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1. Introduction

The characteristic polynomial of a matroid is a well studied object. It was first in-
troduced as a matroid generalisation of the chromatic polynomial of a graph. It arises 
in critical problems, analyses of the Tutte polynomial, and is the subject of numerous 
identities [21]. See also [31–33], for further reading.

In combinatorics, the concept of a q-analogue can be viewed as a generalisation from 
sets to vector spaces. Recently, the q-analogue of a matroid has been studied [19]. A 
generalisation of this is a q-polymatroid [17,18,28].

There are many interesting connections between q-(poly)matroids and rank-metric 
codes. In this paper we develop the theory of the characteristic polynomial of a 
q-polymatroid. We show a relation between the characteristic polynomial of a q-
polymatroid and that of its dual, establishing a MacWilliams-like identity for q-
polymatroids. In a similar line of research, Shiromoto [28] established a q-analogue of 
Greene’s theorem.

Another motivation to study the characteristic polynomial is to establish a q-analogue 
of the Assmus-Mattson Theorem [1]. This theorem gives a criterion for identifying a t-
design as a collection of supports of codewords of fixed weight in a linear code. Since 
its publication in 1969, it has seen a number of generalisations [10,23] and has been 
used widely to obtain new constructions of designs [16,27]. In one of these results [5], 
the authors define a weighted t-design as a generalisation of a classical t-design and give 
criteria for identifying such an object among the dependent sets of a matroid of a fixed 
cardinality. A weighted t-design is a collection of subsets B of a fixed cardinality k chosen 
from an n-set of points P together with a function f defined on B such that for any t-set 
T ⊂ P the sum 

∑
B∈B :T⊂B f(B) is independent of T . In the case that f(B) = 1 for 

every block B ∈ B, the weighted t-design is an ordinary design.
In this paper, we generalise the results of [5] to q-polymatroids, which is a two-fold 

generalisation: first from matroids to polymatroids and also from sets to vector spaces. 
Hence the results presented here give a q-analogue of their result. The q-analogue of a 
weighted t-design is a weighted subspace design; in the definition shown above we replace 
the collection of subsets B with a collection of subspaces of a fixed dimension k and T
with a t-dimensional subspace.

In Section 2 we study q-polymatroids and the properties of q-polymatroids that are 
necessary for this work. In Section 3 we outline properties of the characteristic polynomial 
of a q-polymatroid that will be used later and in Section 4 we look at q-polymatroids 
arising from matrix codes. In Section 5 we give a version of the MacWilliams duality 
result for q-polymatroids. In Section 6 we give criteria for identifying when the dependent 
spaces of a q-polymatroid are the blocks of a weighted t-subspace design.

Notation 1. Throughout, we let n denote a fixed positive integer and we will let q denote 
a fixed prime power. We let E denote an n-dimensional vector space over the finite field 
Fq of order q. We let L(E) denote the lattice of all subspaces of E, ordered by inclusion, 
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which we denote by ≤. We will write U < V for U, V ≤ E if U is strictly contained in 
V . The join of a pair of subspaces is their vector space sum and the meet of a pair of 
subspaces is their intersection. For any positive integer �, we write [�] := {1, . . . , �}.

2. q-Polymatroids

q-Polymatroids and their connections to linear codes were introduced in [18] and [28]. 
Their properties have been further developed in [17]. In our presentation, we will not 
assume that q-polymatroids are representable, that is, we will not assume that the q-
polymatroids under consideration here are constructed from rank-metric codes over Fq. 
We use the following definition of a q-polymatroid from [28], since it suits our purposes 
to have an integer valued function in what follows.

Definition 2. A (q, r)-polymatroid is a pair M = (E, ρ) for which r ∈ N0 and ρ is a 
function ρ : L(E) −→ N0 satisfying the following axioms.

(R1) For all A ≤ E, 0 ≤ ρ(A) ≤ r dim(A).
(R2) For all A, B ≤ E, if A ≤ B, then ρ(A) ≤ ρ(B).
(R3) For all A, B ≤ E, ρ(A + B) + ρ(A ∩B) ≤ ρ(A) + ρ(B).

Every (q, r)-polymatroid is also a (q, r′)-polymatroid for any r′ ≥ r. Hence, all the 
definitions below involving r depend on the choice of r. If it is not necessary to specify 
r, we will simply refer to such an object as a q-polymatroid. If we need to specify the 
q-polymatroid M , we denote its rank function by ρM . Note that a (q, 1)-polymatroid is a 
q-matroid. Conversely, if we consider a q-matroid as a (q, r)-polymatroid, we will always 
take r = 1. In order to stress in a stronger way the distinction between matroids and 
their q-analogues, we may use the terminology “classical matroids” for matroids.

Recall that a lattice isomorphism between a pair of lattices (L1, ∨1, ∧1), (L2, ∨2, ∧2)
is a bijective function ϕ : L1 −→ L2 that preserves the meet and join, that is, for all 
x, y ∈ L1 we have that ϕ(x ∧1 y) = ϕ(x) ∧2 ϕ(y) and ϕ(x ∨1 y) = ϕ(x) ∨2 ϕ(y). It is well 
known that reversing the ordering of a lattice gives again a lattice, with the meet and join 
interchanged. Combining this operation with a lattice isomorphism gives a lattice anti-
isomorphism. Formally, a lattice anti-isomorphism between a pair of lattices is a bijective 
function ψ : L1 −→ L2 that is order-reversing and interchanges the meet and join, that is, 
for all x, y ∈ L1 we have that ψ(x ∧1y) = ψ(x) ∨2ψ(y) and ψ(x ∨1y) = ψ(x) ∧2ψ(y). See [2, 
Pages 3–4]. We hence define a notion of equivalence and duality between q-polymatroids.

Definition 3. Let E1, E2 be Fq-vector spaces. Let M1 = (E1, ρ1) and M2 = (E2, ρ2) be 
q-polymatroids. We say that M1 and M2 are lattice-equivalent if there exists a lattice 
isomorphism ϕ : L(E1) −→ L(E2) such that ρ1(A) = ρ2(ϕ(A)) for all A ≤ E1. In this 
case we write M1 ∼= M2.
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Notation 4. Let F be an Fq-vector space. We denote by ⊥(F ) a fixed anti-isomorphism 
on L(F ), which we require to be an involution. For any subspace U ≤ F we denote 
by U⊥(F ) the image of U under ⊥(F ), which we call the dual of U in F . Note that 
since an anti-isomorphism preserves the length of intervals, we have for any U ≤ F that 
dim(U⊥(F )) = dim(F ) −dim(U). In the case F = E, we simply write ⊥:=⊥(E). For any 
subspace U ≤ E, we write U⊥ := U⊥(E).

Remark 5. The notion of lattice-equivalence of polymatroids in Definition 3 is not the 
same as the definition of equivalence given in [17] and [18]. Indeed, in [17] and [18] two 
q-polymatroids (E1, ρ1) and (E2, ρ2) are said to be equivalent if there exists an Fq-linear 
isomorphism τ : E1 −→ E2 such that ρ1(A) = ρ2(τ(A)) for all A ≤ E1. Since every 
vector space isomorphism induces a lattice isomorphism, equivalence implies lattice-
equivalence for q-polymatroids. In particular, every non-degenerate symmetric bilinear 
form bF on F induces a lattice anti-isomorphism, hence our definition of dual implies 
the usual definition of orthogonal complement for q-polymatroids.

The dual q-polymatroid was defined in [18,28].

Definition 6. Let M = (E, ρ) be a (q, r)-polymatroid. For every subspace A ≤ E, define 
ρ∗(A) := r dim(A) − ρ(E) + ρ(A⊥). Then M∗ := (E, ρ∗) is a (q, r)-polymatroid called 
the lattice-dual of M .

We call M∗ the dual of M . As noted in [17], the definition of the dual of M depends 
on the choice of anti-isomorphism on E, but all such choices yield equivalent duals. We 
prove this for our more general notions of lattice-equivalence and lattice-duality. The 
following is a generalisation of [17, Theorem 2.8].

Lemma 7. Let M = (E, ρ) be a (q, r)-polymatroid and let M ′ = (E, ρ′) be a (q, r)-
polymatroid that is lattice-equivalent to M . Let ⊥, ⊥̂ be a pair of anti-isomorphisms on 
L(E). Let M∗ and M ′ ∗ be the duals of M and M ′ with respect to ⊥ and M ∗̂ the dual of 
M with respect to ⊥̂. Then M∗ ∼= M ′ ∗ and M∗ ∼= M ∗̂.

Proof. For the first part, notice that the proof of [18, Proposition 3.7] carries over directly 
from Fq-isomorphisms to lattice-(anti-)isomorphisms. We include it here for complete-
ness. Let ϕ : L(E) −→ L(E) be the isomorphism such that ρ(A) = ρ′(ϕ(A)) for all 
A ⊆ E. Let ψ : L(E) −→ L(E) be the isomorphism ψ :=⊥ ◦ ϕ ◦ ⊥, so ϕ ◦ ⊥=⊥ ◦ ψ. 
Then

ρ∗(A) = r dim(A) − ρ(E) + ρ(A⊥)

= r dim(A) − ρ′(E) + ρ′(ϕ(A⊥))

= r dim(ψ(A)) − ρ′(ψ(E)) + ρ′(ψ(A)⊥)

= ρ′ ∗(ψ(A)).
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This shows that M∗ ∼= M ′ ∗. For the second statement we proceed in a similar way. Let 
φ : L(E) −→ L(E) be the lattice isomorphism φ :=⊥ ◦ ⊥̂, so ⊥= φ ◦ ⊥̂. Then

ρ∗(A) = r dim(A) − ρ(E) + ρ(A⊥)

= r dim(φ(A)) − ρ(φ(E)) + ρ(φ(A⊥̂))

= ρ∗̂(φ(A)).

This shows that M∗ ∼= M ∗̂. �
Note that M∗∗ = M is an equality, because we assume that the anti-isomorphism ⊥

is an involution.
It is easy to see that for a map ρ : L(E) −→ N0 satisfying the axioms (R1)-(R3), the 

restriction of that map to L(T ), for each subspace T ≤ E, also yields a q-polymatroid.

Definition 8. Let M = (E, ρ) be a (q, r)-polymatroid and let T ≤ E. For every subspace 
A ≤ T , define ρM |T (A) := ρ(A). Then M |T := (T, ρM |T ) is a (q, r)-polymatroid called 
the restriction of M to T .

Another way to construct a new q-polymatroid from an existing one is via contraction. 
It was proven in [17, Theorem 5.2] that this gives in fact a q-polymatroid.

Definition 9. Let M = (E, ρ) be a (q, r)-polymatroid and let T ≤ E. We define the map

ρM/T : L(E/T ) −→ Z

via ρM/T (A/T ) = ρ(A) −ρ(T ). Then M/T := (E/T, ρM/T ) is a (q, r)-polymatroid called 
the contraction of M by T .

It will sometimes be more convenient for us to use the slightly less commonly used 
definition of contraction to a subspace.

Definition 10. Let M = (E, ρ) be a (q, r)-polymatroid and let X ≤ E. We denote by 
M.X the q-polymatroid M.X := (E/X⊥, ρM/X⊥). We call M.X the contraction of M
to X.

In the language of classical matroids, the contraction of M to X is the contraction of 
M by E − X, that is M.X = M/(E − X) (see [25, Chapter 3]). In the q-analogue we 
have M.X := M/X⊥.

The following duality result is a straightforward extension of [19, Theorem 60]. It 
relates the contraction of a q-polymatroid by a subspace with a restriction of its dual 
q-polymatroid. We will make good use of this in Section 6, where we give a construction 
of weighted subspace designs from q-polymatroids.
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Lemma 11. Let M = (E, ρ) be a (q, r)-polymatroid and let T be a subspace of E. Then,

M∗/T ∼= (M |T⊥)∗ and (M/T )∗ ∼= M∗|T⊥.

Proof. Let φ : L(E/T ) −→ L(T⊥) be defined by φ(X/T ) = (X⊥)⊥(T⊥), for each X ≤ E

such that T ≤ X (in which case X⊥ ≤ T⊥). This map is the composition of two 
anti-isomorphisms: the anti-isomorphism between intervals [T, E] and [0, T⊥] induced 
by ⊥ (E), followed by the anti-isomorphism ⊥ (T⊥) on L(T⊥). Hence φ is a lattice 
isomorphism.

Let A be a subspace of E satisfying T ≤ A ≤ E. We claim that ρM∗/T (A/T ) =
(ρM |T⊥)∗(φ(A/T )). Indeed, we have that:

ρM∗/T (A/T ) = ρ∗(A) − ρ∗(T )

= r dim(A) − ρ(T⊥) + ρ(A⊥) − r dim(T )

= r dim(A/T ) − ρM |T⊥(T⊥) + ρM |T⊥(A⊥)

= r dim(φ(A/T )) − ρM |T⊥(T⊥) + ρM |T⊥(φ(A/T )⊥(T⊥))

= (ρM |T⊥)∗(φ(A/T )).

This shows that M∗/T ∼= (M |T⊥)∗. That (M/T )∗ ∼= M∗|T⊥ holds can be seen by 
replacing M with M∗ in the previous identity, taking duals and applying Lemma 7. �
Remark 12. In fact, the above result holds even in terms of equivalence in the stronger 
sense [17, Definition 2.6 (b)], and not only lattice-equivalence, as it was shown in Theorem 
5.3 of the same paper. Note that in establishing the equivalence of these q-polymatroids, 
the vector space isomorphism depends on the choice of the bilinear form arising in the 
construction of the lattice isomorphism.

Having established duality, restriction and contraction in terms of the rank function, 
we now introduce independent spaces.

Definition 13. Let I ≤ E and let M = (E, ρ) be a (q, r)-polymatroid. We say that I is an
independent space of M if ρ(I) = r dim(I). A subspace that is not independent is called 
a dependent space of M . We call C ≤ E a circuit of M if it is a minimal dependent 
space with respect to inclusion. We call T ≤ E a cocircuit of M if it is a circuit of M∗. 
A loop of M is a 1-dimensional space of rank zero.

For q-matroids, the following result is (I2) of the independence axioms (see [9, Defi-
nition 7]). We show that this holds for q-polymatroids.

Lemma 14. Let M = (E, ρ) be a (q, r)-polymatroid and let I ≤ E be an independent 
space of M . Then every subspace of I is independent.
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Proof. Since I is independent, we have ρ(I) = r dim(I). Let J, J ′ be subspaces of I such 
that I is a direct sum of J and J ′. By (R1) and applying semimodularity (R3) to J and 
J ′ we get

r dim(J) + r dim(J ′) ≥ ρ(J) + ρ(J ′) ≥ ρ(J + J ′) + ρ(J ∩ J ′)

= ρ(I) = r dim(I) = r(dim(J) + dim(J ′)).

Since ρ(J) ≤ r dim(J) and ρ(J ′) ≤ r dim(J ′) we must have that ρ(J) = r dim(J) and 
ρ(J ′) = r dim(J ′) and so the result follows. �

From the above lemma, it follows that a circuit cannot be contained in an independent 
space. The next lemma considers what happens to independent spaces and circuits under 
contraction of an independent space.

Lemma 15. Let M = (E, ρ) be a (q, r)-polymatroid and let I ≤ E be an independent space 
of M . Let I ≤ A ≤ E. Then A is independent in M if and only if A/I is independent 
in M/I. Moreover, if A is a circuit in M , then A/I is a circuit in M/I.

Proof. Let A be independent in M . Then

r dim(A/I) = r dim(A) − r dim(I) = ρ(A) − ρ(I) = ρM/I(A/I),

hence A/I is an independent space of M/I. Conversely, if A/I is independent in M/I, 
then

r dim(A) − r dim(I) = r dim(A/I) = ρM/I(A/I) = ρ(A) − ρ(I) = ρ(A) − r dim(I),

so ρ(A) = r dim(A).
Let A be a circuit in M . Any proper subspace of A/I has the form B/I for some 

unique I ≤ B < A. Since A is a circuit, A/I is a dependent space in M/I, and B is 
an independent space of M . Therefore B/I is independent and so A/I is a circuit of 
M/I. �

We conclude this section with some examples given in [19, Example 4] and [17, Ex-
ample 4.8(a)].

Example 16 (The uniform q-matroid). Let k be a positive integer, k ≤ n. The uniform 
q-matroid is the q-matroid M = (E, ρ) with rank function defined as follows:

ρ(U) :=
{

dim(U) if dim(U) ≤ k,

k if dim(U) > k.

We denote this q-matroid by Uk,n.
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Example 17 (The Vámos q-matroid). This q-matroid is constructed over L(F8
q ). Choose 

the canonical basis for F8
q denoted by e1, . . . , e8. Consider the following collection of 

subspaces.

C := {〈e1, e2, e3, e4〉, 〈e1, e2, e5, e6〉, 〈e3, e4, e5, e6〉, 〈e3, e4, e7, e8〉, 〈e5, e6, e7, e8〉}.

For each A ≤ F8
q , we define ρ(A) as follows:

ρ(A) :=

⎧⎪⎨
⎪⎩

dim(A) if dim(A) ≤ 3,
3 if A ∈ C,
4 if dim(A) ≥ 4 and A /∈ C.

It can be shown that ρ is the rank function of a q-matroid whose set of circuits of 
minimum dimension is the set C (see also [17, Prop. 4.6]).

3. Characteristic polynomial of a q-polymatroid

In this section, we introduce the characteristic polynomial of a q-polymatroid. This 
polynomial and its properties are well-studied in the case of a classical polymatroid [21,
32], in which case its coefficients are the Möbius values of the lattice of subsets of [n]. 
In the q-polymatroid case the underlying lattice is the subspace lattice of E. We will 
use the characteristic polynomial to obtain a version of the MacWilliams identities for 
q-polymatroids.

3.1. The Möbius function of a lattice

Throughout this paper we will use the Möbius function (see, e.g., [30, Chapter 25]), 
which is fundamental to the definition of a characteristic polynomial. We recall some 
basic results.

Let (P, ≤) be a partially ordered set. The Möbius function for P is defined via the 
recursive formula

μ(x, y) :=

⎧⎪⎪⎨
⎪⎪⎩

1 if x = y,

−
∑

x≤z<y

μ(x, z) if x < y,

0 otherwise.

Lemma 18 (Möbius Inversion Formula). Let (P, ≤) be a poset and let f, g, h : P −→ Z

be any 3 functions on P . Then, we have:

1. f(x) =
∑
x≤y

g(y) for all x ∈ P if and only if g(x) =
∑
x≤y

μ(x, y)f(y) for all x ∈ P ,

2. f(x) =
∑

h(y) for all x ∈ P if and only if h(x) =
∑

μ(y, x)f(y) for all x ∈ P .

x≥y x≥y
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For the subspace lattice of E and for two subspaces U and V of dimensions u and v, 
we have that

μ (U, V ) =

⎧⎪⎨
⎪⎩

(−1)v−uq(
v−u

2 ) if U ≤ V

0 otherwise.

Definition 19. Given a pair of nonnegative integers a and b, the q-binomial or Gaussian 
coefficient counts the number of b-dimensional subspaces of an a-dimensional subspace 
over Fq and is given by:

[
a
b

]
q

:=
b−1∏
i=0

qa − qi

qb − qi
,

if a ≥ b and is zero if a < b.

We will use the following identities
[
a
b

]
q

=
[

a
a− b

]
q

and
[
a
b

]
q

[
b
c

]
q

=
[
a
c

]
q

[
a− c
a− b

]
q

. (1)

See also [13], for example, for a comprehensive account of the properties of Gaussian 
coefficients. In the following lemma, we note another identity.

Lemma 20. Let I, J be subspaces of E of dimensions i and j, respectively, satisfying 
I ∩ J = {0} and i + j ≤ k. Then, the number of k-dimensional subspaces of E that 
contain I and meet trivially with J is

j∑
s=0

(−1)sq(
s
2)
[
j
s

]
q

[
n− i− s
k − i− s

]
q

= qj(k−i)
[
n− i− j
k − i

]
q

, (2)

where n is the dimension of E.

We omit the details of the proof of this lemma, since it is a straightforward compu-
tation. That the right-hand side of Equation (2) counts the number of k-dimensional 
subspaces of E that contain I and meet trivially with J was already observed, for ex-
ample, in [15, Lemma 3], but is generally well-known. That this number is also given by 
the left-hand side formula can be established using Möbius inversion.

3.2. The characteristic polynomial

We now introduce the characteristic polynomial. First, we give another definition, 
which originates in weight enumeration of linear codes.
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Definition 21. Let M be a (q, r)-polymatroid with ground-space E. For each A ≤ E we 
define

�M (A) := ρM (E) − ρM (A).

By the definition of the rank function of a q-polymatroid, for each subspace A of E
we see that �M (A) is non-negative integer in {0, . . . , ρM (E)}.

Notation 22. For the remainder, we fix r to be a positive integer and we let M denote 
a fixed (q, r)-polymatroid M = (E, ρ). We write � := �M and ρ := ρM . For the dual 
q-polymatroid, we write �∗ := �M∗ and ρ∗ := ρM∗ .

Definition 23. The characteristic polynomial of M is the polynomial in Z[z] defined by

p(M ; z) :=
∑

X : 0≤X≤E

μ(0, X)z�(X),

where μ is the Möbius function of the subspace lattice, L(E).

For the case E = {0}, we have p(M ; z) = 1. If E �= {0}, then p(M ; 1) = 0 and so, 
unless p(M ; z) is identically zero, z−1 is a factor of it in Z[z]. For the (q, r)-polymatroid 
M , we have

p(M ; z) :=
n∑

j=0
(−1)jq(

j
2)

∑
X:X≤E, dim(X)=j

z�(X).

Example 24. We calculate the characteristic polynomial of the Vámos q-matroid of Ex-
ample 17. From the definition of the rank function it follows that:

�(X) =

⎧⎪⎨
⎪⎩

4 − dim(X) if dim(X) ≤ 3,
1 if X ∈ C,
0 if dim(X) ≥ 4 and X /∈ C.

We treat the calculations of the coefficients by the powers of z. For the coefficient of z4

we only have X ≤ E with dim(X) = 0, i.e., the zero space. Then μ(0, X) = μ(0, 0) = 1
and we get the term z4. For z3 and z2, we get:

∑
dim(X)=1

μ(0, X)z�(X) = −
[
8
1

]
q

z3,
∑

dim(X)=2

μ(0, X)z�(X) = q

[
8
2

]
q

z2.

Consider the five circuits of dimension 4 and all spaces of dimension 3, from which we 
deduce that the coefficient of z is:

5q6 − q3
[
8
3

]
.

q
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Finally, the constant term is determined by all spaces of dimension 4 that are not circuits, 
plus all spaces of higher dimension:

q6

([
8
4

]
q

− 5
)

− q10
[
8
5

]
q

+ q15
[
8
6

]
q

− q21
[
8
7

]
q

+ q28

= q6

([
8
4

]
q

− 5 − q4
[
8
3

]
q

+ q9
[
8
2

]
q

− q15
[
8
1

]
q

+ q22

)
.

The sum of all these terms gives the characteristic polynomial of the Vámos q-matroid. 
For example, for q = 2, we have p(M ; z) = z4 − 255z3 + 21590z2 − 776920z + 755584 =
(z − 1)(z3 − 254z2 + 21336z − 755584).

It is easily checked that the characteristic polynomial is an invariant of the lattice-
equivalence class of a q-polymatroid.

Lemma 25. Let E1, E2 be Fq-vector spaces. Let M1 = (E1, ρ1) and M2 = (E2, ρ2) be a 
pair of lattice-equivalent q-polymatroids. Then p(M1; z) = p(M2; z).

Proof. Let φ : L(E1) −→ L(E2) be a lattice isomorphism such that ρ2(φ(X)) = ρ1(X)
for all X ∈ L(E1). Since L(E1) and L(E2) are equivalent lattices, we have that dim(X) =
dim(φ(X)) for all X ∈ L(E1) and in particular μ1(0, X) = μ2(0, φ(X)), where μi denotes 
the Möbius function on L(Ei). Moreover, X ≤ Y in L(E1) if and only if φ(X) ≤ φ(Y )
in L(E2). By assumption, �M1(X) = �M2(φ(X)) for each X ∈ L(E1) and so the result 
follows. �

We have the following results on the characteristic polynomial of the contraction of 
M to a subspace T . These will be important later when we define the q-polymatroid 
version of the rank weight enumerator.

Lemma 26. Let T ≤ E and M = (E, ρ) a q-polymatroid. The following hold.

1. �M.T (X/T⊥) = �M/T⊥(X/T⊥) = �(X).
2. p(M.T ; z) =

∑
X:T⊥≤X≤E

μ(T⊥, X)z�(X).

3. p(M/T ; z) =
∑

X:T≤X≤E

μ(T, X)z�(X).

Proof. The first part follows from a direct computation:

�M.T (X/T⊥) = �M/T⊥(X/T⊥) = ρM/T⊥(E/T⊥) − ρM/T⊥(X/T⊥)

= ρ(E) − ρ(T⊥) − ρ(X) + ρ(T⊥)

= ρ(E) − ρ(X) = �(X).
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Let μ̄ denote the Möbius function on the subspace lattice of E/T⊥. Then, using the 
second equality obtained at item 1 we have:

p(M.T ; z) = p(M/T⊥; z) =
∑

X:T⊥≤X≤E

μ̄(0, X/T⊥)z�M/T⊥ (X/T⊥)

=
∑

X:T⊥≤X≤E

μ(T⊥, X)z�(X),

which proves item 2. The last item follows by replacing T by T⊥ in the equation at item 
2 and the fact that M.T = M/T⊥ (Definition 10). �

Clearly, if T has dimension t, then

p(M.T ; z) =
t∑

j=0
(−1)jq(

j
2)

∑
Y :T⊥≤Y,

dim(Y )=n−t+j

z�(Y ).

Example 27. Let T be a subspace of E = F8
q . We calculate p(M.T ; z) where M is the 

Vámos q-matroid (Example 17). If T has dimension 5, then dim(T⊥) = 3. We only 
need to consider two cases, depending on whether or not T⊥ is contained in a circuit 
(a member of C). Note that the circuits intersect pairwise in dimension 2 or 0, so T⊥

cannot be in more than one circuit.
Suppose T⊥ is in none of the circuits. Then for all X such that T⊥ < X ≤ E we 

have that �(X) = 0. For X = T⊥, we have �(X) = 1. So the q-matroid M.T is lattice-
equivalent to the uniform q-matroid U1,5. Its characteristic polynomial is p(M.T ; z) =
z − 1.

Suppose now that T⊥ is contained in a circuit C ∈ C. Among all X such that T⊥ ≤
X ≤ E we have that �(X) = 1 for X = T⊥ and X = C. Otherwise, �(X) = 0. The 
q-matroid M.T has rank 1 and all 1-dimensional spaces are independent, except for the 
loop C/T⊥. For the characteristic polynomial we get the following:

p(M.T ; z) = μ(T⊥, T⊥)z + μ(T⊥, C)z +
∑

X :T⊥≤X≤E

μ(T⊥, X) −
∑

X :T⊥≤X≤C

μ(T⊥, X)

= 0,

since μ(T⊥, C) = −1.

We continue to develop technical properties of the characteristic polynomial of the 
contraction M.T . In Section 6, we will use the fact that the characteristic polynomial of 
M.T is identically zero when T is an independent space of the dual q-polymatroid.

Lemma 28. A subspace T of E is an independent space of M∗ if and only if �(T⊥) = 0.
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Proof. We have

�(T⊥) = ρ(E) − ρ(T⊥) = ρ(E) − (ρ∗(T ) + ρ(E) − r dim(T )) = r dim(T ) − ρ∗(T ).

Hence T is an independent space of M∗ if and only if �(T⊥) = 0. �
Lemma 29. Let T be a subspace of E such that dim(T ) > 0. If T is an independent space 
of M∗, then p(M.T ; z) = 0.

Proof. By Lemma 28, �(T⊥) = 0. Since all subspaces of an independent space are inde-
pendent, we have that �(X) = 0 for all X such that T⊥ ≤ X. We use this to compute 
the characteristic polynomial. Since T⊥ �= E, we get

p(M.T ; z) =
∑

T⊥≤X≤E

μ(T⊥, X)z�(X) =
∑

T⊥≤X≤E

μ(T⊥, X) = 0. �

Lemma 30. Let T ≤ E be a circuit of M∗ = (E, ρ∗). Then p(M.T ; z) = z�(T
⊥) − 1.

Proof. Let X ≤ E. If T⊥ is strictly contained in X, then X⊥ is strictly contained in T , 
and so X⊥ is independent in M∗. Therefore, Lemma 28 gives that �(X) = 0. Hence

p(M.T ; z) =
∑

T⊥≤X≤E

μ(T⊥, X)z�(X)

= z�(T
⊥) +

∑
T⊥<X≤E

μ(T⊥, X)

= z�(T
⊥) − μ(T⊥, T⊥) = z�(T

⊥) − 1. �
Remark 31. Note that if M is a q-matroid, a cocircuit T of M has �(T⊥) = dim(T ) −
ρ∗(T ) = dim(T ) − (dim(T ) − 1) = 1 hence p(M.T ; z) = z − 1.

Lemma 32. Let M = (E, ρ) be a q-polymatroid and let T ≤ E be an independent space 
of M∗. The following hold.

1. ρ(E) = ρ(T⊥).
2. For any subspace U ≤ T⊥, we have �M |T⊥(U) = �(U).

Proof. By definition of the dual q-polymatroid, we have ρ(T⊥) = ρ∗(T ) −r dim(T ) +ρ(E). 
Since T is independent in M∗, ρ∗(T ) = r dim(T ) and so we get ρ(T⊥) = ρ(E), which 
establishes 1. Therefore, �M |T⊥(U) = ρM |T⊥(T⊥) −ρM |T⊥(U) = ρ(T⊥) −ρ(U) = ρ(E) −
ρ(U) = �(U), which proves item 2. �
Corollary 33. Let T and U be subspaces of E such that T ≤ U and T is independent
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in M∗. If U/T is a circuit in M∗/T , then

p((M∗/T )∗.(U/T ); z) = p(M |T⊥.(U⊥)⊥(T⊥); z) = z�(U
⊥) − 1.

Proof. Recall from Lemma 11 that M∗/T ∼= (M |T⊥)∗ (and hence (M∗/T )∗ ∼= M |T⊥) 
under the map φ : A/T �→ (A⊥)⊥(T⊥) for any A ≤ E with T ≤ A. In particular, if U/T is 
a circuit in M∗/T , then φ(U/T ) is a circuit in (M |T⊥)∗. Moreover φ(U/T )⊥(T⊥) = U⊥. 
From Lemmas 32 and 30 we have

p((M∗/T )∗.(U/T ); z) = p(M |T⊥.φ(U/T ); z) = z�M|T⊥ (U⊥) − 1 = z�(U
⊥) − 1. �

The following result will be used in the proof of Corollary 68.

Lemma 34. Let W ≤ E and let T ≤ W be an independent space of M∗. Then

p(M |T⊥/W⊥; z) =
∑

A :A+T=W

p(M.A; z).

Proof. By Lemmas 26 and 32, we have �M |T⊥/W⊥(U/W⊥) = �(U) for any subspace U

satisfying T ≤ U⊥ ≤ W . Since p(M/U ; z) =
∑

A :U≤A≤E

μ(U, A)z�(A), by applying the 

Möbius inversion formula we have z�(U) =
∑

A :U≤A≤E

p(M/A; z). Therefore, we have

p(M |T⊥/W⊥; z) =
∑

U :W⊥≤U≤T⊥

μ(W⊥, U)z�(U)

=
∑

U :W⊥≤U≤T⊥

μ(W⊥, U)
∑

A :U≤A≤E

p(M/A; z)

=
∑

U :W⊥≤U≤T⊥

μ(W⊥, U)
∑

A :U≤A≤E

p(M.A⊥; z)

=
∑

V :W⊥≤V ⊥≤T⊥

μ(W⊥, V ⊥)
∑

A :V ⊥≤A≤E

p(M.A⊥; z)

=
∑

V :T≤V≤W

μ(W⊥, V ⊥)
∑

A : 0≤A≤V

p(M.A; z)

=
∑

A : 0≤A≤W

p(M.A; z)
∑

V :A+T≤V≤W

μ(W⊥, V ⊥)

=
∑

A :A+T=W

p(M.A; z),

where the last equality follows from the fact that
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∑
V :A+T≤V≤W

μ(W⊥, V ⊥) =
∑

V :W⊥≤V ⊥≤A⊥∩T⊥

μ(W⊥, V ⊥) =
{

1 if A⊥ ∩ T⊥ = W⊥,

0 otherwise.
�

We now present some further results on the characteristic polynomial.

Lemma 35. Let e be a one-dimensional subspace of E. The following are equivalent:

1. p(M.e; z) = 0,
2. ρ(e⊥) = ρ(E),
3. e is independent in M∗.

Proof. We have p(M.e; z) = z�(e
⊥) − z�(E) = z�(e

⊥) − 1, which is zero if and only if 
�(e⊥) = ρ(E) −ρ(e⊥) = 0. This shows that the equalities at items 1 and 2 are equivalent. 
The one-dimensional space e is independent in M∗ if and only if ρ∗(e) = r. Since ρ∗(e) =
r dim(e) − ρ(E) + ρ(e⊥) = r − ρ(E) + ρ(e⊥), this occurs if and only if ρ(e⊥) = ρ(E), 
which shows that statements 2 and 3 are equivalent. �
Remark 36. For a polymatroid M , parts 1 and 2 of the above lemma (with e⊥ replaced 
by the set theoretic complement ec := E − {e}) are implied if e is a loop in M . Indeed, 
if e is a loop, then by semimodularity we get that ρ(ec) = ρ(E). For a q-polymatroid, 
however, it may occur that e ≤ e⊥, in which case if e is a loop, semimodularity does 
not imply that ρ(e⊥) = ρ(E). Note that in the polymatroid case, e being a loop in M
implies that ρ∗(e) = r · |e| − ρ(E) + ρ(ec) = r, i.e., that e is independent in M∗.

Definition 37. For each A ∈ L(E), define c(A) := {X ≤ E : A ≤ X, ρ(A) = ρ(X)}. The
closure of A in the (q, r)-polymatroid M is denoted by cl(A) and is defined to be the 
vector space sum of the members of c(A); that is, cl(A) :=

∑
X∈c(A) X.

Remark 38. If M is a q-matroid, cl({0}) is the space spanned by its loops.

Lemma 39. Let L = cl({0}). Let X be a subspace of E such that X⊥ ≤ L. Then

p(M.X; z) =

⎧⎪⎪⎨
⎪⎪⎩

zρ(E) +
∑

A :X⊥�A≤E

μ(X⊥, A)z�(A) if X = L⊥,

∑
A :X⊥≤A≤E,A�L

μ(X⊥, A)z�(A) otherwise.

If X⊥ = L, then p(M.X; z) is a monic polynomial of degree ρ(E) in z. In particular, if 
M has no loops, then p(M ; z) is a monic polynomial of degree ρ(E).

Proof. From Lemma 26 we have that

p(M.X; z) =
∑
⊥

μ(X⊥, A)z�(A)
A :X ≤A≤E
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= zρ(E)
∑

A :X⊥≤A≤L

μ(X⊥, A) +
∑

A :X⊥≤A≤E,A�L

μ(X⊥, A)z�(A).

By the definition of the Möbius function, 
∑

A :X⊥≤A≤L

μ(X⊥, A) = 0 unless X⊥ = L. If 

A � L, then �(A) = ρ(E) − ρ(A) < ρ(E), so if L = X⊥, then p(M.X; z) is a monic 
polynomial with leading term zρ(E). Furthermore, setting X = E, we obtain that if M is 
a q-matroid with no loops, then its characteristic polynomial is monic of degree ρ(E). �

In the q-matroid case, cryptomorphisms between axiom systems such as those relating 
to independent spaces, the closure function, flats, hyperplanes etc., were established in 
[9]. We therefore have the following facts, as in the case for classical matroids. The reader 
is referred to [9] and the references therein for further details. A subspace F is called 
a flat of a q-matroid if cl(F ) = F . For each B ≤ E, there is a unique flat F such that 
cl(B) = F , in which case ρ(B) = ρ(F ). Moreover, if M is a q-matroid, its collection of 
flats forms a semi-modular lattice [8]. A hyperplane H < E is a flat that is maximal 
with respect to containment, that is, if H ≤ F for some flat F , then either F = E or 
F = H. Every flat of M is an intersection of hyperplanes and for every hyperplane H, 
we have that H⊥ is a cocircuit of M . Therefore, for every flat F of M , F⊥ is the vector 
space sum of a collection of cocircuits.

The following result will be used in Lemma 73.

Theorem 40. Let M be a q-matroid. Let X be a subspace of E and suppose that X
contains a unique cocircuit C. Then

p(M.X; z) =
{

z − 1 if X = C,

0 otherwise.

Proof. If X = C, then by Remark 31 we have that p(M.X; z) = z− 1. Assume now that 
C � X. Then X is not a sum of cocircuits of M and hence X⊥ is not a flat. Clearly 
X is a dependent space of M∗ and by the uniqueness of C, any subspace of X that is 
dependent in M∗ contains C. Therefore, by Lemma 28, �(A⊥) = 0 for every A ≤ X such 
that C � A.

Let F be a flat of M . For any A ≤ E such that cl(A⊥) = F , we have ρ(A⊥) = ρ(F )
and hence �(A⊥) = �(F ). Furthermore, cl(C⊥) = C⊥ since C is a cocircuit of M . This 
will be used in the following computation of p(M.X; z):

p(M.X; z) =
∑

A :X⊥≤A≤E

μ(X⊥, A)z�(A) =
∑

A :A≤X

μ(A,X)z�(A
⊥)

=
∑

A :C≤A≤X

μ(A,X)z�(A
⊥) +

∑
A :A≤X,C�A

μ(A,X)
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=
∑

F : cl(F )=F

X⊥≤F≤C⊥

∑
A :X⊥≤A⊥≤C⊥

cl(A⊥)=F

μ(X⊥, A⊥)z�(F ) +
∑

A:A≤X

μ(A,X)

−
∑

A:C≤A≤X

μ(A,X)

=
∑

F : cl(F )=F

X⊥≤F≤C⊥

z�(F )
∑

A :X⊥≤A⊥≤C⊥

cl(A⊥)=F

μ(X⊥, A⊥).

Since X⊥ is not a flat, by [32, Proposition 3.3], we have 
∑

A :X⊥≤A⊥≤C⊥

cl(A⊥)=F

μ(X⊥, A⊥) = 0, 

and so the result follows. �
Remark 41. In fact, by a similar argument (also essentially the same as for classical ma-
troids), for a q-matroid M , we have p(M.X; z) = 0 unless X⊥ is a flat in M . Equivalently, 
we have that p(M.X; z) = 0 unless X is a sum of cocircuits of M .

3.3. The weight enumerator of a q-polymatroid

We next define the weight enumerator of a q-polymatroid. In Section 5, we will show 
that its values satisfy a duality property and in Section 6, we will apply this duality 
result to establish a criterion for identifying a weighted subspace design determined by 
a q-polymatroid.

Definition 42. We define the weight enumerator of the (q, r)-polymatroid M to be the 
list [AM (i; z) : 0 ≤ i ≤ n], where for each i we define

AM (i; z) :=
∑

X:X≤E,dim(X)=i

p(M.X; z) =
∑

X:X≤E,dim(X)=i

p(M/X⊥; z).

Lemma 43. Let T be a subspace of E. The following hold.

1. If T ≤ Z ≤ E, then p((M/T )
/
(Z/T ); z) = p(M.Z⊥; z).

2. AM/T (j; z) =
∑

X≤T⊥:dim(X)=j

p(M.X; z).

Proof. Let T ≤ Z ≤ Y ≤ E. Then (Y/T )
/
(Z/T ) and Y/Z are isomorphic. Let V =

(E/T )
/
(Z/T ) and write MV = (M/T )

/
(Z/T ). We have a lattice isomorphism between 

L(E/Z) and L(V ). Moreover, it is easy to check that ρMV
((Y/T )

/
(Z/T )) = ρM/Z(Y/Z). 

Therefore, MV and M/Z are lattice-equivalent q-polymatroids. We thus have

p(MV ; z) = p(M/Z; z) = p(M.Z⊥; z).
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Let X ≤ T⊥. It is straightforward to check that dim((X⊥/T )⊥(E/T )) = dim(X). There-
fore,

AM/T (j; z) =
∑

X:X⊥/T≤E/T,

dim((X⊥/T )⊥(E/T ))=j

p((M/T )
/
(X⊥/T ); z) =

∑
X:X≤T⊥

dim(X)=j

p(M.X; z). �

4. Matrix codes and q-polymatroids

We consider properties of a q-polymatroid arising from an Fq-linear rank-metric code. 
There are several papers outlining properties of rank-metric codes. The q-polymatroids 
associated with these structures have been studied in [17,18,28].

Notation 44. Throughout this section, we let m be a positive integer and E = Fn
q . 

We write U⊥ to denote the orthogonal complement of U ≤ E with respect to a non-
degenerate symmetric bilinear form bE on E. By abuse of notation, we also write U⊥ to 
denote the orthogonal complement of

• U ≤ Fn×m
q with respect to the inner product bFn×m

q
defined by bFn×m

q
(X, Y ) =

Tr(XY T ) for all X, Y ∈ Fn×m
q and

• U ≤ Fn
qm with respect to the dot product defined by x · y =

∑n
i=1 xiyi for all x =

(x1, . . . , xn), y = (y1, . . . yn) ∈ Fn
qm .

Definition 45. We say that C ⊆ Fn×m
q is a linear rank-metric code, or a matrix code

if C is a subspace of Fn×m
q . The minimum distance of C is the minimum rank of any 

nonzero member of C. We say that C is an Fq-[n × m, k, d] rank-metric code if it has 
Fq-dimension k and minimum distance d. The dual code of C is given by C⊥ := {Y ∈
Fn×m
q : Tr(XY T ) = 0 ∀X ∈ C}. Finally, for each i ∈ {0, . . . , n}, we define Wi(C) :=

|{A ∈ C : rank(A) = i}|. The list [Wi(C) : 0 ≤ i ≤ n] is called the weight distribution of 
C.

For X ≤ E we write colsp(X) to denote the column space of X over Fq.

Definition 46. Let X ∈ Fn×m
q and let U ≤ E. We say that U is the support of X if 

colsp(X) = U . Let C be an Fq-[n ×m, k, d] rank-metric code. We say that U is a support
of C if there exists some X ∈ C with support U .

Definition 47. Let m be a positive integer and let C be an Fq-[n ×m, k, d] rank-metric 
code. For each subspace U ≤ E, we define

CU := {A ∈ C : colsp(A) ≤ U⊥} and C=U := {A ∈ C : colsp(A) = U⊥}.

Let ρ : L(E) −→ N≥0 be defined by ρ(U) := k − dim(CU ). Then (E, ρ) is a (q, m)-
polymatroid [18, Theorem 5.3] and we denote it by MC .
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Clearly, we have �(U) = dim(CU ) for every U ≤ E.

Lemma 48. Let C be an Fq-[n ×m, k, d] rank-metric code. The following hold.

1. MC⊥ = (MC)∗.
2. p(MC/U ; q) = |C=U |.
3. Wi(C) = AMC

(i; q) for each i ∈ [n].
4. AMC

(i; q) = 0 if and only if p(MC .U ; q) = 0 for every i-dimensional subspace U ≤ E.
5. If AMC

(i; q) = 0, then AMC/T (i; q) = 0 for every subspace T ≤ E.

Proof. Item 1 has been established in [18, Theorem 7.1]. Let M = MC . Since |CU | =∑
V :U≤V

|C=V |, by Möbius inversion we have

|C=U | =
∑

V :U≤V

μ(U, V )|CV | =
∑

V :U≤V

μ(U, V )q�(V ) = p(M/U ; q) = p(M.U⊥; q).

Therefore 2 holds. The number of codewords of C that have rank i over Fq is

Wi(C) =
∑

U : dim(U)=n−i

|C=U | =
∑

U : dim(U)=n−i

p(M.U⊥; q) =
∑

U : dim(U)=i

p(M.U ; q)

= AM (i; q),

which gives 3. Clearly, AM (i; q) = 0 if and only if p(M.U ; q) = 0 for each U ≤ E

of dimension i, which gives the statement at item 4. Let T be a subspace of E. By 
Lemma 43 we have

AM/T (i; q) =
∑

X≤T⊥ : dim(X)=i

p(M.X; q).

If AM (i; q) = 0, then from item 4 we have p(M.X; q) = 0 for each i-dimensional subspace 
X, and so we get AM/T (i; q) = 0, which proves the statement in item 5. �
Remark 49. Note that Part 2 of Lemma 48 is an instance of the Critical Theorem [14]
for q-polymatroids and matrix codes.

Remark 50. In [18], the authors define a pair of q-polymatroids associated with a matrix 
code. The one given above is the q-polymatroid whose rank function is determined by the 
column-spaces of the codewords. A second q-polymatroid is the one whose rank function 
is determined by the row spaces of the codewords.

One way to construct an Fq-[n ×m, k, d] rank-metric code is by taking a subspace of 
Fn
qm , and expanding its elements with respect to a basis of Fqm over Fq. Such rank-metric 

codes are referred to as vector rank-metric codes.
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Definition 51. Let Γ be a basis of Fqm over Fq. For each x ∈ Fn
qm , we write Γ(x) to denote 

the n ×m matrix over Fq whose ith row is the coordinate vector of the ith coefficient of 
x with respect to the basis Γ. The rank of x is the rank of the matrix Γ(x). Note that 
the rank of x is well-defined, being independent of the choice of basis Γ.

For the remainder, we fix Γ to be a basis of Fqm over Fq.

Definition 52. A (linear rank-metric) vector code C is an Fqm-subspace of Fn
qm . The

minimum distance of C is the minimum rank of any non-zero element of C. We say that 
C is an Fqm-[n, k, d] code if it has Fqm-dimension k and Γ(C) has minimum rank distance 
d. The code C⊥ denotes the dual code of C with respect to the standard dot product on 
Fn
qm .

Each vector rank-metric code determines a q-matroid, as follows.

Definition 53. Let C be an Fqm-[n, k, d] rank-metric code. Let U ≤ E and let x ∈ C. We 
say that U is a support of x if U is the column space of Γ(x) and we write σ(x) = U . 
For each subspace U ≤ E, we define

CU := {x ∈ C : σ(x) ≤ U⊥} and C=U := {x ∈ C : σ(x) = U⊥}.

Let ρ : L(E) −→ N≥0 be defined by ρ(U) := k−dimFqm
(CU ). Then (E, ρ) is a q-matroid 

[19, Theorem 24] and we denote it by MC .

Remark 54. Note that in the definition given above, the rank function for the q-matroid 
of C is the rank function of the associated (q, m)-polymatroid as defined in Definition 47, 
divided by m. Since C is Fqm -linear, CU is an Fqm-vector space for each subspace U and 
so has Fq-dimension a multiple of m. Therefore the results of Lemma 48 hold with qm in 
place of q. For example, with respect to the characteristic polynomial of the q-matroid, 
we have p(M/U ; qm) = |C=U | for an Fqm-[n, k, d] code C and subspace U .

Let C be an Fqm-[n, k, d] code. Recall that for any U ≤ Fn
q we have

�MC
(U) = dimFqm

(CU ) = dim({x ∈ C : σ(x) ≤ U⊥}).

Now U⊥ is independent in MC⊥ if and only if �MC
(U) = 0, which occurs if and only 

if no subspace of U⊥ is a support of C. Therefore every support of C corresponds to a 
dependent space of MC⊥ .

In the following example we illustrate the notions discussed in Sections 3 and 4. We 
calculate the characteristic polynomial of MC by carefully studying the structure of the 
q-matroid and its dual.

Example 55. Let α be a root of x6+x4+x3+x +1 ∈ F26 [x]. Then α is a primitive element 
of F26 . Let C be the F26 -[6, 3, 3] vector rank-metric code generated by the matrix:
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�(U)
dim(U) 0 1 2 3 4 5 6

0 0 0 0
[
6
3

]
2
− 9 = 1386

[
6
4

]
2

= 651
[
6
5

]
2

= 63 1

1 0 0
[
6
2

]
2

= 651 9 0 0 0

2 0
[
6
1

]
2

= 63 0 0 0 0 0

3 1 0 0 0 0 0 0

Fig. 1. Number of subspaces for each possible �(U) value.

G =

⎡
⎢⎣ 1 0 0 α13 α47 α35

0 1 0 α44 α62 α32

0 0 1 α34 α22 α19

⎤
⎥⎦ .

With respect to the basis Γ = {1, . . . , α5}, the rows of G are expanded to the following 
binary matrices:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 1 0 0
0 1 0 1 1 1
1 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 1 1 1
1 0 1 1 0 1
0 1 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
1 0 1 0 0 1
0 0 1 1 1 0
0 1 1 1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

A basis of Γ(C) over F2, which has 18 elements, is found by multiplying each row 
of G by successive powers of α and expanding with respect to Γ. We have that 
Γ(C) is an F2-[6 × 6, 18, 3] rank-metric code with rank-metric weight distribution 
[1, 0, 0, 567, 37044, 142884, 81648]. Moreover, C is formally self-dual, that is, its dual code 
has the same weight distribution as C. Now consider the q-matroid M := MC arising from 
C, with rank function satisfying ρ(U) = 3 − dimF26

(CU ) for each U ≤ F6
2 . In Fig. 1 we 

write down the number of subspaces of F6
2 for each possible value of �(U) = dimF26

(CU ).
Using the entries of the table of Fig. 1, we write down the characteristic polynomial 

of M :

p(M ; z) =
∑

U : 0≤U≤E

μ(0, U)z�(U)

= z3 +
∑

U : 0�U≤E,�(U)=2

μ(0, U)z2 +
∑

U : 0�U≤E,�(U)=1

μ(0, U)z

+
∑

U :0�U≤E,�(U)=0

μ(0, U)

= z3 − 63z2 + 1230z − 1168 = (z − 1)(z2 − 62z + 1168).
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We will explain the values in this table column by column from right to left: recall that 
to say something about �(U), we have to consider how the supports of C relate to U⊥. 
Along the way, we will compute the different possible values of p(M/U ; qm) = |C=U |, 
which, by Lemma 48, counts the number of codewords of C with support equal to U⊥.

Since the rank distance of C is 3, C has no supports of dimension less than 3 apart 
from {0}. Hence �(U) = dimF6

2
(CU ) = 0 for each of the 651 subspaces U ≤ F6

2 of 
dimension 4 and each of the 63 spaces of dimension 5. So by Lemma 28, the respective 1
and 2-dimensional orthogonal complements of these spaces are independent in M∗. We 
remark that by Lemma 48, we have M∗ = MC⊥ .

We now consider the 3-dimensional subspaces. Since any proper subspace of a 3-
dimensional subspace U ≤ F6

2 is independent in M∗, it must be the case that if U is 
dependent in M∗, it is a cocircuit of M . Then by Remark 31, we have �(U⊥) = 1 (indeed 
p(M.U ; z) = z − 1) and p(M.U ; 26) = |C=U⊥ | = 26 − 1 = 63.

Therefore, by inspection of the weight enumerator, we see that there are 9 = 567/63, 
different 3-dimensional spaces that are supports of C. We list the 3-dimensional cocircuits 
of M below:

〈(010011), (001010), (000100)〉, 〈(101100), (010000), (000001)〉,
〈(100001), (011000), (000010)〉, 〈(100111), (010010), (001101)〉,
〈(100110), (010101), (001001)〉, 〈(100010), (001011), (000111)〉,
〈(110001), (000101), (000011)〉, 〈(100100), (010100), (001111)〉,
〈(100000), (010110), (001000)〉.

Every other 3-dimensional subspace U is a non-support of C, as are all its nontrivial 
subspaces, hence �(U⊥) = dimF26

(CU⊥) = 0. We remark that Lemma 28 says for such 
U that U⊥ is independent in M∗, and Lemma 29 gives that p(M.U ; z) = 0.

By computation, we obtain that there are 588 4-dimensional supports of C and that 
none of these spaces contains a cocircuit of dimension 3. Therefore, each such subspace U
is itself a cocircuit and so we have that �(U⊥) = 1, p(M.U ; z) = z−1, and p(M.U ; 26) =
|C=U⊥ | = 26−1.

There remain a further 
[
6
4

]
2
−588 = 63 4-dimensional subspaces that are not supports 

of C. Every 3-dimensional cocircuit is contained in 
[
6 − 3
4 − 3

]
2

=
[
3
1

]
2

= 7 different 4-

dimensional spaces and every pair of 3-dimensional cocircuits span F6
2 . Therefore, every 

4-dimensional non-support of C contains at most one 3-dimensional cocircuit and since 
there are 9 · 7 = 63 such 4-dimensional non-supports altogether, each of them contains 
a unique 3-dimensional cocircuit. It follows that �(U⊥) = 1 for every 4-dimensional 
subspace U .

By direct computation it can be checked that there are 63 5-dimensional supports of C
and of course the only 6-dimensional support is the entire space F6

2 . Each 5-dimensional 
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support U is the support of exactly 2268 different codewords, so p(M.U ; 26) = |C=U⊥ | =
2268. Therefore, �(U⊥) = dimF26

(CU⊥) ≥ 2. If �(U⊥) = 3 then the support of every 
codeword is contained in U , which is impossible as C has words of rank 6. It follows that 
�(U⊥) = 2.

All computations carried out in this example were done using Magma [3].

5. MacWilliams identities for q-polymatroids

We establish a version of the MacWilliams identities for the (q, r)-polymatroids, which 
we shall use in establishing criteria for the existence of a weighted t-design over Fq. 
Duality via the rank polynomial of a q-polymatroid was considered in [28]. We start 
with a result that relates the characteristic polynomial of a q-polymatroid to that of its 
dual. The statements of Theorem 56 and Corollary 57 may be regarded as q-analogues 
of [6, Corollary 12]. However, unlike the proofs given here, which rely only on Möbius 
inversion, the proof of [6, Corollary 12] relies on an existing version of the MacWilliams 
duality theorem for matroids, which shows that the weight enumerator polynomial of 
the dual of a matroid can be retrieved from the weight enumerator polynomial of the 
original matroid by a substitution of variables. Recall that M denotes an arbitrary but 
fixed (q, r)-polymatroid (E, ρ).

Theorem 56. Let U ≤ E. Then

∑
A:A≤U

p(M∗.A; z) = zr dim(U)−ρ(E)
∑

A:A≤U⊥

p(M.A; z).

Proof. We have by Lemma 26 and then replacing X with A⊥ that

p(M∗.U ; z) =
∑

X :U⊥≤X≤E

μ(U⊥, X)z�
∗(X) =

∑
A :A≤U

μ(A,U)z�
∗(A⊥).

To this we apply Möbius inversion (Lemma 18 part (2)), duality (Definitions 6 and 21) 
and Möbius inversion again to get

∑
A :U≤A≤E

p(M∗.A; z) = z�
∗(U)

= z�(U
⊥)−ρ(E)+r dim(U⊥)

= zr dim(U⊥)−ρ(E)
∑

A :U⊥≤A≤E

p(M.A; z). �

We now show that for any subspace U ≤ E, the characteristic polynomial of M∗.U is 
completely determined by the set {(p(M.V ; z), V ) : V ≤ E}.
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Corollary 57. Let U ≤ E. We have the identity:

zρ(E)p(M∗.U ; z) =
∑
V≤E

p(M.V ; z)
dim(U∩V ⊥)∑

j=0

[
dim(U ∩ V ⊥)

j

]
q

(−1)dim(U)−jq(
dim(U)−j

2 )zjr.

Proof. From Lemma 56, we have:
∑

A :A≤U

p(M∗.A; z) = zr dim(U)−ρ(E)
∑

V :V≤U⊥

p(M.V ; z). (3)

Apply the Möbius inversion formula to Equation (3) to get the identity

p(M∗.U ; z) =
∑

A :A≤U

μ(A,U)zr dim(A)−ρ(E)
∑

V :V≤A⊥

p(M.V ; z).

We thus have that:

zρ(E)p(M∗.U ; z)

=
∑

A :A≤U

μ(A,U)zr dim(A)
∑

V :V≤A⊥

p(M.V ; z)

=
∑

V :V≤E

p(M.V ; z)
∑

A :A≤U∩V ⊥

μ(A,U)zr dim(A)

=
∑

V :V≤E

p(M.V ; z)
dim(U∩V ⊥)∑

j=0

[
dim(U ∩ V ⊥)

j

]
q

(−1)dim(U)−jq(
dim(U)−j

2 )zjr. �

We now have the following MacWilliams identity, relating the weight enumerators of 
M and M∗. This version of the identity, or rather its corollary, will be used to prove the 
main theorem of Section 6.

Theorem 58. Let s ∈ {0, . . . , n}. Then

n−s∑
i=0

[
n− i
s

]
q

AM (i; z) = zρ(E)−rs
s∑

i=0

[
n− i
s− i

]
q

AM∗(i; z).

Proof. We start with the left-hand-side of the equation and rewrite it, noting that [
n− i
s

]
q

=
[

n− i
n− s− i

]
q

counts the number of (n − s)-dimensional subspaces of E that 

contain a fixed space of dimension i. This yields:

n−s∑[
n− i
s

]
q

AM (i; z) =
n−s∑[

n− i
n− s− i

]
q

∑
p(M.X; z)
i=0 i=0 X:dim(X)=i
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=
∑

U : dim(U)=n−s

∑
X≤U

p(M.X; z).

From Lemma 56, this gives:

n−s∑
i=0

[
n− i
s

]
q

AM (i; z) =
∑

U : dim(U)=n−s

zρ(E)−r dim(U⊥)
∑

X≤U⊥

p(M∗.X; z)

=
∑

V : dim(V )=s

zρ(E)−rs
∑

X:X≤V

p(M∗.X; z)

= zρ(E)−rs
s∑

i=0

[
n− i
s− i

]
q

∑
X: dim(X)=i

p(M∗.X; z)

= zρ(E)−rs
s∑

i=0

[
n− i
s− i

]
q

AM∗(i; z). �

Theorem 58 shows that the weight enumerator of a q-polymatroid and that of its 
dual are related by invertible q-Pascal matrices. The minors of such matrices have been 
studied as q-analogues of the classical Pascal matrices. We will use the following result 
from [22, Theorem 2.2].

Lemma 59. Let r1, . . . , rn be a sequence of non-negative integers. We have

det
([

ri
j − 1

]
q

)
1≤i,j≤n

= q(
n
2)

∏
1≤i<j≤n

qrj − qri

qj − qi
.

The next corollary (cf. [5, Corollary 3.2] for matroids) is the main device used to prove 
Theorem 66, which identifies sufficiency criteria for the existence of weighted subspace 
designs arising from the dependent spaces of a q-polymatroid (cf. [5, Theorem 3.3 ]). We 
remark that the reasoning used here is similar to that of the original Assmus-Mattson 
Theorem and its generalizations.

Corollary 60. Let S ⊆ {1, . . . , n}. The pair of lists

[AM∗(i; z) : |S| ≤ i ≤ n] and [AM (j; z) : j ∈ S],

is determined uniquely by the pair of lists

[AM∗(i; z) : 1 ≤ i ≤ |S| − 1] and [AM (j; z) : j ∈ [n] − S].

Proof. Let AM (z) := (AM (i; z))0≤i≤n and let AM∗(z) := (AM∗(i; z))0≤i≤n. Note that 
AM (0; z) = AM∗(0; z) = 1, and in particular are known. From Theorem 58, we have the 
matrix equation
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([
n− i
s

]
q

)
0≤i,s≤n

AM (z) = diag(zρ(E)−rs)0≤s≤n

([
n− i
n− s

]
q

)
0≤i,s≤n

AM∗(z).

Let t = |S| and write S = {�1, . . . , �t}. By Lemma 59, we have

det
([

n− �i
s− 1

]
q

)
1≤i,s≤t

= q(
t
2)

∏
1≤i<s≤t

qn−�s − qn−�i

qs − qi
,

which is non-zero, as the �i are distinct. Now suppose that the coefficients AM(j; z) are 
known for j /∈ S and that the AM∗(j; z) are known for 0 ≤ j ≤ t − 1. Then we can solve 
for the unknown AM (j; z) via

(AM (�i; z))1≤i≤t =
([

n− �j
s− 1

]
q

)−1

1≤j,s≤t

×

⎛
⎝diag(zρ(E)−rs)0≤s≤t−1

([
n− j
n− s

]
q

)
0≤s,j≤t−1

(AM∗(j; z))0≤j≤t−1

−
([

n− j
s− 1

]
q

)
1≤s≤t

j∈{0,...,n}−S

(AM (j; z))j∈{0,...,n}−S

⎞
⎟⎠ .

Once the list [AM (j; z) : j ∈ S] is determined, since AM (z) is now known, Theorem 58
can be applied to retrieve [AM∗(i; z) : t ≤ i ≤ n]. �
6. Weighted subspace designs from q-polymatroids

6.1. Weighted subspace designs

In [5], the authors define a weighted design, which generalizes a t-design. A t-(n, k, λ)
design, with t, k, λ positive integers, is a collection of k-subsets of an n-set (called blocks) 
with the property that every t-subset of the n-set is contained in exactly λ blocks. A q-
analogue of this notion is that of a t-design over Fq, which is a collection of k-dimensional 
subspaces of E called blocks, with the property that every t-dimensional subspace of E
is contained in the same number of blocks. Similarly, there is a q-analogue of a weighted 
t-design.

Definition 61. Let G be an additive group, let t, k be positive integers, and let λ ∈ G. 
A weighted t-(n, k, λ; q) design D is a triple (E, B, f) for which B is a collection of k-
dimensional subspaces of E (called blocks) and f : B �→ G is a weight function such that 
for every t-dimensional spaces T of E, 

∑
B:T≤B

f(B) = λ. We say that D is a weighted 

subspace design or is a weighted design over Fq.
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A subspace design (a design over Fq) can be interpreted as a weighted subspace 
design with the weight function f(B) := 1 for all B ∈ B, and G = (Z, +). For an 
excellent survey on subspace designs, see [4]. In general, obtaining new subspace designs 
is a difficult problem, often highly dependent on computer search, which is exacerbated 
by the number of subspaces involved (which is exponential in comparison to classical 
designs for the same parameters). For example, it is not yet known if a 3-(8, 4, 1; 2)
subspace design exists; such a design would have 6477 blocks, chosen from an ambient 
space having 200,787 4-dimensional subspaces. Its classical analogue, the extended Fano 
plane, has 14 blocks, chosen from a collection of 70 4-sets. In [8], a construction of a q-
analogue of a perfect matroid design (q-PMD) was given, which is a q-matroid for which 
all flats of the same dimension have the same rank. This q-PMD yields a construction of 
a subspace design from a q-Steiner system. In the following sections we will show another 
way that subspace designs and weighted subspace designs can arise from q-polymatroids 
satisfying certain rigidity properties.

The intersection numbers of a weighted subspace design are important invariants and 
can be used to establish non-existence results. Their values are the same as for subspace 
designs; see, for example [20, Fact 1.5] or [29].

Theorem 62. Let (E, B, f) be a t-(n, k, λ; q) weighted subspace design and let I, J be two 
subspaces of E of dimension i and j, respectively, such that I ∩ J = {0}. If i + j ≤ t, 
then

∑
B∈B : I≤B,B∩J={0}

f(B) = q(k−i)j
[
n− i− j
k − i

]
q

[
n− t
k − t

]−1

q

λ.

In particular, this number is independent of the choice of I of dimension i and J of 
dimension j. We denote it by λi,j.

Proof. If X is a subspace of E of dimension x ≤ t, then since (E, B, f) is a weighted 
subspace design, we have

[
k − x
t− x

]
q

∑
B∈B :X≤B

f(B) =
∑

B∈B :X≤B

∑
T :X≤T≤B,dim(T )=t

f(B), (4)

=
∑

T :X≤T,dim(T )=t

∑
B∈B :T≤B

f(B) =
[
n− x
t− x

]
q

λ.

Now restrict to a subspace X of the form X = I + L for some L ≤ J of dimension s. 
Then I ∩ L = {0} and dim(I + L) = i + s and so Equation (4) becomes:

g(L) :=
∑

B∈B : I+L≤B

f(B) =
[
n− (i + s)
t− (i + s)

]
q

[
k − (i + s)
t− (i + s)

]−1

q

λ.
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Define h(K) =
∑

B∈B : I≤B,B∩J=K

f(B), for each K ≤ J . Then we have that

g(L) =
∑

K : L≤K≤J

h(K)

and so, by Möbius inversion on the lattice L(J),

h(L) =
∑

K : L≤K≤J

μ(L,K)g(K).

Substituting L = {0} now gives
∑

B∈B : I≤B,B∩J={0}
f(B) = h({0}) =

∑
K≤J

μ(0,K)g(K)

=
j∑

s=0

[
j
s

]
q

(−1)sq(
s
2)
[
n− i− s
t− i− s

]
q

[
k − i− s
t− i− s

]−1

q

λ

= λ

[
n− t
k − t

]−1

q

j∑
s=0

(−1)sq(
s
2)
[
j
s

]
q

[
n− i− s
k − i− s

]
q

= λ

[
n− t
k − t

]−1

q

qj(k−i)
[
n− i− j
k − i

]
q

The third line follows from applying Equation (1) with a = n − i − s, b = k − i − s, 
c = t − i − s, and the last equality follows from Lemma 20. �

The proof outlined above is a direct q-analogue of [5, Theorem 2.6]. The intersection 
numbers for subspace designs were given in [12,29], for which the authors proposed an 
inductive argument.

We have the following constructions of weighted subspace designs from a given one 
(cf. [20,29]).

Corollary 63. Let D := (E, B, f) be a weighted t-(n, k, λ; q) design.

1. For 0 ≤ i ≤ t, D is an i-(n, k, λi; q) weighted subspace design with

λi =
[
n− i
k − i

]
q

[
n− t
k − t

]−1

q

λ =
[
n− i
t− i

]
q

[
k − i
t− i

]−1

q

λ.

2. Define B⊥ := {B⊥ : B ∈ B}. If k ≤ n − t then D⊥ = (E, B⊥, f⊥) is a t-(n, n −
k, λ⊥; q) weighted subspace design with f⊥(B⊥) := f(B) for all B ∈ B and λ⊥ :=[
n− k

t

] [
k
t

]−1

λ.

q q
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Proof. To see that item 1 holds, apply Theorem 62 with λi := λi,0. Let I be an i-

dimensional subspace of E. We have λi,0 =
∑

B∈B : I≤B f(B) =
[
n− i
k − i

]
q

[
n− t
k − t

]−1

q

. 

The rest follows from Equation (1).
We will compute the value λ⊥. A t-dimensional subspace T is contained in B⊥ ∈ B⊥ if 

and only if B ≤ T⊥. Now consider the set S := {(B, X) : B ∈ B, dim(X) = n −t, B ≤ X}. 
We will compute the sum of the f(B) over all pairs (B, X) in S in two ways. On the one 
hand, we have:

∑
(B,X)∈S

f(B) =
∑
B∈B

∑
X:B≤X

dim(X)=n−t

f(B) =
[

n− k
n− t− k

]
q

∑
B∈B

f(B) =
[
n− k

t

]
q

λ0,0

=
[
n− k

t

]
q

[
n
k

]
q

[
n− t
k − t

]−1

q

λ =
[
n− k

t

]
q

[
n
t

]
q

[
k
t

]−1

q

λ.

The last equality follows from applying Equation (1) with a = n, b = k, c = t. On the 
other hand,

∑
(B,X)∈S

f(B) =
∑

X≤E:
dim(X)=n−t

∑
B∈B,B≤X

f(B) =
[
n
t

]
q

∑
B∈B,B≤X

f(B).

It follows, by comparing the two right-hand sides, that

λ⊥ :=
∑

B⊥∈B⊥,T≤B⊥

f(B) =
∑

B∈B,B≤T⊥

f(B) =
[
n− k

t

]
q

[
k
t

]−1

q

λ. �

6.2. Subspace designs from q-polymatroids

We now present criteria for the existence of a weighted subspace design arising from 
the dependent spaces of a q-polymatroid. The approach is in essence a generalization 
of the original argument given by Assmus and Mattson [1]. To do this, we obtain a 
q-analogue of [5, Theorem 3.3]. Throughout this section we let F denote an arbitrary 
field (which need not bear any relation to Fq). We remind the reader that M denotes a 
(q, r)-polymatroid (E, ρ). Since p(M ; z) ∈ Z[z], it gives a well-defined function on any 
field, viewed as a Z-module. We define the following (cf. [5]).

Definition 64. Let θ ∈ F . We define:

• DM (i; θ) := {X ≤ E : dim(X) = i, p(M.X; θ) �= 0},
• RM (t; θ) := {j ∈ [n − t] : AM∗(j; θ) �= 0},
• SM (t; θ) := {j ∈ [n − t] : AM∗(j; θ) = 0},
• dM := min{dim(X) : X ≤ E, X is a cocircuit of M}.
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The sets DM (i; θ) will, in certain circumstances, form the blocks of weighted subspace 
designs.

Proposition 65. Let θ ∈ F such that θs �= 1 for any s ∈ [r]. For each i ∈ [n] every 
member of DM (i; θ) is a dependent space of M∗. Moreover DM (dM ; θ) is precisely the 
set of circuits of M∗ of dimension dM .

Proof. If A ∈ DM (i; θ), then p(M.A; θ) �= 0, which by Lemma 29 means that A is 
a dependent space of M∗. We show that for circuits of M∗ (i.e., minimal dependent 
spaces of M∗) the converse also holds. By Lemma 30, for any circuit X of M∗ we have 
p(M.X; z) = z�(X

⊥)−1. Since X is not independent in M∗, �(X⊥) = r dim(X) −ρ∗(X) =
r dim(X) − r dim(X) + s = s for some s ∈ [r]. Therefore, by our choice of θ, we have 
that p(M.X; θ) = θ�(X

⊥) − 1 �= 0 and so X ∈ DM (dim(X); θ). In particular, DM (dM ; θ)
is precisely the set of all circuits of M∗ of dimension dM . �

We will now present the main results of this section: Theorem 66 and its two corol-
laries. Together they form a q-analogue of [5, Theorem 3.3].

Theorem 66. Let θ ∈ F such that θs �= 1 for any s ∈ [r]. Let t < dM be a positive integer 
and suppose that:

(1) σ∗ := |RM (t; θ)| ≤ dM − t and
(2) for each t-dimensional subspace T , we have that AM∗/T (j; θ) = 0 for all j ∈

SM (t; θ).

Then (E, DM (dM ; θ), f) is a weighted t-design over Fq with f(X) := p(M.X; θ) for all 
X ≤ E.

Proof. Let T be a t-dimensional subspace of E. Since t < dM , T is independent in M∗. 
By Lemma 15, any dependent space A of M∗/T has the form A = B/T for a dependent 
space B of M∗. Therefore, for any such A and B we have

σ∗ ≤ dM − t ≤ dim(B) − t = dim(A). (5)

In other words, no dependent space of M∗/T has dimension less than σ∗. By Lemma 29, 
if X is non-trivial and independent in M∗/T , then p((M∗/T )∗.X; θ) = 0. Therefore,

A(M∗/T )∗(i; θ) =
∑

X≤E/T : dim(X)=i

p((M∗/T )∗.X; θ) = 0, for all 1 ≤ i ≤ σ∗ − 1.

By hypothesis, AM∗/T (j; θ) = 0 for all j ∈ SM (t; θ) and so the coefficients,

[AM∗/T (j; θ) : j ∈ SM (t; θ)] and [A(M∗/T )∗(i; θ) : 1 ≤ i ≤ σ∗ − 1],
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are known. Now apply Corollary 60 to the set RM (t; θ) to see that the coefficients

[AM∗/T (j; θ) : j ∈ RM (t; θ)] and [A(M∗/T )∗(i; θ) : σ∗ ≤ i ≤ n− t]

are uniquely determined and independent of our choice of T of dimension t. It follows 
that the A(M∗/T )∗(i; θ) are uniquely determined for 0 ≤ i ≤ n − t. We will now show 
that

∑
X∈DM (dM ;θ) :T≤X

p(M.X; θ) = A(M∗/T )∗(dM − t; θ),

which will establish that (E, DM (dM ; θ), f) is a weighted t-design over Fq with f(X) :=
p(M.X; θ).

We claim there is a one-to-one correspondence between the members of DM(dM ; θ)
that contain T and the members of D(M∗/T )∗(dM − t; θ). Let B be a circuit of M∗ that 
contains T such that dim(B) = dM . From Lemma 15, B/T is a circuit of M∗/T and 
dim(B/T ) = dim(B) − t = dM − t. Conversely, if A is a circuit of M∗/T satisfying 
dim(A) = dM − t, then A = B/T for a dependent space B of M∗ of dimension dim(B) =
dM , which is therefore a circuit of M∗, as it has minimal dimension. By Proposition 65, 
DM (dM ; θ) is the set of all cocircuits of M of dimension dM and hence there is a one-to-
one correspondence between the members of DM(dM ; θ) that contain T and the circuits 
of M∗/T of dimension dM − t. By Equation (5), any dependent space of M∗/T of 
dimension dM − t is a circuit of M∗/T and hence is a member of D(M∗/T )∗(dM − t; θ). 
This establishes the claim.

From Corollary 33, for any circuit X/T of M∗/T we have

p((M∗/T )∗.(X/T ); θ) = θ�(X
⊥) − 1.

Therefore,
∑

X∈DM (dM ;θ):T≤X

p(M.X; θ) =
∑

X∈DM (dM ;θ) :T≤X

(θ�(X
⊥) − 1),

=
∑

X/T∈D(M∗/T )∗ (dM−t;θ)

(θ�(X
⊥) − 1),

=
∑

X/T≤E/T : dim(X/T )=dM−t

p((M∗/T )∗.(X/T ); θ),

= A(M∗/T )∗(dM − t; θ),

which is independent of our choice of T of dimension t. It follows that (E, DM (dM ; θ), f)
is a weighted t-design over Fq with f(X) := p(M.X; θ). �
Remark 67. In the proof of Theorem 66, we saw that with the hypothesis of the theorem, 
that the A(M∗/T )∗(i; θ) (and therefore the AM∗/T (i; θ)) are uniquely determined for 
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0 ≤ i ≤ n − t. By Lemma 11, it follows that the AM |T⊥(i; θ) are uniquely determined for 
0 ≤ i ≤ n − t.

Corollary 68. Let θ ∈ F such that θs �= 1 for any s ∈ [r]. Let t < dM be a positive integer 
and suppose that:

(1) σ∗ := |RM (t; θ)| ≤ dM − t and
(2) for each t-dimensional subspace T , we have that AM∗/T (j; θ) = 0 for all j ∈

SM (t; θ).

Then for each j ∈ {dM , . . . , n − t}, (E, DM (j; θ), f) is a weighted t-design over Fq with 
f(X) := p(M.X; θ) for each X ≤ E.

Proof. We will prove by induction on w ∈ {dM , . . . , n − t} that (E, DM (w; θ), f) is 
a weighted t-design. The first step was proved in Theorem 66. Suppose now that 
(E, DM (j; θ), f) is a weighted t-design for each j ∈ {dM , . . . , w − 1}. We will show 
that (E, DM (w; θ), f) is also a weighted t-design.

Let T ≤ E have dimension t. We will show that the following sum depends only on t:

∑
W∈DM (w;θ), T≤W

p(M.W ; θ) =
∑

W :T≤W, dim(W )=w

p(M.W ; θ).

Note that since DM (w; θ) is the set of w-dimensional subspaces of E for which 
p(M.W ; θ) �= 0, the above equality holds. From Lemma 34, for any T ≤ W ≤ E we 
have that

p(M |T⊥/W⊥; θ) =
∑

A :A+T=W

p(M.A; θ).

Let φ : L(E/T ) −→ L(T⊥) be defined by φ(A/T ) = (A⊥)⊥(T⊥), for each A ≤ E

such that T ≤ A (as in Lemma 11). For any subspace W containing T and subspace 
X = φ(W/T ), we have that (W⊥)⊥(T⊥) = X, so X⊥(T⊥) = W⊥ and hence M |T⊥.X =
(M |T⊥)/W⊥. Then clearly, dim(W ) = dim(X) + dim(T ). It follows that if T is a t-
dimensional space, then for any j ∈ {dM , . . . , n − t}, we have:

AM |T⊥(j; z) =
∑

X≤T⊥ : dim(X)=j

p(M |T⊥.X; z) =
∑

W : T≤W, dim(W )=j+t

p(M |T⊥/W⊥; z).

Therefore, we have:

AM |T⊥(w − t; θ) =
∑

W :T≤W,

p(M |T⊥/W⊥; θ) =
∑

W :T≤W,

∑
A :A+T=W

p(M.A; θ).
dim(W )=w dim(W )=w
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For any I ≤ T , we write IT to denote an arbitrary fixed subspace of T satisfying I⊕IT =
T . Clearly, if I = A ∩ T we have I ≤ A and A ∩ IT = {0}. Conversely, if I ≤ A and 
IT ∩A = {0} then A ∩T = A ∩ (I+IT ) = I. Moreover, if W is a w-dimensional subspace 
for which A + T = W and A ∩ T = I, then dim(A) = w− t + dim(I). Therefore, we can 
rewrite the double summation as follows:

AM |T⊥(w − t; θ) =
t∑

i=0

∑
I : I≤T,

dim(I)=i

∑
A : I≤A, IT∩A={0},

dim(A)=w−t+i

p(M.A; θ)

=
∑

A :T≤A,
dim(A)=w

p(M.A; θ) +
t−1∑
i=0

∑
I : I≤T

dim(I)=i

∑
A : I≤A, IT∩A={0},

dim(A)=w−t+i

p(M.A; θ).

Let I ≤ T such that dim(I) = i < t and so dM − t ≤ w − t ≤ w − t + i ≤ w − 1. 
By hypothesis, for each 1 ≤ j ≤ w − 1, (E, DM (j; θ), f) is a weighted t-design with 
f(X) := p(M.X; θ), and so by Theorem 62,

∑
A : I≤A, IT∩A={0},

dim(A)=w−t+i

p(M.A; θ) = Λw
i,t−i(M ; θ),

for Λw
i,t−i(M ; θ) that depend only on t, w, i. It follows that

∑
W :T≤W,
dim(W )=w

p(M.W ; θ) = AM |T⊥(w − t; θ) −
t−1∑
i=0

[
t
i

]
q

Λw
i,t−i(M ; θ).

By Remark 67, AM |T⊥(w− t; θ) is independent of our choice of T of dimension t and so 
the result follows. �
Corollary 69. Let θ ∈ F such that θs �= 1 for any s ∈ [r]. Let t < dM be a positive integer 
and suppose that:

(1) σ∗ := |RM (t; θ)| ≤ dM − t and
(2) for each t-dimensional subspace T , we have that AM∗/T (j; θ) = 0 for all j ∈

SM (t; θ).

Then for each j ∈ {dM∗ , . . . , n − t}, (E, DM∗(j; θ), f) is a weighted t-design over Fq with 
f(X) := p(M∗.X; θ) for all subspaces X ≤ E.

Proof. For each j such that dM∗ ≤ j ≤ n −t, define the set Dj := {X⊥ : X ∈ DM∗(j; θ)}. 
Let T be a t-dimensional subspace of E. Now for each X ≤ T⊥ we have (E/T )

/
(X⊥/T ) ∼=

E/X⊥ and it is easy to see that the corresponding q-polymatroids are lattice-equivalent. 



34 E. Byrne et al. / Journal of Combinatorial Theory, Series A 201 (2024) 105799
Let φ : L(E/T ) −→ L(T⊥) be defined by φ(X/T ) = (X⊥)⊥(T⊥), for all X ≤ E such 
that T ≤ X. We get that

M∗.X ∼= (M∗/T )
/
(X⊥/T ) ∼= (M |T⊥)∗/φ(X⊥/T ) = (M |T⊥)∗.φ(X⊥/T )⊥(T⊥)

∼= (M |T⊥)∗.X.

Therefore, for each j ∈ {dM∗ , . . . , n − t}, we have:

∑
X∈Dj :T≤X

p(M∗.X⊥; θ) =
∑

X:X≤T⊥,
dim(X)=j

p(M∗.X; θ) =
∑

X:X≤T⊥,
dim(X)=j

p((M |T⊥)∗.X; θ)

= A(M |T⊥)∗(j; θ).

From Remark 67, for each j ≤ n − t, A(M |T⊥)∗(j; θ) is independent of the choice of T
of dimension t. It follows that (E, Dj , f∗) is a weighted subspace design with f∗ defined 
by f∗(X) = p(M∗.X⊥; θ) for each X ≤ E. The result now follows by Corollary 63: the 
required subspace design is the dual of (E, Dj , f∗). �
Remark 70. The results of Proposition 65, Theorem 66 and Corollaries 68 and 69 all 
hold with indeterminate z in place of a specific choice of θ in F . In particular, p(M.X; z)
is a non-zero polynomial in Z[z] for any cocircuit X of M .

In general, a (q, r)-polymatroid M may satisfy the hypothesis of Corollary 68 for one 
choice of θ, but fail for another choice. However, if the hypothesis holds for indeterminate 
z, then a weighted t-design over Fq can be constructed for any choice of θ that doesn’t 
vanish on p(M.X; z) for a cocircuit X of M .

Example 71. Let M = (E, ρ) be the uniform q-matroid Uk,n, as described in Exam-
ple 16. We will show that this q-matroid satisfies the hypothesis of Corollary 68 with 
indeterminate z in place of a specific choice of θ in some field F .

The dual q-matroid M∗ = (E, ρ∗) is the uniform q-matroid Un−k,n, whose independent 
spaces are exactly those of dimension n − k or less, and for which all other spaces 
are dependent and have rank n − k. Therefore, every cocircuit of M has dimension 
dM = n − k + 1. Now p(M∗.X; z) = 0 for all subspaces X such that dim(X) ∈ [k], as 
these are the independent spaces of M (see Lemma 29), and so AM∗(i; z) = 0 for all 
i ∈ [k]. Therefore for any t ≤ dM − 1 = n − k, we have RM (t; z) ⊆ {k + 1, . . . , n − t}
and so |RM (t; z)| ≤ n − t − k ≤ dM − t. Therefore, for any t < dM , hypothesis (1) of 
Corollary 68 holds for indeterminate z.

We now show that hypothesis (2) of Corollary 68 holds for indeterminate z; that is, 
for all j ≤ n − t, if AM∗(j; z) = 0, then AM∗/T (j; z) = 0. Let T be a t-dimensional 
subspace of E for some t∈ [n− k]. By Lemma 43 we have
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AM∗/T (j; z) =
∑

X≤T⊥ : dim(X)=j

p(M∗.X; z).

Since p(M∗.X; z) = 0 for all subspaces X such that dim(X) ∈ [k], we have that 
AM∗/T (j; z) = 0 for all j ∈ [k].

Next, we consider the case k + 1 ≤ j ≤ n − t. Let X ≤ E be a subspace of dimension 
at least k + 1. We claim that the q-matroid M∗.X has no loops, in which case by 
Lemma 39, p(M∗.X; z) will be a monic polynomial of degree n −k−dim(X⊥) and hence 
AM∗(j; z) �= 0 for k + 1 ≤ j ≤ n − 1, i.e. the condition holds vacuously. Consider a 
subspace U that strictly contains X⊥. Since M∗ = Un−k,n, we have ρ∗(X⊥) = dim(X⊥)
and so

ρM∗/X⊥(U/X⊥) = ρ∗(U) − ρ∗(X⊥)

= ρ∗(U) − dim(X⊥)

= dim(U) − ρ(E) + ρ(U⊥) − dim(X⊥)

= dim(U) − dim(X⊥) + ρ(U⊥) − k

We have that ρ(U⊥) = min{dim(U⊥), k}. Substituting both cases in the equation above 
and using that dim(X) − k ≥ 1 and dim(U) − dim(X⊥) ≥ 1, respectively, we find that 
ρM∗/X⊥(U/X⊥) ≥ 1. This implies that the q-matroid M∗.X has no loops.

We conclude that M = Uk,n satisfies the hypothesis of Corollary 68 for indeterminate 
z. Therefore, (E, DUk,n

(i; z), f) is a weighted t-design for n − k + 1 ≤ i ≤ n − t, where 
f : DUk,n

−→ Z[z] is defined by f(X) = p(Uk,n.X; z) for all X ∈ DUk,n
(i; z). However, 

for any j-dimensional subspace X such that n − k + 1 ≤ j ≤ n − t we have that M.X

has no loops and so p(M.X; z) is non-zero. Hence, for each such j, DM (j; z) comprises 
all the j-dimensional subspaces of E, which means the corresponding weighted subspace 
designs are trivial.

On the other hand, from what we have just shown, for any θ ∈ F such that θs �= 1, 
s ∈ [r], we have that (E, DUk,n

(i; θ), f) is a weighted subspace design for n − k + 1 ≤
i ≤ n − t, and f(X) = p(Uk,n.X; θ) for all X ∈ DUk,n

(i; θ). One may ask if there exists 
θ such that (E, DUk,n

(i; θ), f) is non-trivial for some i. In fact there does not. If X has 
dimension i and there exists θ such that p(Uk,n.X; θ) = 0, then p(Uk,n.Y ; θ) = 0 for any 
subspace Y of the same dimension i as X since the polynomial p(Uk,n.X; z) depends 
only on the dimension of X. This means that for each θ, either DUk,n

(i; θ) is empty, or 
comprises all the subspaces of dimension i.

6.3. Further implications

We now obtain a weaker form of the Assmus-Mattson Theorem for matrix codes as 
a direct consequence of Theorem 66. Note that the result for subspace designs (those 
weighted designs for which f(B) = 1 for every block B) obtained from rank-metric codes 
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was shown in [10] with the further assumption that the number of codewords with a given 
support was dependent only on the dimension i of that space for some range of i.

Corollary 72. Let C be an Fq-[n ×m, k, d] rank-metric code. Let t < d be a positive integer 
and let C⊥ have no more than d − t distinct rank weights in the set [n − t]. For each 
i ∈ {d, . . . , n − t}, let

B(i) = {U ≤ E : dim(U) = i, |C=U⊥ | �= 0}.

Then for each i ∈ {d, . . . , n − t}, (E, B(i), f) is a weighted t-design over Fq with f(X) :=
|C=X⊥ | for all X ≤ E.

Proof. Let M := MC . By Lemma 48, we have that M∗ = MC⊥ and for any i ∈ [n], 
Wi(C⊥) = AM∗(i; q). Also, p(M.X; q) = |C=X⊥ | for any subspace X ≤ E. Now 
dM = min{dim(X) : X is a cocircuit of M}, which by Proposition 65, is the minimum 
dimension of any subspace X such that p(M.X; q) �= 0.

Since C has minimum distance d, by Lemma 48 (4) there exists a d-dimensional 
subspace X ≤ E such that |C=X⊥ | = p(M.X; q) �= 0, while p(M.U ; q) = 0 for every 
subspace U ≤ E with dim(U) < d. Therefore, d = dM . By hypothesis, at most d − t =
dM − t of the integers Wi(C⊥) are non-zero for i ∈ {1, . . . , n − t}. By Lemma 48, if 
AM∗(i; q) = 0, then AM∗/T (i; q) = 0, for any t-dimensional subspace T ≤ E. Therefore 
M satisfies the hypothesis of Corollary 68 and so the result follows. �

In the case of a q-matroid M satisfying the hypothesis of Theorem 66, with an extra 
assumption on the cocircuits of M , our results imply the existence of a subspace design. 
These results form a direct q-analogue of the classical case (cf. [5, Section 3]).

Lemma 73. Let M be a q-matroid, θ ∈ F , θ �= 1 and let p be the greatest integer such that 
any subspace X ≤ E of dimension at most p contains at most one cocircuit of M . Then 
for each i ∈ {dM , . . . , p}, we have DM (i; θ) = {C ≤ E : C a cocircuit of M, dim(C) = i}.

Proof. If C is a cocircuit of M , then p(M.C; θ) = θ− 1 �= 0 and so C ∈ DM (dim(C); θ). 
Now let X ∈ DM (i; θ) for some i ≤ p. Then p(M.X; θ) �= 0 and X is a dependent space 
of M∗ of dimension at most p, so X contains a unique circuit of M∗. By Theorem 40, 
we have X = C and the result follows. �
Corollary 74. Let M be a q-matroid that has at least one circuit and one cocircuit. Let 
t < dM be a positive integer such that the hypothesis of Theorem 66 holds for some 
θ ∈ F , θ �= 1. Let p be the greatest integer such that any subspace X ≤ E of dimension 
at most p contains at most one cocircuit (respectively, at most one circuit) of M . Then 
for each i ∈ {dM , . . . , p} (respectively, {dM∗ , . . . , p}) the set of cocircuits (respectively, 
the set of circuits) of M of dimension min{i, n − t} forms the blocks of a t-subspace 
design. Consequently, for each i ∈ {dM , . . . , p} (respectively, {dM∗ , . . . , p}), the set of 
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hyperplanes of M (respectively, of M∗) of dimension n − i is the set of blocks of a 
t-subspace design.

Proof. From Lemma 73, for each i ∈ {dM , . . . , p} we have that Ci := DM (i; θ) is the 
set of cocircuits of M of dimension i. Then by Corollary 68, for each i ∈ {dM , . . . , p}, 
Ci is the set of blocks of a weighted t-subspace design with f(X) = p(M.X; θ) = θ − 1. 
Define a function f̂ : DM (i; θ) −→ F by f̂(X) = (θ− 1)−1f(X). This yields a t-subspace 
design Di whose blocks are Ci. By [9, Corollary 71], for each i-dimensional cocircuit X
of M , X⊥ is a hyperplane of M and has dimension n − i. By Corollary 63, the set of 
hyperplanes of M of dimension n − i form the blocks of a t-subspace design, i.e., the 
dual design of Di. With the same arguments as above, by Corollary 69 the analogous 
statements hold for the circuits of M and the hyperplanes of M∗. �

An element c of an Fqm-[n, k, d] vector rank-metric code C is called minimal if for any 
c′ ∈ C, σ(c′) ≤ σ(c) implies c′ ∈ 〈c〉Fqm

:= {νc : ν ∈ Fqm}. In this case, for U = σ(c)
and M := MC , we have p(M/U ; qm) = |C=U | = qm − 1. If every codeword of rank i in 
C is minimal, then AM∗(i; qm) = Wi(C⊥) = (qm − 1)|DM (i; qm)|. If we apply this with 
Corollary 74, we retrieve the Assmus-Mattson Theorem for Fqm-[n, k, d] codes (cf. [10]).

Corollary 75. Let C be an Fqm-[n, k, d] code. Let t < d be a positive integer and let C⊥

be an Fqm-[n, n − k, d⊥] code having no more than d − t distinct rank weights in the set 
{1, . . . , n − t}. Let p be the greatest integer such that every codeword of C of rank at most 
p is minimal.

1. The supports of the words of rank weight d in C (respectively d⊥ in C⊥) form the 
blocks of a t-design over Fq.

2. For each i ∈ {d, . . . , p} (respectively, {d⊥, . . . , p}) the supports of the minimal code-
words of C (respectively C⊥) of dimension min{i, n − t} form the blocks of a t-design 
over Fq.

Example 76. In [26, Theorem 12], it is shown that any non-degenerate Fqm-[N, k > 1]
rank-metric code with constant weight d satisfies N = km, d = m and is generated 
by a matrix G ∈ Fk×N

qm whose N columns form a basis of Fk
qm as an Fq-vector space. 

Moreover, the dual code has minimum distance 2. Let C⊥ be an Fqm-[km, k, m] constant 
weight code constructed as above. Let M = MC , so that M∗ = MC⊥ . For any X ≤ Fkm

q , 
we have p(M.X; qm) = 0 unless X is the support of a codeword of C⊥, in which case 
dim(X) = m. Therefore, AM∗(m; qm) = qkm − 1, AM∗(0; qm) = 1 and AM∗(i; qm) = 0
for i �= 0, m. Then dM = d = 2 and RM (2; θ) = {m}. Therefore, by Corollary 75 the 
cocircuits of M of dimension 2, which are the supports of codewords of rank 2, form a 
1-design over Fq. Similarly, the supports of the words of rank m in C⊥ form the blocks 
of a 1-design over Fq, in fact a 1-(km, m, 1; q) design, which is a q-Steiner system whose 
blocks form a spread in Fkm

q .
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While Theorem 66 has considerable potential for constructing weighted subspace de-
signs, utilizing it requires constructions of a q-polymatroid M whose weight enumerator 
takes few non-zero values and whose cocircuits have large enough dimension. Most q-
matroids and q-polymatroids are not representable, however those that are, i.e. those 
that can be represented by rank metric codes, offer more tangible constructions.

In order to search for examples of rank-metric codes satisfying the conditions in Corol-
lary 75 we implemented in Magma [3] a search through random F2m-[n, k, d] rank metric 
codes, for different values of m, n, and k and t = 2. We make some remarks on the 
parameters of potentially interesting codes.

A matrix code is called maximum rank distance (MRD) if it has parameters Fq-[n ×
m, k, d] with k = max{n, m}(min{n, m} − d + 1). The MRD Fqm-linear codes have 
parameters Fqm-[n, n − d + 1, k]. MRD codes do satisfy the criteria of Corollaries 72 and 
75 and there are several constructions of them. However, the corresponding subspace 
designs associated with these codes are trivial. We therefore would exclude them from 
our search space. Note that, as either m or q grow asymptotically, the Fqm-linear MRD 
codes are dense in the space of linear codes (see for example [11,24]), just as MDS 
codes are dense as q becomes large. However, for small values of q and m, we do not 
necessarily have a high probability of a random code being MRD, and this was checked 
and confirmed for all sets of parameters chosen for experiments. We also have modest 
constraints on the sizes of m, n to exclude trivialities. For example with t = 2, we require 
that d ≥ 3. If m ≤ 4 and d = 3, then to find a suitable code C, we would require C⊥

to be a one-weight code. However, by [10, Proposition 4.6], the dual code of a constant 
weight Fq-[n ×m, k] code has minimum distance at most 2. If m = 4 = d, then C must 
be a one-weight code and so C⊥ has weight at most 2, which would not yield interesting 
results. We therefore set m > 4 in order to meet the criteria of Corollary 75. This means 
that we search for linear codes over alphabets of size at least 25. In most experiments, 
we chose m = n − 1 or m = n to increase the probability of satisfying the criteria.

Each code is given by a generator matrix in standard form for a linear code, i.e. 
(Ik|A), where A goes through the space of k × (n − k)-matrices with entries in F2m , up 
to equivalence under the action of the Galois group Gal(F2m/F2). This yields a search 
space of size 2m(k(n−k)−1) matrices, which is quickly out of reach of a computer, even 
for small values of k and n. Ideally, a single representative in each equivalence class 
for the underlying q-polymatroids should be computed, but it is not clear to us how 
to pre-compute these representatives such that running the search would be more time 
effective.

In our algorithm, we first compute the weight distribution of the rank metric code by 
going through all code words (up to a scalar) and then we deduce the weight distribution 
of the dual code by using the MacWilliams identities. The code is publicly available [7]. 
For each set of parameters, we ran the code on a different core of an 2.40 GHz Intel Xeon 
E5-2640 processor, and we set a timeout of 16 days for each run. The number of codes 
that we were able to check in this way are given in the fifth column of Table 1.



E. Byrne et al. / Journal of Combinatorial Theory, Series A 201 (2024) 105799 39
Table 1
Random search through F2m -[n, k, d] random rank metric codes.
m n k no. of codes checked Proportion of search space
5 6 2 405,285,656 0.017
6 6 2 146,666,189 3.334 × 10−5

6 6 3 442,349 1.572 × 10−9

6 8 2 44,700,000 6.058 × 10−13

7 8 2 13,800,000 9.132 × 10−17

8 8 2 3,800,000 1.228 × 10−20

While our search is far from complete, these numbers suggest that a more systematic 
search for higher parameter values would be needed to effectively construct examples 
of rank metric codes yielding weighted subspace designs. More generally, what is really 
required is a theoretical approach to construct rank-metric codes and q-(poly)matroids 
with prescribed weight distributions.
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