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A continuum approach to study magnetoelectric multiferroic BiFeO3 (BFO) is proposed. Our modeling
effort marries the ferroelectric (FE) phase field method and micromagnetic simulations to describe the entire
multiferroic order parameter sector (polarization, oxygen antiphase tilts, strain, and magnetism) self-consistently
on the same time- and length scale. In this paper, we discuss our choice of FE and magnetic energy terms and
demonstrate benchmarks against known behavior. We parametrize the lowest order couplings of the structural
distortions against previous predictions from density functional theory calculations giving access to simulations
of the FE domain wall (DW) topology. This allows us to estimate the energetic hierarchy and thicknesses of the
numerous structural DWs. We then extend the model to the canted antiferromagnetic order and demonstrate how
the FE domain boundaries influence the resulting magnetic DWs. We also highlight some capabilities of this
model by providing two examples relevant for applications. We demonstrate spin-wave transmission through the
multiferroic domain boundaries which identify rectification in qualitative agreement with recent experimental
observations. As a second example of application, we model fully dynamical magnetoelectric switching, where
we find a sensitivity on the Gilbert damping with respect to switching pathways. We envision that this modeling
effort will set the basis for further work on properties of arbitrary 3D nanostructures of BFO (and related
multiferroics) at the mesoscale.
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I. INTRODUCTION

The phenomenological description of ferroic phase tran-
sitions is characterized by the onset of one or more order
parameters below a critical temperature. In the case of fer-
roelectric (FE) materials, the order parameter is an electric
dipole condensed from unstable phonon modes [1,2]. For
ferromagnets, a net nonzero magnetization arises as ordering
dominates thermal spin fluctuations below the Curie point
[3]. In both cases, the theoretical portrayal of a single order
parameter (and its conjugate electric or magnetic field) has
been quite successful in illustrating and driving interest in a
plethora of functional materials properties of technological
relevance.

Multiferroics are compounds where multiple order param-
eters coexist and are coupled together in nontrivial ways.
Magnetoelectric (ME) multiferroics exhibit ferroelectricity
along with a magnetic ordering (which can be ferromagnetic
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[4], antiferromagnetic (AFM) [5], ferrimagnetic [6], helimag-
netic [7], etc.). In the context of applications for electronics,
these types of structures are very promising since the coupling
can provide a pathway to controlling the magnetic (electric)
state with an electric (magnetic) field [5,8,9]. Or it is proposed
that this coupling can give rise to properties not present in
either ferroelectric or magnetic states alone [8]. For most ME
multiferroics, however, this intrinsic coupling can be quite
weak, leading to an interest in searching for materials can-
didates where this is not the case.

A particular ME multiferroic, the perovskite BiFeO3

(BFO), has been demonstrated to host appreciable spin-orbit
coupling between its FE and AFM ordering. In bulk, BFO
undergoes a phase transition to a rhombohedral ferroelectric
phase upon cooling below 1100 K [10,11] along with a Néel
temperature of around 640 K resulting in collinear G-type
AFM order [10]. Due to its high transition temperatures, it is a
promising material for applications at ambient conditions. In
BFO, the polarization P displays an eightfold symmetry of do-
main states aligned along the pseudocubic [111] or equivalent
directions. The rhombohedral polar distortion (displacement
of the Bi3+ and Fe3+ atoms relative to the oxygen atoms)
is also accompanied by a spontaneous antiphase tilting of
the FeO6 octahedral oxygen cages about the polar axis. As
such, the presence of the antiphase tilts at adjacent iron sites
underpin an antisymmetric Dzyaloshinskii-Moriya interaction
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(DMI), which causes a canting of the antialigned Fe spins
[12,13]. Therefore, BFO displays a weak net ferromagnetic
moment M due to noncollinearity in its magnetic structure.
In many samples or in bulk, this canted moment forms a
long-period cycloid with a period of around 64 nm [14–17].

Due to its exceptional properties, BFO has been pro-
posed to be used in a number of device concepts, including
beyond-CMOS logic gates [18,19], tunneling magnetoresis-
tant spintronic valves [20–22], THz radiation emitters [23,24],
enhanced piezoelectric elements [25,26], ultrafast acous-
tic modulators [27], and linear electrooptical components
[28,29]. As miniaturization is a significant concern for next-
generation device proposals, the thicknesses of these ME films
synthesized for the aforementioned applications are in the
range of a few tens of nm to a few μm′s [16].

As highlighted in recent work [30,31], the observed spin
cycloid abruptly changes propagation direction at the FE
domain walls (DWs), indicating its strong coupling to the
polar order. Local measurement techniques suggest that the
109◦-71◦-109◦ sequence of FE DWs display a Bloch-like
character with P rotating across the DW with some sense of
chirality [31,32], leading to open questions as to the driv-
ing force of this phenomena as well as if the ME coupling
can also yield chiral magnetic textures at these DWs. Ad-
ditionally, there have been other experimental observations
of unexplained mesoscopic phenomena in BFO. Piezoforce
microscopy measurements have revealed metastable states in
epitaxial thin films where instead of the eightfold possibility
of domain orientations, there are 12 which also display an
appreciable population of charged domain boundaries which
are controllable by electric field cycling [33].

A sought-after property of ME multiferroics is the ability
to deterministically switch the magnetization with electric
fields [5]. Due to the time- and length scales involved in
the practical implementations of ME switching, the dynamics
of the coupled polar-magnetic texture is unclear. Supporting
theory utilizing atomistic methods can become computation-
ally intractable due to too many atoms in the simulation box
or a difficulty of modeling real interfacial or time-dependent
phenomena. As such, these methodologies can be difficult to
implement to investigate the aforementioned experimentally
relevant scenarios.

To investigate the mesoscopic picture of ME multiferroics
taking into account both the FE physics and the micro-
magnetic formalism to describe the AFM behavior [34], we
are motivated to develop a continuum model of BFO and
its nanostructures. The goal is to coarse grain the mate-
rials physics into a predictive capability for large length
and timescales in a single calculation. While the phase-field
method has been particularly useful in understanding the FE
domain topology and its response to external stimulii in BFO
[35,36], a natural forward progression is to extend this type of
continuum modeling to the coupled spins in the material with
micromagnetic simulations [37,38]. Phase field approaches
have previously been applied in the context of switching of
magnetic/FE bilayers [39] or domain pattern prediction in
nanoparticles [40] and magnetic shape memory alloys [41],
but these studies treat the overdamped case which neglects
spin precession. Inclusion of the conservative term would give
access to information about the collective (dynamical) spin

excitations in the presence of the structural topological de-
fects (for example BFO’s DWs or its recently experimentally
resolved solitons [42]).

To explore these questions in this paper, we propose
a coupled multiferroic continuum model that marries the
well-known FE phase field and the full micromagnetic ap-
proach self-consistently on the same time- and lengthscale.
In Secs, II A and II B, we report a comprehensive description
of the relevant governing equations and energy terms for the
lattice contribution. We study the FE DWs in Sec. II D and
establish our predictions of P order parameter profiles (includ-
ing also the spontaneous octahedral tilt and strain fields) for
a number of different low-energy DWs in BFO. This allows
us to parametrize the model-specific gradient coefficients by
comparing to density functional theory (DFT) calculations
[43]. Good agreement is demonstrated with respect to the
energy hierarchy of the different low-energy DWs. We also re-
port our model’s predictions of Bloch rotational components,
residual strain fields, and thicknesses of different DW types.

In Secs. II E–II G, we expand the model to include the
magnetic order. We simulate the magnetic ground states in
the presence of homogeneous and inhomogeneous structural
order, building on the results from the previous section. We
evaluate the influence of different types of polar domain
boundaries, also yielding estimates of the DW thicknesses,
topology, and energies of the magnetic texture. Then, in
Sec. III, we provide two illustrative examples of the capa-
bilities of our simulations: (i) spin-wave transport through
the multiferroic DW boundaries, highlighting their rectifying
nature and (ii) fully coupled dynamical switching of the mag-
netization order with a time-dependent electric field through
the ME effect, demonstrating a nontrivial sensitivity on physi-
cal parameters. While our model (and the examples provided)
is certainly not exhaustive, we hope that this paper will set the
basis for further studies on properties of arbitrary 3D BFO
nanostructures (and related multiferroics) at the continuum
approximation of theory.

II. MULTIFERROIC CONTINUUM MODEL

We consider a zero-temperature limit free-energy density
functional defined as a sum of Landau-type energy density
from the structural distortions of the lattice ( flatt), the mag-
netic energy density due to the spin subsystem ( fsp), and the
magnetostructural coupling ( fMP) in single-crystal BFO,

f = flatt (P, A, ε) + fsp(L, m) + fMP(L, m, P, A), (1)

where lower case f denotes a free-energy density. In our
continuum description, we need some formal definitions of
the order parameters. The electric polarization P is connected
to the displacement of Bi3+ and Fe3+ atoms relative to the
oxygen anions. The vector A describes the rotations of the
FeO6 cages where the antiphase correlation between adjacent
unit cells is implicitly assumed. Both P and A are depicted
[44] in the schematic of Figs. 1(a) and 1(b), respectively. The
spontaneous homogeneous strain that arises below the phase
transition is the rank-two tensor ε with symmetric components
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FIG. 1. Schematic of the magnetostructural order of BiFeO3.
(a) Rhombohedral polar distortion P (shown in blue) and in dark
red, the magnetic sublattices m1 and m2 sitting in the easy-plane
whose normal is defined by P. (b) Antiphase correlation of FeO6

cages defining the A (parallel to P) order parameter (purple) and
(c) Néel vector L (cyan) and DMI-induced canting of the magnetic
sublattices, giving rise to the weak moment m (bright red). Note the
degree of canting is dramatically increased for visualization

εi j = ε ji,

εi j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
, (2)

where the variable ui is the component of the elastic displace-
ment vector u which is solved for in our problem setup.

For the spin system, BFO is an antiferromagnet with an-
tialigned spins at first-neighboring Fe sites (G-type) leading to
two distinct sublattices m1 and m2. The quantity L is the AFM
Néel vector which we define as L = (m1 − m2)/2. Addition-
ally, we have the total magnetic moment m = (m1 + m2)/2,
which accounts for the weak nonvanishing magnetization
that arises due to the DMI. Both L and m are shown in
Fig. 1(c). The quantities L and m are constrained such that
|L| + |m| = 1 with, in general, |L| � |m| and L · m = 0 re-
flecting the presence of a strong AFM coupling between the
sublattices but with a weak noncollinearity in m1 and m2.
The total weak magnetization can be computed as M = Msm,
where Ms is the saturation magnetization density of the Fe
sublattice (4.0 μB/Fe) [17,45,46].

A. Lattice energy

We define the free-energy density corresponding to the
structural distortions of the lattice as flatt:

flatt = fP + fA + fAP + fPε

+ fAε + fε + f∇P + f∇A. (3)

The energy expansion of fP, fA, and fAP contains only the
terms allowed by symmetry to the fourth-order dependence
of P, A, and their couplings, respectively. Similarly, fε, fεP,

and fεA describe the elastic, electrostrictive, and rotostrictive
energies, respectively. The explicit representations of these
terms and their coefficients calculated directly from DFT are
provided in Ref. [47]. To evaluate inhomogeneous phases (i.e.,
DWs), we include the lowest-order Lifshitz invariants [48–50]
for the structural distortions to Eq. (3),

f∇P = G11

2

(
P2

x,x + P2
y,y + P2

z,z

)
+ G12(Px,xPy,y + Py,yPz,z + Px,xPz,z )

+ G44

2
[(Px,y + Py,x )2 + (Py,z + Pz,y )2 + (Px,z + Pz,x )2]

(4)

and

f∇A = H11

2

(
A2

x,x + A2
y,y + A2

z,z

)
+ H12(Ax,xAy,y + Ay,yAz,z + Ax,xAz,z )

+ H44

2
[(Ax,y + Ay,x )2 + (Ay,z + Az,y )2 + (Ax,z + Az,x )2]

(5)

for both the P and A order parameters, respectively. A comma
in the subscript denotes a partial derivative with respect to the
specified spatial directions.

In the case of the gradient energy, the set of coefficients
{Gi j , Hi j} are difficult to obtain directly from DFT (see, for
example, the approach outlined in Refs. [51–53]), so we em-
ploy a fitting procedure in Sec. II D to evaluate them. We
should emphasize that if a different bulk homogeneous phe-
nomenological potential is used (i.e., Refs. [36,54,55], then
the gradient coefficients obtained would be different since
they depend strongly on the energetics of the order parameters
in the vicinity of the DW.

B. Governing equations

To find the polar ground states, we evolve the coupled time-
dependent Landau-Ginzburg equations,

∂P
∂t

= −�P
δ flatt

δP
(6)

and

∂A
∂t

= −�A
δ flatt

δA
, (7)

along with satisfying the stress-divergence equation for me-
chanical equilibrium,

∑
j=x,y,z

∂σi j

∂x j
= 0, (8)

where σi j = σ ji = ∂ flatt/∂εi j is the elastic stress of the mate-
rial. We write the components of σi j as

σi j =
∑

k,l=x,y,z

Ci jkl
(
εkl + ε

eig
kl

)
, (9)
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where εkl is the elastic strain from Eq. (2) and the eigenstrain
is related to the spontaneous strain via

ε
eig
i j =

∑
k,l=x,y,z

(Qi jkl PkPl + Ri jkl AkAl ), (10)

where Qi jkl and Ri jkl are the electrostrictive and rotostric-
tive coefficients. These are related to our free-energy density
tensor components of Ref. [47], qi jkl and ri jkl as (in Voigt
notation),

Q11 = 1

3

(
2(q11 − q12)

C11 − C12
+ q11 + 2q12

C11 + 2C12

)
, (11)

Q12 = 1

3

(
− q11 − q12

C11 − C12
+ q11 + 2q12

C11 + 2C12

)
, (12)

and

Q44 = q44

4C44
, (13)

with similar definitions for the quantities involving Ri jkl . We
also investigate electrostatic phenomena in our model through
the Poisson equation,

εb∇2�E = ∇ · P, (14)

where �E is the electrostatic potential which defines the
electric field E = −∇�E in the usual way. The parameter
εb = 30 ε0 is the relative background dielectric constant [56].
Equation (14) is solved at every time step of the evolution of
Eqs. (6) and (7). In Sec. II D, we are searching for the local
minima due to the relaxation dynamics of Eqs. (6) and (7),
and as such the time relaxation constants �P and �A are set to
unity.

To enforce periodicity on the strain tensor components in
our representative volume element that includes DWs, we
separate the strain fields calculated from Eqs. (2) and (8) into
homogeneous (global) and inhomogeneous (local) parts. This
is done utilizing the method formulated by Biswas et al. in
Ref. [57], which relaxes the stress components along the peri-
odic directions and thus allows corresponding deformation to
occur. Here, the homogeneous contribution of the total strain
obeys the following integrated quantity at every time step of
the relaxation: ∫

V
d3r σ total

i j = 0, (15)

where V is the volume of our simulation containing the DW
profiles. The total stress tensor, σ total

i j , is calculated from the
sum of homogeneous, inhomogeneous, and eigenstrain com-
ponents εtotal

i j = εinhom
i j + εhom

i j + ε
eig
i j for all periodic directions

i and corresponding periodic component j at every time step
of the simulation.

C. Numerical implementation

Equations (6), (7), (8), (14), and (15) are cast into their
weak formulation sufficient for the finite element analysis.
Our method uses linear Lagrange shape functions for the
coupled variable system. The finite element mesh spacing is
selected to be 	x ≈ 0.1 nm for all calculations in this paper.
This small mesh spacing helps resolve the thin DWs in BFO
to smoothness, which is discussed extensively in Secs. II D

and II G. We implement Newmark-beta time integration [58]
with convergence between time steps achieved when the
nonlinear residuals calculated during the Newton-Raphson it-
eration (with block Jacobi preconditioning) have been reduced
by 10−8 relative tolerance. If convergence is not obtained, we
use adaptive time stepping with a reduction factor of 0.5. The
finite element method (FEM) implementation of this paper
is available within FERRET [59], which is an add-on module
for the open source Multiphysics Object Oriented Simulation
Environment (MOOSE) framework [60].

In the absence of order parameter gradients, the homo-
geneous FE states of P parallel to A, which we denote as
P ↑↑ A, can be obtained numerically. To perform this cal-
culation, we evolve Eqs. (6) and (7) simultaneously solving
Eq. (8) (at every time step) until the relative change in total
volume integrated energy density F between adjacent time
steps is less than 5 × 10−7 eV/s. The bulk potential predicts
the spontaneous values of the order parameters upon min-
imization that are Ps = |P| = 0.945 C/m2 and As = |A| =
13.398◦. The spontaneous normal and shear strains that cor-
respond to these values are εn = εii = 1.308 × 10−2 and εs =
εi j = 2.95 × 10−3 for i �= j in agreement with Ref. [47]. The
free-energy density of the ground state given by Eq. (3) is
−15.5653 eV/nm3. The energy functional used also de-
scribes identical energy minima when P ↑↓ A (which is
equivalent to a 180◦ phase reversal of the tilt field). Since
the rotostrictive strains defined in Eq. (10) are invariant upon
full reversal of A, then these numbers are left unchanged. In
Sec. II D, we evaluate the inhomogeneous textures of the DWs
and parametrize the gradient coefficients {Gi j, Hi j} used in our
model.

D. Calculation of gradient coefficients

To study the DW topology involving spatial variations of
P, A, and strain, a good parameter set estimate of the gradi-
ent coefficients (G11, H11, ...) of Eqs. (4) and (5) is needed.
To achieve this, we consult DFT calculations reported by
Diéguez et al. in Ref. [43]. It was shown that an assortment
of metastable states are allowed in BFO and that this zoology
of different DW types forms an energy hierarchy. Due to
electrostatic compatibility, this collection of states has specific
requirements on the components of the order parameters that
modulate across the domain boundary. For example, the low-
est energy configurations which we denote (see Table I) as
2/1(100) and 3/0(110) are the 109◦ and 180◦ DWs, respec-
tively. In this notation, it is indicated that, for the 2/1 DW, two
components of P and one component of A switch signs across
the boundary whose plane normal is (100), whereas for the
3/0 DW, P undergoes a full reversal where A is unchanged
across the (110)-oriented boundary plane. We label the pairs
of the domains characterizing the DW as PI/AI and PII/AII in
this table. This determines which terms in Eqs. (4) and (5) are
primary contributions to the DW energy. This is particularly
advantageous as it has allowed us to separate the computation
of specific DWs in the analysis of fitting the gradient coeffi-
cients to the DFT results.

To obtain the (100)- or (110)-oriented DWs within our
phase field scheme, we choose an initial condition for
the components of the order parameters to be a sin(x) or
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TABLE I. Types of (100)- and (110)-oriented domain walls, their primary derivatives, and corresponding gradient coefficients, and
comparison of energies calculated from DFT [43] with those in this paper. Adjacent domain configurations for P and A utilize the I and
II superscript notation as discussed in the main text. Energy is presented in mJ/m2 and DW thicknesses (2tk , k = P, A) are given in nm.

PI/AI Type DW PII/AII Pi, j Gi j Ai, j Hi j 2tP 2tA F (DFT)
DW F (FEM)

DW

[111]/[111] 0/0 [111]/[111]
[111]/[111] 0/3 (100) [111]/[1̄1̄1̄] Ax,x, Ay,x, Az,x H44, H11 0.39 227 293
[111]/[111] 1/1 (100) [111̄]/[111̄] Pz,x G44 Az,x H44 0.33 0.52 151 162
[111]/[111] 1/2 (100) [111̄]/[1̄1̄1] Px,x G11 Ay,x, Az,x H44 0.25 0.25 147 159
[1̄11]/[1̄11] 2/1 (100) [1̄1̄1̄]/[111] Py,x, Pz,x G44 Ax,x H11 0.08 0.06 62 60
[111]/[111] 2/2 (100) [11̄1̄]/[11̄1̄] Py,x, Pz,x G44 Ay,x, Az,x H44 0.42 0.34 319 314
[11̄1]/[11̄1] 3/0 (110) [1̄11̄]/[11̄1] Px,xPy,x, Pz,x G11, G12, 0.28 74 78

Px,yPy,y, Pz,y G44

[11̄1]/[11̄1] 3/3 (110) [1̄11̄]/[1̄11̄] Px,xPy,x, Pz,x G11, G12, Ax,x, Ay,x, Az,x H11, H12, 0.22 0.33 255 263
Px,yPy,y, Pz,y G44 Ax,y, Ay,y, Az,y H44

sin(x + y) profile, respectively. We then relax Eqs. (6) and
(7) until convergence along with satisfying the conditions of
mechanical equilibrium of Eq. (8) at every time step. The
periodic boundary conditions on the components of P, A, and
u for (100)- or (110)-oriented DWs are enforced along the
[100] and [110] directions, respectively. We compute the DW
energy with

FDW = F − F0

N · S
, (16)

where F0 is the corresponding monodomain energy from
Eq. (3) integrated over the computational volume V . The
energy F is computed from the solution that contains the DW
profile. The number of DWs in the simulation box is N and S
the surface area of the DW plane. We find convergence on the
computed energies within 1 mJ/m2 provided that the DW-DW
distances are greater than 30 nm due to long-range strain
interactions. For fourth-order thermodynamic potentials, a fit
function of the form Wk tanh [(r − r0)/tk] is sufficient to fit
the evolution of order parameters that switch across the DW
[61], where Wk is the value of the switched spontaneous or-
der parameters far from a DW plane localized at r0 and tk
corresponds to the thickness of the polar or octahedral tilt
parameters for k = P, A, respectively.

As a first example, consider the lowest energy DW pre-
dicted by DFT, the so-called 109◦ 2/1 (100) DW which
is indeed frequently observed in thin film samples of BFO
[19,62]. The primary gradient coefficients governing the en-
ergy of the wall are the H11 and G44 coefficients, owing to
the fact that Ax,x, Py,x, and Pz,x are nonzero (see Table I). The
resulting DW profile for the 2/1 (100) wall is presented in
Fig. 2(a). The profile is a smooth rotation of both Ax and

TABLE II. Best estimates of the six independent lowest-order
Lifshitz invariant coefficients Gi j and Hi j found through our fitting
procedure. Units are given in [10−9J m3 C−2] and [10−9J m3 deg−2],
respectively.

H11 H12 H44 G11 G12 G44

0.005 −1.0 4.0 28.0 −15.0 0.5

Py = Pz across the wall region. The inset on the left reveals
that the nonswitching component Px experiences a slight de-
crease (≈ −3%) at the wall. The quantitative value of the
modulation of the nonswitched component is consistent with
DFT results of the same DW type [63].

The small change of Px corresponds with a built-in �E

shown in the right inset panel which is of comparable order
(≈10 mV) to those estimated from DFT [63]. Fitting the P-A
profile shows that the DW is quite thin (thickness 2tP ≈ 0.08
nm). Hence, we obtain DWs with marked Ising character. We
provide an energy profile scan across the primary coefficients
H11 and G44 in Fig. 2(b). The dashed white line outlines the
predictions from DFT results in Ref. [43]. We also should
mention that the dependence on other coefficients is quite
weak due to the relatively small gradients in nonswitching
components. These calculations (and others not shown here)
reveal that the choice of {Gi j, Hi j} is not unique, i.e., one can
find the same DW energies (with very similar profiles) for
different combinations of the primary coefficients. Therefore,
it is necessary to visit other DW configurations to constrain
the values of the entire set.

Next, we present P-A profiles of three higher energy
(100)-oriented DWs (1/1, 0/3, and 2/2) in Figs. 3(a)–3(c),
respectively. These three calculations correspond to those us-
ing our best estimates of the gradient coefficients {Gi j, Hi j}
in Table II. In all three cases, we find the presence of a
small changes in the nonswitching components of the order
parameters shown in circles for Ak and diamonds for Pk . For
example, in the 71◦ 1/1 shown in DW Fig. 3(a), Py (in red),
which does not change signs, grows at the DW by about
15%. This is in contrast to the Px component (in blue) which
only grows by 2.5% demonstrating the influence of the weak
built-in field which reduces the magnitude of this component
to keep this wall neutral. Similar changes on the order of about
10% are also seen in Ax = Ay components shown in blue. This
DW-induced change in P seems to be the largest in the 0/3-
type DW shown in Fig. 3(b). Due to the influence of built-in
electric fields from the solution of the Poisson equation (and
our best estimates of the anisotropic gradient coefficients),
the value of the Px component grows by about 5% whereas
the Py = Pz components diminish by almost −35% (shown
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FIG. 2. (a) P and A 2/1 (100)-oriented DW profile. The left inset
shows the x component of P decrease across the DW where the
right inset demonstrates the built-in �E (in mV) arising from this
small rotation. (b) Energy surface as a function of primary gradient
coefficients H11 and G44 with DW-DW distance of ≈160 nm. For (a),
the solution coincides with our best estimates of G44 and H11 (listed
in Table II)

in black). Again, we also find changes in the nonswitching
components in the 109◦ 2/2 wall, with Px (blue diamonds)
growing by about 2%; by contrast and Ax decreases by −6.4◦
(blue circles).

In Figs. 3(d)–3(f), we depict the corresponding sponta-
neous strain profiles corresponding to the cases in Figs. 3(a)–
3(c), respectively. Importantly, far from the DW plane,
the spontaneous values of the normal (triangles) and shear
(squares) components of the strain converge to their respec-
tive values of the single domain state. However, the strained
state of the DW causes various components of εi j to grow or
depress by large percentages to accommodate the electro- and
rotostrictive coupling intrinsic in this structure. In the case
of the 1/1 DW in Fig. 3(d), the value of the εzz (in black)
shrinks until eventually changing signs (smoothly) at the do-
main boundary. For the 2/2 DW, there is a large tensile strain
in εxx (in blue) growing by about a factor of 3 across the wall.

Also presented in Table I are the DW thicknesses asso-
ciated to the corresponding order parameters, which differ
between P and A. We should note that the thicknesses of

the DW corresponding to P and A differ. This arises because
our resulting fit parameters are anisotropic (i.e., H11 
 H44)
and also the presence of growth/decrease in nonswitching
components of P and A due to the roto- and electrostrictive
coupling. Nevertheless, as seen in the table, the DWs are
quite thin (2tk ≈ 0.05 − 0.5 nm), which agrees quite well with
the available literature on BFO suggesting atomistically thin
DWs [43,63–65]. The absence of an entry in the tk column
in Table I is due to the lack of switching components in that
relevant order parameter [i.e., tP in the 0/3 (100) case]. We
should note that some of the listed tA thicknesses in Table I
are larger than those derived from gradients in P. This is
due to the much stronger rotostrictive coupling of the BFO
potential (as compared to the electrostrictive counterpart) and
the anisotropy in the fitted gradient coefficients.

We extend this type of analysis iteratively for the possi-
ble DWs listed in Table I so we can converge our set of
coefficients, yielding reasonable FDW values comparable to
DFT; importantly, capturing the energy hierarchy [43,63,66]
predicted for the collection of walls. Our best estimates of
the gradient coefficients found through our fitting procedure
are presented in Table II. We find that H11 
 −H12 < H44

in agreement with similar studies on BFO [36,66]. This is
an important relationship that results from harmonic models
of antiferrodistortive cubic perovskite materials, which has
been connected to an asymmetry in the phonon bands at the R
point [48,67,68]. Another result from our fits is that the energy
hierarchy yields FDW(109◦) < FDW(180◦) < FDW(71◦) for the
lowest energy walls [36,43,66,69]. Finally, we should make
some comments on how our predictions should change under
a finite temperature. As is usually done in phase-field model-
ing, the temperature dependence of the order parameter can
be approximated by making the first coefficient of the free-
energy Landau expansion temperature dependent. For our
model, this has been demonstrated in Ref. [70] but we stress
that the temperature dependence even at room temperature for
BFO is quite weak. We expect that the thicknesses presented
in Table I should increase under a finite temperature following
the predictions of Marton et al. in Ref. [61] who studied the
temperature dependence of DWs of perovskite BaTiO3.

E. Antiferromagnetic energy terms

Now we turn to the AFM order present in BFO. To en-
capsulate the magnetic behavior of single crystalline BFO,
we propose a continuum approximation to the magnetic free
energy density. We consider the total free energy density of
the magnetic subsystem ( fmag) to be a sum of the terms re-
sponsible for the nominally collinear AFM sublattices ( fsp)
and those producing the noncollinearity (canted magnetism)
by coupling to the structural order ( fMP). We first consider the
magnetic energy due to the spin subsystem that is not coupled
to the structural order,

fsp = De(L2 − m2) + Ae[(∇Lx )2 + (∇Ly)2 + (∇Lz )2]

+
2∑

η=1

Kc
1

(
m2

η,xm2
η,ym2

η,z

)
, (17)

where De < 0 controls the strength of the short-range su-
perexchange energy which favors the spins to have collinear
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FIG. 3. P-A profiles in arc lengths perpendicular to the (100)-oriented DW plane for the (a) 1/1 (71◦), (b) 0/3 (180◦ in A), and (c) 2/2
(109◦) type boundaries. In (d)–(f) are the spontaneous strain fields for the normal and shear components along the same arc length. Far from
the DW, the solutions converge to the values (Ps, As, εs, εn), of the ground state.

AFM ordering [71]. At our coarse-grained level of theory,
we only consider the first-nearest-neighbor exchange cou-
pling, which has been calculated from first-principles methods
[46] to be approximately 6 meV/f.u. corresponding to De =
−23.4 meV/nm3 in our simulations. The second term de-
scribes the AFM nonlocal exchange stiffness proposed in
Ref. [15] with Ae = 18.7 meV/nm (or 3 × 10−7 ergs/cm).
The third term corresponds to a weak single-ion anisotropy
[45] with Kc

1 = 2.2 μeV/nm3; this term reflects the cubic
symmetry of the lattice and breaks the continuous degeneracy
of the magnetic easy-plane into a sixfold symmetry.

The remaining terms are due to the magnetostructual cou-
pling,

fMP = fDMI(A) + feasy(P) + fanis(A), (18)

where

fDMI = D0A · (L × m) (19)

is due to the antisymmetric DMI which acts to break the
collinearity by competing energetically with the first term of
Eq. (17). It should be emphasized here that the local oxygen
octahedral environments of adjacent Fe atoms underpins the
DMI vector [12,72–75]. Therefore, the A order parameter
enables the DMI coupling. Reference [13] provides an esti-
mate of the DMI energy corresponding to 304 μeV/f.u. It
should be mentioned that the weak canting between m1 and
m2 arises from a competition between De and D0 and that
different estimates of their values can provide the same degree
of canting of the sublattices provided they have the same ratio
De/D0. We come back to this in the next section.

BFO is an easy-plane antiferromagnet [13] in which the
magnetic sublattices lie in a plane defined by the direction
of P. We include the magnetocrystalline anisotropy term [71]
requisite for easy-plane AFMs as

feasy =
2∑

η=1

K1(mη · P̂)2, (20)

with the usual definition of K1 > 0 enforcing the easy-plane
condition for mη with η = 1, 2. Using DFT methods, Dixit
et al. [13] determined that the relative energy difference be-
tween aligning the magnetic sublattices along P or in the
plane normal to P is −2.0 meV/f.u. Therefore, we choose
K1 = 31.25meV/nm3 for our simulations.

We further couple the magnetic energy surface to the struc-
tural order by allowing the weak single-ion anisotropy to also
depend on the antiphase tilts A [45] through

fanis =
2∑

η=1

a|A|2(m2
η,xm2

η,ym2
η,z

)
, (21)

which is in addition to the term in Eq. (17). The choice of
Kc

1 > 0 and 0 < a|A|2 < Kc
1 corresponds to a small energy

barrier between the sixfold possible orientations of the weak
magnetization m thus breaking the continuous degeneracy
in the easy-plane. These coefficients can be obtained from
DFT calculations as shown in Refs. [13,45]. Therefore, we
choose our coefficients (see Table III) such that the rela-
tive energy density barrier for the sixfold symmetry is 0.01
meV/nm3, which is a reasonable approximation based on the
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TABLE III. Spin free energy density materials coefficients used
in this paper.

Ae 18.7 [meVnm−3] Ref. [15]
De −23.4 [meVnm−3] Ref. [46]
D0 0.0046 [meVdeg−1nm−3] this paper
K1 31.25 [meVnm−3] Ref. [13]
Kc

1 0.0022 [meVnm−3]
a 0.00015 [meVdeg−1nm−3]

aforementioned works. We find no influence of this choice of
coupling constant on the results presented in this paper. The
coefficients for fsp and fMP are listed in Table III.

We should note that a long-period (λ ≈ 64 nm) cycloidal
rotation of the weak magnetization is often observed in BFO
samples [15–17]. It is possible to eliminate the cycloidal order
by doping [76], epitaxial strain [14,16,77], applied electric
fields [78], or by some processing techniques (i.e., via a crit-
ical film thickness) [16] during synthesis. The spin-cycloid
could be incorporated into our model by including coupling
terms associated with a proposed spin-current mechanism
[15,17,79]. However, to provide the simplest model of the ME
multiferroic effects, we have neglected them in this paper.

F. Micromagnetics and homogeneous spin ground states

To find the spin ground states in the presence of arbi-
trary structural fields, we consider the Landau-Lifshitz-Bloch
(LLB) equation [80] that governs the sublattices mη,

dmη

dt
= − γ

1 + α2
(mη × Hη )

− γα

1 + α2
mη × (mη × Hη )

+ γ α̃‖
(1 + α2)

m2
η

[
m2

η − 1
]
mη,

(22)

where α is the phenomenological Gilbert damping param-
eter and γ is the electronic gyromagnetic coefficient equal
to 2.2101 × 105 rads. A−1 s−1. The effective fields are de-
fined as Hη = −μ−1

0 M−1
s δ f /δmη, with μ0 the permeability

of vacuum. The saturation magnetization density of the BFO
sublattices is Ms = 4.0 μB/Fe [17,45,46]. The third term
arises from the LLB approximation in the zero temperature
limit, where α̃‖ is a damping along the longitudinal direction
of mη. We implement the LLB equation as a numerical re-
source to provide a restoring force and bind the quantities mη

to the unit sphere (|mη| = 1). In this context, we consider
our spin subsystem to be at T = 0 K in results presented
throughout this paper. In the Appendix, we provide a short
derivation of the LLB torque in the zero temperature limit
and a brief comment on our reasoning for choosing the LLB
equation over the popular LLG approach. We set α̃‖ = 103 in
all results in this paper to satisfy the constraint on mη.

To look for homogeneous spin ground states, we consider
α = 0.05 and evolve Eq. (22) (utilizing the numerical ap-
proach described in Sec. II C) until the relative change in
the total energy computed from the summation of Eqs. (17)
and (18) between adjacent time steps is 	F < 10−8 eV/μs.
Also, we stress that the influence of α̃‖ is negligible in all

FIG. 4. (a)Easy plane angles θη and (b) canted moment angle
φWFM during the magnetic ringdown of Eq. (22) with α = 0.05 and
P ↑↑ A aligned along the [111] direction. The longitudinal damping
in the LLB equation enforces the normalization |m1| = |m2| = 1 at
all time steps in the evolution

results presented in this paper, provided that its unitless value
is around 103 or above. To verify that our ground states predict
the magnetic ordering consistent with the literature of BFO,
we define two angular variables φWFM = cos−1 (m1 · m2) and
θη = cos−1 (mη · P̂). The former tracks the degree of canting
between the sublattices and the latter tracks the orientation
of the magnetization with respect to P̂ = P/Ps, the magnetic
easy-plane normal. As an example, we first set P ↑↑ A along
the [111] direction to be static. The time evolution (ringdown)
of Eq. (22) is highlighted in Fig. 4(a) for θη, showing that the
sublattices have relaxed into the easy plane defined by P̂ with
θ1 = θ2 = 90.0◦ In (b) the time dependence of the canting
angle φWFM during the relaxation is shown. At the conclusion
of the ringdown, φWFM reaches a value of ≈1.22◦). This
demonstrates that the angular quantities {θη, φ

WFM} detail an
orthogonal system of the {P, m, L} vectors as often discussed
in the literature [5].

As a further benchmark, we probe the influence of the
ratio De/D0 on the values of φWFM. This test, shown in
Fig. 5 highlights the energetic competition between the AFM
superexchange and the sublattice DMI. From Ref. [46] we
have De = 23.4 meV/nm3 and our analysis demonstrates
φWFM = 1.22◦ provided D0As = 0.036 meV/nm3. We thus
have the weak moment Ms|m| = 0.03 μB/Fe, which agrees
well with the available literature [13,46,81,82]. We should
note that experimental observations have indicated a range
of possible values for the weak moment Ms = (0.01–0.09)
μB/Fe [77,83,84]. However, we emphasize that our model is
general and its parameters can be adjusted within the range
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FIG. 5. Dependence of canting angle φWFM on the ground state
DMI free energy density (D0As ) for different choices of the AFM
superexchange parameter De.

of exchange and DMI energies published in the literature to
obtain different values of the weak moment (as shown in
Fig. 5).

By setting P ↑↑ A along the eight polar directions possible
in BFO, we can find six magnetic states for each of them. The
corresponding 48 multiferroic domains are listed in Table IV.
For all m orientations calculated, the canted angle is precisely
φWFM = 1.22◦. Additionally, when A is reversed fully (P ↑↓
A), which is an acceptable ground state in our potential, the
sign of m will change but not the sign of the Néel vector L.
Hence, we have a total of 96 possible domain variants. Due to
the DMI, the quantities listed in this table are canted slightly
from their listed values (hence, the use of the � symbol).

G. Antiferromagnetic domain walls

Using low-energy electron microscopy (X-PEEM), AFM
domain boundary contrast can be visualized [85] within a
single FE domain. To better understand the capabilities of

TABLE IV. Sixfold symmetric magnetic ground states for each
(P ↑↑ A) domain orientation. Note that these listed directions are not
corrected for the DMI interaction and therefore m1 �= −m2 (hence
�). All dot products yield an orthogonal system for {P, m, L}. Full
reversal of A changes the sign on m but not L. The small corrections,
due to DMI, are on the order of the canting angle φWFM (≈1.22◦).

(P ↑↑ A): [111] [1̄11] [11̄1̄] [1̄1̄1̄] [11̄1] [111̄] [1̄1̄1] [1̄11̄]

L � [1̄10] [101] [101] [1̄10] [110] [1̄10] [1̄10] [110]
[1̄01] [110] [110] [1̄01] [011] [011] [011] [011]
[01̄1] [011̄] [011̄] [01̄1] [1̄01] [101] [101] [1̄01]
[11̄0] [1̄01̄] [1̄01̄] [11̄0] [1̄1̄0] [11̄0] [11̄0] [01̄1̄]
[101̄] [1̄1̄0] [1̄1̄0] [101̄] [01̄1̄] [01̄1̄] [01̄1̄] [01̄1̄]
[011̄] [01̄1] [01̄1] [011̄] [101̄] [1̄01̄] [1̄01̄] [101̄]

m � [1̄1̄2] [121̄] [1̄2̄1] [112̄] [1̄12] [112] [1̄1̄2̄] [11̄2̄]
[12̄1] [1̄12̄] [11̄2] [1̄21̄] [2̄1̄1] [21̄1] [2̄11̄] [211̄]
[21̄1̄] [2̄1̄1̄] [211] [2̄11] [1̄2̄1̄] [12̄1̄] [1̄21] [121]
[112̄] [1̄2̄1] [121̄] [1̄1̄2] [11̄2̄] [1̄1̄2̄] [112] [1̄12]
[1̄21̄] [11̄2] [1̄12̄] [12̄1] [211̄] [2̄11̄] [21̄1] [2̄1̄1]
[2̄11] [211] [2̄1̄1̄] [21̄1̄] [121] [1̄21] [12̄1̄] [1̄2̄1̄]

our modeling effort, we attempt to stabilize an AFM DW
(i.e., one with switched L) corresponding to the above ex-
perimental observations. We set P ↑↑ A along [111̄] to be
homogeneous (and fixed in time) within the computational
box. Then, a sin(x) profile is chosen for the sublattices mη

corresponding to two possible Néel orientations of Table IV
for a (100)-oriented domain boundary with homogeneous P.
After relaxation Eq. (22) with large Gilbert damping α = 0.8,
we find that the AFM wall is not stable and the system evolves
to a homogeneous state with L corresponding to one of the six
possible orientations allowed in the domain. If the nonlocal
exchange interaction governed by Ae [15] is reduced by a
factor of 10, then we find that the solution corresponds to
AFM DWs with a 120◦ rotation of L, i.e., LI = [011] and
LII = [11̄0]. We estimate that the corresponding DW in L
has a characteristic width of 20 nm and a corresponding DW
energy of 7.55 mJ/m2 using Eq. (16).

Let us now consider how the structural DWs affect the net
magnetization. The modulation of P and A across the domain
boundary drastically alters the magnetostructural coupling en-
ergy surface due to Eq. (18) causing the AFM order to choose
preferential orientations associated with those calculated in
Table IV. Careful inspection of Table IV suggests that only
certain low-energy magnetic DWs (i.e., those minimizing the
gradient of L) should be observed for the different FE DWs
listed in Table I. Using our previously established notation for
adjacent DW states, the lowest energy FE DW (2/1) corre-
sponding to a PI/AI = [1̄11]/[1̄11] to PII/AII = [1̄1̄1̄]/[111]
change will only allow mI = [211] or mI = [2̄1̄1̄] and mII =
[21̄1̄] or mII = [2̄11], respectively, with no changes to the
Néel vector L. This coincides with a 71◦ rotation of m con-
sistent with a 71◦ change of the oxygen octahedral tilt field A
albeit having a 109◦ P switch.

To calculate the magnetic textures numerically, we fix in
time the FE order parameters P-A corresponding to a specific
DW in Sec. II D. We choose the 1/1 (100) and 2/1 (100)
structural walls as they are most commonly observed in ex-
periment. Again, we use a large Gilbert damping α = 0.8 and
look for the ground states utilizing Eq. (22). In Fig. 6, we
display the weak m moment as a function of the distance to
the DW plane for the 1/1 [Fig. 6(a)] and 2/1 [Fig. 6(b)] walls
after relaxation. In both cases, the m rotates by 71◦—[112̄]
to [1̄1̄2̄] in Fig. 6(a) and [211] to [21̄1̄] in Fig. 6(b)—with a
sharp interface region. This is expected as the DMI term is
driven by the A vector forcing m to also change by 71◦. The
large value of Ae causes the Néel vector to be nearly constant
across the DW corresponding to [11̄0] in Fig. 6(a) and [01̄1]
in Fig. 6(b) as it satisfies both conditions of the ground state
in adjacent domains. Fitting the switched components of m
to the aforementioned tanh(x) profile from Sec. II D yields
2tm = 0.5 nm. We can calculate a thickness of 2tm = 0.06 nm
in the 2/1 (100) case, demonstrating a nearly atomistically
thin DW in the magnetic texture. A comparison to Table I
shows that we have an equality of tm ≈ tA in both 1/1 (100)
and 2/1 (100) walls.

The component of m that does not switch, black in Fig. 6(a)
and blue in Fig. 6(b), changes by about ≈ +6% and −20%,
respectively, across the DW region indicating rotational com-
ponents of m. This leads to a deviations (	) of the angular
quantities {φWFM, θ1, θ2} from their ground state values.
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FIG. 6. Net magnetization m textures presented in normalized units across the (a) 1/1 and (b) 2/1 DWs of (100) orientation. Both of these
sequences of DWs produce 71◦ rotations of m. Angular deviations from the ground state values of φWFM, θ1, and θ2 for 1/1 (c) indicate a much
longer range coupling of the spin across the ME boundary than in the 2/1 case in (d).

We plot these quantities in Figs. 6(c) and 6(d). We see that,
in the 1/1 (100) case in Fig. 6(c), the sublattices cant slightly
(≈ ±1◦) out of the easy plane to facilitate this magnetic re-
versal. The deviation of the weak magnetization canting angle
φWFM (shown in blue) also reduces its magnitude by about
0.25◦. This is different from the behavior of the angular quan-
tities of the 2/1 (100) DW shown in Fig. 6(d) which decrease
their values by about 0.4◦ in the same fashion, indicating
canting out of the easy plane in the same direction for both
sublattices, resulting in a slight reduction of m. We stress that
these quantities should be meaningful since they are on the
order of φWFM in the ground state and that in the 1/1 (100)
case, the modulations extend more than a few unit cells from
the DW (±2 nm).

By using Eq. (16), we can estimate the energy of the
magnetic DW of the 1/1 (100) and 2/1 (100) cases. For the
1/1 and 2/1 walls, we calculate F mag

DW = 0.71 and 0.70 mJ/m2,
respectively. The energy difference between these two 71◦ m
DWs is quite small despite having a very different profile of
θη and φWFM. The variation of θη in Fig. 6(c) for the 1/1
(100) case causes a large relative increase in the easy-plane
anisotropy for both sublattice contributions as compared to
Fig. 6(d) for the 2/1 (100) DW. However, as seen in Fig. 6(d),
there is more identifiably sharp structure (i.e., modulations
of φWFM and θη occur within ±0.2 nm of the DW) as m
switches by 71◦. This leads to an increase in the DMI energy
relative to the 1/1 case. We have only presented data on these
two types of magnetic boundaries in the presence of the P-A
DWs. Higher energy DWs can also be investigated with our
approach, but we leave this for future work.

III. APPLICATIONS: SPIN WAVES AND
MAGNETOELECTRIC SWITCHING

A. Spin waves through multiferroic domain boundaries

The field of spintronics relies on the generation, control,
and read out of traveling packets of spin [86]. In AFMs, the
spin precessional processes can occur at low energy and ultra-
fast frequencies (THz and above), thus leading to competitive
advantages in information processing design as compared
to standard CMOS technology [87,88]. The basic concept
of wave transmission and reflection phenomena is key to
understanding how to optimize spin-wave transport in these
systems. Recently, researchers established nonvolatile control
of thermal magnon transport in BFO using electric fields [19].
Their work demonstrates that the 109◦ FE DWs act as a barrier
to spin transport across a lengthscale comprising many hun-
dreds of nm and dampen the detected magnon signal useful for
the device. We will illustrate the usefulness of our approach
by showing how it can enable a mesoscopic simulation of this
situation.

We consider two of the commonly observed DWs in BFO
experiments, the 109◦ 2/1 and 71◦ 1/1 (100)-oriented bound-
aries [5,19,89]. The reader is referred to Table I and the
previous section for the initial conditions of the order param-
eters. There is a large relative difference between the lattice
and spin DW energies. This suggests that any application of an
external magnetic field Happl should not appreciably influence
the P and A subsystem. Therefore, we fix in time the structural
order parameters in this section. We couple Happl to act on the
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FIG. 7. (a) Excess energy density fexc due to a spin wave traveling in the k||[100] direction. The excitation frequency is ω0 = 0.5 and 5
THz for the solid and dashed lines, respectively. In this simulation, the 2/1 (109◦) DW located at approximately 22 nm indicated by the arrow.
The wavefront reaches the DW at around 27 ps. (b) Calculated spin-wave rectification R as a function of ω0 of the 1/1 (blue) and 2/1 (red)
DWs using Eq. (24) after time integrating fexc at a distance of 	x = 7 nm left and right from the DW.

net magnetization through the Zeeman free energy density,

fZeeman = −m · Happl (23)

and add it to the total free energy of the spin configuration.
To perturb the system, we consider Gaussian spin-wave

beams generated by a field of the form [90]

Happl = H0 sinc[k0(x − x0)] e−p0(x−x0 )2
sinc[ω0(t − t0)] ĥ,

where field amplitude H0 = 184 kOe, excitation location x0,
Gaussian intensity profile parameter p0 = 0.16 nm−2, and
k0 = 10 nm−1 control the perturbation distribution in space-
time. The director ĥ orients the magnetic field with respect to
m. Finally, we cut off the pulse at t0 = 1 ps and excite the spin
waves at a frequency ω0.

Equation (22) is evolved with α = 0 and Eq. (24). We
enforce periodicity in our computational volume along x, y, z
for the m1 and m2 variables. The time integration of Eq. (22)
is set for dt < 2 fs time steps to ensure numerical convergence
for the fast AFM dynamics in the system. We verify that our
calculations are in the linear limit by adjusting the H0 and
determine that the perturbed amplitudes of mη scale linearly.
Finally, we monitor the system’s total free energy Fsp + FMP

and |mη| (via the LLB term) and verify that they are constant
to within floating point accuracy for all time in our α = 0
simulation.

In Fig. 7(a), we track the excess free-energy density
fexc(t, x) = fmag(t, x) − fmag(t = 0, x). Therefore, fexc corre-
sponds to a small energy that is injected into our computa-
tional volume by the spin excitation at time t . A few snapshots
of the fexc(t, x) due to the propagating wavefront (at two
different ω0) are presented in Fig. 7(a) in sequential panels
from top to bottom for t = 4.5, 17.1, 24.6, 27.1, and 34.5 ps.
Here, in Fig. 7(a), the DW is marked at xDW = 22 nm and is
impacted by the spin wave at around t = 24.6 ps. The excess

energy density loss after the wavefront travels through the DW
can be calculated by numerically time integrating fexc(t, x)
at distances of 	x = 7 nm left and right from the DW plane
located at xDW.

We then compute their ratio R,

R =
∫

fexc(t, xDW + 	x)dt − ∫
fexc(t, xDW − 	x)dt∫

fexc(t, xDW + 	x)dt
, (24)

to determine which percentage of the excess energy due to
the incoming wave is reflected or absorbed by the DW, i.e.,
the degree of rectification. We see in Fig. 7(b) that R varies
substantially across several decades in frequency with an
asymptote for low frequencies corresponding to about 35%
and 50% rectification for the 2/1 and 1/1 walls, respectively.
The relative difference between rectification arises from the
excitation of the DW region by the spin wave [seen in Fig. 7(a)
for t > 24.6 ps]. To verify this, we track the time integrated
fexc at the DW, revealing almost all of the excess energy is
absorbed by the DW. In this analysis, we find that only a small
portion of fexc due to this spin wave is reflected (not shown).

When the frequency is increased, a maximum in DW ex-
cess energy absorption in R is acquired around 1–2 THz
before R abruptly decreases, indicating that the DW becomes
more transparent to the spin wave. Similar frequency-
dependent transmission ratios have been reported in the
literature for noncollinear AFMs [91]. Recent calculations
[92] suggest that structural (surface) confinement of magnons
in BFO nanoparticles can downshift the bulk AFM resonance
from 2.81 THz down to around 2.29 THz, a nearly 20%
change. While we stress that our example is a specific case
where the lattice contribution is held fixed in time, thus con-
fining the magnetic anisotropy at the DW, we envision that
this also could cause some downshifting of the numerically
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calculated resonance frequency of the AFM order. As opposed
to our approach detailed in this section, in principle, P and A
could also vary in time. This would lead to electromagnonic
effects localized to the DWs upon excitation from inhomoge-
neous magnetic and/or electric fields (as highlighted in recent
Refs. [93,94]). It is possible that the coupled vibrations of the
structural order could further influence the spin transport and
the resonance frequencies. However, this is outside the scope
of this paper and calls for future studies. We should mention
that we did not find any meaningful influence of ĥ or k0 in our
results except changing the relative rectification between the
two types of walls, but a more detailed study of the parameters
and types of DWs is warranted.

Finally, we should comment on how this agrees with re-
cent experimental observations. In the work of Parsonet et al.
[19], the propagating thermal magnon signal inferred from the
inverse spin Hall effect was seen to decay exponentially as a
function of distance from the source. This was postulated as
due to the 2/1 (100)-oriented DWs in the system acting as a
barrier to spin currents with k||[100] whose number increased
upon electrode separation; we can conclude that our results
support this conclusion qualitatively. It remains to be seen if
domain engineering techniques guided by similar calculations
could possibly help control the rectification that impedes effi-
cient control of magnon signals in ME spintronics.

B. Magnetoelectric switching of the AFM order

A considerable demand in AFM spintronics is to find an
adequate approach to manipulate the magnetic order with
external stimulii. In the case of BFO, since this material
displays an intrinsic electric dipole moment, it has been pro-
posed to use an electric field to manipulate and control the
magnetic texture. The technological benefits to the prospect of
electric field control of magnetism have been considered for
some time [5,19,95–97]. While low-frequency deterministic
switching of m with an electric field has been experimentally
demonstrated [5], the dynamical processes of the coupled
polar-magnetic order is still a topic of research [37,38]. We
aim to highlight one such use of this modeling effort for the
case of ME switching (i.e., using an electric field to switch
m).

We now consider a fully dynamical simulation where all
system variables {P, A, u, m1, m2} depend on time. As we
are now interested in real dynamics, the time relaxation con-
stants �P = 200 Fm−1s−1 and �A = 83188 deg2m3J−1s−1 in
Eqs. (6) and (7) are taken from Ref. [70]. For our switching
simulations, our initial condition of the P ↑↑ A system is
along the [111] direction and homogeneous. Since this is a ho-
mogeneous calculation, this can be considered the macrospin
limit of Eq. (22). Since the dynamics of the AFM order are, in
general, very fast (characteristic frequencies of 100s of GHz to
the THz regime) [87], we introduce a time-stepping constraint
on the evolution of Eq. (22) for dt <0.1 ps to ensure numerical
convergence. Additionally, for switching simulations we em-
ploy the preconditioned Jacobi-free Newton-Krylov method
[98], which also provides further advantages for converging
the system numerically. There is no spin dissipation from
conduction electrons in BFO due to its insulating nature.
Therefore, we choose α of order 10−3, which is a reasonable

assumption for BFO [99,100] and other magnetic insulators
[101–104].

As one example to switch the z component of P, we choose
our electric field E to be E(ω) = 〈0, 0, E0 sin (ωt )〉 with E0 =
−1800 MV/m. This is a large value compared to coercive
fields of Ec = 20 − 40 MV/m observed in switching exper-
iments of thin-film BFO heterostructures [5,105]. However, it
is well-known that the coercive field needed to fully switch
components of P in perovskite FEs is intrinsically linked to
the occurrence of various phenomena [106–110] that are not
present in our homogeneous switching simulations. We select
an E frequency of ω = 600 MHz. The field is abruptly turned
off after P has switched to facilitate only one switching event
for analysis. The initial state is homogeneous P ↑↑ A along
[111] with L||[1̄01] and m||[11̄1] as one of the possibilities
listed in Table IV. To investigate if the ME switching has
dependency on α, we pick two different values α = 0.003 and
α = 0.01 and evolve Eqs. (6) and (7) in the presence of the
field.

Here we see in Figs. 8(a) and 8(b) the application of E
along the z direction switches the P (and also A, not shown)
orientation to [111̄] within 1000 ps (dashed black line). We
use the notation i → f to denote initial states i and final states
f for the {m, L} system. The change of the energy surface
through the magnetostructural coupling causes L to switch
orientation from [1̄01] to [01̄1̄] in Fig. 8(a) and [1̄01] → [101]
in Fig. 8(b). At the same time, the direction of m undergoes
[12̄1] → [2̄11̄] and [12̄1] → [12̄1̄] transitions in Figs. 8(c)
and 8(d). When one compares the dynamics between the
left and right panels of Fig. 8, it is evident that the choice
of α influences the final {m, L} state despite having nearly
identical ringdown patterns at the temporal vicinity of the P
switch shown in the insets of Figs. 8(c) and 8(d). We observe
that shortly after the switch (t > 1000 ps), the amplitudes of
both m and L during the ringdown are different as a function
of α. This leads to contrasting transition pathways as distinct
energy barriers can be overcome leading to the sublattices
aligning along a different {m, L} orientation.

We also consider an instantaneous limit of the switching
process where the Pz is switched immediately. In Figs. 9(a)
and 9(b), which correspond to the same α values as in
Figs. 8(a) and 8(b), the switch is set to occur at t = 200 ps
(shown in the insets). The relaxation of Eq. (22) with the
damping set to α = 0.003 and 0.01 creates many oscillations
with a characteristic ringdown frequency of approximately
127 GHz. We find that, indeed, the same situation happens
presented in Figs. 9(a) and 9(b) as in Figs. 8(a) and 8(b),
with the final states of L determined by its initial orien-
tation and the final configuration of P. The vector m (not
shown) has trajectories [12̄1] → [2̄11̄] and [12̄1] → [12̄1̄] in
Figs. 9(a) and 9(b), respectively. In the simulations corre-
sponding to Fig. 8, the switching of m occurs in about a 200 ps
time window, whereas with the instantaneous calculation, the
switching pathway requires at least 1 ns to ring down {m, L}
with realistic material values of α = 0.003. This is far above
the theoretical switching limit of 30 ps proposed by Liao and
coworkers [37,38], who also utilized a LLG model for the
AFM order coupled to a Landau-type parametrization.

We stress that both of these numerical simulations are
exercises for illustrative purposes and are simplified versions
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FIG. 8. A switching event corresponding to a 71◦ rotation of P (shown in the black dashed line) by application of an E with ω = 600 MHz
and E0 = 1800 MV/cm. The Néel L components (normalized) are shown corresponding to α = 0.003 and α = 0.01 for (a) and (b). The switch
(in L) occurs from [1̄01] → [01̄1̄] (a) and [1̄01] → [101] (b). The value of m settles into the minima corresponding to a [12̄1] → [2̄11̄] and
[12̄1] → [12̄1̄] transitions, respectively, in (c) and (d). The insets in (c) and (d) show the similar ringdown time dependence near the Pz switch
(occurring at t ≈ 925 ps).

FIG. 9. Instantaneous switching of the Néel vector L for (a)
α = 0.003 and (b) α = 0.01. The switch occurs abruptly at t = 200
ps, causing the AFM order to rapidly oscillate. The initial state is
L||[1̄01] leading to final states of L||[101] and L||[011] in (a) and
(b), respectively.

of the dynamic processes that would happen in an experiment.
Our calculations already suggest two things: (1) the Gilbert
damping α controls the maximum amplitude of the oscilla-
tions and thus the final state, hence it needs to be understood
in BFO to have a repeatable effect, and (2) the dynamics
of the structural switching does not seem to be essential in
controlling the switching pathway (i.e., comparing the ex-
plicit time-dependent E calculations versus the instantaneous
P-A switches). A more detailed investigation remains for the
future.

IV. CONCLUSIONS AND OUTLOOK

We have presented a continuum model for BFO able to
treat the polar, octahedral tilt, spontaneous strain, and AFM
order in a single calculation. This model is built upon micro-
magnetic and FE phase field approximations to the system
order parameters. Our model is benchmarked against the
known behavior in this material—specifically, we have pa-
rameterized the FE DW profiles along with their spontaneous
strain fields, obtaining an energy hierarchy of possible states
in agreement with DFT calculations [43]. We also provided
simulations of {L, m} in the presence of low-energy FE
DWs, revealing delicate features in the angular quantities
characterizing the canted magnetism. Next, we illustrated
the usefulness of the model with two simple applications:
(i) AFM spin waves traversing the multiferroic domain bound-
ary, highlighting a rectifying nature in qualitative agreement
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with recent experiments [19], and (ii) fully dynamical ME
switching in real time, which, interestingly, reveals a sensi-
tivity of switching pathways on the Gilbert damping.

There are many other phenomena in BFO that could be
built upon our model. Often discussed in the literature re-
garding BFO is the appearance of a long-period spin cycloid
[15,16] in which the proposed origin is underpinned by an
asymmetric spin-current mechanism [17,75,79,111] which is
necessary to stabilize these patterns. While the results of this
paper are for the weakly noncollinear commensurate AFM
order, one can appreciate that the presence of the spin cycloid
might affect the outcome of our illustrative examples. We also
emphasize that the DMI expression in Eq. (19) is isotropic
and that the application of strain should break the symme-
try, which can lead to different AFM sublattice ordering as
detailed in Ref. [13]. In principle, both the spin-flexoelectric
(spin cycloid) and magnetoelastic (epitaxial strain) contribu-
tions could influence the antisymmetric exchange, leading to
drastically altered magnetization textures in the simulations.
In general, also, the type of multiferroic modeling outlined in
this paper could be extended to other noncollinear antiferro-
magnets such as those where electric fields have been shown
to manipulate the magnetic state despite lack of spontaneous
FE order [112,113].

The model is built within the FERRET [59] module atop
the open-source MOOSE framework [60]. As a nod to open
science, we provide representative examples for all the results
in this paper to be hosted on a GitHub website [114]. FERRET

is part of a forward-integrating toolset called the Continuous
Integration, Verification, Enhancement, and Testing (CIVET)
[115] utility, which preserves reproducibility of our results by
ensuring underlying code changes to the MOOSE software
stack do not break the module. The sets of governing equa-
tions and energy terms in this paper, which are applicable
in 3D and for any geometry, are available and documented
as C + + objects within the open-source software repository.
While our modeling effort is certainly not exhaustive, we be-
lieve it will be a useful platform for development of continuum
simulations of BFO and other multiferroics in length- and
timescales not accessible by atomistic methodologies.
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APPENDIX

In micromagnetic simulations in which thermal fluctua-
tions are not included (so-called athermal simulations), the

magnetization density must remain constant in magnitude,
thus preserving the unit norm of the magnetization director
m̂ = M/|M|. In finite-difference codes on regular meshes,
such as MuMax3 [116], enforcing this constraint is simple:
each simulation cell k contains one unit vector m̂k that can
simply be renormalized after, e.g., each time step. In contrast,
in weak-formulation FEM codes (this paper) the continuum
magnetic degrees of freedom are approximated by shape
functions on irregular mesh cells and integrated over, and
normalization of m(r) is not as easily interpreted or made
meaningful as in finite-difference codes.

One can overcome this problem, for example, using a
representation of m(r) in spherical coordinates [117], but
numerical solutions of the equations of motion can become
unstable, leading to serious convergence issues. Another pos-
sibility is to introduce the constraint through a Lagrangian
multiplier or using special shape functions on the tangent
plane of the magnetization director vector field [118,119]. We
chose a different path, which is physically grounded in the
LLB formulation [80,120,121]. The key point in the LLB for-
mulation is that longitudinal fluctuations in the magnetization
director are allowed, but countered by a penalty for deviations
away from the thermodynamic average of the magnitude m(T )
at a temperature T . The longitudinal fluctuations add a term
to the equation of motion that is given by

γα‖
(1 + α2)m(r)2

[m̂(r) · (Heff + ζ‖)]m̂(r), (A1)

where m̂(r) is the local magnetization director with an equi-
librium value me(T ) that depends on temperature, ζ‖ is
a thermal field, and α is the usual dimensionless Gilbert
damping. The longitudinal damping α‖ depends on T
through

α‖ = α
2T

3T MFA
c

, (A2)

with T MFA
c the mean-field Curie temperature, and the effective

field Heff includes the longitudinal susceptibility χ‖:

Heff = Hext + Hani + Hex + 1

2χ‖

(
1 − m2

i

m2
e

)
m̂i

= H0 + 1

2χ‖

(
1 − m2

i

m2
e

)
m̂i. (A3)

Here Hext, Hani, and Hex are the usual external, anisotropy, and
exchange fields. Ignoring the thermal field, the contribution to
dm̂/dt is then

γα‖
(1 + α2)m2

i

[
m̂i ·

(
H0 + 1

2χ‖

(
1 − m2

i

m2
e

)
m̂i

)]
m̂i. (A4)

At T = 0 with m2
e = 1, we can simplify the last term in the

above equation to get

γ α̃‖
(1 + α2)

(1 − m2)m2m̂ (A5)

where α̃‖ = α‖μ0/(2χ‖) now has the unit of a magnetic field
that drives the longitudinal relaxation. The contribution to the

094101-14



COUPLED MAGNETOSTRUCTURAL CONTINUUM MODEL FOR … PHYSICAL REVIEW B 108, 094101 (2023)

time evolution of m̂ due to longitudinal relaxation is then

− γ α̃‖
(1 + α2)

(m2 − 1)m2m̂ + 2χ‖γ α̃‖
(1 + α2)m2

(m̂ · H0)m̂. (A6)

One can show that in the limit of low T , much lower than rel-
evant Curie temperatures, the second term in Eq. (A6) can be

ignored. In this case, the LLB-like addition to the equations of
motion is simply

γ α̃‖
(1 + α2)

[m2 − 1]m2m̂, (A7)

where α̃‖ has the dimension of a field.
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