ∀i. (5.13)
5) Bins stackability constraints: each bin i is associated a fragility index φi. Bins must then

be stacked respecting an ascending fragility order, from the lowest to the highest one:

(ξo
ii′ − ξu

ii′)φi′ ≤ (ξo
ii′ − ξu

ii′)φi , ∀i,∀i′̸= i. (5.14)

6) Bin priority constraints: each bin i is assigned a priority index σi, which represents the
priority of the delivery to which the bin belongs. The lowest the value of the priority index, the
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Table 5.2: List of Decision Variables of the CLP Formulation.

Symbol Description Value
i, i′ Indices of bins B

pi
Binary variable indicating if bin i
is inside (1) or outside (0) TU {0,1}

xi

yi

zi

Coordinates of the lower
right corner of the bin i

[0,W ]
[0, L]
[0, H]

w′
i (l′i)

X-axis (y-axis) dimension of bin i in the TU
considering eventual vertical (horizontal) rotation

[0,W ]
[0, L]

ϱi

Binary variable indicating if bin i
is rotated (1) or not (0) with respect to
vertical axis

{0,1}

ξl
i,i′

ξr
i,i′

ξf
i,i′

ξb
i,i′

ξo
i,i′

ξu
i,i′

Binary variables indicating if bin i is on the
left of, on right of, in front of, behind,
above, or below bin i′ (1) or not (0)

{0,1}

Xi

Yi

Zi

Pii′

Auxiliary variables introduced to linearize
terms xi pi, yi pi, zi pi, pi pi′

[0,W ]
[0, L]
[0, H]
{0,1}

highest the priority. It is considered here a LIFO positioning of bins inside the TU, thus bins
are positioned in the TU starting from the rear up to the frontal part of the TU following a
decreasing order of the priority index:

(ξb
ii′ − ξf

ii′)σi′ ≤ (ξb
ii′ − ξf

ii′)σi ∀i,∀i′̸= i. (5.15)

7) Bin horizontal stability constraints: the difference between the basis areas of two stacked
and adjacent bins must be lower than or equal to a given threshold γ:

(liwi − li′ wi′) (ξo
ii′ − ξu

ii′) ≤ γ, ∀i,∀i′̸= i. (5.16)

8) Bin vertical stability constraints: the height difference between consecutive and adjacent
bins must be lower than or equal to a given threshold δ:

(hi − hi′) (ξf
ii′ − ξb

ii′) ≤ δ, ∀i,∀i′̸= i (5.17)

−(hi − hi′) (ξf
ii′ − ξb

ii′) ≤ δ, ∀i,∀i′̸= i. (5.18)
9) TU volume capacity constraints: the total volume of bins loaded in the TU must not exceed

its maximum volume: ∑
i∈B

pivi ≤ Vmax. (5.19)

10) TU weight capacity constraints: the total weight of bins loaded in the TU must not exceed
its maximum admissible load: ∑

i∈B

pigi ≤ Wmax. (5.20)
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11) Load balancing constraints: the load is positioned inside the TU so that its center of mass
lies in a bounded area inside the basis of the TU, whose dimensions are related to the length and
width of the TU by means of the λ1 and λ2 parameters for the transversal axes and by means of
the ω1 and ω2 parameters for the longitudinal axes:

cλ1W ≤
∑

i gi(xipi + wi/2)∑
i pigi

≤ λ2W, ∀i (5.21)

cω1L ≤
∑

i gi(yipi + li/2)∑
i pigi

≤ ω2L, ∀i. (5.22)

In addition, the following integrality constraints hold:

cpi ∈ {0, 1},∀i (5.23)

cξl
ii′ , ξr

ii′ , ξ
f
ii′ , ξ

b
ii′ , ξu

ii′ , ξo
ii′ ∈ {0, 1},∀i,∀i′ ̸= i (5.24)

cϱi ∈ {0, 1},∀i. (5.25)

The resulting optimization problem (5.1)-(5.25) is a MINLP problem, due to the presence
of the cross-products xi pi, yi pi, zi pi, pi pi′ in the constraints (5.2)-(5.11) and (5.21), (5.22).
Using the approach proposed by Bemporad et al. in [23], a MILP problem can be obtained. In
particular, it is introduced the auxiliary variables Xi = xi pi, Yi = yi pi, Zi = zi pi, Pii′ = pi pi′

and the corresponding following logical constraints:

Xi ≤ (W − wi) pi, ∀i (5.26)

Xi ≥ xi − (W − wi) (1 − pi), ∀i (5.27)

Yi ≤ (L− li) pi, ∀i (5.28)

Yi ≥ yi − (L− li) (1 − pi), ∀i (5.29)

Zi ≤ (H − hi) pi, ∀i (5.30)

Zi ≥ zi − (H − hi) (1 − pi), ∀i (5.31)

−pi + Pii′ ≤ 0, ∀i,∀i′̸= i (5.32)

−pi′ + Pii′ ≤ 0, ∀i,∀i′̸= i (5.33)

pi + pi′ − Pii′ ≤ 1, ∀i,∀i′̸= i (5.34)

Replacing Xi, Yi, Zi, Pii′ , in (5.2)-(5.11), and (5.21), (5.22) the mathematical problem (5.1)-
(5.25) can be rewritten as follows:

min
(

Vmax −
∑
i∈B

pi Vi

)

s.t. (5.12)-(5.20), (5.23)-(5.34)

Xi −Xi′ + W ξl
ii′ ≤ W − wi, ∀i,∀i′̸= i (5.35)

Xi′ −Xi + W ξr
ii′ ≤ W − wi′ , ∀i,∀i′̸= i (5.36)

Yi − Yi′ + L ξb
ii′ ≤ L − li, ∀i,∀i′̸= i (5.37)
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Yi′ − Yi + L ξf
ii′ ≤ L − li′ , ∀i,∀i′̸= i (5.38)

Zi − Zi′ + H ξo
ii′ ≤ H − hi, ∀i,∀i′̸= i (5.39)

Zi′ − Zi + H ξu
ii′ ≤ H − hi′ , ∀i,∀i′̸= i (5.40)

0 ≤ Xi ≤ W − wi, ∀i (5.41)

0 ≤ Yi ≤ L − li, ∀i (5.42)

0 ≤ Zi ≤ H − hi, ∀i (5.43)

ξl
ii′ +ξr

ii′ +ξf
ii′ +ξi

ii′ +ξu
ii′ +ξo

ii =Pii′,∀i,∀i′ ̸= i (5.44)

λ1W ≤
∑

i gi(Xi + wi/2)∑
i pigi

≤ λ2W, ∀i (5.45)

ω1L ≤
∑

i gi(Yi + li/2)∑
i pigi

≤ ω2L, ∀i (5.46)

The resulting MILP problem (5.35)-(5.46) consists in determining the 8B real and 7B(B-1)+2B
binary variables, reported in Table 5.2, which minimize the objective function in (5.35) and meet
the 5B bounding constraints (5.8)-(5.43), (5.45), (5.46), the 3B equality constraints (5.12), (5.13),
(5.44), and the 25B inequality constraints (5.14)-(5.20), (5.23)-(5.34), (5.35)-(5.40).

5.3 The Proposed Algorithm for the Multi-drop Multi-CLP
This section describes the delivery-based algorithm that efficiently determines the optimal
composition of TUs. The parameters, inputs, and outputs of the algorithm are shown in Table 5.3
respectively in the first, second and third section of the table. Specifically, a set of D deliveries
are taken into account, whilst unlimited TUs are considered. The resolution procedure is shown
in the flow chart of Fig. 5.1. In particular, the algorithm is based on a nested double-loop of
iterations, which is indicated by Loop 1 and Loop 2 in Fig. 5.1.

Table 5.3: List of parameters, inputs and ouputs of the Multi-Drop Multi-CLP Algorithm.

Name Description
Parameters

Wmax Maximum weight supportable by TUs
Vmax Volume capacity of TUs

Inputs
D Number of deliveries (D ≥ 1)
d Index of deliveries (d ∈ {1, . . . , D})
Ad Set of bins associated to delivery d ∈ {1, . . . , D}
i Index of bins
vi Volume of bin i
gi Weight of bin i

Outputs
T Number of TUs to be loaded (T ≥ 1)
t Index of TUs (t ∈ {1, . . . , T})
St Set of bins to be loaded in TU t ∈ {1, . . . , T}
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Initialize:
d=1, t=1

𝑑 ≤ 𝐷

YES

NO

Initialize the remaining volume 
and weight capacity in TU t: 

𝑊 = 𝑊max, 𝑉 = 𝑉max

𝑊ℛ ≤ 𝑊 &
𝑉ℛ ≤ 𝑉

Update the remaining volume 
and weight capacity in TU t: 
𝑊 = 𝑊 −𝑊ℛ , 𝑉 = 𝑉 − 𝑉ℛExtract ℛ′ ⊂ ℛ such that:

σ𝑖∈ℛ′𝑔𝑖 ≤ 𝑊 &σ𝑖∈ℛ′𝑣𝑖 ≤ 𝑉

Compute the set of left-out bins:
ℛ′′ = ℛ ∖ ℛ′

Solve the CLP for TU t  through eqs. 
(35)-(47) using bins in ℬ

Update the set of unallocated bins:
ℛ = ℛ′′ ∪ {ℬ ∖ 𝒮𝑡}

NO

YES

YES

NO

Compute the overall volume and 
weight of unallocated bins:
𝑊ℛ = σ𝑖∈ℛ 𝑔𝑏 , 𝑉ℛ = σ𝑖∈ℛ 𝑣𝑖

ℛ = ∅

Go to the next delivery:
𝑑 = 𝑑 + 1

Go to the next TU:
𝑡 = 𝑡 + 1

Compute the set of allocated bins:
𝒮𝑡 = 𝑖 ∈ ℬ 𝑝𝑖 = 1}

Update the set of unallocated 
bins for delivery d:

ℛ = 𝒜𝑑

Update the set of bins to be loaded 
in TU t:

ℬ = ℬ ∪ ℛ′

Initialize the set of unallocated 
bins for delivery d:

ℛ = 𝒜𝑑

Initialize the set o f bins to be 
loaded in TU t:

ℬ = ∅

Update the set of bins to be 
loaded in TU t:
ℬ = ℬ ∪ ℛ

Loop 1

Loop 2

Check 1

Check 2

Check 3

Compute the number of TUs to be 
loaded:
𝑇 = 𝑡

Figure 5.1: Flow chart of the proposed algorithm.
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5.3.1 Iterating over TUs
The outer loop (i.e., Loop 1 ) in Fig. 5.1 of the algorithm iterates over the TUs and is composed
by two phases. Referring to the t-th outer iteration, the first step aims at selecting the bins to be
compatibly loaded in TU t; the latter aims at determining the optimal configuration for TU t by
solving the single-CLP (5.35)-(5.46). These two steps are repeated until none of the given bins
remains unallocated, as indicated by the decision block Check 3 in Fig. 5.1.

5.3.2 Grouping/Ungrouping Bins
In this phase the given deliveries are inspected one at a time in order to select the set B of bins
that could be loaded in TU t. Two cases may occur, as indicated by the decision block Check
1 in Fig. 5.1. On the one hand, if the size of delivery d in terms of total weight and volume of
the corresponding bins is higher than the available capacity of containers, only a portion of the
delivery is assigned for the CLP of TU t. The remaining bins are thus deferred to the subsequent
TU t+ 1. On the other hand, if the size of delivery d is lower than the available capacity of TUs,
the inner loop (i.e., Loop 2 ) over the subsequent deliveries is performed to eventually group bins
from various deliveries. This loop ends if no further deliveries remain, as indicated by the decision
block Check 1 and Check 2 in Fig. 5.1, respectively.

5.3.3 Solving the CLP
Having selected a set B of bins that can be compatibly loaded in TU t, the optimal configuration
for TU t is determined by solving the multi-drop single-CLP (5.35)-(5.46) defined in Section 5.3.
In the case any of the selected bins are not allocated in the TU t, they are deferred to the
subsequent TU t+ 1, as indicated by the decision block Check 3 in Fig. 5.1.

5.4 Experimental Results
In this section the effectiveness of the proposed algorithm is tested on three realistic scenarios, for
which it is assumed that the bins are packed over EU standard pallets, while the TUs can have
three different ISO standards sizes. In the three scenarios, the number of considered shipments
varies as well as the number of related bins and the corresponding dimensions (i.e., height and
weight), so as to validate the obtained results and to analyze the computational effort of the
proposed algorithm. In particular, with the aim of assessing the performance of the algorithm,
the following performance indices are considered:

• Tc: total computation time of the algorithm, i.e., the running time required to determine
the number of TUs to be used and their corresponding composition in terms of identification
and location of bins to be loaded;

• Ft: percentage fill ratio of the transport unit t, defined as Ft =
∑

i∈B vi

Vmax
100, which

represents the percentage of volume occupied by the bins in each TU t.

Note that the resolution of the multi-drop multi-CLP is implemented in the Matlab environment
R2020b, on a macOS Big Sur PC with 2.3 GHz Intel Core i9 processor and 16GB RAM, and the
optimization problem is solved using the Optimization Toolbox integrated in Matlab.
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5.4.1 Scenarios Set-up
Hereafter it is reported the set-up of the three test scenarios specifying the input parameters to
be provided for the execution of the proposed algorithm. It is assumed that bins are all packed on
EU standard pallets sized wi = 1, 200 mm and li = 800 mm and have a maximal admissible height
equal to hmax = 2, 400 mm. Differently, the TUs have three possible ISO standard dimensions,
namely, TU1 with L1 = 10, 890 mm W1 = 1, 800 mm H1 = 2, 500 mm; TU2 with L2 = 11, 900 mm
W2 = 1, 800 mm H2 = 2, 500 mm, and TU3 with L3 = 12, 100 mm W3 = 1, 800 mm H3 = 2, 500
mm; the corresponding admissible weight is equal to Wmax1 = 22, 500 kg, Wmax2 = 40, 000 kg,
and Wmax3 = 42, 500 kg, respectively.

• Scenario 1 - The first scenario considers a number of deliveries D = 2 composed respectively
by 17 bins for the first one and 27 bins for the second one; the height of bins varies in the
set hi = {hmax,hmax/2,hmax/3} where hmax is equal to 2,400 mm; the available TUs are
TU1 and TU2. Note that there are:

– 13 bins with hi = hmax and wi = 1500 kg;
– 20 bins with hi = hmax/2 and wi = 750 kg;
– 11 bins with hi = hmax/3 and wi = 325 kg.

• Scenario 2 - The second scenario considers a number of deliveries D = 3 composed
respectively by 17 bins for the first one, 23 bins for the second one, and 28 for the third
one, whereas the height of bins varies in the set hi = {hmax,hmax/2,hmax/3} where hmax is
equal to 2,400 mm; the available TUs are TU1, TU2 and TU3. Note that there are:

– 13 bins with hi = hmax and wi = 1500 kg;
– 39 bins with hi = hmax/2 and wi = 750 kg;
– 16 bins with hi = hmax/3 and wi = 325 kg.

• Scenario 3 - The third scenario considers a number of deliveries D = 7 composed respectively
by 17 bins for the first one, 25 bins for the second one, 29 for the third one, 6 for the fourth
one, 10 for the fifth one, 6 for the sixth one and 7 for the seventh one, whereas the height
of the bins varies in the set hi = {hmax,hmax/2,hmax/3} where hmax is equal to 2,400 mm;
the available TUs are TU1, TU2, TU3 and TU4. Note that there are:

– 20 bins with hi = hmax and wi = 1500 kg;
– 52 bins with hi = hmax/2; and wi = 750 kg;
– 28 bins with hi = hmax/3 and wi = 325 kg.

For all the considered scenarios, the parameters referring to the stability and the load balancing
constraints get the following values: δ = hmax/2, γ = 1920, λ1 = ω1 = 1/4, λ2 = ω2 = 3/4.

5.4.2 Results Analysis and Discussion
In this section, the results obtained in the considered scenarios are discussed and summarized in
Table 5.4. In particular, for each scenario it is reported the computation time required by the
algorithm, i.e., Tc; the TU index t; the TU type, namely, TU1, TU2, or TU3; the fill ratio in
percentage for each loaded transport unit t, i.e., Ft; the set of delivery indices associated to the
bins loaded in each TU.

When comparing Scenario 1 and Scenario 2, it emerges that increasing of 40% the load total
volume and the number of the deliveries implies an increase of about 60% of the computation
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Table 5.4: Comparison of the considered scenarios

Scenario Tc [s] TU index t TU type Ft (%) Set of deliveries
indices d

Scenario 1 152.5 1 TU1 70.9 1
2 TU2 64.6 2

Scenario 2 243.7
1 TU1 69.8 1
2 TU2 55.1 2
3 TU3 60.3 2, 3

Scenario 3 521.3

1 TU1 70.5 1
2 TU2 55.3 1, 2
3 TU3 60.5 2, 3
4 TU1 70.9 4, 5, 6, 7

time. In addition, it is possible to notice that in Scenario 1 the bins of d = 1 are all loaded in the
TU t = 1; consequently in the second TU t = 2 only bins of the second delivery d = 2 are present.
Differently, in Scenario 2 the bins of delivery d = 2 are partitioned over two different transport
units. This highlights the suitability of the proposed algorithm for the multi-drop problem as
well as the fulfillment of the multi-drop constraints. As for the comparison between Scenario 1
and Scenario 3, it emerges that increasing of almost 100% the load total volume and of 130% the
number of the deliveries implies an increase of about 240% of the computation time. Moreover,
in Scenario 3 the bins of d = 1 and of d = 2 are partitioned over two different transport units,
demonstrating again the fulfillment of multi-drop. Finally, for the sake of showing the fullfillment
of the bin priority constraints, in Fig. 5.2 it is reported the detailed output of Scenario 3. In
particular, in Fig. 5.2.a it is represented the transport unit of type TU1 loaded with the bins
belonging to delivery d = 1. The remaining bins are loaded in TU2 reported in Fig. 5.2.b, where
they are grouped and combined with the delivery d = 2. Similarly, the remaining bins of delivery
d = 2 are loaded in a further transport unit type TU3, where they are grouped and combined
with the delivery d = 3, as shown in Fig. 5.2.c. Finally, deliveries d = 4, 5, 6 are grouped and
positioned in the fourth transport unit type TU1, as reported in Fig. 5.2.

5.5 Conclusion
This chapter investigates the multi-drop multi-container loading problem (CLP), i.e., the problem
of optimally packing multiple bins associated to multiple deliveries into a finite number of transport
units (TUs). A novel mixed integer linear programming delivery-based algorithm is proposed
to efficiently determine the optimal composition of TUs, while minimizing the unused space,
fulfilling a set of geometric and safety constraints, and complying with the delivery allocation.
Several realistic case studies show the effectiveness of the presented approach in determining
stable and compact TU loading configurations in a short computation time.

Future research will address enhancing the algorithm performance by introducing heuristic or
meta-heuristic optimization solutions and integrating the CLP with the vehicle routing problem.
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(a) (b)

(c) (d)

Figure 5.2: TUs loading in Scenario 3: bins composition in the first TU (a), second TU (b), third TU (c), and
fourth TU (d).
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Chapter 6

Logistics 4.0: A Matheuristics for the
Integrated Vehicle Routing and Container
Loading Problem

VI

Abstract

The increasing demand for freight transport requires logistic companies to improve their
competitiveness by ensuring high service levels at limited costs. This chapter investigates
the problem of defining delivery plans with the aim of supporting logistic companies in
reducing planning times and freight delivery costs. In delivery planning, given a set of
delivery requests, both the routes and load configurations of Transport Units (TUs) are
to be established. In the literature, this problem is defined as Three-dimensional Loading
Capacitated Vehicle Routing Problem with Time Windows (3L-CVRPTW) and it is the
integration of two different well-known literature problems: the vehicle routing problem
and the container loading problem that are generally tackled separately. Moreover, only a
few contributions present solution approaches for real logistic systems, and these methods
are mainly based on heuristics. In this chapter, starting with the CLP algorithm described
in Chapter 5, a matheuristic algorithm for the integrated solution of the vehicle routing
problem and container loading problem is defined. The proposed method is suitable for
real logistic applications and combines the advantages of exact solutions with the rapidity
of heuristics. The approach aims at minimizing the total travel costs and the clients’ time
windows violations in the routes’ definition while optimizing the configuration of the cargo
inside each TU. The developed matheuristic algorithm is tested both on a well-known
literature benchmark and on a real dataset provided by the Italian company E80 Group.
The obtained results show that the proposed method succeeds in determining in a short
computational time both feasible routes and loading plans, minimizing the related costs
while fulfilling logistics constraints.
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6.1 Introduction
Logistics 4.0 is a highly competitive branch of Industry 4.0 that involves a wide variety of sectors,
including retail sales, shipments, waste management, and construction. Its main aim is to improve
productivity and the quality of service by applying the enabling technologies of Industry 4.0 (e.g.,
robotics, automation, Internet of Things) to logistics and supply chains [1] from the storing of
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objects in warehouses, to their loading in Transport Units (TUs) and its subsequent delivery to the
clients. This chapter is focused on distribution logistics which generates the highest percentage of
the logistic operations costs. In particular, it addresses the complex problem of jointly planning
delivery routes and loading plans for Transport Units (TUs) of logistic companies. In the related
literature the two problems are generally tackled separately as the Vehicle Routing Problem
(VRP) and the Container Loading Problem (CLP) (e.g., in [2] [3]). The former, given a set of
clients to be visited by a set of TUs (and TUs types), aims at finding the routes that optimize a
proper objective function (e.g., the traveled distance, the consumption of fuel), while satisfying
routing constraints. The latter belongs to the wider class of cutting and packing problems, whose
aim is to optimize the occupation of containers ensuring that boxes do not overlap and lie entirely
inside the container. In this case, the aim is to reduce the total cost of delivery, which entails
fixed costs (mainly driver wages and/or renting fees) and variable costs (directly dependent on
the distance traveled such as the consumption of fuel) combined with particular attention to the
quality of service, which basically ensures that all addresses must be served in predetermined
time windows which correspond to the opening hours of clients’ warehouses.

The seminal version of the VRP was the “truck dispatching problem”, formulated in [4],
later named “Vehicle Routing Problem” in [5], whose objective is to find the minimal travel cost
to serve a set of clients and their associated demand, so that each client is visited and served
by a TU only once. A comprehensive survey on this topic is presented in [6], which classifies
the VRP formulations according to different aspects, such as the number of stops/clients, the
possibility to include time window restrictions and travel time, the used data and the type of
information characteristics (i.e., evolution, quality, and availability of information). A common
extension of the basic VRP is the Capacitated Vehicle Routing Problem with Time Windows
(CVRPTW) which includes capacity and time windows constraints, respectively for the TUs and
the delivery to clients. However, this model might result in a too simplistic representation of the
routing problem [7], [8], [9]. As for the CLP, relevant contributions are proposed in [10] and [11]:
the former presents a reference typology for the cutting and packing problems, which classifies
the different problems according to the type of objective function, as well as the heterogeneity,
number, and dimensions of both the boxes and the containers, the latter examines the state of
the art on CLP and classifies the different types of constraints developed in the last years with
particular attention to the ones used in real applications. The combination of CVRPTW with
the CLP in the three-dimensional space leads to the Three-Dimensional Loading Capacitated
Vehicle Routing Problem with Time Windows (3L-CVRPTW).

In the same direction, this chapter proposes a novel matheuristic approach for the 3L-CVRPTW.
The method consists of a heuristic combined with the exact solution of three Mixed Integer Linear
Programming (MILP) problems that take into account logistic constraints. The first problem
regards the selection of the proper number and type of TUs to be assigned to clients; the second
aims at solving the CVRPTW by minimizing the travel costs and time windows violations; and
the third, given the set of clients assigned to a TU resulting from the CVRPTW problem solution,
aims at optimizing the loading plan of the TU. Compared to the above-mentioned works, it is
provided a more comprehensive approach applicable to the logistic sector that not only considers
the traditional VRP and CLP constraints, but also additional logistic loading requirements, i.e,
the selection of the proper TUs to be used for the delivery, the balancing of the cargo, the static
and dynamic stability, and the management of the LIFO (Last In- First Out) filling. Moreover,
the proposed method allows to jointly tackle the VRP and CLP problems in a short computational
time, thanks to the combination of mathematical programming and heuristics, thus overcoming
the limitations that emerged from the literature. On the one hand, this allows avoiding simplifying
assumptions for the mathematical formalization of the 3L-CVRPTW, which would lead to the
representation of only a limited set of logistic rules. On the other hand, this allows avoiding to
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address the problem only with heuristic approaches, which would disregard the mathematical
programming model of the problem requiring the definition of ad hoc solutions. The remainder
of this chapter is organised as follows. In Section 6.2 the MILP formulations of the CVRPTW
and CLP is presented, while in Section 6.3 the proposed matheuristics is describe. Section 6.4
presents the experimental tests and discusses the obtained results. Finally, Section 6.5 concludes
the Chapter.

6.2 Mathematical Formulation of VRP and CLP.
This section presents the problem formulations used in the proposed matheuristics. The former
problem, formulated as a CVRPTW, aims at finding the optimal route for each TU in terms
of total travel costs and time windows violations while fulfilling a set of temporal and capacity
constraints. The latter problem aims at finding the optimal configuration of the bins inside each
TU minimizing the empty space while fulfilling geometrical and safety constraints. As it will be
explained in the next sections, we consider the two problems separately, although the results
obtained by the first one are used as input of the second one in the matheuristic approach (e.g.
the priority Sb of each bin which is assigned according to the routing plan).

6.2.1 The Capacitated Vehicle Routing Problem with Time Windows formulation
The routing problem is formulated as a multiobjective optimization problem that aims at
minimizing both the time and economical transport costs, while satisfying logistic constraints.
Most of them are related to the feasibility of the routes, for example they ensure that each client
must be visited only one time and by one TU, that each TU must start from the initial depot and
end at the final depot or also avoid the creation of a loop inside the algorithm. Some of them
are related to the capacity of the TUs both in terms of volume and total weight, while others
define the maximum number of TUs. For the proposed formulation, the following assumptions
hold: multiple size TUs are available, a single TU can contain the cargo of multiple clients, and
the cargo of a client always fits a single TU. The limitations imposed by the last assumption are
overcome by the proposed matheuristics, as will be explained in Section 6.3. The parameters
and variables of the problem are respectively reported in Tables 6.1, 6.2 and 6.3. Note that, the
objective function (6.1) is the linear combination of three fundamental costs associated to the
logistic transport: the first term is the sum of the base costs associated to each TU assigned to
a route, which can include rental fees, maintenance, etc., and are not related with the traveled
distance; the second term is the sum of the variable costs associated to each TU, such as the
gasoline consumption, which are related with the traveled distance; the third term represents a
penalty cost assigned to the TUs in case of early arrival with respect to clients’ time window.
Note that the third term is particularly useful to avoid the waiting time of drivers for the opening
of the client’s warehouse, and thus to obtain a more efficient route.

The CVRPTW is formulated as follows:

min
k

(f1
M∑

k=1

N∑
j=1

Cktk0j + f2
M∑

k=1

N∑
i=1

N∑
j=1

VkDi,j t
k
i,j + f3

M∑
k=1

N∑
j=1

δk
j ) (6.1)

(6.2)

subject to:

N∑
i=0

tki,l −
(N+1)∑

j=1
tkl,j = 0, ∀k ∈ M, l ∈ N, i ̸= j (6.3)
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Table 6.1: List of common parameters of the CVRPTW and CLP formulations.

Name Description
M Number of TUs
N Number of clients
B Number of bins
ιb Length of bin b
χb Width of bin b
γb Height of bin b

wb,i Weight of bin b belonging to client i
Lk Length of TU k
Wk Width of TU k
Hk Height of TU k
Qk Maximum weight supported by TU k

Table 6.2: List of parameters of the CVRPTW formulation.

Name Description
f1 Weight of the base cost term of the obj. function
f2 Weight of the variable cost term of the obj. function
f3 Weight of the delivery delay term of the obj. function
Vk Variable costs of TU k
Ck Base costs of TU k
Di,j Kilometers from client i to j
Ei,j Travel time from client i to j
Fk

i Service time of TU k at client i
R Maximum number of TUs to be used
Ai Opening time of time window of client i
Zi Closing time of time window of client i
U Upper bound for arrival time at each client

M∑
k=1

N∑
i=1

tki,l = 1, ∀l ∈ N, l ̸= i (6.4)

N∑
j=1

tk0,j = 1, ∀k ∈ M (6.5)

N∑
i=1

tki,(N+1) = 1, ∀k ∈ M (6.6)

N∑
j=1

N∑
i=1

B∑
b=1

wb,j t
k
i,j ≤ Qk,∀k ∈ M (6.7)

N∑
j=1

N∑
i=1

B∑
b=1

χb,j ιb,j γb,j ti,j ≤ WkHkLk, ∀k ∈ M (6.8)
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Table 6.3: List of variables of the CVRPTW formulation.

Name Description Definition set
k Indices of TUs M={1,2,. . . ,M}

i, j, l Indices of clients N={1,2,. . . ,N}
b, b′ Indices of bins B={1,2,. . . ,B}
tki,j The k-th TU runs from client i

to client j (1) or not (0) {0,1}
tk0,j the k-th TU runs from the initial

depot to client j (1 )or not (0) {0,1}
tki,(N+1) the k-th TU runs from client i to the

final depot (1) or not (0) {0,1}
sk

j Arrival time of the k-th TU at client j R+

δk
j Advance/delay of the k-th TU arrival

at client j with respect to opening time Aj R+

δk
i ≥ Ai − sk

i , ∀k ∈ M,∀i ∈ N (6.9)
sk

i ≤ Zi − Fk
i , ∀k ∈ M,∀i, j ∈ N (6.10)

sk
i + Fk

i + Ei,j t
k
i,j − sk

j + U tki,j ≤ U, ∀k ∈ M,∀i, j ∈ N (6.11)
sk

i + Fi + Ei,j t
k
i,(N+1) − ZN+1 + U tki,j ≤ U, (6.12)

∀k ∈ M,∀i, j ∈ N

where U = maxi,j {Zi − Ai + Ei,j}.
The three terms in (6.1) are weighted by parameters f1, f2, and f3, whose sum is equal to 1

and whose value depends on the specific application. Constraints (6.3)-(6.6) are related to the
feasibility of the routes: (6.3) impose that the sum of the routes entering a client l must be equal
to the sum of the routes exiting the same client and prohibits both the creation of loops on the
same client i and in the network (i.e., the TU k can only go from i to j or from j to i); (6.4)
impose that each client must be visited only once. Constraints (6.5) and (6.6) are related to the
starting and ending clients of each route and ensure that each TU must start its route from the
initial depot (indicated by index 0) and end it at the final depot (indicated by index N+1). Then,
constraints (6.7) and (6.8) are related to the capacity of the TUs: the former ensures that the
total weight of the clients’ bins does not exceed the maximum supported weight of the TU in
which they are loaded; the latter ensures that the total volume of the bins of the clients does
not exceed the volume of the TU in which they are loaded. The last constraints (6.9)-(6.12)
are related to the time windows, which are defined as a pair of values (Ai, Zi) where Ai is the
opening time for delivery of client i and Zi is the closing time. Constraints (6.9) impose that the
penalty δk

i is greater than 0 if the TU k arrives before client’s i opening time. Constraints (6.10)
are hard constraints and impose that each TU must arrive at each related client before its closing
time, while (6.11) and (6.12) impose that the arrival time of each TU k to each client j must be
higher than or equal to the sum of the arrival time at client i, the service time at client i and the
travel time from client i to client j.
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6.2.2 The Container Loading Problem Formulation
The aim of the CLP problem is to find the optimal configuration of the bins inside each TU
according to the results obtained for problem (6.1)-(6.12) and fulfilling a set of geometric and
safety constraints. It is assumed that only TU is available and the considered bins belong to a
single client and can exceed the capacity of the TU (in terms of volume and/or weight). Thus
the optimization problem aims at computing the configuration of the bins that minimizes the
empty space in the TU. The parameters and variables used for the formulation of this problem
are reported respectively in Tables 6.4 and 6.5 (second subtable).

Table 6.4: List of parameters of the CLP formulation.

Name Description
O An arbitrary large number
Fb Fragility of bin b
Sb Priority of bin b
G Maximum area gap between consecutive bins
H Maximum height gap between adjacent bins

λ1, λ2 Load balancing along the TU transversal axes
ω1, ω2 Load balancing along the TU longitudinal axes

Table 6.5: List of variables of the CLP formulation.

Name Description Definition set
b, b′ Indices of bins B ={1,2,. . . ,B}
pb bin b is inside (1) or outside (0) TU {0,1}
xb x-axis coordinate of the left-bottom

corner of bin b R+

yb y-axis coordinate of the left-bottom
corner of bin b R+

zb z-axis coordinate of the left-bottom
corner of bin b R+

lxb The length of bin b is parallel to
the x-axis (1) or not (0) {0,1}

lyb the length of bin b is parallel to
the y-axis (1) or not (0) {0,1}

leb,b′ bin b is on the left (1) of bin b′ or not (0) {0,1}
rb,b′ bin b is on the right (1) of bin b′ or not (0) {0,1}
bb,b′ bin b is back (1) bin b′ or not (0) {0,1}
fb,b′ bin b is in front of (1) bin b′ or not (0) {0,1}
ob,b′ bin b is over (1) bin b′ or not (0) {0,1}
ub,b′ bin b is under (1) bin b′ or not (0) {0,1}

The CLP is defined as follows:

93



Mathematical Formulation of VRP and CLP.

min(L W H −
B∑

b=1
pb ιb χb γb) (6.13)

subject to:
leb,b′ + rb,b′ + fb,b′ + bb,b′ + ub,b′ + ob,b′ = pb + pb′ − 1,

∀b, b′ ∈ B, b′≤b (6.14)
xb + ιblxb + χb(1−lxb) ≤ xb′ + (1−leb,b′)O,

∀b, b′ ∈ B, b′≤b (6.15)
xb′ + ιb′ lxb′ + χb′(1−lxb′) ≤ xb + (1−rb,b′)O,

∀b, b′ ∈ B, b′≤b (6.16)

yb + χb(1−lyb) + ιblyb ≤ yb′ + (1−bb,b′)O,
∀b, b′ ∈ B, b′≤b (6.17)

yb′ + χb′(1−lyb′) + ιb′ lyb′ ≤ yb + (1−fb,b′)O,
∀b, b′ ∈ B, b′≤b (6.18)

zb + γb ≤ zb′ + (1−ob,b′)O, ∀b, b′ ∈ B, b′≤b (6.19)
zb′ + γb′ ≤ zb + (1−ub,b′)O, ∀b, b′ ∈ B, b′≤b (6.20)
xb + ιblxb + χb(1−lxb) ≤ W + (1−pb)O, ∀b ∈ B (6.21)
yb + χb(1−lyb) + ιblyb ≤ L + (1−pb)O, ∀b ∈ B (6.22)
zb + γb ≤ H + (1−pb)O, ∀b ∈ B (6.23)
lxb + lyb = 1, ∀b ∈ B (6.24)
(ob,b′ − ub,b′)Fb′ ≤ (ob,b′ − ub,b′)Fb, ∀b, b′ ∈ B, b′̸=b (6.25)
(bb,b′ − fb,b′)Sb′ ≤ (bb,b′ − fb,b′)Sb, ∀b, b′ ∈ B, b′≤b (6.26)
(ιbχb − ιb′χb′)(ob,b′ − ub,b′)G, ∀b, b′ ∈ B, b′≤b (6.27)
(γb − γb′)(fb,b′ − bb,b′) ≤ H, ∀b, b′ ∈ B, b′≤b (6.28)
− (γb − γb′)(fb,b′ − bb,b′)H, ∀b, b′ ∈ B, b′≤b (6.29)
B∑

b=1
pbγbχbιb ≤ V (6.30)

B∑
b=1

pbwb ≤ Q (6.31)

λ1W ≤
∑

b wb(xb + χb/2)∑
b pbwb

≤ λ2W, ∀b ∈ B (6.32)

ω1L ≤
∑

b wb(yb + ιb/2)∑
b pbwb

≤ ω2L, ∀b ∈ B. (6.33)

Note that the objective function (6.13) is the empty space inside the TU given the total
volume of bins assigned to the TU. Constraints (6.14) impose that between two different bins, a
bin can assume only one relative position with respect to the other one in the TU, that is: on the
left, right, front, back, under, or over. Constraints (6.15) to (6.20) ensure that the coordinates of
two bins do not overlap, while constraints (6.21) to (6.23) guarantee that the coordinates of bins
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do not exceed the dimensions of the TU and let the bin rotate 90 degrees in order to optimise the
space. Constraints (6.24) ensure the unique assignment of the orientation of each item i. On the
other hand, constraints (6.25) to (6.29) determine the positioning of the bins inside the TU, in
particular, (6.25) orders them by height according to their fragility index with an ascending order,
(6.26) group and order them according to their priority index (i.e., the priority of the delivery to
which the bin belongs so that the ones with the lowest values are the nearest to the door and so
the first to be delivered), (6.27) guarantees horizontal stability (i.e., the difference between the
basis areas of two stacked and adjacent bins must be lower than or equal to a given threshold)
while (6.28) and (6.29) ensure that the items do not move while the TU is moving, by imposing
that the height difference between consecutive and adjacent bins is lower than or equal to a given
threshold. Constraints (6.30) and (6.31) are instead related to the capacity of the TU both in
terms of total volume loaded (6.30) and maximum supported weight (6.31). In particular, it is
imposed that the sum of the volume and the weight of all the bins of the different clients assigned
to each TU, fulfill its capacity. Finally, (6.32) and (6.33) are load balancing constraints. In order
to achieve load balancing, the load is positioned inside the TU so that its center of mass lies in a
bounded area inside the basis of the TU, whose dimensions are related to the length and width of
the TU by means of the λ1 and λ2 parameters for the transversal axes and by means of the ω1
and ω2 parameters for the longitudinal axes.

6.3 The Proposed Matheuristics for the 3L-CVRPTW Problem
The proposed method consists of a heuristics combined with the exact solution of the mathematical
problems presented in Subsections 6.2.1 and 6.2.2, and of an additional problem aimed at the
proper selection of TUs for clients with large cargoes. The purpose of the matheuristics is to
obtain feasible routing and loading plans for a set of TUs that must satisfy the delivery requests
of a set of clients. Instead of solving the delivery planning as a complex optimization problem
including a large set of constraints, the proposed matheuristics exploits the advantages of exact
methods in solving separately the CVRPTW, CLP, and TU selection problems, while taking
advantage of heuristics to compute a solution for the combined logistic problem. This allows to
overcome the limitations that emerged from the literature review, that is, on the one hand, to
avoid simplifying assumptions for the mathematical formalization of the 3L-CVRPTW, which
would lead to the representation of only a limited set of logistic rules; and on the other hand,
to avoid addressing the problem with heuristic approaches only, which would disregard the
mathematical programming model of the problem ad consider ad hoc solutions.

The proposed algorithm is composed of four phases and is suitable for the 3L-CVRPTW
solution considering the following assumptions: multiple types of TUs with limited capacity are
available, the number of available TUs for each type is unlimited, a single TU can include the
cargo of multiple clients, the cargo of a client can exceed the capacity of the available TUs and in
this case, it must be split among multiple TUs, for each route a client is visited only once in the
related time window, a loading plan can be acceptable only if its fill ratio is higher than or equal
to a given threshold.

Given the set of Table6.6, the four phases of the algorithm are the following:
Pre-processing phase: This phase consists in the initialization of the setting parameters of the

matheuristcs and in the solution of a TU selection problem, aimed at both partitioning the cargo
of a client over multiple TUs (if necessary) and to fasten the solution of the CVRPTW. The
first section in Algorithm - Pre-processing phase summarizes the pre-processing phase. After the
initialization of the setteing parameters. in the algorithm, for each client i, if the corresponding
cargo exceeds the admissible weight or volume of the smallest available TU, the TU selection
MILP problem (6.34)-(6.38), detailed below, is solved. Thus the best type of TU to be used and
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Table 6.6: List of sets of the matheuristics.

Name Description
N Set of clients
B Set of bins
M Set of TUs
B̃ Set of bins’ positions inside a TU
P Set of TUs, each assigned to a route

in the pre-processing phase
C Set of clusters
F Set of TUs, each assigned to a load and route plan
f Auxiliary set of TUs, each assigned to a load and route plan

the eventual partitioning of the delivery among multiple TUs (also of different types) is computed.
The obtained solution Pi is satisfactory if the weight or volume assigned to the resulting TUs is
at least equal to 90% of the maximum admissible value. Otherwise, the solution is discarded and
the set of clients N is updated to N′ where client i is replicated and the corresponding bins Bi

are halved.
The TU selection problem computes the proper number and type of TUs to be assigned to

a client i depending on the volume and weight of the corresponding cargo. Given the common
variables and parameters of Table 6.2 and Table 6.3, the binary variables nk and pk

b which
respectively indicate if TU k is used or not and if bin b is inside or outside TU k, and the
parameters D0,i,(N+1) representing the total length of route initial depot-client i-final depot,
g1 and g2 respectively the weights of the base cost term and the variable cost of the objective
function, the problem is formulated as follows:

min(g1

M∑
k=1

Cknk + g2

M∑
k=1

VkD0,i,(N+1) n
k) (6.34)

subject to:
Bi∑

b=1
pk

b ≤ nkBi, ∀k (6.35)

M∑
k=1

pk
b = 1, ∀b (6.36)

Bi∑
b=1

wbp
k
b ≤ Qk, ∀k (6.37)

Bi∑
b=1

ιbχbγb p
k
b ≤ WkLkHk, ∀k (6.38)

Note that the objective function (6.34), to be minimized, is the sum of the base and variable
costs of the TUs to be assigned to client i. Constraints (6.35) impose that the bins assigned
to the transport units do not exceed the total number of bins of client i. Constraints (6.36)
impose that a bin is placed in only one TU, and finally, constraints (6.37)-(6.38) impose that the
total dimension and weight of the bins assigned to each TU do not exceed its capacity. This
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problem, as already mentioned, is executed only for clients whose cargo exceeds the volume or
supported weight of the smallest available TU. The problem aims at providing as output the best
combination between the splitting of bins and the most convenient TUs for serving the client.

If the cargo of the client exceeds the capacity of the smallest TU, and the problem solution
guarantees an occupation of the TU higher than 90%, the selected TU is added to the set P

and used directly in the container loading phase without considering that address in the vehicle
routing phase (to this aim the sets N and B are updated by removing the client and related bins).
Otherwise, the algorithm updates the sets N′

i and B′
i (input of the next phase) by doubling the

client in the set N′
i and changing the assignment bin-client in the set B′

i so as to let to the vehicle
routing problem to assign to the specific client two different TUs.

Algorithm
Pre-processing phase
Initialize M, N, B, g1, g2, f1, f2, f3, N, B, M, Tmax

Set P = p = ∅
Qmin = min Qk V olmin = min(LkWkHk) ∀k ∈ M

for i =1:N do
Take Bi ⊆ B

if
∑Bi

b=1 wb ≥ Qmin or
∑Bi

b=1 χbιbγb ≥ Volmin then
Given Ni, Bi, M solve problem (6.34) - (6.38) for Pi

if
∑|Bi|

b=1 wb ≥ 0.9 Qk or∑|Bi|
b=1 χbιbγb ≥ 0.9 LkWkHk∀k ∈ {1, . . . , |Pi|} then

P = P ∪ Pi, N′ = N \ Ni, B = B \ Bi

else
N′

i = Ni, N′ = N ∪ N′
i B = B \ Bi

Set Bi = {bz, z = 1, . . . , |Bi|/2}
B′

i = {bz, z = (|Bi| + 1)/2, . . . , |Bi|}
B = B ∪ Bi ∪ B′

i

end if
end if

end for

Vehicle routing phase: the main objective of this phase is the definition of the preliminary
routing plan for all TUs starting with the sets of N′ and B updated in the pre-processing phase.
The second section in Algorithm - Vehicle routing phase summarizes this phase. It begins with
the definition of the distance and travel times matrices computed considering all the clients of the
set N′. Then clients are grouped by geographical area using a hierarchical clustering, based on the
work by [12]. This operation has the objective of reducing the computational effort of the VRP
problem without compromising the optimality of the solution. The number of clusters depends
on the number of clients contained in N′, it is iteratively calculated modifying the parameter of
the clustering in order to have at least a certain number of addresses for each cluster. Then, for
each of the groups of clients, Nc and related bins Bc obtained with the clustering, the problem
(6.3)-(6.12) is solved to obtain the desired routes. At the end of the execution of this phase, for
each of TU obtained, the algorithm verifies if its weight fill ratio (i.e., the percentage occupation
of the TU over the maximum admissible weight) is at least equal to 50%, or if the volume fill ratio
(i.e., the percentage occupation of the TU over the maximum admissible volume) is at least equal
to 50%. All the TUs that satisfy this requirement are used next in the container loading phase,
while the ones that do not satisfy this requirement are discarded, their clients (and consequently
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their bins) are grouped together and used for the last execution of the problem (6.3)-(6.12). The
final outcome of the vehicle routing phase is the set Pp containing all the TUs assigned to a route
(and consequently the list of addresses and bins).

Algorithm
Vehicle routing phase
Compute Ei,j ,Di,j ∀ i, j ∈ {1, . . . , |N′|}, i ̸= j
Group a ∈ N′ with the hierarchical clustering
Given the obtained C set of |C| clusters
for c = 1 : |C| do

Nc ⊆ N′ Bc ⊆ B P|C| = ∅
Given Nc,Bc,M solve problem (6.3)-(6.12) for Pc

P|C| = P|C| ∪ Pc

end for
P′

|C| = P|C| ∪ P, n= 0, Pn = ∅
for k = 1 : P′

|C| do
if
∑|Bk|

b=1 wb ≤ 0.5 Qk or∑|Bk|
b=1 χbιbγb ≤ 0.5 LkWkHk then

Pn = Pn ∪ Pk,
end if

end for
P′′

|C| = P′
|C| \ Pn, Nn ⊆ N′ Bn ⊆ B

Given Nn,Bn,M solve problem (6.3)-(6.12) for Pn

Pp = P′′
|C| ∪ Pn

Container loading phase: this phase aims at finding the optimal configuration of the bins inside
each TU, once the set Pp containing all TU-clients assignment has been collected from the previous
phases. The obtained TUs are given one by one as input to the CLP solver based on problem
(6.13)-(6.33). This phase is executed in the same loop of the post-processing phase (described
below) and detailed in the third section of Algorithm -Container loading and post-processing
phases, with the parameters explained in Table 6.2.

Post-processing phase: this phase is used to manage the different situations in which the
produced solutions of the container loading phase are not satisfactory (e.g., empty TUs’ grouped
in the container loading phase) or also when the CLP solver is not able to find a solution due
to excessive computational time (Tmax) or also positioning constraints. When these exceptions
happen, the CLP solver is executed only for those TUs reducing iteratively the number of bins
given as input (and consequently the set Bk), starting from the one with the highest priority
(so the nearest to the TU’s door) until a solution is found. In this case two options can occur:
the first client to be served has a number of bins such that even with the removed ones there
are some bins of that client still in the TU, while in the second case all the bins of the client
are removed and so the related stop is deleted from the route assigned to that TU. Then for
both the options, the removed bins, their addresses and the set with the empty TUs grouped
in the container loading phase are recombined for the last time so as to find a new route firstly
executing the VRP’s solver and then the loading plan for the CLP’s one. The final output of
this phase, which coincides with the output of the whole algorithm, is the set F of TUs, each
assigned to a load and route plan.
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Algorithm
Container loading and post-processing phases
for k = 1 : |Pp| do

Nk ⊆ N′ Bk ⊆ B

Given Nk,Bk,Pk solve problem (6.13)-(6.33)
for fk,B̃ ⊆ Bk

if B̃ ̸= Bk or t > Tmax then
X=0.9
while Solution is not found do

W=|Bk| Y=X ∗ W
Set Bk′ = {by, y = 1, . . . , Y }

Bk′′ = {bz, y = (Y + 1), . . . , W }
Given Nk,Bk′ ,Pk solve problem (6.13)-(6.33)

for fp,
X=X-0.1

end while
end if
Fk = Fk ∪ fk

end for
Extract Nk′ ⊂ Nk which contains all the addresses

associated to Bk′′

Extract F′
k such that

∑Bm

b=1 wb ≥ 0.5 Qk or∑Bm

b=1 χbιbγb ≥ 0.5LkWkHk∀ k ∈ Pp

FF = Fk \ F′
k

Given Ap′ ,Bp′′ ,T solve problem (6.1)-(6.12) for Pf

Given Ap′ ,Bp′ ,Pf solve problem (6.13)-(6.33) for ff

F = FF ∪ ff

6.4 Experimental Results
In this section, first, the proposed method is tested on an extensively used literature’s benchmark.
Then, it is applied on a real database provided by the Italian company E80 Group. The tests
were conducted in Matlab2020a, on a PC equipped with an 2.20 GHz Intel Corei7-8750H CPU
and 32 GB RAM.

6.4.1 Tests on a Literature Benchmark
The proposed method is tested on one of the most complete literature dataset for the routing
and container loading problem presented in [13]. This dataset is composed by 27 Euclidean
Capacitated Vehicle Routing Problem instances, containing a number N of clients that ranges
from 15 to 100 with only one depot, and a number B of bins that varies from a minimum of 32 to
a maximum of 198, each bin is assigned a fragility index. For each instance, only one type of TU
is considered, with dimensions W = 2500 cm, H = 3000 cm, and L = 6000 cm and a maximum
number of available TUs is set. It has to be highlighted that the considered dataset does not
include some of the parameters necessary for the setting of the proposed matheuristics, i.e., time
windows, cargo balancing, load bearing, stability and bins’ positioning constraints. Consequently,
the related constraints and logic rules present in the proposed method were disabled. Table
6.7 shows the results achieved with the two methods, i.e., the proposed matheuristics and the
method in [13]. In columns II to IV it is reported the identification code of the instance, the
number of clients N and the number of bins B. In columns V-XI the achieved results for each
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instance are reported, i.e., the number m1 and m2 of filled TUs obtained respectively with the
matheuristics and by the authors of [13], the total length of the routes assigned to the TUs by the
proposed approach (Z1) and by that used [13] (Z2), the percentage of improvement obtained with
the proposed model (∆) in terms of travel distance. The results demonstrate that the proposed
method uses a lower number of TUs than the ones computed in [13] in 88.88% of instances, and
moreover achieves a better value of the objective function for the 74% of instances, with an
average improvement of 7.0%.

Table 6.7: Comparison of the matheuristic approach with the literature benchmark.

Instance N B m1 m2 Z1 [km] Z2 [km] ∆ [%]
E016-03m 15 32 5 5 320.0 316.3 -1.2
E016-05m 15 26 5 5 320.0 350.6 8.7
E021-04m 20 37 5 3 316.6 447.7 29.3
E021-06m 20 36 4 6 346.6 448.5 22.7
E022-04g 21 45 3 7 421.0 464.2 9.3
E022-06m 21 40 3 6 404.9 504.5 19.7
E023-03g 22 46 3 6 673.5 831.7 19.0
E023-05s 22 43 4 8 842.7 871.8 3.3
E026-08m 25 50 4 8 570.8 666.1 14.3
E030-03g 29 62 5 10 898.9 911.2 1.4
E030-04s 29 58 5 9 803.4 819.4 2.0
E031-09h 30 63 5 9 474.3 615.6 23.0
E033-03n 32 61 6 9 3,022.5 2,928.0 -3.2
E033-04g 32 72 6 11 1,471.2 1,559.6 5.7
E033-05s 32 68 8 10 1,790.3 1,452.3 -23.3
E036-11h 35 63 5 11 887.7 707.8 -25.4
E041-14h 40 79 6 14 647.5 920.9 29.7
E045-04f 44 94 8 14 1,108.3 1,400.5 20.9
E051-05e 50 99 9 13 893.3 871.3 -2.5
E072-04f 71 147 17 20 759.2 732.1 -3.7
E076-07s 75 155 11 18 1,122.5 1.275.2 12.0
E076-08s 75 146 13 19 1,243.4 1,278.0 2.7
E076-10e 75 150 14 18 1,187.8 1,258.1 5.6
E076-14s 75 143 13 18 1,158.5 1.307.1 11.3
E101-08e 100 193 19 24 1,698.8 1,570.7 -8.2
E101-10c 100 199 19 28 1,746.3 1,847.9 5.5
E101-14s 100 198 15 25 1,535.0 1,747.5 12.2

6.4.2 Tests on a Real Case Study
Here the results obtained with a real dataset provided by the Italian logistic company Elettic80
are presented. In particular, the dataset includes 52 clients distributed all over Italy, 299 bins
with different heights and weights but the same base area (i.e., the EU standard pallet with
dimension 1200x800 mm), and 3 different types of TUs ideally infinite. The dataset has been
then mixed and combined producing different instances each one characterized by a different
number of clients, bins, and geographycal distibution of the clients. The algorithm tested is the
one proposed in Section 6.3, and in order to have computational times that can be easily adapted
to the industrial needs for the loops involved in the Preprocessing Phase, the Vehicle Routing
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Phase and the Container Loading Phase are executed in parallel using the Parallellization Toolbox
provided by Matlab that allows to run more than one instance of the solver simultaneously. This
is possible because each loop execute separately the relative mathematical model for different
elements of the dataset, and so each iteration is completely independent to the other. Table 6.8
reports the results obtained with the proposed matheuristics on the real dataset. In particular,
column I reports the identification code of the instance, columns II and III respectively report
the number N of clients and the number B of bins. Column IV reports the number of filled TUs,
and the computational time Tex. The weight fill ratio of the TUs achieved in all the tests is on
average 78.71 % of the supported weight, while the volumetric fill ratio achieved in all the tests is
on average 47.65 % of the admissible volume. This depends on the fact that the weight of the
bins in the dataset is higher than their volume, so in many cases the total weight transported
reaches the 80%-90% of the total supported weight with just few bins. For what concerns the
total travelled distance, it ranges from a maximum of 8.012,263 meters to a minimum of 1.012,263
meters. Finally, as for Tex, it ranges from 1.10 to 3.90, which are appreciable values, considered
the dimensions of the instances.

Table 6.8: Real case study results.

Instance N B M Tex[s]
A1 52 299 18 3,896
A2 25 131 5 2,324
A3 30 210 7 1,275
A4 43 235 10 2,029
A5 15 62 12 1,947
A6 17 110 5 2,337
A7 15 55 5 1,096

6.5 Conclusion
In this work proposes an innovative matheuristics to efficiently solve the integrated vehicle
routing and container loading problem for the logistic sector. In particular, it addresses the
three dimensional loading capacitated vehicle routing problem with time windows. In the related
literature just a few contributions address this combined problem with logistic constraints and
consider only a restricted set of logistic constraints. On the contrary, The proposed method
aims at supporting the external logistic sector in route and load planning operations including a
large set of realistic logistic constraints. The tests demonstrate the effectiveness of the proposed
solution both in comparison with a literature benchmark and with a real dataset. Future works
will consider the possibility to manage the delivery in real time in order to provide the driver
with updated routes in case of unexpected events.
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Chapter 7

A Matheuristic Approach for Delivery
Planning and Dynamic Vehicle Routing in
Logistics 4.0

VII
Abstract

In distribution logistics, the planning of vehicles’ routes and vehicles’ loads is traditionally
managed separately, despite this activity being correlated. This often leads to various
re-designs to make the routes and load plans compatible with each other and applicable in
practice. Moreover, the planned routes, which are static by definition, cannot always cope
with unexpected events. Traffic congestion, vehicle failures, adverse meteorological conditions,
and further undesired events can make the planned routes inapplicable and require vehicles’
re-routing. This results in lower service levels, undesired delays, and higher costs for logistics
companies. With the aim of overcoming the above limitations, this work proposes a novel
algorithm that jointly solves the problem of delivery planning and dynamic vehicle routing
to automate the delivery process in a logistics 4.0 perspective. The presented algorithm
includes two different phases: the static phase, which is executed offline and in advance with
respect to the delivery day, and the dynamic phase, which is executed in real-time to cope
with unexpected events during the delivery. For the first phase, a matheuristics approach is
defined to efficiently solve the combined vehicle routing and loading problems. Differently, for
the second phase, a genetic algorithm is proposed to re-route vehicles in real-time, considering
both the redefinition in real-time of the nominal trip and/or of the sequence of the customers
to be visited. The algorithm is tested both on a literature benchmark and on a real dataset
provided by an Italian logistics company. The obtained results show that, on the one hand,
the proposed algorithm can automatically provide feasible solutions that minimise travel
costs, total travelled distance, and empty space on the vehicles; on the other hand, it can
ensure in real-time effective re-routing solutions in case of unexpected events occurring during
the delivery.
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7.1 Introduction
Distribution logistics is one of the four sub-sectors of logistics, i.e., purchase, production,
distribution, and after-sales logistics that generates the highest percentage of logistics operations
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costs [1]. On the one hand, this mostly depends on the absence of a holistic standardized and
automated approach to the resolution of the related decision problems, i.e., (1) the choice of the
transportation mode, (2) the packing of goods, (3) the planning of vehicle loads, and (4) the
definition of optimal vehicle routes [2]. On the other hand, this derives from the inability of the
offline generated plans to limit undesirable costs resulting from unforeseen events that can occur
during the deliveries [1]. This chapter focuses on two of the four crucial decision problems of
distribution logistics, i.e., (3) and (4), for which the related literature abounds with contributions,
but mainly for their offline planning only. These problems are typically solved separately as
Container Loading Problem (CLP) and Vehicle Routing Problem (VRP), and respectively aim at
defining loading plans for the Transport Units (TUs) devoted to the deliveries and at planning
the corresponding feasible routes by optimising a proper performance indicator. Only recently,
the scientific literature has focused on the combination of the loading and routing problems in
distribution planning to reduce the related costs [2]. Among the various categories of VRP with
loading constraints, the most interesting for practical purposes is the so-called three-dimensional
Loading VRP (3L-VRP). In particular, the most comprehensive definition in this regard is the
three-dimensional Loading Capacitated VRP with Time Windows (3L-CVRPTW) presented in
[3] and subsequently extended in [4], which aims at finding feasible delivery routes, while taking
into account capacity limitations of transportation means and time windows for the deliveries.

Although the existing contributions are effective in computing efficient distribution plans,
such resulting plans are barely able to address unexpected events during the delivery, such as
traffic congestion, weather conditions, etc. Consequently, some approaches have been proposed in
the related literature to overcome such limitations. In particular, the majority of contributions
regard the Dynamic Vehicle Routing Problem with Time Windows (DVRPTW) [5]. In such a
problem the delivery plan is changed in real-time based on the variable arrival of clients’ orders.
Nevertheless, as highlighted in [6], only a few works have addressed the more general case of
dynamic vehicle routing, in which deliveries are updated in real-time in response to external
disturbances on the environment state. The reason for this lack of contributions lies in a low
level of technology advancement that limits logistics companies in monitoring and re-routing in
real-time their vehicles fleet [7].

With the aim of overcoming the above limitations and supporting the automation of the
distribution process in the Logistics 4.0 perspective ([8], [9]), in this chapter, it is proposed a
matheuristic approach for the integrated management of delivery planning and dynamic vehicle
routing. The proposed approach includes two phases: the static phase, which is devoted to
the offline resolution of the 3L-CVRPTW, i.e., determining the routing and loading plans; the
dynamic phase, which is devoted to the real-time resolution of the Vehicle Routing with Time
Windows (VRPTW) in case of unexpected events, i.e., updating dynamically the routing plans.
It is highlighted that this work is based on the preliminary results presented by some of the
authors in [10], where the baseline for the static phase is presented. The algorithm is tested
both over a literature benchmark and a real dataset provided by an Italian logistics company.
The obtained results show that, on the one hand, the proposed approach can provide feasible
solutions that minimise travel costs, total travelled distance, and empty space on the vehicles;
on the other hand, it can ensure in real-time effective re-routing solutions in case of unexpected
events occurring during the delivery.

Despite the rich state of the art on CLP, VPR, and DVRP, very few research studies pay
attention to the definition of a holistic standardized and automated approach to their combined
solution. In fact, for what concerns the combination of the CLP with the VRP, only a few
contributions are presented in the literature, i.e., [3],[11] and [12], and their formulations do not
take into account realistic logistic requirements, such as the balancing of the cargo and its vertical
and horizontal stability. In some other industrial approaches like [13]-[14], the most of the times
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considers most of the features contained in this work but lacks of some others (e.g., such as in’
stacking and stability, reachability, allocation-connectivity and allocation-separation), and do not
consider some innovative features such as the selection of the transport unit according to the
cost and the managing of the dynamic occurrence during the shipments (i.e., traffic congestions,
variation in the travel time and in the service time). In addion, it has to be noticed that the novelty
of the proposed method goes beyond the innovative formulation of integrating the 3L-VRPTW
and DVRP. It also includes the implementation of a new matheuristic approach that enables
efficient and automated management of the entire delivery process. This management includes
analyzing the shipment list, determining the most suitable bin configuration within transport
units (TUs), planning the corresponding routes, and handling unforeseen events during deliveries.
In fact, the growing attention from the scientific community to matheuristics (as seen in the
paper by [15]) demonstrates the effectiveness of this approach. Furthermore, as for the VRP
planning, time-dependent travel times have received some attention in the literature [16] [17] [18]
[19] considering a static approach: travel times are typically considered stochastic, only computed
once, and generally not subject to major disturbances (which could instead occur, for example in
case of accidents). Regarding the dynamic VRP, the majority of literature contributions consider
customer requests to be the dynamic element of the problem [20] [21] [22] [23]. In contrast with
the state of the art, this chapter proposes a novel algorithm for the integrated solution of delivery
planning combining offline VRP and CLP planning and DVRP, to improve the efficiency of
external logistics in a Logistics 4.0 perspective. In particular, the main contributions of this work
are:

• the definition of a DVRPTW and of an event-driven heuristics that takes advantage of
a genetic algorithm for the fast solution of the problem in real time. The event-driven
heuristics is in charge of the re-routing and is triggered by disturbance events that might
occur during the delivery, .e., undesired variations in travel time, service time, route
distance, and arrival time of TUs. When the re-routing is triggered, the affected routes are
re-optimized considering the re-ordering of clients in the planned routes, except for the first
and final client, and the skip-stop of some clients in the route if the constraints on time
windows are not fulfilled;

• the definition of a two-phase matheuristics for the joint management of the delivery planning
and the dynamic vehicle routing based on the formulation of the 3L-CVRPTW and the
DVRPTW. The first phase, namely the static phase, addresses the planning of the deliveries
in terms of routes, number of TUs, and their loading configurations, taking into account
logistic constraints that are barely considered in the literature (i.e., vertical and horizontal
stability, load balancing, and LIFO ordering constraints). The second phase, namely the
dynamic phase, addresses the dynamic vehicle routing in case of unexpected disturbances
during the deliveries. The proposed method allows, in a short computational time, the
proper and automatic management of the delivery process from the analysis of the shipment
list to the definition of the most suitable configuration of bins in the TUs and the related
routes as well as the management of unexpected events during the deliveries;

• the implementation of extensive computational tests to evaluate the performance of the
proposed algorithm using both realistic data-sets drawn from the literature and real data-sets
from an Italian logistic company. In particular, it is shown the effectiveness of the proposed
methodology in managing the delivery planning and tackling unexpected events affecting
the TUs’ travels.

The remainder of the chapter is organised as follows. Section 7.2 describes in detail the
proposed algorithm for the combined solution of delivery planning and dynamic vehicle routing.
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Section 7.1 details the formulation of the DVRPTW, while Section 7.4 presents the heuristics-
based solution for the DVRPTW. Section 7.5 presents and discusses the results obtained with
the proposed algorithm. Finally, Section 7.6 concludes the chapter.

7.2 The Delivery Planning and Dynamic Vehicle Routing Matheuristics

Figure 7.1: High-level flow chart of the proposed algorithm.

Pre-processing

3L-CVRPTW

Post-processing

Static routing and 

loading plans

Event processing

DVRPTW

External data source

Re-routing plans

Events

START

END

End of the 

workday?

Static phase

Dynamic phase

YES

NO

The proposed two-phase matheuristics is devoted to two macro functions: 1) the offline
computation of routing and loading plans; 2) the re-routing of the TUs in case of unexpected
events during the delivery execution. Consequently, the algorithm can be executed each time a
novel set of deliveries has to be managed and is composed of the Static phase and the Dynamic
phase, which are executed sequentially. The high-level flowchart of the algorithm is reported in
Fig. 7.1 where the two sequential phases are highlighted by dashed squares. It is highlighted that
the two different phases are strictly correlated. In fact, the output of the static phase is used
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as the initial solution for the dynamic phase, which is in charge of TUs’ re-routing in case of
unexpected events. Details on each phase are provided in the following subsections.

7.2.1 Static Phase
This phase regards offline delivery planning. The algorithm receives as input the list of deliveries,
the related goods, and the available TUs, as well as its setting parameters, and provides as output
feasible static routing and loading plans (see Fig. 7.1). It is highlighted that, since this phase is
performed several days in advance with respect to the actual deliveries, the computational time
is not a primary concern. The method is composed by three main sub-phases, i.e., pre-processing,
3L-CVRPTW, and post-processing, and combines the exact solution of three MILP problems,
used across the whole algorithm that take into account basic logistic constraints, and heuristic
methods that allow to include additional more complex logistic constraints while limiting the
computational effort. It is highlighted that the algorithm was presented in Chapter 6 and is
composed of three sub-phases, i.e., pre-processing, 3L-CVRPTW, and post-processing. thus,
for a matter of brevity, here it is reported only the objective function of each problem and a
high-level description for the set of related constraints, while the flowcharts of each sub-phase of
the algorithm are reported in Fig.s 7.2, 7.3, 7.4.

Table 7.1: List of sets of the static phase.

Name Description
Input Sets

A Set of clients
B Set of bins
T Set of TUs

Auxiliary Sets
A′ Auxiliary set of clients
Ak Auxiliary set of clients of k-th TU
B′ Auxiliary set of bins
B′

i Auxiliary set of bins of i-th client
Bk Auxiliary set of bins of k-th TU

P′,P′′,P′′′ Auxiliary sets of route plans
F′′ Auxiliary set of unsuccessful load plans. Each element is a

triplet including the ordered set of client/s assigned to the TU,
the TU, and the related bins

F′′′ Auxiliary set of load plans. Each element is a
triplet including the ordered set of client/s assigned to the TU,
the TU, and the configuration of the related bins

C Set of clusters
Output Sets

P Output set of the pre-processing sub-Phase. Each element is a
triplet including a client, the assigned TUs, and related bins

F′ Output set of the algorithm. Each element is a
triplet including the ordered set of client/s assigned to the TU,
the TU, and the configuration of the related bins

Pre-processing sub-phase: this sub-phase performs a first check on the data to prevent the
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occurrence of infeasible and incomplete solutions and simplify the resolution of the subsequent
3L-CVRPTW. The corresponding flow-chart reported in Fig. 7.2 shows that first an empty set P

is defined, whose elements p are ordered triplets (i,Ti,Bi) of client i ∈ A, the related TUs Ti ∈ T,
and the corresponding bins Bi ∈ B, and the auxiliary sets to be used in this sub-phase A′ = A,
B′ = B, T′ = T. Then, for each i-th client in A′ only if the corresponding cargo exceeds the
admissible weight or volume of the smallest TU among the M available ones, the TU selection
problem is solved, otherwise, the subsequent 3L-CVRPTW sub-phase is executed. Basically,
when clients have a small cargo, it is more appropriate to combine it with other clients’ cargo,
while when the cargo is larger than the smaller TU, then it is appropriate to select the most
convenient TU/s to be used. When the TU selection problem must be solved, it requires the sets
B′

i, including the bins of the i-th client, and T′, including the available TUs. The corresponding
obtained solution p is then further evaluated. Only if the weight or volume assigned to each k-th
TU of p, i.e., RQk and RVk, is at least equal to the desired reference percentage R̄Qk and R̄Vk of
its maximum admissible value, the solution is considered admissible and included in the set P,
the client i is removed from the sets A,A′, the corresponding bins Bi, B′

i are removed from
the sets B,B′, and the assigned TUs Ti, T′

i are removed from the sets T, T′. Otherwise, the
solution is discarded and in the sets of clients A and A′ the client i is substituted with i′ and i′′.
Similarly, in the sets of bins B and B′, the set of bins of client i is substituted with B′

i′ and B′
i′′ .

Note that i′ and i′′ are replicates of client i, while Bi′ and Bi′′ include respectively half bins of
Bi. The objective function of the TU selection problem is formulated as follows and the variables
and parameters are shown in Table 7.2:

min(g1

M∑
k=1

Cknk + g2

M∑
k=1

Vkd0,i,(N+1) n
k) (7.1)

The aim is to minimize the weighted sum of the base and variable costs of the TUs to be assigned
to client i (respectively with the weights g1 and g2 whose sum is 1) while fulfilling a set of specific
constraints (see [9]): a bin must be placed in only one TU; the bins assigned to a TU must not
exceed the total number of bins of client i; the total volume and weight of the bins assigned to
each TU must not exceed its capacity.

Thus, the outputs of this sub-phase are the updated sets A,B, and the set P, which is
composed of the triplets p including the considered client, the best type of TUs to be used, and
the corresponding bins. It is highlighted that for each element of P, each TU is assigned only to
a single client, thus the corresponding route is uniquely defined.
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Figure 7.2: Flowchart of the pre-processing sub-phase.
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3L-CVRPTW sub-phase: in this sub-phase the 3L-CVRPTW is solved by combining the
solution of CVRPTW and CLP, the related flowchart is reported in Fig. 7.3. The first part
of this sub-phase is the definition of a preliminary routing plan considering the sets A and B

redetermined in the pre-processing sub-phase. The distance and travel times matrices, i.e., D,
E, are computed for the clients included in A and then they are used to group geographically
the clients using the hierarchical clustering (for details see [24]). The result of this operation
is a variable number of clusters that changes according to the number of clients included in A

with a variable number of clients for each cluster (whose range is set with a setting parameter).
This operation allows for reducing the computational effort of the algorithm. As a matter of fact,
after the clustering, the next step of this sub-phase is the execution for each cluster of clients
Ac and related bins Bc, of the CVRPTW problem to obtain the desired routes. The outcome is
a set P′ whose elements p′ are triplets (Ak, k,Bk), including Ak ∈ A the ordered set of clients
associated with the k-th TU, k the index of the TU, and Bk ∈ B the bins associated with the
k-th TU. The complete MILP is described in [9], its objective function (7.2), reported below, is
composed of three different terms representing the base costs, the variable costs, and the time
window delay, weighted respectively with the weights h1, h2, and h3 (whose sum is one), given in
input by the company in order to modulate the importance of each term according to their needs.
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Table 7.2: Parameters and variables of the static phase.

Name Description
Input Parameters

M Number of TUs
N Number of clients
g1 Weight of the base cost term

of the pre-processing
g2 Weight of the variable cost term

of the pre-processing
h1 Weight of the base cost term of the CVRPTW
h2 Weight of the variable cost term of the CVRPTW
h3 Weight of the delivery delay term of the CVRPTW
Ck Base cost of TU k
Vk Variable cost of TU k

d0,i,(N+1) Total length of route initial depot-client i-final depot
E Travel time matrix
D Distance matrix

di,j Kilometers from client i to j
ιb Length of bin b
χb Width of bin b
γb Height of bin b

wb,i Weight of bin b
Lk Length of TU k
Wk Width of TU k
Hk Height of TU k
Qk Maximum weight supported by TU k

RQk (R̄Qk, R̄’Qk) Weight fill ratio (Reference) of the TU k (i.e.,
percentage of weight transported by the TU k)

RVk (R̄Vk, R̄’Vk) Volume fill ratio (Reference) of the TU k (i.e.,
percentage of volume occupied in the TU k)

X,Y Percentage of bins considered in the
post-processing phase (Y=1-X)

Output Variables
k Index of TUs
i Index of clients
b Index of bins
nk The TU k is used (1) or not (0)
tki,j The k-th TU runs from client i to client j (1)

or not (0)
tk0,j The k-th TU runs from the initial depot to client

j (1) or not (0)
δk

j Advance/delay of the k-th TU arrival
at client j with respect to opening time Aj

The constraints regard the route feasibility, TUs’ capacity, and time windows’ violations.

min
k

(h1

M∑
k=1

N∑
j=1

Cktk0,j + h2

M∑
k=1

N∑
i=1

N∑
j=1

Vkdi,j t
k
i,j + h3

M∑
k=1

N∑
j=1

δk
j ) (7.2)
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Thereafter, for each k-th TU assigned to a route and included in P′, the algorithm verifies if the
occupation of the TU over the maximum admissible weight (i.e. weight fill ratio RQk) and the
maximum admissible volume (i.e. volume fill ratio RVk) is in both cases higher than or equal
to relative reference percentage values R̄’Vk R̄’Qk. Note that for such evaluation, the algorithm
includes an auxiliary set P′′, which is equal to P′. All the TUs that do not respect these values,
their clients Ak, and their bins Bk) are grouped together in the sets A′,B′,T′ respectively. The
CVRPTW is solved again leading to the solution P′′′, to be added to the set P′. The outcome of
this last check is the complete delivery plan, i.e., the set P′. In the second part of this sub-phase,
for each element in P (obtained with the pre-processing sub-phase) and in P′, i.e., a TU with
the assigned client/s and related bins, the algorithm aims at finding the optimal configuration of
the corresponding bins. For this purpose, the CLP detailed in Chapter 6, is solved for each k-th
TU and the related Bk bins, using the variables and parameters of Table 7.2.

min(Lk Wk Hk −
|Bk|∑
b=1

ιb χb γb) (7.3)

As shown by the objective function (7.3), the goal of the CLP problem is to minimize the
unoccupied space inside each TU (calculated subtracting to the total volume of the k-th TU,
the volume of the bins placed inside it), while finding the optimal configuration of the bins and
fulfilling a wide set of constraints (see Chapter 6) related to the CLP feasibility (i.e., between two
different bins, a bin can assume only one relative position with respect to the other one in the TU;
the coordinates of two bins must not overlap and must not exceed the dimensions of the TU and
the bin can rotate 90 degrees), positioning constraints that order the bins by height according
to their fragility index and their priority index with an ascending order (i.e., the priority of the
delivery to which the bin belongs, so that the ones with the highest values are the nearest to the
door and so the first to be delivered), horizontal and vertical stability constraints, TUs’ capacity
constraints (both in terms of total volume loaded and maximum supported weight), and load
balancing constraints, which ensure that the load is positioned inside the TU so that its center of
mass lies in a bounded area inside the basis of the TU.

Finally the output of the 3L-CVRPTW sub-phase are the sets F′ and F′′, whose elements
are respectively f ′ = (Ak, k, B̃k) including the ordered set of client/s assigned to the k-th TU
and the configuration of the related bins B̃k, and f ′′ = (Ak, k,Bk) including the ordered set
of client/s assigned to the k-th TU and the related bins without load plan. In particular, F′

includes the satisfactory solutions in terms of load plans, while F′′ includes the unsatisfactory
ones. In particular, the elements included in F′′ are triplets for which the assignment of the cargo
to the TUs results from the solution of the CVRPTW, but for which the CLP does not succeed
in defining a proper loading plan. Thus such elements must be rearranged and the cargo assigned
to each TU with the CVRPTW must be revised to accomplish the CLP constraints.
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Figure 7.3: Flowchart of the 3LCVRPTW sub-phase.
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Post-processing sub-phase: this sub-phase allows managing the unsatisfactory load plans
obtained with the 3L-CVRPTW sub-phase. To this aim, the algorithm of this sub-phase, reported
in Fig. 7.4, executes the CLP problem for each unsatisfactory solution included in F′′, and thus
for each TU, reducing iteratively the set of bins associated with the TU until a solution is found.
Consequently, given an element f ′′ ∈ F′′, first its bins are reduced by the X% (value set initially
by the company) and the CLP is solved. Then, if a solution is found a new element is included
in the set F′ including the set of clients of the considered TU, the TU index, and the assigned
bins with the related configuration. Conversely, the cargo is iteratively reduced by X%, until a
solution to the CLP is found. These steps are then executed for each element of F′′. Finally, the
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remaining clients and corresponding bins left out at each iteration are grouped and the CVRPTW
and CLP are solved to obtain their load and route plans. The final output of the algorithm is
then the set F′ whose elements are the triplets including the ordered set of clients to be visited
by a TU, the index of the TU, and the set of bins, with the related configurations, to be loaded
in the TU.

Figure 7.4: Flowchart of the Post-processing sub-phase.
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7.2.2 Dynamic Phase
This phase is performed online when the delivery plans are executed and the related TUs are
dispatched. In this phase, it is assumed that the load plans have been already implemented
and thus it is not possible to change the clients-to-vehicle assignments, as well as the number
of vehicles. Conversely, the control actions that are allowed are: 1) re-ordering of clients in the
planned routes, except for the first and final client; 2) skip-stop of some clients in the route if the
constraints on time windows are not fulfilled. This phase consists of two main sub-phases that
are iteratively executed during the working day. When the dynamic phase is started, first, the
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Pseudocode - Dynamic phase
Initialization

Initialize M, N, F′, h1, h2, h3, Vk, Ck, E, F, D, ΣD, ΣE, ΣF

Event processing sub-phase
Given t and tmax (respectively current and maximum computation time)
Given Dt, Et and Ft, matrices containing the new parameters
Given LA, set of detected new vehicle arrivals
∆D = Dt− D
∆E = Et− E
∆F = Ft− F
D = Dt

E = Et

F = Ft

Given ΣD, ΣE and ΣF (sensitivity thresholds for distances, travel times and service times, respectively)
if (∃(i, j) ∈ N2, ∆D ≥ ΣD or ∆E ≥ ΣE or ∆F ≥ ΣF) or LA ̸= ∅ then

Start the real-time VRPTW sub-phase
end if

DVRPTW sub-phase
while tex ≤ tmax do

Given M(d), N(d), F′(d), D(d), E(d), F(d)

Solve the problem (7.4) - (6.12)
end while
Compute and output new routes F̃′(d) using matheuristics
Restart the event processing sub-phase

event processing sub-phase is executed that receives information on the disturbances occurring
during the deliveries. This procedure evaluates the occurring events and the related effects on
the deliveries, i.e., undesired variations in travel time, service time, route distance, and arrival
time of TUs. Then, if necessary, the real-time VRPTW sub-phase is executed and DVRPTW
problems are defined depending on the type of event and affected routes. The real-time solution
of the DVRPTW problems is computed according to the formulation described in Section 7.3.
Differently from the static phase, the dynamic one is executed in real-time, thus the computational
time is critical and must be minimized. It is highlighted that the proposed method considers an
event-driven approach, i.e., the event processing sub-phase is activated only when a disturbance
occurs. The event-driven approach is particularly effective in this context for two main reasons.
First, with periodic updates, there can be a long delay between the happening of an event and
the corresponding system’s reaction, which is detrimental to the solutions’ quality, as shown in
[25]. Second, the available technology allows for quick reactions to changes in the environment,
with notably GPS tracking and real-time traffic monitoring APIs [26]. Therefore, an event-driven
approach is realistically implementable.

The disturbances that trigger the real-time re-routing of the TUs are as follows:

• changes in the travel times matrix E. These variations represent changes in expected travel
times due to unforeseen perturbations, such as road traffic. Indeed, unexpected events can
cause the delivery to take significantly longer than expected;

• changes in the distances matrix D. The distance matrix contains the distance values for the
shortest path between two given addresses. If this shortest path were to become unavailable
(e.g., if it is blocked due to an accident or a local event), then it would be replaced by
another path, with a different distance value in the matrix;

• changes in vehicle arrivals at any client. While it is not a disturbance per se, the arrival of
one of the TUs at any client is considered a significant event. Indeed, it is considered the
stopping of a TU for a delivery to be a propitious moment for triggering a re-routing.

Event processing sub-phase: the pseudocode of this subphase is shown in the first part of the
following Pseudocode - Dynamic phase. The life cycle of an event is as follows: at a given instant
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t, the distances matrix Dt, the travel times matrix Et, the service times matrix Ft and the list of
new vehicle arrivals LA are collected. This update is considered to be triggered automatically
by the provider of the matrices (for example, a routing API). Then, the difference between the
online retrieved matrices, i.e., Dt, Et, Ft, and the offline computed matrices, i.e., D, E and F, is
computed and denoted by ∆D, ∆E and ∆F respectively. If any element of these matrices is greater
than the given sensitivity thresholds for distances, travel times, and service times (ΣD, ΣE and
ΣF respectively), or if LA is not empty, then the Real-time VRPTW sub-phase, described in the
second part of the Pseudocode - Dynamic phase, is triggered.

DVRPTW sub-phase: the purpose of this sub-phase is to compute new solutions rapidly
by minimizing the size of the problem solved at each iteration. This reduces the computation
times and increases the system’s reactivity. The recalculation problem refers to a partial, static
VRPTW containing all the necessary information for the system to react to the considered
events. Formally, if it is denoted by d the index of an optimization step, and with M(d) and
N(d) respectively the number of vehicles and clients affected by the collected events, then solving
a recalculation problem is equivalent to solving a VRPTW where the set of TUs of size M is
replaced by a smaller set of vehicles of size M(d) ≤M, and the set of clients of size N is replaced by
a smaller set of clients of size N(d) ≤N. The matrices collecting the problem’s data (i.e., distances
matrix, travel times matrix, and service times matrix) are also reduced in size. By analogy, using
the notations used in the static phase, it is also defined F′(d) as a subset of the corresponding set
defined in Table 7.1.

It is important to note that index (d) differs from the subscript t used in the event processing
sub-phase: the former is used to denote elements relevant to a recalculation problem, whereas the
latter simply denotes raw, newly collected matrices. Typically, D(d) is expected to be of smaller
dimension than Dt, and the latter is used as the new reference D when the event processing
sub-phase is recalled.

The recalculation problem, as described above, is then provided to the solver, which generates
the relevant new route plans. The solution of the problem is stopped if the optimal solution is
found or the execution time tex exceeds tmax, meaning that the optimization period is over.

To formulate a recalculation problem, for each occurring event the algorithm identifies the
corresponding affected routes. Four cases can then occur:

(1) the travel time ei,j between two consecutive clients changes significantly with respect to the
offline planning, i.e, ∆E ≥ ΣE for a couple of clients i and j. A recalculation problem is
then defined that includes the two clients and the k-th vehicle that servers the clients, as
well as the relevant values for distances, travel times, and service times;

(2) the distance di,j between two consecutive clients changes significantly with respect to
the offline planning, i.e, if ∆D ≥ ΣD for a couple of clients i and j, it means that the
corresponding distance di,j changes significantly with respect to the offline planning. Thus,
similarly to case (1) a recalculation problem is then computed;

(3) the service time fi of a client i changes significantly with respect to the offline planning, i.e,
if ∆F ≥ ΣF for a client i. Thus, similarly to case (1) a recalculation problem is computed;

(4) a TU arrives at a client. A recalculation is then triggered in order to determine if that route
can be re-optimised. The associated recalculation problem contains all the information
about the vehicle’s route: the list of clients that are assigned to this TU is included, as well
as the relevant values for distances, travel times, and service times.
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7.3 DVRPTW Formulation
This Section presents the formulation of the DVRPTW defined and solved in the DVRPTW
sub-phase of the dynamic phase of the algorithm described in Sub-section 7.2.2. As introduced in
Sub-section 7.2.2, the mathematical model solved in the DVRPTW sub-phase of the dynamic
phase, differs from the 3L-CVRPTW sub-phase of the static phase, presented in Sub-section 7.2.1.
In particular, in this case, only the constraints of the VRPTW are considered, while removing the
ones related to the capacity limits of the vehicle. In fact, the static phase ensures that the cargo
assigned to each TU respects its volume and the maximum supported weight limits. Moreover,
each client is associated with at most one TU, and the bins are loaded inside the TUs according
to the shipment plan. Thus, the DVRPTW formulation is defined for each TU, whose route is
affected by a disturbance. The parameters and variables of the problem are reported in Tables
7.2 and 7.3 and the problem is formulated as follows:

min(h1

M(d)∑
k=1

N(d)∑
j=1

Cktk0,j + h2

M(d)∑
k=1

N(d)∑
i=1

N(d)∑
j=1

Vkdi,j t
k
i,j + h3

M(d)∑
k=1

N(d)∑
j=1

δk
j ) (7.4)

subject to: (7.5)
N(d)∑
i=0

ti,l −
(N(d) + 1)∑

j=1
tl,j = 0,∀l ∈ A(d), i ̸= j (7.6)

N(d)∑
i=1

ti,l = 1,∀l ∈ A(d), l ̸= i (7.7)

N(d)∑
j=1

t0,j = 1 (7.8)

N(d)∑
i=1

ti,(N(d)+1) = 1 (7.9)

δi ≥ Ai − si,∀i ∈ A(d) (7.10)
si ≤ Zi − fi, ∀i, j ∈ A(d) (7.11)
si + fi + ei,j ti,j − sj + Uti,j ≤ U, ∀i, j ∈ A(d) (7.12)
si + fi + ei,j ti,(N(d)+1) − ZN(d)+1 + Uti,j ≤ U,∀i, j ∈ A(d) (7.13)

where U = maxi,j {Zi − Ai + ei,j}.

The objective is to minimize the total travel costs and the time windows violations. The
firsts are computed as the summation, for all the TUs, of the base travel costs Ck (i.e., all the
costs of the k-th TU which are not related to the travelled distance and could include rental fees,
maintenance, etc.) and the variable travel costs Vk (i.e., the costs of the k-th TU related with
distance, such as gasoline consumption). The latter instead are computed as penalties proportional
to the advance/delay time of the k-th TU at j-th client with respect to the corresponding opening
time. In the objective function, the corresponding three terms are weighted, according to the
needs of the application in which the model is executed, using three parameters h1, h2, and h3
whose sum is equal to 1. The company is then in charge of deciding the weights of the terms.
Constraints (7.6)-(7.9) are related to the feasibility of the routes: (7.6) imposes that the sum

116



DVRPTW Formulation

of the routes entering a client l must be equal to the sum of the routes exiting the same client
and prohibits both the creation of loops on the same client i and in the network (i.e., the TU k
can only go from i to j or from j to i); (7.7) imposes that each client must be visited only once.
Constraints (7.8) and (7.9) are related to the starting and ending clients of each route and ensure
that each TU must start its route from the initial depot (indicated by index 0) and end it at the
final depot (indicated by index N(d)+1, with the convention that this final depot is the same for
each optimization step d). The last constraints (7.10)-(7.13) are related to the time windows,
which are defined as an interval of values [Ai,Zi] where Ai is the opening time for delivery of
client i and Zi is the closing time. Constraints (7.10) impose that the penalty δk

i is greater than
0 if the TU k arrives before clients’ i opening time. Constraints (7.11) are hard constraints and
impose that each TU must arrive at each related client before its closing time, while (7.12) and
(7.13) impose that the arrival time of each TU k to each client j must be higher than or equal
to the sum of the arrival time at client i, the service time at client i and the travel time from
client i to client j. An example of routes assignment is presented in Fig. 7.5, where two routes
are assigned respectively to two transport units TU1 and TU2. The five clients and two depots
are represented by labelled nodes which are connected by directed arcs. Each client i visited by
TU k is characterised by its time window [Ai,Zi] and service time fki . The weight of the generic
arc i, j is characterised by a couple (di,j , ei,j) representing respectively its length and travel time.
The base and variable costs of each TU are represented by pairs (Ck, Vk) with k={1,2}. Both
routes start and end in the initial and final depots, the route assigned to TU1 includes the clients
{2,5} while the route assigned to TU2 includes the clients {1,3,4}.

Table 7.3: Parameters and variables of the DVRPTW

Name Description
Input Parameters

M(d) Number of TUs affected by a disturbance
N(d) Number of clients affected by a disturbance
di,j Kilometers from client i to j
ei,j Travel time from client i to j
fi Service time at client i
Ai Opening time of time window of client i
Zi Closing time of time window of client i
U Upper bound for arrival time at each client

Output Variables
d Index of the optimization step

i, j, l Indices of clients
ti,j Binary variable indicating whether the TU

runs from client i to client j (1) or not (0)
t0,j Binary variable indicating whether TU

runs from the initial depot to client j (1) or not (0)
ti,(N(d)+1) Binary variable indicating whether the TU

runs from client i to the final depot (1) not (0)
si Arrival time of the TU at client j
δi Advance/delay of the TU arrival at client j

with respect to opening time Aj
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Figure 7.5: Example of routes assignment for two TUs, based on the solution of the proposed CVRPTW.

7.4 Heuristics-based Solution for the DVRPTW
To implement the TUs’ re-routing in the dynamic phase of the algorithm that solves (7.4) -
(6.12), a heuristic-based approach based on a genetic algorithm (GA) is defined [27]. In the
following, firstly it is defined the chromosome model for the DVRPTW as well as the steps of the
procedure and how the GA is applied. GAs are optimization algorithms that draw inspiration
from the natural principles of the evolution of the species and the survival of the fittest. GAs
work iteratively on a population of candidate solutions to the problem. The fitness, i.e., the
value of the objective function associated with each solution in the population, rules the iterative
selection schema so that solutions with high fitness have a high likelihood to mate and form
the offspring population. Once the offspring population is selected, special operators emulating
genetic crossover and mutation are randomly applied to create new solutions. These steps are
then iterated in order to obtain new solutions with increased fitness until a pre-specified stopping
criterion is met. Although GAs were originally designed to explore large multi-dimensional search
hyper-cubes, a variety of different versions of these algorithms is available in the literature to
handle special cases as multi-modal and constrained problems, as the one considered in this
research ([27],[28]).

7.4.1 Choromosome Model and Fitness Function
A. Chromosome model for DVRPTW. In GAs the representation of a solution is very important
because it defines the search space of the solution and the operators that can be used to explore
it. This, in turn, influences algorithm complexity and convergence. In this case, a chromosome
represents a list of routes, each route being a sequence of clients. Moreover, the following metadata
are attributed to each route within the chromosomes:

• a TU ID representing which vehicle is assigned to the considered route;
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Pseudocode - Initial population construction
Initialization

α = Previous solution
Φ = Desired population size
S = Maximum number of shuffling attempts
q = Empty list /*q is the output population of solutions*/
M = Number of routes in s

Algorithm
for n = 1:Φ do

αn = α
for k = 0:(M−1) do

rk = Route k in αn

uk = Removed clients in rk

if uk ̸= Empty list then
rk = Reinsert clients (rk, uk)

end if
a = 0 /*a is a counter*/
while rk is not valid do

if a < S then
rk = Shuffle movable clients (rk)
a = a + 1

else
rk = Remove client (rk)
a = 0

end if
end while

end for
/*αn now contains valid shuffled routes*/
q = Add individual (q, αn)

end for
return q

• the index of the last visited client in the route;
• a list of removed clients, containing all the clients that were assigned to the vehicle, but

cannot be served anymore due to dynamic changes.

The purpose of this approach is to have both the routing information and data required to account
for the dynamic nature of the problem: the index of the last visited client lets the algorithm
establish which segments of the route plans are mutable, and the removed clients are retained for
eventually reinserting them later.

An example of a route plan and its chromosome model are illustrated in Fig. 7.6. In the
upper part of the illustration, clients are represented by circles including the corresponding index
i with i ∈ {1, 2, . . . , 9}. In particular, the initial and final depots are coincident. Three TUs
denoted as TU1, TU2, and TU3 are dispatched and are all following their assigned route plan,
represented by arrows. Bold arrows represent the parts of the routes already completed by the
TUs, while dashed arrows represent the routes’ portions that still have to be executed. Below the
graph, a representation of the associated chromosome model is reported. In particular, vehicle
TU1 must start with the initial depot, then visit clients 2, and 3, and come back to the depot in
the specified order. In the considered time instant, the TU has already visited clients 2 and 3,
while the current client is 2 (light gray colored in the chromosome). Also, client 4 is assigned to
vehicle TU1, but it is deemed impossible to serve and is therefore retained in a list of removed
clients (dark grey colored in the chromosome). The detailed information is then stored in a route
model identified by vehicle TU1’s ID. The routes corresponding to vehicles TU2 and TU3 are
modeled in the same way.

Fitness function for GA-based VRPTW: the fitness of a chromosome is a function evaluating
its quality. The GA’s purpose is to improve this indicator. In this case, the fitness function is
given directly by the objective function (7.4), which the algorithm aims to minimize.
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Figure 7.6: Example chromosome modelisation

7.4.2 Initial Population and Operators
Initial population generation: GAs cannot construct solutions from scratch, thus a method to
generate new solutions from existing ones is required. This method must favor diversity and
hence reduce the probability of reaching a local optimum too rapidly.

The procedure to build an initial population is described in Pseudocode - Initial population
construction. In particular, the bases used to create new solutions are either the route plans
established during the static phase (for the initial re-routing step) or the route plans computed
at the previous re-routing step denoted by α. Within this initial solution, the same procedure
is applied to each route rk, with the subscript k referring to the TU associated with that route.
First, the clients that were removed previously (if any), denoted by uk, are reinserted into the
route. Then, the clients are shuffled until the resulting solution is found to be valid, or until a
certain number of attempts S is reached. If no valid solution is found, a client is removed, and
the clients are shuffled again. This way, new valid routes from the existing ones are generated.
Once every route is shuffled, a new solution αn is obtained, where n varies between 1 and the
desired population size Φ. This solution is then added to the population, denoted by q.
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Crossover operators: crossovers must generate new “children" individuals that retain the
qualities of their parents. They happen randomly at each step (or generation) of the GA: any
given individual is crossed over with another individual with a given crossover probability ρχ.

Let p1 and p2 be two parent chromosomes. A random route uniformly in p1 is selected, and its
counterpart in p2. The said counterpart is determined with the route’s associated TU ID. With
those two routes at disposal, two children’s chromosomes are obtained by applying one of the
operations below. The operator is chosen randomly, and both have an equal chance to be picked.

• Route swap crossover: the route from p1 is swapped with its counterpart from p2, and
vice-versa for the second child. The other routes in the chromosome are left unchanged.

• Two-point crossover: this procedure is a slightly modified version of the partially-mapped
crossover described in [28] for the travelling salesman problem. It is applied to the selected
routes, and once again the other routes are not modified.

Crossover operators are chosen for their compatibility with this chromosome model. They
ensure that assignments remain fixed during the dynamic phase and that no client is visited twice
(except potentially for the first and last ones).

Mutation operators: mutations are spontaneous, random changes within a few chromosomes
at each generation. Their purpose is to maintain variety in the solutions and widen the search
space. At each generation, a number of individuals are chosen randomly to undergo a mutation
with a given mutation probability ρµ. This mutations are conducted analogously to the crossovers
described previously: one of the individual’s routes is selected uniformly, and applied to it one of
the following heuristics, described in [29].

• Intra-route swap: two random clients within the route are exchanged.
• Intra-route shift: a random client is selected and shifted to another random position in the

sequence.

Similarly to crossovers, these operators are chosen because of their adaptability to this model.
Selection process: in order to increase the overall fitness of the individuals, a selection is

conducted in the population at each generation. Let us consider a population of I individuals
of fitness Fi > 0 (i ∈ [[1; I]]), and let P be the desired population size. For the purposes of this
chapter, it is considered a simple selection of the fittest: if P ≤ I, the P individuals with the
highest fitness Fi are selected. If however P > I, all I individuals are selected, and the individual
with the highest fitness is added another P − I times.

7.5 Experimental Results
In this section, the tests conducted with the aim of demonstrating the validity of the proposed
method are presented. For the sake of completeness, two different test sets are presented. The
first set focuses on the dynamic phase of the algorithm and considers the comparison with the
results of the well-known static methodology by Solomon, et al. in [30] showing that the dynamic
approach can ensure several improvements in real-time scenarios. The second one considers real
data of a full workday provided by the Italian logistics company E80 Group [31]. It is highlighted
that for this first test, the focus is on the dynamic phase of the proposed methodology due to the
lack, in the related literature, of comprehensive works that present approaches for the combined
solution of the 3L-CVRPTW and dynamic VRPTW, while an evaluation of the static phase with
respect to the literature is discussed in [10].
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The static phase of the algorithm is implemented in Matlab2020a [32], which is suitable for the
exact solution of complex optimization problems, running on a 2.20 GHz Intel Corei7-8750H CPU
with 32 GB RAM. Differently, the dynamic phase is implemented using Kotlin, an object-oriented
programming language running on the Java Virtual Machine, which is particularly suitable for
the execution of GAs, running on a 3.4 GHz AMD Ryzen 5 2600 CPU with 16 GB RAM. For the
implementation of the comparison it han been used Google’s OR tools [33], and more specifically
its Java API (which is completely inter-operable with Kotlin at no performance cost). It is
instantiate a SCIP (Solving Constraint Integer Programs) solver, which is based on branch-
and-bound methods and particularly suitable for MILP problems. The information regarding
TUs, clients, and bins is modelled using object-oriented programming, while the communication
between the two subsystems was made using the JSON (JavaScript Object Notation) format (i.e.,
a lightweight and widely used readable data format used to represent structured data and data
exchange between different systems[34]). For the sake of completeness, it is remarked that the
parameters used in the following tests have been defined by practical requirement of the real case
study, or chosen according to the results achieved in some preliminary experiments with various
parameter values, and in the interest of brevity in the rest of the chapter it is only reported the
best-performing parameter values since fine-tuning the GA parameters is not a primary focus.
Specifically, for the GA the crossover and mutation probabilities are tested ranging from 0.1 to 1
in increments of 0.1. Regarding the selection process, both selecting the fittest individuals and
using roulette wheel selection are explored, with the former yielding slightly better results.

7.5.1 Test of the Dynamic Phase with a Literature Benchmark
In this subsection, it is introduced the metrics and disturbance model used to conduct simulations
with the dynamic phase of the algorithm described in Section 7.2.2. Firstly, all the performance
indices to evaluate the results of the simulations are listed and described. Then, there is the
description of the model used to simulate real-time workdays. In particular, the models presented
are for three types of perturbations: travel time variations, service time variations, and spontaneous
decisions from the drivers to reorder the clients. For the simulations and for the sake of clarity,
it has been decided not to introduce perturbations in the distance matrix D, because its role is
similar to the travel times matrix E. Finally, the well-known benchmark by Solomon [30] is used
as a basis for the first set of simulations that justifies the system’s interest. The goal of this test
is threefold: first, it is demonstrated that the dynamic approach is superior to a static approach
in terms of solution quality, it is proved that the use of the GA is preferable to the use the MILP
model defined in the static phase for the optimatilty of solution ad fast computation time; then,
the assumption made are validated by considering a limited number of clients and vehicles is
sufficient to improve the route plans impacted by dynamic events.

In order to achieve these objectives, it used a well-known static VRPTW instance as the basis
of the simulation and extended it with the proposed dynamic model (described in Section 7.5.1.2)
in order to simulate a dynamic problem. The results of the proposed algorithm are compared with
the results given by a static approach, that keeps the same route plans during the entire workday
without taking dynamic events into account. The route plans used for this static approach are
given by the best-known solution [35].

Specifically, the instance tested is the C101 instance of Solomon’s benchmark [30], which is
widely used in the literature to evaluate the performance of both static and dynamic models. The
instance choosen has 100 customers and 10 vehicles, which are relatively high numbers that will
let us evaluate the performance of the proposed algorithm in terms of computing time. Moreover,
it is expected the best-known solutions to be well-optimized on such a benchmark, meaning that
the static approach provides the best results attainable without adapting to dynamic changes.
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Since Solomon’s instances do not specify travel times, it is considered that travel times and
distances are equal in value. Finally, since the proposed dynamic phase requires an initial route
plan, it is used the aforementioned known solution for that purpose.

7.5.1.1 Performance Indicators and Disturbance Model
The performance indicators used to evaluate the efficiency of the dynamic phase of the algorithm
are as follows:

• Objective Function at the End of the workday (OFE): representing the total routing costs
at the end of the working day, thus considering also the re-routing costs. Consequently, the
OFE is calculated based on (6.1):

OFE = h1

M∑
k=1

N∑
j=1

Ck t̃k0,j + h2

M∑
k=1

N∑
i=1

N∑
j=1

Vkd̃i,j t̃
k
i,j + h3

M∑
k=1

N∑
j=1

δ̃k
j (7.14)

where D̃i,j are the actual distances, t̃ki,j are the actual paths assigned to the vehicles, and
δ̃k

j are the actual arrival times gathered at the end of the workday, instead of the values
computed offline.

• Objective Function on Average (OFA): this is the average value obtained for the objective
function (7.4) when treating a recalculation problem (defined in 7.2.2). While OFE is a
performance indicator for the overall solution, OFA shows the capacity of the system to
respond to dynamic events. It is calculated by averaging all the objective function values
computed at each optimization step d with (7.4).

• Total Travelled Distance (TTD): representing the total distance traveled by all TUs over
the entire workday. Using the notation introduced in Section 7.2.1, it is given by:

TTD =
M∑

k=1

N∑
i=1

N∑
j=1

di,j t
k
i,j . (7.15)

• Total Travel Time (TTT): similarly to TTD, it is the total travel time of all TUs during
the workday. This also includes service times. Using the notation introduced in Section
7.2.1, this index is formulated as:

TTT =
M∑

k=1

N∑
i=1

N∑
j=1

ei,j t
k
i,j . (7.16)

• Average Computational Time (ACT): this indicator is obtained by averaging the time to
compute each recalculation problem expressed in seconds.

• Average number of Vehicles on Recalculation (AVR): it represents the average number of
vehicles included in the recalculation problems at each disturbance occurrence. It allows
for determining how much the problem size is reduced during the dynamic optimization
process.

• Average number of Clients on Recalculation (ACR): it represents the average number of
clients included in the recalculation problems at each disturbance occurrence.
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• Relative Standard Deviation (RSD): in statistics, it is defined as the ratio of the standard
deviation to the mean of a distribution. It is used as a measure of dispersion quantify the
stability of the other indicators defined above.

To evaluate the performance of the dynamic phase and show the improvements induced by the
proposed algorithm in case of disturbances, the performance obtainable with the only application
of the static phase and the ones obtainable with the whole algorithm considering the benchmark
are compared.

7.5.1.2 Disturbance Models
In order to retrieve the parameters needed for the simulation of the entire workday, the three
most frequent disturbance scenarios are defined and represented by three corresponding models.

A. Travel time variations model: similarly to what is proposed in [25], it is accounted for
commuting traffic by associating a coefficient to travel times for each period of the day (respectively
mT T , lT T and aT T for the morning, lunchtime and afternoon), and added a randomly-generated
perturbation. This perturbation follows a normal distribution of mean µT T = 0, and of standard
deviation σT T . Negative values are brought back to zero to represent the absence of perturbation.

B. Service times variation model: it takes into account the changes in the service times and
adds a penalty depending on the number of clients changed between the pre-planned route and
the effective dynamic route. This penalty is introduced because, when the MILP solves the static
3L-CVRPTW problem, goods are loaded in trucks with a Last-In-First-Out (LIFO) assumption.
Therefore, if the dynamic solver changes the order in which the clients are served, goods become
harder to unload. This penalty is modeled by a linear function: if x is the number of re-ordered
clients in a route for vehicle k (compared to the offline planning for the same route), then the
service time for client i will become fki +xπST , where πST is a penalty coefficient.

C. Clients’ reordering by the driver: probability for any vehicle to visit a client different from
the one that the route plan suggests. This client is chosen with a uniform probability among the
clients that have not been visited, excluding the first and last clients. This probability, denoted
by ρOC , models the fact that users of a re-routing algorithm can decide not to follow the received
instructions or might make mistakes leading to wrong destinations. Whenever a vehicle arrives
at a client, a Bernoulli trial of parameter ρOC is conducted to determine whether such changes
occur. All the parameters used in the simulations are listed and described in Table 7.4.

7.5.1.3 Evaluation with a Benchmark Instance
In the following series of tests, it is used the parameters listed in Table 7.5 to generate dynamic
events. The objective function is weighted giving using the three terms, (e.g. the base cost and
its weight h1, the variable cost and its weight h2 and the delivery delay and its term h3), the
same importance. The other values were chosen by analogy with the realistic scenarios presented
in section 7.5.2. The same test is run four times with different sensitivity thresholds Σ, ranging
between 0 and 3. The numerical results are shown in Table 7.6.

It is highlighted that the average computation times are not provided for the reference tests
(without dynamic improvement) because the latter directly use the routes plans provided statically
and therefore do not require computation during the simulation. In addition, there is the plot of
the evolution of the recalculation problems’ size ACR and of the computation time ACT with
respect to the sensitivity threshold (Fig. 7.7).

In order to prove the effectiveness of the proposed metaheuristics-based approach over an exact
approach for the dynamic phase, an exact solver for the dynamic phase has been implemented.
All the variables defined in table 7.3, the constraints (7.6)-(6.12) and the objective function are
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Table 7.4: Simulation parameters description

Variable Description
General parameters

η Number of times the simulation instance is run.
τcall Time interval (in seconds) between

two requests to the external data source.
τstart Time of the day (in seconds) at which the delivery starts.
τML Time of the day (in seconds)

considered to be the limit between morning and lunchtime.
τLA Time of the day (in seconds)

considered to be the limit between lunchtime and afternoon.
ρOC Probability for a vehicle to visit a client

in a different order than the one instructed by the system.
Σ Sensitivity threshold.

Parameters of the Genetic Algorithm
ψ Desired number of individuals in the population.
ν Number of generations, i.e., iterations of the GA.
ρχ Crossover probability
ρµ Mutation probability

Parameters of the perturbation models
mT T Coefficient by which travel time values are multiplied

in the morning.
lT T Coefficient by which travel times values are multiplied

during lunchtime.
aT T Coefficient by which travel times values are multiplied

in the afternoon.
µT T Mean travel time perturbation in the normal distribution.
σT T Standard deviation of the travel time perturbation

in the normal distribution.
πST Penalty (in seconds) added to service times

for each change in the planned route.

implemented using the aforementioned library. The results are reported in Table 7.6. The first
observation from the results regards the significant improvement in solution quality induced
by the dynamic phase of the algorithm over the reference test: the OFE index in Table 7.5,
regarding the value of the objective function computed at the end of the workday, is improved
on average by 4.6%. This shows the effectiveness of the proposed algorithm when perturbations
are introduced in a static VRP. Instead, the second observation regards the different sensitivity
thresholds tested, the solutions vary very little in quality. For example, the relative standard
deviation of the OFE indicator in Table 7.5 is only 0.17% with dynamic improvement. As shown
in Fig. 7.7, where results are plotted for the dynamic phase of the algorithm, it can be related
with the average recalculation problem size, indicated by AVR and ACR (respectively number of
vehicles and clients). With a sensitivity threshold of 3, both indicators are reduced significantly:
the average number of vehicles in each recalculation, which was stable at around 10, drops to 3.4;
and the average number of clients goes from 100 to 40.6. This leads to a notable reduction in
computation time at each recalculation, with the indicator of the average computation time ACT
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Table 7.5: Simulation parameters - instance C101

General Genetic Algorithm Perturbation
Parameter Value Parameter Value Parameter Value

η 5 ψ 100 mT T 1.20
τcall 5 [s] ν 100 lT T 0.50
τstart 0 [s] ρχ 0.80 aT T 1.20
τML 674 [s] ρµ 0.30 µT T 0
τLA 787 [s] σT T 0.80
ρOC 0.05 πT T 1
Σ ∈ [0, 1, 2, 3]
h1 0.33
h2 0.33
h3 0.33

Table 7.6: Simulation results on instance C101 of Solomon’s benchmark

Σ OFE OFA TDT TTT AVR ACR ACT
With exact-solver-based dynamic improvement

0 0.4286 0.4198 689.4 795.2 10 100 3780,18
1 0.4278 0.4289 662.1 766.5 10 100 3720,42
2 0.4279 0.4281 664.3 764.3 9.0 94.0 3300,03
3 0.4284 0.4398 683.8 787.6 3.2 40.1 900,74

With GA-based dynamic improvement
0 0.4302 0.4210 692.5 797.2 10.0 100.0 6,08
1 0,4287 0,4292 663.2 767.6 10.0 100.0 6,16
2 0.4286 0.4289 666.6 765.0 9.0 94.0 6,59
3 0.4288 0.4415 684.0 788.4 3.4 40.6 2,31

Without dynamic improvement
0 0.4501 0.4503 1074.7 1249.2 10.0 100.0 -
1 0.4504 0.4503 1082.3 1256.6 10.0 100.0 -
2 0.4507 0.4499 1076.7 1252.3 9.0 92.3 -
3 0.4474 0.4727 1021.4 1185.2 2.2 29.0 -

going down from 6598.6 ms to 2315.0 ms (see Table 7.6). In other words, it has been confirmed
the assumption that it is not necessary to recalculate the entire VRP whenever any change in
the parameters is noticed by the system: it is enough to consider a part of the problem that
was significantly affected by external events. Moreover, a good trade-off between computation
time and solution quality can be found by tuning the system’s sensitivity to those events. Let
us now compare the results obtained by the GA-based solver, with those obtained by the exact
solver. The first thing to note is that as it could be expected, the OFE, OFA, TDT and TTT
tend to be better with the exact solver. However, the improvement is not very significant (less
than 1% on average). On the other hand, the average computing time, is much higher for the
exact solver, with some recalculations taking up to an hour or more. Even with higher sensitivity
thresholds (i.e. less clients and TUs to manage on average), computing exact solutions takes
several minutes on average. This is reflected by the high number of variables that is equal 1206
for Σ=0,1 , 1128 for Σ=2 and 482 for Σ=3. Besides, computing time increases very fast with this
number of variables, meaning that an exact solver would not scale well on larger instances (which
would be common in real-life applications).
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Figure 7.7: Simulation on instance C101 of Solomon’s benchmark - Influence of the Σ parameter on recalculation
problems

On a practical standpoint, it can be noted that computing times for this large instance are
between 2 and 6 seconds with the proposed GA-based approach which confirms that it could be
used in a real-world application since drivers could reasonably wait for the system to compute
route plans. It has also been shown that, because of the high average computing time for minimal
performance gain, exact solvers are not fit for the dynamical recalculation of route plans: it would
not be realistic for drivers to have to wait for the computation every time an event occurs.

7.5.2 Test of the Proposed Matheuristics Algorithm With a Real Case Study
In this subsection are described the results obtained by applying the proposed algorithm to a
real dataset provided by the Italian logistic company E80 Group. In particular, this dataset is
composed of 52 clients distributed all over Italy, 299 bins with different heights and weights but
the same base area (they lie on the EU standard pallet of dimension 120x80 cm), and 2 different
types of TUs available with a virtually infinite fleet and whose parameters are reported in Table
7.7.

Table 7.7: Parameters of the real case study

TU L [mm] W [mm] H [mm] Q [kg] C V
1 800 244 260 10000 350 600
2 1360 244 260 24000 350 600

Firstly the results obtained as the output of the static phase are illustrated, and then also
the results of the dynamic phase when the planned routes are affected by (1) drivers’ decisions
impacting both the visit order of the clients and the path used to reach two clients, thus changing
the distance matrix and (2) disturbances that provoke substantial changes in travel times.

7.5.2.1 Test of the Static Phase
In order to fasten the execution of the static phase, the VRP and the CLP are executed in parallel,
respectively referring to the addresses that contain anomalies (see Section 7.2.1), clusters, and
TUs, using the Parallelization Toolbox provided by Matlab. This is possible because each loop
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executes separately the relative mathematical models for different instances, and so each iteration
is completely independent from the other.

The computation time for the whole static phase is equal to 3896.1 seconds and assigns the
bins of the clients to 16 TUs, obtaining then 16 routes whose total distance to be traveled is equal
to 8012 km distributed all over Italy. The average fill ratio in terms of supported weight (i.e., the
percentage of weight carried by the TU related to its total supported weight) is equal to 78.71%,
while the average fill ratio in terms of volume (i.e., the percentage of the volume occupied by the
bins related to the total TU’s volume) is equal to 47.65%. This is motivated by the fact that the
bins of the available dataset present a high weight in a limited volume and so in many cases the
total transported weight reaches 80%-90% of the total supported weight with a limited number
of bins.

7.5.2.2 Test of the Dynamic Phase in Case of Unexpected Human Behaviour
A series of tests aimed at studying the dynamic algorithm’s performance is conducted, with
respect to unexpected decisions (or mistakes) made by the drivers, e.g., arrival at a client earlier
than planned.

Firstly, a simulation instance considering a variation in the probability for a driver to deviate
from the offline planned route (ρOC) is defined. The values of the parameters used for these
simulations are listed in Table 7.9. To account for the random nature of this simulation, the
test are run three times for each value of ρOC , and report the average results. These results are
presented in Table 7.8, and the evolution of the OFE index with respect to ρOC is plotted in Fig.
7.8. As means of comparison, a test is run in the same instance, but without using the dynamic
phase. In this case, when a driver deviates from the offline planned route, the client visited is
brought earlier in the route to account for that decision, but no other changes are made. The
results obtained with this reference system are also reported in Table 7.8, and the evolution of
OFE is represented in Fig. 7.8.

Table 7.8: Influence of perturbations induced by human decisions on real case study

With dynamic improvement Without dynamic improvement
ρOC OFE OFA TDT TTT OFE OFA TDT TTT

0 0.4605 0.4452 9729478 279764 0.464737 0.448715 10039285 288581
0.1 0.4650 0.4477 10060509 288427 0.470966 0.454864 10503437 300347
0.2 0.4664 0.4484 10167027 290338 0.470915 0.457515 10499606 298766
0.3 0.4661 0.4480 10144884 288918 0.47201 0.452939 10581203 301620
0.4 0.4681 0.4477 10292073 293190 0.481345 0.466359 11276805 483889
0.5 0.4716 0.4545 10551679 299514 0.478708 0.465811 11080317 632167
0.6 0.4699 0.4510 10424107 297125 0.484563 0.470222 11516585 651496
0.7 0.4709 0.4525 10503468 299753 0.476959 0.459637 10950006 310439
0.8 0.4682 0.4489 10300340 294173 0.483042 0.470069 11403218 491570
0.9 0.4661 0.4493 10140691 289462 0.480251 0.465399 11195241 319867

RSD 0.7 0.6 2.4 2.1 1.3 1.6 4.4 35.5

The obtained results highlight first that the solution quality is improved by the dynamic
phase of the algorithm. In particular, overall tests, there is on average a 1.89% improvement
on the OFE index (i.e., objective function at the end of the workday), 2.54% on the OFA index
(i.e., the objective function on average), and 6.08% on the TTD index (i.e., the total travelled
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Table 7.9: Simulation parameters - real case study with human decision

General Genetic Algorithm Perturbation
Parameter Value Parameter Value Parameter Value

η 3 ψ 100 mT T 1.25
τcall 300 ν 100 lT T 0.50
τstart 32400 ρχ 0.80 aT T 1.25
τML 43200 ρµ 0.30 µT T 0
τLA 50400 σT T 300
ρOC ∈ [0.0, 0.9] πT T 600
Σ 1000
g1 0.50
g2 0.50
h3 0.33
h2 0.33
h3 0.33

distance) with respect to the results obtained without the dynamic rerouting. Figure 7.8 shows the
considerable improvement of the objective function recomputed after the re-routing. Intuitively,
this improvement tends to be more significant for higher values of ρOC , which confirms that the
proposed algorithm is adaptable to unplanned changes. The second point of interest is that the
stability of the solutions is also improved with respect to the static case, as shown by the lower
Relative Standard Deviation (RSD) values reported in Table 7.8 for the dynamic routing case.
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Figure 7.8: Influence of perturbations induced by human decisions - Objective function at the end of the day (OFE)

It is then possible to deduce that the dynamic phase of the algorithm is able to optimize
resource usage in spite of unexpected perturbations induced by human decisions and mistakes.

7.5.2.3 Test of the Dynamic Phase in Case of Disturbances Affecting Travel Times
This last series of tests evaluates the performance of the proposed algorithm in case of high
variation in travel times during the workday. To this aim, six tests are executed. The corresponding
parameters are listed in Table 7.10, and variable values for the standard deviation of the normal
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Table 7.10: Simulation parameters - real case study with travel time changes

General Genetic Algorithm Perturbation
Variable Value Variable Value Variable Value

η 5 ψ 100 mT T 1.25
τcall 60 ν 100 lT T 0.50
τstart 32400 ρχ 0.80 aT T 1.25
τML 43200 ρµ 0.30 µT T 0
τLA 50400 σT T ∈ [0, 1500]
ρOC 0.10 πT T 600
Σ 1000
g1 0.50
g2 0.50
h1 0.33
h2 0.33
h3 0.33

Table 7.11: Influence of travel time changes

With dynamic improvement Without dynamic improvement
σT T OFE OFA TDT TTT ACT AVR ACR OFE OFA TDT TTT

0 0.4630 0.5230 9915112 274553 406 2.4 12.0 0.4659 0.5309 10131071 280534
300 0.4669 0.5337 10204049 292027 317 2.0 10.8 0.4672 0.5376 10227845 292493
600 0.4650 0.4469 10062157 296084 1665 11.0 41.4 0.4640 0.4502 10056281 296728
900 0.4630 0.4543 9927445 303191 2186 15.6 50.0 0.4700 0.4631 10478748 315267
1200 0.4634 0.4572 9943742 311769 2228 17.0 51.0 0.4706 0.4660 10481892 323281
1500 0.4652 0.4591 10079511 328066 2343 17.0 51.0 0.4720 0.4685 10583907 331568

travel time perturbation described in 7.5.1.2, ranging between 0 and 1500 seconds with an
increment of 300 seconds. The results of the simulations are reported in Table 7.11, and a linear
regression of the evolution of TTT is represented in Fig. 7.9.

Once again, it is possible to notice that the dynamic routing induces a general improvement
in the indicators with respect to the static case, notably an average improvement of 1.83% in
total travel time. It is also interesting to note that, when comparing the linear regressions of
TTT shown in Fig. 7.9, the slope for the tests with dynamic improvement is less steep than the
reference tests. In other words, on top of the improvement in solution quality, the influence of
the increase in travel time variation is also mitigated. It can be observed that in this realistic
scenario, the computation times for each recalculation problem are always low: they range from
about 400 ms when there is no perturbation, to about 2 seconds for the most unstable scenarios
(where all clients and vehicles are considered at each step). This demonstrates that the proposed
approach can be used in real-time without having the drivers wait for recalculations to occur.

7.6 Conclusion
In this work, it is proposed an innovative strategy to solve the three-dimensional loading
capacitated vehicle routing problem with time windows (3L-CVRPTW) which combines two
important literature’s problems: the Vehicle Routing with Time Windows Problem (VRTWP)
and the Container Loading Problem (CLP). The approach may be used for supporting in the
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external logistic sector in both the planning operation and the delivery operation in real-time.
The proposed approach employs a metaheuristic algorithm composed of two phases: the former
is dedicated to the planning of the transport units both in terms of routing and loading of the
vehicles and is aimed at solving the 3L-CVRPTW. The latter provides support to the drivers
ensuring that the planned routes always constitute the best solution for the shipment, even when
during the actual shipment some unexpected disturbances occur. The first phase of the algorithm
is implemented by stating three mixed integer linear programming models and heuristics to
guarantee that the algorithm addresses the real-field applications. The second one, i.e. the
dynamic phase, exploits the potentiality of a genetic algorithm to provide a fast response in
real-time. The algorithm is tested both over a literature benchmark and a real dataset provided
by an Italian logistics company. The obtained results show that, on the one hand, the proposed
approach can provide feasible solutions that minimise travel costs, total travelled distance, and
empty space on the vehicles; on the other hand, it can ensure in real-time effective re-routing
solutions in case of unexpected events occurring during the delivery. Future works will aim at
generalizing the proposed procedure. For instance, additional heuristics could be implemented to
further improve the performance of the algorithm. Additionally, further typologies of dynamic
events will be considered by the dynamic phase of the proposed algorithm, such as the addition
of real-time requests of pick-up and delivery tasks.
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Chapter 8

Automatic Control of Drones’ Missions in a
Hybrid Truck-Drone Delivery System

VIII

Abstract

Last-mile delivery is one of the most discussed problems of the last decade due to the growing
importance of e-commerce and the development of Industry 4.0. In particular, this problem
regards the delivery of parcels from the warehouse to the final customers. In order to bring
efficiency and innovation, in this chapter a hybrid delivery architecture is considered, which
takes advantage of the combined use of a drone and a truck to perform a sequence of pick-ups
and deliveries, and the problem of optimal control of the drones’ missions is addressed. The
reference scenario is the smart city where the drone of the hybrid delivery architecture is in
charge of three different pick-up and delivery missions: truck to point (i.e., pick-up from the
truck and delivery to the customer), point to point (i.e., delivery to a customer and pick-up
from the subsequent customer), and point to truck (i.e., reentry from a customer to the
truck). From the control point of view, the drone is optimally guided in all the operating
modes, i.e., ascent and descent from/to truck mode, free flight mode with/without payload,
and descent for pick-up/delivery mode, by a receding horizon linear quadratic regulator
(LQR), which is able to manage the drone in the dynamic landing on a movable vehicle
and to allow the changing in real time of the landing point on the truck. Simulation results
of the truck-drone delivery architecture are presented and discussed in detail, proving the
effectiveness of the proposed method.
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8.1 Introduction
In recent years, logistics (i.e., the set of operations aimed at planning, implementing, and
controlling the flow and the storage of goods and related services from external origin points
to companies and from companies to consumption points or final customers) is becoming more
and more important in the development of the industrial sector [1] and it largely impacts firms’
performance [2], [3]. This chapter is focused on Logistics 4.0 (a branch of Industry 4.0) and
in particular, on distribution logistics, which generates the highest percentage of the logistic
operations costs [4]. One of the most challenging and expensive problems in this field, estimated
to range from 13% to 73% of the total distribution costs [5], is the so-called last-mile delivery
problem, which consists in the delivery of parcels from the warehouse to the customers (i.e., final
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destinations) and whose relevance has grown with the increase of the online commerce and the
same-day deliveries to single customers. The main issues that trigger relevance for this problem
are [6]: (i) the increasing volume of urbanization and e-commerce, (ii) the sustainability of the
shipping process since the rise in urban parcel demands induces a higher number of delivery trucks
entering the city centers creating congestion and having negative impacts on health, environment,
and safety, (iii) costs, (iv) time pressure because most online retailers sell next- or even same-day
deliveries as one of their basic service promises, (v) aging workforce that in many industrialized
countries enlarges the problem of employers hiring the required manpower. The last-mile delivery
operation is usually performed by humans or vehicles such as vans, bikes, trains, and autonomous
vehicles such as autonomous vans and drones.

Innovative applications in the last-mile delivery field come with the use of drones (also known
as unmanned aerial vehicles - UAVs) as vehicles. In the last decade, the research and the real field
applications of these technologies in the logistic sector are growing exponentially. One of the first
applications was developed by Amazon in 2013, with the shipping of small parcels turned into
Amazon’s drone delivery services Prime Air, i.e., a drone-only delivery system. Subsequently, other
companies such as the Workhorse company, the “Project Wing” of Google, and the “Parcelcopter”
of DHL proposed a hybrid architecture where drones and trucks cooperate. A typical architecture
where a drone and a truck collaborate consists of a drone that autonomously departs from a
truck, performs the delivery or the pick-up of the parcel, and then comes back to the truck, while
the truck delivers items to the customers or serves as a mobile hub for other drones (in fact,
when the drone is on the truck, its battery can be replaced or recharged while waiting for the
next trip [7]). The related literature abounds with papers that focus on the design of hybrid
drone-truck architectures and their planning. The majority of contributions regard the offline
strategic scheduling and routing of trucks and drones in the hybrid truck-drone architecture, while
only a few works specifically focus on the online control of the drones’ missions in coordination
with the truck travel. Therefore, with the aim of bridging this gap, in this chapter, it is proposed
a hybrid automated architecture that consists of a truck and a drone, where the missions of
the transportation means are coordinated and the drone is optimally guided in real-time by a
receding horizon linear quadratic regulator (LQR). The remainder of this chapter is structured as
follows. In Section 8.2 the 3D quadrotor with its operating modes and the truck dynamic models
are examined. The formulation of the receding horizon LQR controller is presented in Section 8.3,
and the simulations setup and results are discussed in Section 8.4. Finally, Section 8.5 reports
some concluding remarks.

8.2 System Modelling and Tasks
This section describes the hybrid parcel delivery system based on the combined use of a 3D
quadrotor and a truck. In particular, Subsection 8.2.1 and Subsection 8.2.2 present the dynamic
models of the quadrotor and the truck, respectively, whereas the quadrotor operating modes
during the sequence of pick-ups and deliveries tasks are illustrated in Section 8.2.3.

8.2.1 Quadrotor Dynamics
The quadrotor’s space motion can be described through six degrees of freedom (DOF). The
space motion consists of three linear movements of the barycenter and three angular movements,
namely, three translation and three rotation motions along the three axes that can be controlled
by changing the rotational speeds of the four motors. Based on the speed of each propeller, the
four basic movements of the quadrotor can be identified: the ascent/descent caused by thrust
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due to rotors’ rotation, the roll and pitch caused by the difference of the four rotors’ thrust, the
gravity and the yawing moment caused by the unbalance of the four rotors rotational speeds.

Since the quadrotor is an underactuated non-linear complex system (it has four inputs and six
outputs), it is modelled the quadrotor as a rigid body, with a symmetric structure and without
ground effect, following the model proposed in [8]. To define the structure and position, two
different reference frameworks are considered. It uses the north-east-down (NED) framework for
the first inertial coordinate system (fixed), whereas the aircraft body center (ABC) framework is
used for the second reference system integral with the quadrotor’s barycenter (mobile).

By calling [xd, yd, zd, ψd, θd, ϕd]⊤ the vector containing the linear xd, yd, zd and angular
ψd, θd, ϕd positions of the quadrotor in the NED framework and [ed, vd, wd, pd, qd, rd]⊤ the vector
containing the linear ed, vd, wd and angular pd, qd, rd velocities in the ABC framework, it is
defined the state vector as follows: [xd, yd, zd, ψd, θd, ϕd, ed, vd, wd, pd, qd, rd]⊤ ∈ R12. Note that
the two reference frameworks are linked by the following relation:

v = Rm vBω = Tm ωB (8.1)

where v = [ẋd, ẏd, żd]⊤ ∈ R3, ω = [ψ̇d, θ̇d, ϕ̇d]⊤ ∈ R3, vB = [ed, vd, wd]⊤ ∈ R3, ωB =
[pd, qd, rd]⊤ ∈ R3, and Rm and Tm are the rotation matrix and the matrix for angular
transformations, respectively. Assuming small angles of movement [9], the quadrotor’s dynamic
model can be simplified by setting [pd, qd, rd]⊤ = [ψ̇d, θ̇d, ϕ̇d]⊤; hence, it is redefine the state vector
in the inertial frame as sd = [xd, yd, zd, ψd, θd, ϕd, ẋd, ẏd, żd, ψ̇d, θ̇d, ϕ̇d]⊤ ∈ R12. As a consequence,
by using the state vector sd, the non-linear equations of the quadrotor’s dynamics are written in
the state space form as:

ṡd = f(sd) +
4∑

i=1
gi(sd)ud,i (8.2)

where ud,1, ud,2, ud,3, ud,4 are the four actuators (one for the vertical thrust fd
t taken upwards and

one for each angular motion τd
x , τ

d
y , τ

d
z ) collected in the control input vector ud = [fd

t , τ
d
x , τ

d
y , τ

d
z ]⊤ ∈

R4 and:

f(sd)=



ẋd

ẏd

żd

θ̇d sen(ϕd)
cos(θd) + ϕ̇d cos(ϕd)

cos(θd)
θ̇d[cos(ϕd)] − ϕ̇d[sen(ϕd)]

ψ̇d + θ̇d[sen(ϕd)tan(θd)] + ϕ̇d[cos(ϕd)tan(θd)]
0
0
g

Iyy−Izz

Ixx
θ̇dϕ̇d

Izz−Ixx

Iyy
ψ̇dϕ̇d

Ixx−Iyy

Izz
ψ̇dθ̇d


g1(s) = [0 0 0 0 0 0 g7

1 g8
1 g9

1 0 0 0]⊤

g2(s) = [0 0 0 0 0 0 0 0 0 1
Ixx

0 0]⊤

g3(s) = [0 0 0 0 0 0 0 0 0 0 1
Iyy

0]⊤
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g4(s) = [0 0 0 0 0 0 0 0 0 0 0 1
Izz

]⊤

where g is the gravitational acceleration, Ixx, Iyy, Izz are the components of the diagonal inertia
matrix I = diag(Ixx, Iyy, Izz), and:

g7
1 = − 1

md
[sen(ϕd)sen(ψd) + cos(ϕd)cos(ψd)sen(θd)]

g8
1 = − 1

md
[cos(ψd)sen(ϕd) − cos(ϕd)sen(ψd)sen(θd)]

g9
1 = − 1

md
[cos(ϕd)cos(θd)]

with md is the total mass of the quadrotor. Note that md varies according to the presence of the
payload: in particular, it holds md = md

0 without payload and md = md
0 +mp with a payload of

mass mp equal to the weight of the transported item.
Starting from the non-linear quadrotor’s dynamics in (8.2), the linearized version is often

considered in the literature for control purposes (see Section 8.3). Through the linearization
around the nominal point sd,∗ and control input vector ud,∗, and by using the sampling time ∆t
as a time step and the discrete time index n as a subscript of vectors and variables, it is obtained
the following discretized linear dynamics:

sd
n+1 = Asd

n + Bud
n (8.3)

where:

A =



1 0 0 0 0 0 ∆t 0 0 0 0 0
0 1 0 0 0 0 0 ∆t 0 0 0 0
0 0 1 0 0 0 0 0 ∆t 0 0 0
0 0 0 1 0 0 0 0 0 0 0 ∆t
0 0 0 0 1 0 0 0 0 0 ∆t 0
0 0 0 0 0 1 0 0 0 ∆t 0 0
0 0 0 0 −∆tg 0 1 0 0 0 0 0
0 0 0 0 0 −∆tg 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1


sd = sd,∗,u = ud,∗

B =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

− ∆t
md 0 0 0
0 ∆t

Ixx
0 0

0 0 ∆t
Iyy

0
0 0 0 ∆t

Izz


sd=sd,∗,ud=ud,∗
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with sd
n = sd

n − sd,∗ and ud
n = ud

n − ud,∗.

8.2.2 Truck Model
The truck model is formulated in state space form as:

st
n+1 = f(st

n,u
t
n) (8.4)

where the state vector is defined as st = [xt, yt, zt, ẋt, ẏt, żt]⊤ ∈ R6 with xt, yt, zt the truck’s
positions along the X, Y, Z axes, ẋt, ẏt, żt its linear velocities, and the control input vector as
ut = [ẍt, ÿt, z̈t]⊤ ∈ R3 with ẍt, ÿt, z̈c the truck’s accelerations.

8.2.3 Quadrotor Operating Modes
The considered truck-drone delivery system is composed of a truck on which the drone’s charging
base is positioned and a drone that performs the pick-up and delivery of parcels from/to the
customers in the surrounding areas.

For the development of the proposed truck-drone delivery system automation, there are
considered three operating modes for the drone that are defined as follows [10].

I) Ascent from customer and from truck, and descent to truck mode: Ascent and descent
are performed along a vertical and oblique axis, respectively. In particular, for the ascent, the
quadrotor starts from the landing point, which is situated near the customer or in the barycentric
position of its charging base located on the roof of the truck, and reaches vertically a certain
altitude where it begins to hover, while for descent the opposite occurs but in oblique.

II) Free flight with/without payload mode: In this operating mode, the quadrotor is in free
flight and there is no contact with the road.

III) Descent for pick-up/delivery mode: Starting from a certain altitude with a non-zero
velocity, the quadrotor descends with a gradually decreasing velocity as it approaches the customer.

8.3 Control Strategy
For all the drone’s operating modes described in Section 8.2.3, a receding horizon LQR controller
[11] is implemented to control the quadrotor. According to the receding horizon approach, given
the sampling time ∆t, the optimization problem must be solved iteratively at each j∆t time
instants, until the end of the delivery mission. It has to be highlighted that the nominal landing
point might vary during the mission, since a dynamical platform is considered, thus variables sd,∗

j

and ud,∗
j are updated at each time step j and consequently marked by j as a subscript.

By assuming the lengths of the prediction horizon and control horizon coincident and equal to
N , the receding horizon open loop optimization problem at time step j is defined by introducing
the following objective function:

J(N) = (sd
j+N − sd,∗

j )⊤Qj+N (sd
j+N − sd,∗

j )

+
N−1∑
n=0

[(sd
j+n − sd,∗

j )⊤Qj+n(sd
j+n − sd,∗

j )

+(ud
j+n − ud,∗

j )⊤Rj+n(ud
j+n − ud,∗

j )].

(8.5)

where Qj+N ∈ R12×12, Qj+n ∈ R12×12, and Rj+n ∈ R4×4 are the final cost, state cost, and input
cost diagonal matrices to be tuned. Note that the three terms in (8.5) present the final state
deviation, state deviation, and input size, respectively.
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Given the initial state sd
j , let uLQR

j+n , n = 0, ..., N − 1 be the control sequence that minimizes
the quadratic cost function J(N) subject to the state equation:

sd
j+n+1 = A(sd

j+n − sd,∗
j ) + B(uLQR

j+n − ud,∗
j ) + sd,∗

j ,

∀n = 0, . . . , N − 1.
(8.6)

In particular, the optimal control law is computed by the following iterative scheme:

uLQR
j+n = Kj+n(sd

j+n − sd,∗
j ) + ud,∗

j ,∀n = 0, . . . , N − 1 (8.7)

where the state sd
j+n is updated in accordance with the model in (8.6) and the feedback gain

Kj+n ∈ R12×12 is obtained through the following well-known Riccati difference equations [12]
that are solved recursively backwards:

Kj+n = −(Rj+n + B⊤
j Pj+n+1Bj)−1B⊤

j Pj+n+1Aj ,

Pj+n = Qj+n + A⊤
j Pj+n+1Aj + A⊤

j Pj+n+1BjKj+n

∀n = 0, . . . , N − 1
(8.8)

being Pj+n ∈ R12×12 the parameter matrix and initializing Pj+N = Qj+N .
The receding horizon policy proceeds by implementing only the first control input vector

uLQR
j , whilst the rest of the control sequence uLQR

j+n ∀n = 1, . . . , N − 1 is not considered and
sd

j+1 is employed to update the optimization problem as a new initial condition. The algorithm
proceeds until the end of the delivery mission, by shifting the horizon ahead by one time step

8.4 Experimental Results
In this section, it is described the system setup and the simulation results of the proposed real-time
control strategy for a hybrid truck-drone delivery system. It is highlighted that the quadrotor’s
control system is implemented on a Jupyter Notebook.

8.4.1 System Setup
In the context of the last-mile delivery problem, i.e., delivery of items from the warehouse to
the customers, the goal of our experiment is to efficiently perform a sequence of pick-up and
delivery of parcels tasks in a smart city, by employing a hybrid truck-drone delivery architecture
composed of a truck and a drone. Offline scheduled missions and depart/return together from/to
the warehouse – where the truck is loaded with both its parcels and the ones of the drone – are
assigned to the truck and the drone. The drone can recharge on the truck roof and must pick up
and release from/to the truck light parcels, depending on its admissible payload. Differently, the
truck is devoted to the delivery of heavier parcels. Pick-ups and deliveries can be assigned to
both the truck and the drone, but at each mission, the truck departs and returns from/to the
warehouse, while the drone departs/returns from/to the moving truck. Thanks to state-of-the-art
sensors mounted on drones board that allow collecting data quickly and easily, the control station
can communicate with the drone by notifying the trajectory (both position and velocity) of the
truck in accordance with a certain sampling time ∆t and thus, drone and truck rejoin along the
fixed route of the truck.

More specifically, with the use of the three quadrotor’s operating modes listed in Section 8.2.3,
i.e., ascent and descent from/to truck mode, free flight mode with/without payload, and descent
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Figure 8.1: Parcels’ last-mile delivery architecture with operating tasks phases.

Table 8.1: Quadrotor dynamics parameters.

Phase md [kg] I [kg m2]
Truck (A) to Point (B) 2.18 diag(0.0087,0.0087,0.0123)
Point (C) to Truck (D)
Point (B) to Point (C) 1.38 diag(0.0037,0.0037,0.0073)

for pick-up/delivery mode, it is possible to perform a mission (see Fig. 8.1) through three phases,
as detailed below.

1) Truck (A) to Point (B): In this phase, once the truck has left the warehouse, the drone
ascends from its charging base located on the roof of the truck with the parcel directed towards
the customer placed at point B. Hence, the drone performs the route in free flight mode with
payload and then executes the descent towards the customer.

2) Point (B) to Point (C): In this phase, after the drone has released the parcel to the customer
located at point (B), it leaves in free flight mode without payload towards the second customer,
i.e., point (C).

3) Point (C) to Truck (D): In this phase, after the drone picks up the customer parcel located
at point (C), it receives the trajectory (both position and velocity) of the truck from the control
station. Thus, the drone follows the trajectory of the truck in free flight mode with payload, and
then, once reached, it is ready to descend towards the landing point situated in the barycentric
position of the charging base, i.e., point (D). Note that, since the truck is moving, the drone is
initially aligned with the truck along the X and Y axes, while keeping a given offset along Z,
and reaches the landing point from behind. As a final remark, during the current phase, the
truck, if necessary, slows down its velocity to adapt to the technical characteristics of the drone.
The same holds for the drone as well. The realistic scenario addressed in this chapter is shown
in Fig. 8.1, which reproduces the hybrid movable architecture that consists of a drone and a
truck. In particular, Fig. 8.1 illustrates a portion of an entire daily truck-drone mission, i.e., the
route followed by the truck transporting the items from the warehouse to the various customers
located in different places and the drone that helps the courier to perform pick-ups and deliveries
and once the assigned tasks are completed, it intercepts the truck on which the charging base
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is placed. The experiment is conducted considering the well-known DJI Phantom 4 Pro [13]
drone, which has a maximum speed of 72 km/h and a flight autonomy of about 30 minutes.
In particular, the quadrotor is modeled in accordance with the dynamic parameters in Table
8.1, where md and I indicate the total mass of the quadrotor and the diagonal inertia matrix,
respectively. The load of mass mp carried by the vacuum gripper attached to the quadrotor base
is equal to 0.8 kg. Instead, the drone’ control input vector is defined as ud = [mdg, 0, 0, 0] with
the gravitational acceleration g set to 9.81 m/s2. To conclude the system setup, it is set the
sampling time ∆t = 0.01 s, N = 2000, as representing a good compromise between computational
complexity and solution quality, the initial state cost matrix Qj+N = 200 I12, and the initial
input cost matrix Rj+N = 2 I4 computed for each time step j.

8.4.2 Results
The goal of this work is to control a drone employed in the last-mile delivery problem in tandem
with a truck with the aim of performing pick-ups/deliveries from/to customers in a smart city. In
the proposed model, the truck works as a primary vehicle and follows a fixed route determined
offline before the beginning of the mission. Instead, the drone departs from the roof of the truck
(which is following its fixed route) and visits the customers according to the schedule. Then, in
order to take other parcels from the truck and be ready for the next sortie, it returns to the
moving truck whose position is notified by the control station.

The parcels’ last-mile delivery architecture with the truck-drone combined operations is
represented in a schematic configuration in Fig. 8.1 whereas in a 3D reconstruction in Fig. 8.2
to help the reader imagine the real scenario of an urban environment. For the sake of clarity,
it highlighted that the nodes (A), (B), (C), and (D) in Fig. 8.1 and Fig. 8.2 are coincident.
As can be seen from the 3D view (Fig. 8.2), the truck leaves the warehouse to perform the
scheduled deliveries of the heavier parcels and at the same time the drone carries out pick-ups and
deliveries of parcels (i.e., Point (B) and Point (C)) with a lower payload in the surrounding areas.
Furthermore, Fig. 8.2 shows the trajectory followed by the drone to chase and catch up with
the truck and then to perform the descent towards the landing point located on the roof of the
moving truck. The trajectory from Point (C) to Truck (D) is also represented in red in Fig. 8.3,
where it is possible to observe the perfect tracking executed by the drone of the truck’s trajectory
(in blue) given at each sampling time ∆t by the control station in terms of position and velocity.

Figure 8.2: Last-mile delivery of parcels architecture with focus on the trajectory performed by the drone in the
third operating task phase, i.e., Point (C) to Truck (D).
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The effectiveness of the implemented controller, i.e., the receding horizon LQR, lies in the
possibility of changing online the position of the landing point located on the roof of the truck (i.e.,
the final cost in the objective function (8.5)). The drone can not only vary its speed, depending
on the technical characteristics of the truck and vice-versa, but it can also change its trajectory
towards the landing point in case there is an unexpected event, such as a slowdown of the truck
due to traffic or merely a transmission error by the control station. Fig. 8.4 illustrates the
trajectory followed by the drone as the position of the landing point varies from Point (D) to Point
(D’) and then to Point (D”). More specifically, it is possible to see the drone’s predicted routes in
red from different starting points placed forward on the given prediction horizon whereas the
drone’s actual route in green from Point (C) to Truck (D”), which intersects the n-th predicted
routes.

Figure 8.3: Drone’s trajectory from Point (C) to Truck (D).

Figure 8.4: Drone’s trajectory variation with moving landing point located on the truck.
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8.5 Conclusion
This chapter presents an automatic real-time control approach for a hybrid truck-drone delivery
system devoted to last-mile deliveries. In particular, the drone is used to help the courier to
perform a sequence of pick-ups and deliveries of parcels from/to the customers in the surrounding
areas of the smart city and, once the scheduled tasks are finalized, it intercepts the moving truck
and descends towards the charging base placed on its roof. To accomplish the desired mission,
the drone is optimally guided by a receding horizon linear quadratic regulator in all its operating
modes, which are classified as: ascent and descent from/to truck mode, free flight with/without
payload mode, and descent for pick-up/delivery mode. In particular, the controller is able to
manage in real-time the drone’s landing on the moving truck and allow the online change of the
landing point on the truck.

Future works will focus on enhancing the dynamical model of the drone, in order to consider
the effects of the terrain and the airflow generated by the propellers, and on employing a dynamical
model of the truck with the aim of enhancing the estimation of the landing point’s position
where the descent takes place. In addition, it will be useful to include the energy management
objective in the current cost function, to compare the performance of the optimal control technique
considered in this chapter with other receding horizon control strategies like model predictive
control with constraints on the translational speed of the drone and on the flying elevation in
a city environment or some visual-based control approaches and to implement the proposed
architecture on a real system.
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Chapter 9

Conclusions

IX
In conclusion, this doctoral thesis thoroughly investigates the profound impact of Industry 4.0

and Logistics 4.0 for both companies and academia, providing substantial theoretical and practical
advancements for both actors. As a matter of fact, the advent of Industry 4.0, with its technologies
such as the Internet of Things (IoT), Big Data, Artificial Intelligence, and automation, has brought
a profound shift in the way industrial processes are conceived and executed. Simultaneously,
also thanks to the advent of the e-commerce, Logistics 4.0 has risen to prominence as a vital
component of this transformation, with a focus on optimizing the entire logistics and supply chain
spectrum.

This work explores multiple aspects of such revolution, representing a comprehensive journey
across multiple dimensions of the transformative Industry 4.0 and Logistics 4.0 landscape in
the control and automation perspective. A significant contribution of this research regards the
application of matheuristic approaches to address critical challenges within the realm of logistics.
In particular, in the intricate field of logistic complexities, here the focus is on the modeling and
solution of the 3D Bin Packing Problem, optimizing the arrangement of items within confined
spaces and fulfilling logistic physical constraints that take into account also the robotization
and automation of the packing process. The investigation extends to the design of Vertical Lift
Modules (VLM) warehouses, where innovative strategies are developed to maximize efficiency
in the allocation of items into trays. Furthermore, the study dives into the intricacies of the
multi-drop multi-container loading problem, unraveling the complexities associated with packing
multiple bins for diverse deliveries. Additionally, the integrated vehicle routing and container
loading problem are analysed, with a focus on formulating solutions that synchronize the routing
of vehicles with the loading of containers, creating a harmonized approach to logistics optimization.
The proposed solutions provide not only theoretical insights but also practical tools for enhancing
the efficiency and effectiveness of logistics operations. Moreover, the study has touched upon the
real-time control of hybrid truck-drone delivery systems, reflecting the trend toward autonomous
and sustainable last-mile logistics. The potential of such systems, as demonstrated by this
research, highlights the ever-increasing convergence of technology and logistics, enabling more
agile, cost-effective, and environmentally friendly delivery methods.

In summary, it is evident that Industry 4.0 and Logistics 4.0 are symbiotic forces shaping
the future of manufacturing and supply chain management. They offer the promise of enhanced
productivity, sustainability, and customer satisfaction. Nevertheless, this transformation comes
with its own set of challenges, from workforce adaptation to resource management improvement,
which need to be diligently addressed. These challenges demand meticulous attention and strategic
solutions to ensure a smooth transition towards the future paradigm.

In the years to come, future research in this field should continue to bridge the gap between
theory and practice, ensuring that the theoretical models and matheuristic approaches developed
are not just academic advancements but practical solutions that can be readily adopted by
logistics and manufacturing industries to advance their automation. Furthermore, the dynamic
evolution of these technologies signals the need for continuous adaptation and the development of
novel methods and strategies. This adaptive mindset becomes especially critical in anticipation
of the imminent Industry 5.0, where the ever-evolving landscape will demand innovative solutions
to address emerging challenges and opportunities. The studies conducted in this thesis unveil
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numerous avenues for potential improvements and future developments. One notable direction
involves the incorporation of additional logistic constraints, such as the intriguing possibility of
considering multiple bin sizes in the context of the bin packing problem, or also the opportunity of
enhancing the stability of solutions within the container loading problem, refining the optimization
of container configurations for increased robustness. Furthermore, there is ample room for
advancement in the tackled problem, such as the integration of a "sequencing" model for the
definition of the placement order of the items inside a bin, or also the exploration of new dimensions
in the dynamic vehicle routing, incorporating various typologies of dynamic events. A common
improvement to all the topics discussed is the application of the latest machine learning and
artificial intelligence techniques. The integration of these cutting-edge technologies holds the
potential to yield solutions that are not only more accurate but also faster, aligning seamlessly
with the dynamic nature of real-time logistics operations. As the logistics and supply chain
landscape evolves, the strategic incorporation of these advanced techniques stands as a pivotal
step toward achieving systems that are not only more efficient but also adaptive and intelligent.

In the context of Industry 5.0, this thesis is just the starting point of a revolution where the
landscape is poised for a new wave of transformation characterized by even greater connectivity,
collaboration, and intelligence. As a matter of fact, Industry 5.0 envisions a highly integrated
and cooperative environment where humans and machines work in tandem, leveraging advanced
technologies such as the Internet of Things, Artificial Intelligence, and Cyber-Physical Systems.
This era holds the promise of further optimizing production processes, enabling more flexible and
personalized manufacturing, and fostering a heightened level of adaptability to dynamic market
demands. As the industry advances into this new frontier, research efforts must proactively
address the challenges associated with increased connectivity, cybersecurity, and the evolving role
of the workforce in a highly automated and intelligent manufacturing ecosystem. By embracing
an adaptive mindset and fostering innovation, the transition to Industry 5.0 can be navigated
effectively, unlocking new potentials for the manufacturing and logistics landscape.
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