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ABSTRACT 

The aim of this thesis was to study, develop and validate systems for 

telemedicine applications to monitor vital parameters. The focus has been on 

photoplethysmography (PPG) devices to obtain non-invasive, cuff-less, wireless, 

and repeated measurements of blood pressure (BP), in addition to heart rate 

(HR), oxygen saturation of blood (SpO2) and respiration rate (RR). It includes 

software design and implementation to estimate BP from the PPG signal, with 

the development of the processing algorithm, including filtering and noise 

elimination, and evaluating the critical issues on which it is necessary to 

intervene. The characteristic points of PPG signal have been identified and 

features have been extracted, including novel features extracted from the 

Maximal Overlap Discrete Wavelet Transform (MODWT) enhanced PPG signal. 

Then the most significant features have been identified by several selection 

algorithms. This has permitted to implement, train and compare the performance 

of several machine learning (ML) models with the aim of estimating systolic and 

diastolic BP using the processed PPG signal. 

Afterwards, several deep learning (DL) algorithms have been implemented 

using the whole PPG signal instead of the features extracted from it, and the 

impact of the loss function, model’s input and duration of the input has been 

investigated. Then a first prototype of a wearable embedded solution has been 

developed for a telemedicine application.
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INTRODUCTION1 

OVERVIEW AND THESIS OBJECTIVE 

Photoplethysmography (PPG) is an optical measurement technique that can be 

exploited to measure the oxygen saturation of blood (SpO2), to estimate heart rate 

(HR), respiration rate (RR), and to evaluate atherosclerosis and arterial stiffness. 

Recently, the use of PPG to also estimate Blood Pressure (BP) values with 

appropriate calibration has become an active area of research. Indeed, the ability 

to use, for these purposes, a signal acquired at a single site by a wearable, non-

invasive, wireless, miniaturized, inexpensive, and easy-to-use sensor certainly 

has great potential to control the health of an individual and detect states of 

hypertension; in fact, nowadays, the interest in the use of the PPG signal is 

becoming more and more important for the estimation of BP. 

Among vital signs, the monitoring of BP is a very important aspect in the 

treatment of many clinical conditions; it is relevant for the assessment of the state 

of hypertension, which is associated with chronic diseases and an increase in 

mortality and morbidity. Currently, measurements are made using cuff-based 

devices that are complicated, not always accurate, and are prone to errors if the 

cuff is not of the correct size or if the appropriate calibrations are not made; hence, 

a fundamental prerequisite is that both the caregiver and the patient need to be 

trained in their use. Moreover, the gold standard is the invasive BP monitoring

 
1 This Introduction is based on the papers [1], [2]. 
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of arterial blood pressure (ABP), which is carried out through the cannulation of 

a peripheral artery and is utilized in the management of critically ill and 

perioperative patients. For this reason, there is the spread of the development of 

practical and reliable telemedicine solutions [3],[4],[5],[6] to guarantee 

monitoring at home and at hospitals with the aim of ensuring early identification 

and prevention of cardiovascular diseases (CVDs), hypertension, and other 

related diseases by using non-invasive, low-cost, and portable solutions. 

In this thesis, new features relevant to BP estimation using PPG are presented. A 

total of 195 features, including the proposed ones and those already known in 

the literature, have been calculated on a set composed of 50,000 pulses from 1,080 

different patients. Three feature selection methods, namely Correlation-based 

Feature Selection (CFS), RReliefF, and Minimum Redundancy Maximum 

Relevance (MRMR), have then been applied to identify the most significant 

features for BP estimation. Some of these features have been extracted through a 

novel PPG signal enhancement method based on the use of the Maximal Overlap 

Discrete Wavelet Transform (MODWT). As a matter of fact, the enhanced signal 

leads to a reliable identification of the characteristic points of the PPG signal (e.g., 

systolic, diastolic, and dicrotic notch points) by simple means, obtaining results 

comparable with those from purposefully defined algorithms. Hence, this study 

leads to the selection of several new features from the MODWT enhanced signal 

on every single pulse extracted from PPG signals, in addition to features already 

known in the literature. These features can be employed to train machine 

learning (ML) models useful for estimating systolic blood pressure (SBP) and 

diastolic blood pressure (DBP) in a non-invasive way, which is suitable for 

telemedicine healthcare monitoring. In fact, a ML approach to estimating BP 

using PPG is then presented. The final aim of this work was to develop ML 

methods for estimating BP in a non-invasive way that is suitable in a telemedicine 

healthcare monitoring context. The training of regression models useful for 
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estimating SBP and DBP was conducted using new extracted features from PPG 

signals processed using MODWT. Subsequently, an in-depth performance 

analysis has been done on the estimation of SBP and DBP by using features from 

the PPG signal enhanced using the MODWT to train many ML regression 

models, including eXtreme Gradient Boost (XGBoost). The impact on accuracy of 

different features selection methods, ML methods, training set sizes, and the use 

of signal enhancement have been analyzed. One result is the achievable 

improvements using, for ML, features extracted from MODWT enhanced PPG 

signals. Then, a comparison of the results obtained using different sets of the 

most significant features is reported. One set of features also includes the new 

ones extracted from the MODWT enhanced signal, and the other set includes 

only the features already known in the literature. Moreover, several ML 

algorithms have been trained to provide a comparison of their accuracy and 

training time, showing the Pareto front. RReliefF and MRMR selection 

algorithms, and several ML algorithms such as XGBoost, Gaussian process 

regression (GPR) models, and Ensemble models stood out for their performance, 

with a different compromise between prediction error and training time. In 

addition, a further result has been obtained by varying the dimension of the 

dataset to understand the impact on root mean squared error (RMSE) for models 

that have shown better performance, giving an empirical relationship on 

achievable RMSE as a function of training set size. From that relationship, an 

upper boundary of the set size has been extrapolated, over which no further 

RMSE improvements are expected. 

After this analysis, the focus was on applying the trained models to a different 

dataset than the one used, obtained using a different PPG sensor. This aspect is 

aligned with the final objective of this thesis. However, it was immediately 

evident that there was a problem, already known from the literature, that occurs 

when the dataset or sensor changes. With this aim, ML models were re-analyzed 
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in a transfer learning (TL) context, and calibration attempts on the PPG signal 

were attempted. Analyses were also carried out on the features extracted from 

the different datasets to understand their ranges. At the end of this study, deep 

learning (DL) approaches were experimented since DL models are more prone 

to exploit the potential of TF. The first analysis involved a comparison of different 

DL models and the study of the TL to solve the problem defined previously, 

using the PPG signal to obtain the estimated pressure values SBP and DBP; 

subsequently, further analysis involved the use of the PPG signal to obtain the 

ABP signal, and another aspect of inter-subjectivity and intra-subjectivity was 

addressed. Taking into account the works in the literature, it was decided to 

study the impact that the loss function has in the training phase as the models 

and the dataset vary. Finally, an embedded solution was implemented to create 

a telemedicine system that can also estimate BP from the PPG signal in addition 

to HR, SpO2, and RR.  

THESIS STRUCTURE 

The thesis is structured as follows: in Chapter 1 the MODWT enhancement of 

PPG signal and the novel features selection for non-invasive cuff-less BP 

monitoring are dealt with, in particular the source database and the signal pre-

processing are described; then features extraction and selection is presented, 

including new proposed features obtained by using MODWT. In Chapter 2 the 

ML approach for XGBoost models is presented and a comparison of the obtained 

results with the literature has been done, focusing on standard medical protocols 

for performance assessment. In Chapter 3 a more detailed focus on several ML 

algorithms and a study on different feature sets obtained using three different 

selection algorithms is presented.  

In Chapter 4 DL models have been developed to obtain the ABP signal from the 
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PPG signal without relying on purposely extracted signal features. Finally, a 

more in-depth analysis was carried out considering the impact of the loss 

function on training. In Chapter 5 the hardware implementation of a portable 

solution for the acquisition of PPG signal, accelerometer, gyroscope and 

magnetometer data using an ESP32 and a web server is illustrated with the 

ultimate goal of implementing a complete telemedicine solution that includes, 

among others parameters, BP estimation. It was essential to develop a prototype 

to acquire the PPG signal and fully leverage the implementation discussed in the 

previous chapters. Furthermore, by using TL, it will be possible to apply the 

implemented models to signals obtained from different sensors such as the 

sensor under consideration which operates in reflective mode and differs from 

the PPG sensor utilized in the public dataset, which employs a sensor in 

transmissive mode. Additionally, this approach will enable the creation of a 

dataset, which will be crucial for validating the processing implementation. In 

Chapter 6 and Chapter 7 other telemedicine solutions for biomedical 

applications are presented, focusing on several vital signs. The final two chapters 

emphasize the importance of monitoring vital signs by expanding the focus 

beyond the PPG signal. The goal is to incorporate additional types of 

physiological signals and different hardware, for example a multi-parametric 

device and a single lead heart rate monitor, aiming to offer a comprehensive 

overview of potential telemedicine applications that could be integrated. This 

approach will aim to provide a thorough assessment of a patient’s overall health 

status.
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CHAPTER 1 
 

PPG SIGNAL PROCESSING AND 
ENHANCEMENT2 

INTRODUCTION 

In recent years, telemedicine has become increasingly prevalent, due to the 

utilization of innovative wearable sensors, miniaturized devices and even 

smartphones that permit the monitoring of vital signs. These devices are 

characterized by their simplicity of use, non-invasiveness and wireless 

connectivity [6], [7], [8], [9], [10], [11]. Among the vital signs BP requires adequate 

monitoring. Consequently, researchers are exploring methods for performing 

cuff-less and non-invasive BP measurements. A significant number of studies are 

currently focused on the use of PPG for BP estimation.  

Several studies have been conducted over the years and continue to be conducted 

today on the use of electrocardiogram (ECG) and PPG signals acquired 

simultaneously for the estimation of BP [12], additionally, studies have been 

conducted on the use of only the PPG signal. There is a relationship between the 

PPG signal and BP that is related to a measure of the speed of the blood flow, 

known as pulse wave velocity (PWV) [13], this allows for the measurement of the 

time for a blood pulse to reach a peripheral point from the heart, which is known 

as the pulse transit time (PTT) [14]. A shorter PTT is associated with a higher BP,

 
2 This Chapter is based on [1]. 
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while a longer PTT is associated with a lower BP. However, this approach 

necessitates the acquisition of data from multiple sites and the synchronization 

of the two signals. Consequently, the use of the PPG signal alone represents a 

promising path for further investigation and improvement. Indeed, it has the 

potential to make the acquisition process more efficient although it necessitates 

more complex processing to derive BP estimates from the PPG signal. Moreover, 

the use of PPG for the estimation of BP is not without its own set of criticalities 

and limitations. These include the need to eliminate noise, develop multi-

photodetectors, identify events, carry out individual calibration based on skin 

color and clinical factors, and address calibration drift over short time intervals 

[15]. 

Consequently, there is a necessity to enhance BP measurement through PPG, for 

this reason the focus of the research is on the investigation of PPG signal 

characteristics that are correlated with BP and can be exploited for ML [16], [17], 

[18], [19], [20], [21], [22], [23]. Features can be employed for the non-invasive 

measurement of both SBP and DBP. They can be defined in time domain 

(including the calculation of derivatives), frequency domain, or statistically. 

Moreover, various ML methodologies have been explored by researchers, 

including support vector machines (SVM), regression trees (RT), neural networks 

(NN), linear regression (LR), and others. This Chapter presents a study and 

research focused on the extraction of new and more significant features from PPG 

signals with the potential to improve BP estimation. In particular, it has been 

demonstrated that the use of the MODWT enables the enhancement of the PPG 

signal and the extraction of features that are crucial for this objective. As a matter 

of fact, it has been demonstrated that MODWT enhances the identification of 

characteristic points in the PPG signal, thereby rendering it more similar to the 

ABP signal. Consequently, this study introduces several novel features that are 

useful for BP estimation, which can be extracted from both the enhanced and the 
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base PPG signal. These features have not been previously utilized in literature. 

Another significant contribution of this study is the meticulous examination of 

both novel and known features with the objective of identifying those most 

pertinent to BP estimation. To this end, three distinct feature selection algorithms 

have been employed to analyze features extracted from a substantial number of 

PPG signals contained in the MIMIC-III Waveform Database. The analysis has 

led to the identification of the most informative features for BP estimation. This 

is a fundamental and general result that can be applied to any other work 

involving the use of ML techniques for BP measurement from PPG signals. 

OVERVIEW OF PPG SIGNAL 

PPG is spreading for real-time monitoring of vital signs because it is a simple, 

low-cost, and non-invasive optical measurement method that can provide 

important health information. It is a type of plethysmography (PG) that exploits 

optical properties unlike other types of PG, such as those based on capacitive, 

inductive, and piezoelectric properties [24], [25]. PPG measures light transmitted 

or reflected between a source (LED) and a photodetector placed on the surface of 

the skin, which is affected by volumetric changes in blood circulation [26]. In 

transmission measurements, it is possible to use red light (680 nm) or near 

infrared light (810 nm), as they allow deeper penetration. In reflection 

measurements, the photodetector reveals backscattered or reflected light from 

tissues, bones, and blood vessels [27] as shown in Fig. 1. 
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Fig. 1. Types of PPG measurements. 

 

Since the maximum pulsatile component of reflected light occurs in the 

wavelength range between 510 nm and 590 nm, green light (565 nm) and yellow 

light (590 nm) can be used [15], [28]. The PPG signal is characterized by a pulsatile 

part and a steady part, as shown in Fig. 2; the pulsatile one is associated with the 

variation of BP with blood volume changes and is synchronous to the pulse, 

while the steady one is associated with some aspects such as respiration and the 

sympathetic nervous system. 

 

 

Fig. 2. PPG signal and its pulsatile and steady parts. 

The two phases of the cardiac cycle characterized by systole and diastole can be 

identified in the PPG signal. The systole phase is characterized by an increase in 

blood perfusion, resulting in an increase in volume. The increase in arterial 

volume results in greater absorption of emitted light, and therefore the reflected 



CHAPTER 1 

33 
 

or transmitted light that reaches the photodiode is less. The opposite situation 

occurs during diastole, as shown in Fig. 3. 

 

 

Fig. 3. PPG signal and the two phases of the cardiac cycle. 

1.1 DATASET PRE-PROCESSING AND 

LABELLING 

In this study, a clinical dataset of physiological signals acquired by the monitors 

of patients in an intensive care unit (ICU) is utilized. However, due to the 

frequent interruption or alteration of acquisitions (resulting from factors such as 

monitoring device failure, misconfiguration, or shifts in patient condition), these 

datasets often contain records of varying lengths, with missing or anomalous 

signals. Consequently, a multitude of automated checks have been employed to 

eliminate unreliable data in a systematic manner as the analysis progresses. The 

data processing has been conducted using MATLAB R2022a. 

The workflow of the data analysis is illustrated in Fig. 4 and described in detail 

in this and subsequent sections. 

 

 

Fig. 4. Workflow of data analysis. 
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1.1.1  DATASET 

 

This study was conducted using PPG and ABP signals available in the open 

access MIMIC-III Waveform Database [29], [30], [31], which was selected for its 

size and accessibility. It is an extension of the MIMIC II Waveform Database, 

which has been utilized in numerous other works pertaining to the analysis of 

biomedical signals. The MIMIC-III Waveform Database contains physiologic 

signals acquired from bedside monitors in adults aged 16 years or above 

(representing 87% of admissions, with 56% of these individuals being male 

adults) and neonatal (13% of admissions) ICUs. These signals are almost always 

accompanied by one or more ECG signals as well as ABP, PPG, and respiration 

signals. The age quartiles for adults are as follows 𝑄1 = 52.8 years, 𝑄2 = 65.8 years 

and 𝑄3 = 77.8 years. The most prevalent patient conditions are coronary 

atherosclerosis of the native coronary artery (7.1%), unspecified septicemia 

(4.2%), and subendocardial infarction (initial episode of care) (3.6%). The data 

was collected using two critical care information systems, each comprising a 

different set of medical devices. The Philips CareVue Clinical Information 

System (with Intellivue MP-70 monitor) and the iMDsoft MetaVision ICU were 

utilized. All protected health information in the database is deidentified and no 

demographic information is provided. Furthermore, the PPG signals available in 

this database have been collected using a fingertip device (Multi-Measurement 

Module), and all signals have been acquired at a sampling rate of 125 Hz. Given 

the extensive size of the database, only a portion of folder #30 and the entirety 

folder #32 were initially downloaded from the database, corresponding to 6,740 

patients. However, for the study presented in this Chapter, only patients where 

both PPG and ABP signals were available, corresponding to 1,080 patients, have 

been considered. The WFDB MATLAB Toolbox [31], [32] and purposely created 

functions have been utilized for data handling. 



CHAPTER 1 

35 
 

1.1.2   ALIGNMENT 

When ABP and PPG are acquired by different devices, they are provided without 

time alignment as shown in Fig. 5. 

  

 

Fig. 5. Raw PPG signal and ABP signal before alignment. 

 

It is essential to verify in advance that the signals are properly aligned; if any 

misalignment is detected, the alignment should be implemented. 

Consequently, such alignment has been carried out for all records using cross-

correlation as reported in [17], [33], [34]. The cross-correlation function 

 

𝑔(∆𝑡) =  ∑ ABP(𝑡) × PPG(𝑡 + ∆𝑡)              (1) 

 

was calculated between the two signals, and the location of the maximum value 

was identified as time lead or lag, different between pairs of signals. An example 

of the alignment is shown in Fig. 6. 
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Fig. 6. Alignment of the normalized PPG and ABP signals. 

1.1.3   CHUNKING 

For each record, consecutive blocks of 30 s have been obtained by signal 

chunking. The duration of the signal chunks is arbitrary, but is considered 

adequate for the purpose of obtaining physiological information such as HR. 

1.1.4   PRE-PROCESSING 

Subsequently, the PPG signals were subjected to the following processing: (1) 

denoising, by following the technique reported in [34], [35], [36] and used in [17], 

which involved the application of a second-order Butterworth filter with pass-

band 0.5 Hz to 8 Hz; (2) Z-score standardization was carried out in accordance 

with the methodology described in [17]; and (3) baseline correction was 

performed using the technique reported in [37], [38], [39] and used in [19], which 

consists of the removal of a fourth-order fitted polynomial. The resulting signal 

will subsequently be referenced later as 𝑥𝐹𝐼𝐿𝑇. 

The ABP signal has also been processed to partition each chunk into pressure 

pulses, which will be used to measure SBP and DBP later. For that partitioning, 

a tenth-order lowpass Yule-Walker recursive filtering with an 8 Hz cut-off 
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frequency has been applied to the ABP signal and the slope sum function has been 

calculated as reported in [40] to identify ABP pulses. The duration of the 

analyzing window length for the slope sum calculation is selected to be equal to 

the typical duration of the upslope of the pulse, and in this study it has been set 

to 0.128 s (similarly to [40]). This corresponds to 16 samples acquired at 𝑓𝑠 =

125 Hz. 

Afterwards, the ABP pulses were evaluated in accordance with the complementary 

signal abnormality index [40], [41] and, if they exceeded a threshold of 0.4, the 

entire ABP chunk and the corresponding PPG chunk were discarded from 

subsequent processing, as demonstrated in [33]. 

Additionally, PPG chunks were also discarded if they failed a similarity test. In 

the literature, several similarity tests have been proposed, including those 

presented in [17], [18]. In this Chapter, however, a different test based on the 

coefficient of determination of several linear regressions has been used. For the 

purpose of this study, PPG pulses were identified by using the corresponding 

bounds of ABP pulses, and then the following regressions have been calculated: 

of the PPG pulse on the corresponding ABP pulse; of a PPG pulse on the previous 

one; and of an ABP pulse on the previous one. In each one of the three cases, 

separately, the average of the coefficient of determination among the pulses 

within the chunk was calculated. Chunks were discarded if the average of the 

coefficient of determination was less than 0.8, as demonstrated in [33]. 

The coefficient of determination 𝑟𝑠𝑞 has been computed as follows: 

 

𝑦𝑟𝑒𝑠𝑖𝑑 = 𝒙 − 𝑦𝑓𝑖𝑡 

𝑆𝑆𝑟𝑒𝑠𝑖𝑑 = ∑ 𝑦𝑟𝑒𝑠𝑖𝑑
2

𝑁

𝑖=1

 

𝑆𝑆𝑡𝑜𝑡𝑎𝑙 = (𝑁 − 1) 𝑣𝑎𝑟(𝒙) 

               (2) 
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𝑟𝑠𝑞 = 1 −
𝑆𝑆𝑟𝑒𝑠𝑖𝑑

𝑆𝑆𝑡𝑜𝑡𝑎𝑙
 

 

where 𝒙 = [𝑥1, … , 𝑥𝑖 , … , 𝑥𝑁] is the sampled PPG pulse signal of length 𝑁, with 𝑖 =

1, … , 𝑁, and 𝑦𝑓𝑖𝑡 = [𝑦1, … , 𝑦𝑖, … , 𝑦𝑁] is the associated fitting. 

1.1.5   PULSE SEGMENTATION AND LABELING 

In order to facilitate the extraction of features, it is essential to segment PPG 

pulses independently of the ABP pulses that were previously identified. To this 

end, this study extends the slope sum function calculation to PPG in analogy to 

ABP, thereby obtaining a partitioning of the chunk. The accurate identification of 

the onset points of PPG pulses is of great significance for the subsequent 

extraction of time-related features. The results of the application of the slope sum 

function to identify the onsets of the pulses are presented in Fig. 7 on the raw PPG 

signal. 

 

Fig. 7. Example of segmentation of the raw PPG signal. 

 

The initial segment obtained was excluded from further analysis, as it may have 

contained a partial pulse. For each PPG pulse, an additional signal quality index 
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based on skewness has been calculated as described in [20]. In this Chapter PPG 

pulse has been discarded when skewness value was less than zero. Subsequently, 

the PPG pulses were labelled with the corresponding 𝑆𝐵𝑃 and 𝐷𝐵𝑃 values, which 

were necessary for the phase of features selection. In order to achieve this, the 

ABP pulses were re-segmented in accordance with the boundaries of the PPG 

pulses. Then, for each processed ABP pulse, the SBP was calculated as the peak 

value and the DBP as the next minimum value. Finally, ABP pulses and the 

corresponding PPG pulses were discarded if they had non-physiological values, 

specifically when 𝑆𝐵𝑃 > 300 mmHg or 𝐷𝐵𝑃 < 20 mmHg or 𝐻𝑅 < 20 bpm or 

𝐻𝑅 > 200 bpm.  

All the processing steps are shown in Fig. 8. 

 

 

Fig. 8. Workflow of the processing steps. 

1.2 FEATURES EXTRACTION 

The extraction of the features was conducted on PPG pulses or PPG chunks, 

processing the following signals: 

4. 𝑥𝐹𝐼𝐿𝑇, obtained after the baseline correction; 

5. 𝑥𝑁𝑂𝑅𝑀, obtained after normalization of 𝑥𝐹𝐼𝐿𝑇 in the range [0, 1] for each pulse 

separately; 

6. 𝑥𝑀𝑂𝐷𝑊𝑇, obtained from 𝑥𝐹𝐼𝐿𝑇 after the MODWT enhancement that will be 

discussed later in this section. 
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A total of 195 extracted features were identified. The most relevant ones are listed 

and defined in Appendix A, wherein features already known in the literature 

[19], [21], [23] are distinguished from those proposed in this study for BP 

measurement on PPG signals.  

Several proposed features have been extracted from individual pulses using the 

MATLAB built-in function extract, which gives features in the time domain and 

frequency domain on each pulse of 𝑥𝐹𝐼𝐿𝑇 and 𝑥𝑀𝑂𝐷𝑊𝑇 and, in a few cases, also of 

𝑥𝑁𝑂𝑅𝑀. Clearly, the definition of these features is well established; however, their 

application to 𝑥𝑀𝑂𝐷𝑊𝑇 PPG signals to evaluate their significance for BP is novel. 

Many features have been extracted from the PPG pulses on 𝑥𝐹𝐼𝐿𝑇  following [19], 

[21], [22], [23], and are related to the amplitude of characteristic points, area, 

width, time, first and second derivatives, nonlinear functions of features, and 

statistics. 

Moreover, the characteristic points have been identified on each PPG pulse of 

𝑥𝐹𝐼𝐿𝑇, shown in Fig. 9, and they are max slope point (MSP), systolic peak (SP), dicrotic 

notch (DN), inflection point (IP), and diastolic peak (DP). 
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Fig. 9. Different morphologies of PPG pulses of 𝑥𝑁𝑂𝑅𝑀 with characteristic points for two 

different patients: (blue pulse) adult patient; (red pulse) neonate patient. Sampling 

frequency is 125 Hz. 

The identification of those characteristic points cannot be obtained reliably based 

only on PPG amplitude, as the signal morphology varies considerably between 

patients. This is particularly evident in relation to age and condition, as shown in 

Fig. 9. Indeed, the DP may not be evident in the signal. Hence, the detection of 

points has been conducted in accordance with the algorithms presented in [22], 

which also encompass the first and second derivatives of PPG pulses. 

This Chapter proposes an alternative approach to determining characteristic 

points, alternative to [22], which is based on the application of proper wavelet 

filtering to obtain an enhanced PPG signal that better resembles the ABP signal. 

In order to achieve this, the MODWT has been applied to each pulse, with the 
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computation being carried out down to level ⌊log2 𝑁⌋, where 𝑁 is the number of 

samples of the pulse. 

Wavelets have found application for the enhancement and denoising of medical 

images and bio signals as evidenced by [42], [43], [44]. In particular, MODWT has 

been used successfully for other physiological signals, including ECG, 

electroencephalogram (EEG), and magnetoencephalography (MEG) [45], [46], 

and has also proven suitable for the PPG signal in this study. This wavelet is an 

undecimated wavelet transform analogous to the discrete wavelet transform 

(DWT). Unlike the DWT, however, no down sampling of coefficients is 

conducted during its computation, resulting in a high degree of redundancy. 

Furthermore, MODWT is a linear filtering operation that can be utilized to assess 

the behaviors of a signal dependent on its scale. It is a time-shift-invariant 

method that facilitates the alignment of decomposed wavelet and scaling 

coefficients at each level with the initial signal. Additionally, it enables the 

examination of localized signal variations. Consequently, a linear combination of 

the scaling function and wavelet function is employed, taking into account the 

number of decomposition levels. The implementation of the MODWT, used in 

this study, performs the circular convolution in the Fourier domain. 

The reconstruction of the pulse has been achieved through the application of the 

Inverse Maximal Overlap Discrete Wavelet Transform (IMODWT). Among the 

numerous variants of the MODWT, the sym4 synthesis wavelet was selected as 

it yielded superior outcomes in the highlighting of the characteristic points. This 

wavelet belongs to a family of wavelets that are near symmetric, orthogonal, and 

biorthogonal. The scaling function and the wavelet function are shown in Fig. 10. 
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(a) (b) 

Fig. 10. (a) Scaling function; (b) wavelet function. 

 

For the signal synthesis with IMODWT, only the fourth and fifth levels 

coefficients have been utilized. As reported in [47], these selected coefficients 

were found to maximize the energy of the QRS complex in ECG signals. In this 

study, the same approach has allowed the obtention of a frequency-localized 

version of the PPG pulse, which covers the bandwidth that maximizes its energy. 

In fact, the use of MODWT on the PPG pulse represents a key point in this study. 

This approach has allowed the emphasis of two of the most relevant points of a 

PPG pulse, namely the DP and the DN, as illustrated in Fig. 9. In the algorithm 

implemented in this research, SP is identified as the first peak of the enhanced 

PPG pulse, followed by a local minimum corresponding to DN, and then by a 

local maximum that is identified as DP. 

As is evident in Fig. 11, the DP and the DN are more pronounced in the enhanced 

signal and there is a greater similarity with the morphology of the ABP pulse 

shown in Fig. 12. In contrast in the PPG pulse before the application of MODWT, 

these points are less pronounced and cannot be reliably identified unless 

information from the first and second derivatives is also utilized. 
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Fig. 11. Pulse PPG before (blue) and after (red) the use of MODWT. 

 

From these new pulses, which exhibit an improved similarity with the ABP 

pulse, additional features have then been extracted. These include the 

characteristic points of the PPG pulse, time-related features, area-related 

features, energy-related features, amplitude-related features, and other features 

in the time and frequency domains. This has been achieved through the 

utilization of the built-in MATLAB function, extract. The  Appendix A presents a 

list of features extracted from the enhanced pulses. 
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Fig. 12. ABP pulse corresponding to the PPG pulse with SBP and DBP values. 

 

In addition, other features have been computed by considering the signal in time 

intervals that include couples constituted by a pulse and the next one, rather than 

a single pulse. In such case, the calculated value for each couple is averaged 

among all the couples within a given chunk. This resulting feature value is then 

assigned to each pulse within the chunk (e.g., Mean of tb1, Mean of tb2, Mean of 

TP/p2pi, Mean of TDN/p2pi, etc.). 

Finally, there are features that have been calculated on the PPG chunk as a whole, 

rather than smaller intervals or single pulses. Once more, the value is assigned, 

again, to each pulse of the chunk (e.g., Area from 2 to 5, Peak1, Freq1, Freq2, etc.). 

Several frequency-related features have been obtained by means of the Fast 

Fourier Transform (FFT) applied to each PPG chunk of 𝑥𝐹𝐼𝐿𝑇 in order to extract 

the sixteen FFT features described in [19]. Other statistics-related features, such 
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as the mean and standard deviation, have been calculated on PPG chunks 

following denoising and prior to Z-scores standardization. 

From the obtained set of 20 × 106 pulses, each one described by its features, 

random samples have been extracted for the analysis performed in the next 

sections. 

1.3 ERROR ANALYSIS OF SP, DP AND DN 

CHARACTERISTIC POINTS ESTIMATION 

The timing of the characteristic points of PPG pulses is of particular relevance, 

and features based on them are correlated with PTT, stiffness of the large arteries, 

BP, and age [48]. 

In fact, the SP time (𝑇𝑆𝑃) is due to the arrival of a pressure wave from the left 

ventricle, while the DP time (𝑇𝐷𝑃) is due to a pressure wave that reaches the 

lower limbs and is reflected back towards the fingers, hence the time interval 

between them is related to transit times and also to arterial stiffness 𝑆𝐼 

 

𝑆𝐼 =   
ℎ

(𝑇𝐷𝑃 − 𝑇𝑆𝑃)
               (3) 

 

where ℎ is the patient’s height. 

It has therefore been deemed necessary to study the differences between the 

instants of SP (and also DP and DN) obtained by applying the algorithms in [22], 

based on derivatives, minus the ones obtained with the algorithm reported in 

this thesis that exploits the MODWT. For this purpose, timings have been 

calculated, in both cases, with resolution 8 ms, which is equal to the sampling 

step (given the 125 Hz sampling frequency of signals in the dataset). 
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Therefore, a statistical analysis has been carried out on the aforementioned errors 

by randomly sampling 2 × 106 pulses. 

The initial observation is that the DP is visible in less than 1% of 𝑥𝐹𝐼𝐿𝑇 pulses, but 

in 95% of 𝑥𝑀𝑂𝐷𝑊𝑇 pulses. Hence, in the vast majority of 𝑥𝑀𝑂𝐷𝑊𝑇 pulses, the DP 

can be identified directly by searching for the second local peak (after the SP). 

Conversely, in the corresponding 𝑥𝐹𝐼𝐿𝑇, when the DP is not visible as a peak, the 

DP location commonly assumed in the literature is the one where the second 

derivative is zero, as also followed in this study. 

The location differences for 𝑥𝐹𝐼𝐿𝑇 minus 𝑥𝑀𝑂𝐷𝑊𝑇 are shown in Fig. 13 - Fig. 15. 

  

(a)       (b) 

Fig. 13. (a) Histogram of errors for systolic locations; (b) boxplot of errors with mean, 

mean + standard deviation (STD) and meanSTD. 

 

  

(a)       (b) 

Fig. 14. (a) Histogram of errors for diastolic locations; (b) boxplot of errors with mean, 
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mean + STD and mean-STD. 

 

  

(a)     (b) 

Fig. 15. (a) Histogram of errors for dicrotic notch locations; (b) boxplot of errors with 

mean, mean + STD and mean-STD. 

 

In Table 1, the mean and STD of errors computed as described above are 

reported for the three characteristic points. 

Table 1. Mean and STD of errors for characteristic points. 

 Mean (s) STD (s) 

Systolic Points (SP) 0.0097 0.0202 

Diastolic Points (DP) 0.0441 0.0486 

Dicrotic Notch Points (DN) 0.0458 0.0896 

 

It can be observed from the plots in Fig. 13 - Fig. 15, and the values in Table 1 

that the time error calculated in all three cases is very small. It is crucial that the 

error associated with identifying characteristic points is minimized to ensure the 

compatibility of the two point-identification methods. Therefore, it can be 

concluded that the implemented algorithm based on MODWT is a valid 

alternative that is compatible with the one in the literature for identifying the 

three characteristic SP, DP and DN points of the PPG pulse. 
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In the following section, the objective is to ascertain whether the features 

extracted using the three characteristic points obtained after MODWT 

improvement, in addition to the remaining newly obtained features, are 

significant for BP measurement. 

1.4 FEATURES SELECTION 

Subsequently, a selection of the most significant features related to DBP and SBP 

labels was made following the process of features extraction. A random subset of 

50,000 pulses was selected for the subsequent analysis. 

For these purposes, three different methods have been used following [19]. The 

algorithms used are: the CFS [49], which calculates the correlation and selects 

features that are at the same time highly correlated with the label and negligibly 

correlated with each of the other features; the RReliefF [50], [51], which penalizes 

the predictors that assign different values to neighbors with the same label and 

rewards predictors that assign different values to neighbors with different labels; 

and the MRMR [52], [53], which identifies an optimal set of features that are 

mutually as dissimilar as possible and can effectively represent the label. The last 

algorithm minimizes redundancy among a feature set while maximizing the 

relevance of a feature set to the label. The three methods were employed to 

identify the best feature sets for SBP measurement. The first 20 features (out of 

195) are shown in Fig. 16 and listed in Table A1 of the Appendix A. 
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(a) 

 

(b) 
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(c) 

Fig. 16. (a) Feature importance scores sorted using RReliefF algorithm for SBP 

measurement; (b) feature importance scores sorted using CFS algorithm for SBP 

measurement; (c) feature importance scores sorted using MRMR algorithm for SBP 

measurement. Feature labels are noted as follows: (*) calculated on 𝑥𝐹𝐼𝐿𝑇  (i.e. before 

MODWT enhancement), (°) calculated on 𝑥𝑀𝑂𝐷𝑊𝑇 (i.e. after MODWT enhancement), (-) 

calculated on the normalized signal 𝑥𝑁𝑂𝑅𝑀, (+) new feature and (#) already known 

feature. 

 

The results demonstrate that the three methods select, among the best features, 

some of the new features extracted from the MODWT enhanced signal, which 

confirms their significance, as will be discussed in the next section. 

The same procedure has also been followed to identify the most significant 

features associated with DBP measurement, as shown in Fig. 17. 
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(a) 

 

(b) 
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(c) 
 

Fig. 17. (a) Feature importance scores sorted using RReliefF algorithm for DBP 

measurement; (b) feature importance scores sorted using CFS algorithm for DBP 

measurement; (c) feature importance scores sorted using MRMR algorithm for DBP 

measurement. Feature labels are noted similarly to the previous figure. 

 

Therefore, as well, for the case in which the diastolic values are taken, the three 

methods select several newly defined features for both the MODWT enhanced 

PPG signal and the filtered signal (𝑥𝐹𝐼𝐿𝑇). 

1.5 DISCUSSION 

This section presents a summary of the results obtained during the features 

selection phase. It is observed that the features selected using the three methods, 

in both systolic and diastolic cases, include known features calculated after 
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MODWT enhancement and new ones. Therefore, the following observations can 

be made. 

Indeed, a number of features have been extracted from the PPG signal and 

subjected to investigation using three distinct selection methods. In particular, a 

number of already-known features have been calculated both before and after 

MODWT enhancement, demonstrating that the use of MODWT alone leads to 

improvements. This occurs with respect to the following features: TDN, which is 

selected by CFS for SBP and by RReliefF for both SBP (0.0046 score) and DBP 

(0.0043 score); ADP and ADN selected by MRMR for SBP; TDP selected by CFS 

for DBP; and TP selected by both CFS and MRMR for DBP. 

On the other hand, several new features have been selected even if they are not 

extracted from MODWT enhanced signals: SPL is selected by MRMR for SBP; 

OB, MeaF, MedF and HB are selected by CFS for DBP; and SPL, SINAD, SF and 

PSA are selected by MRMR for DBP. 

Moreover, the selection criteria indicate that several proposed new features are 

more useful than already known features in exploiting MODWT enhancement. 

For instance, SF is better than TDN according to RReliefF for SBP; T1 (score 

0.12899 in Fig. 16b) is better than TDN (score 0.12041) according to CFS for SBP; 

T1 (score 0.032 in Fig. 16c) and T2 (score 0.0030) are better than ADN (score 0.028) 

according to MRMR for SBP; SF and CIF are better than TDN according to 

RReliefF for DBP; and many other features are better than TP and TDP according 

to CFS and MRMR for DBP. 

Furthermore, features that are calculated simultaneously after MODWT 

enhancement and are novel have frequently been selected. For example, SF and 

ClF are among the best features according to RReliefF for both SBP (Fig. 16a) and 

DBP (Fig. 17a). SF has also been selected by MRMR for DBP. Other features that 

have been selected by more than one method are T1 and T2. 
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In addition, it is important to note that many proposed features outperform 

already known features when their score is evaluated by CFS and MRMR for 

DBP, as shown in Fig. 17b, c. 

Considering the previously discussed findings, the initial number of features, 

which was equal to 195, can be reduced by selecting the best significant features, 

shown in Table A1 in the Appendix A. Several proposed features appear at least 

twice according to different selection methods, such as SF, ClF, T1, T2, SPL, TDN, 

TP, Area from DP to end, and so on. It should be noted that the shape factor SF, 

which has been proposed as a feature for PPG signals and is defined as the ratio 

between the RMS of the pulse and its mean absolute value, has been selected 

three times when applied to the enhanced signal 𝑥𝑀𝑂𝐷𝑊𝑇. Moreover, the SF on 

the 𝑥𝑀𝑂𝐷𝑊𝑇 is greater than the SF on the 𝑥𝐹𝐼𝐿𝑇, since the DP is more pronounced 

in the 𝑥𝑀𝑂𝐷𝑊𝑇. This feature is related to the shape of the pulse, which is known 

to depend strongly on vascular aging. Hence it may also be relevant for the 

evaluation of arterial stiffness, which is generally known to increase with age. 

These considerations demonstrate that the MODWT enhancement of the PPG 

signal, as well as the individuated new features, enables the extraction of 

significant information for BP that has the potential to improve its estimation 

through ML techniques. 

1.6 CONCLUSION 

This Chapter presents a discussion of the features of the PPG signal that are 

significant for BP measurements as well as the use of the MODWT to enhance 

the PPG signal. 

Although the ABP signal allows for a more direct and accurate measurement of 

BP, it is obtained in an invasive manner, in contrast to the non-invasive 

acquisition of PPG signals, which can be easily and comfortably carried out, even 
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at home. Hence, the utilization of PPG pulse enhancement through MODWT has 

been proposed, motivated by the fact that it exhibits greater similarity with the 

ABP pulse. 

The first result of this study indicate that the enhanced signal facilitates more 

reliable extraction of characteristic points of the PPG pulse, such as the DP and 

the DN. Indeed, identifying the DP or the DN on PPG pulses can be challenging, 

as these points may be less pronounced or absent according to patient’s age and 

condition. However, the proposed MODWT enhancement allows for the direct 

acquisition of characteristic points by considering signal valleys and peaks, 

resulting in a performance comparable to that of the purposely defined algorithm 

presented in [22], as demonstrated by an error analysis. For example, the DP was 

clearly marked in 95% of pulses (in contrast to only 1% for the untreated pulses), 

and that characteristic point exhibited a mean error of 0.04 s with respect to [22]. 

For systolic points, the mean and STD of the errors were found to be 0.0097 s and 

0.0202 s, respectively, when the locations were obtained using a purposely 

defined already known algorithm and those obtained using the MODWT 

enhancement. For diastolic points, the mean and STD of the errors were found to 

be 0.0441 s and 0.0486 s, respectively. Finally, for dicrotic notch points, the mean 

and STD of the errors were found to be 0.0458 s and 0.0896 s, respectively. Indeed, 

as the second significant outcome following the extraction and selection of 

features, several new proposed features (as well as old features) obtained from 

𝑥𝑀𝑂𝐷𝑊𝑇 have been found to be significant according to the scores provided by 

three feature evaluation methods, namely CFS, RReliefF and MRMR. It should 

be noted that these methods permit the selection of optimal features that are both 

relevant and non-redundant for the estimation of the variables of interest, which 

in this case are the systolic and diastolic BP values. Therefore, the findings 

presented in this Chapter provide a base for the development of BP estimation 

methods based on PPG signal analysis.
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CHAPTER 2 
 

ML MODELS FOR SBP AND DBP 
ESTIMATION3 

INTRODUCTION 

In light of the spread of PPG for BP measurement, this Chapter aims to contribute 

to the ongoing research on ML models for estimating SBP and DBP. In Chapter 

1, PPG signals were analyzed to identify the most significant features for BP 

estimation. This was achieved by employing several selection algorithms, 

including RReliefF, CFS, and MRMR. This methodology has led to the 

justification of the application of MODWT to enhance the single-site PPG signal 

and to the selection of new proposed features. Following this line of research, this 

Chapter focuses on the development of ML techniques to find the optimal 

algorithm for BP measurement. It demonstrates the value of the already analyzed 

features, with a particular emphasis on those selected through the MRMR 

method, including those obtained after the MODWT enhancement. The novelty 

of this research lies in the use of novel extracted features from PPG signals, which 

were evaluated for their significance using several criteria, and in the use of ML 

algorithms.  

For this purpose, XGBoost models with Bayesian optimization and NN models 

were trained for regression using significant features selected with the MRMR

 
3 This Chapter is based on [2]. 
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algorithm. A comparison of results between XGBoost and NN models was 

presented and the improvements with respect to the literature, by using XGBoost 

models and the proposed features, are shown. 

After the processing described in Chapter 1 and the extraction of the features 

from the PPG signal, a dataset comprising 195 features for each PPG pulse and 

the target values of SBP and DBP measured on the ABP signal were obtained. 

Then, the dataset was reduced to SBP in the range of 80 mmHg to 180 mmHg 

and DBP in the range of 60 mmHg to 110 mmHg, in order to facilitate 

comparisons with the literature, given that similar distributions are used in other 

works [16], [17], [18], [21], [22], [54], [55], [56]. It is evident that SBP below 80 

mmHg and DBP below 60 mmHg correspond to a severe hypotension condition 

while SBP above 180 mmHg and DBP above 110 mmHg correspond to a severe 

hypertension condition. However, in these cases, there were few observations in 

the initial dataset.  

At the end of the processing, performed in MATLAB R2022a, the dataset 

contained 9.1 × 106 observations of PPG pulses from 1,080 patients. Fig. 18 

illustrates the distribution of systolic and diastolic BP values for the dataset 

processed in this study. The aforementioned dataset was used for the training 

and validation of ML models developed in the Python programming language, 

as will be discussed in the following sections. The dataset utilized for training 

and validation of ML models included 9 × 106 observations, with the 90% 

constituting the training set and the 10% constituting the validation set. Instead, 

the test set included 100,000 observations. 
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(a) (b) 

Fig. 18. (a) Systolic and (b) diastolic blood pressure occurrences in 2 mmHg bins. Only 

the observations with 80 mmHg ≤ SBP ≤ 180 mmHg and 60 mmHg ≤ DBP ≤ 110 mmHg 

were considered since outside these ranges there were few observations and, also, DBP 

less than 60 mmHg corresponds to severe hypertension condition. 

2.1 MACHINE LEARNING MODELS 

ML offers a suite of powerful techniques for the identification and evaluation of 

cardiovascular risk and health conditions. In this Chapter, the technique has been 

exploited to train supervised regression models capable of measuring BP based 

on features extracted from the PPG signal. For the purposes of training, each 

observation in the dataset is provided with systolic and diastolic labels derived 

from the corresponding ABP signal, which serves as the ground truth.  

In this Chapter, an XGBoost model was trained due to its advantages, including 

execution speed and model performance, which proved to be suitable for the 

stated goal. In contrast, an NN model was trained to facilitate a comparison of 

the results. This approach was selected due to its prevalence among researches, 

as evidenced in [18], [22], [23], [57] and its characteristic of higher training speed. 

Moreover, XGBoost models have been utilized in the literature for a multitude  

of purposes, including wearable running monitoring [58], but have recently been 

employed for PPG signal processing to estimate blood glucose levels [59], blood 
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pressure (utilizing multisite PPG acquisition and PTT features) [60], and vascular 

aging [61]. 

XGBoost is an efficient open-source implementation of the gradient boosting 

algorithm, and it is also available in Python using the Scikit-learn library, which 

is utilized in this study. Gradient boosting is a class of ensemble ML algorithms 

that can be used for both classification and regression. Ensemble models are 

based on decision tree models. In fact, trees are incorporated into the ensemble 

to rectify prediction errors that have been previously made. These models are 

fitted using a differentiable loss function and a gradient descent optimization 

algorithm in order to minimize the loss gradient. Furthermore, this algorithm 

provides hyperparameters that can be tuned, such as the number of trees or 

estimators, the learning rate, the row and column sampling rate, the maximum 

tree depth, the minimum tree weight, and the regularization terms alpha and 

lambda. Indeed, XGBoost adds a regularization term into the objective function, 

thereby reducing the model’s susceptibility to overfitting.  

Moreover, in this study, Bayesian hyper-parameter optimization [62] was used 

to adjust the hyper-parameters of the XGBoost model within the specified search 

space. Bayesian optimization permits the optimization of a proxy function rather 

than the true objective function. The search process balances exploration and 

exploitation, with the initial exploration phase aimed at building the surrogate 

function with the objective of minimizing the cost function at a global level. In 

this study, the Bayesian Optimization implementation provided by the Python 

library Scikit-optimize was used. The RMSE evaluation metric was defined using 

a Scikit-learn function in order to facilitate the conversion of the optimization 

problem into a minimization problem as required by Scikit-optimize. 

The Bayesian optimization process was set providing the basic regressor, the 

search space, the evaluation metric, the cross-validation strategy (selected as a 7-

fold approach), the maximum number of trials, and the optimizer parameters, 
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which included the use of Gaussian Process (GP) for hyper-parameter 

optimization. Then, the optimal hyper-parameters were identified and utilized 

to instantiate the XGBoost model, which was subsequently trained using a 10-

fold cross-validation strategy.  

The next paragraphs will be concentrated on the XGBoost and NN models that 

were trained. 

2.1.1  XGBOOST MODELS 

 

The entire dataset was utilized for both SBP and DBP. The training and cross-

validation were conducted using 9 × 106 observations (out of 9.1 × 106 

observations). A total of 20 features for SBP and 25 features for DBP were 

selected, in order of highest MRMR score among the 195 features listed in 

Chapter 1, which include those derived from the MODWT enhanced PPG signal. 

The number of features used to train the models was selected using the RReliefF 

algorithm for both systolic and diastolic cases. Indeed, the RReliefF algorithm 

indicates that the 20 features for SBP and the 25 features for DBP have an 

importance score greater than 0.001. In consideration of the lower scores, it was 

determined that they were not significant, as they were related to uncorrelated 

features with respect to the output. The reduction in the number of features was 

implemented to decrease the complexity of the models and training. In fact, the 

removal of noisy features helps to reduce the memory and computational cost, 

while also helping to avoid overfitting. Moreover, the columns were normalized 

to the range [0, 1] before the training. 

Then, the first step consisted of finding the optimal hyper-parameters within a 

specified search space for the Bayesian optimization approach, utilizing the 

selected features for both SBP and DBP measurements. 



CHAPTER 2 

62 
 

The search spaces and the best hyper-parameter values for SBP and DBP 

measurements are, respectively, shown in Table 2 and Table 3. 

 

Table 2. Search spaces and best values of hyper-parameters for SBP. 

Hyper-Parameter Range Best 

Learning rate [0.01, 1.0] 0.226 

Maximum tree depth [2, 15] 15 

Subsample [0.1, 1.0] 0.894 

Subsample ratio of columns by tree [0.1, 1.0] 1.0 

Lambda [1 × 10−10, 200] 120.0 

Alpha [1 × 10−10, 200] 1 × 10−10 

Estimators [50, 5100] 5000 

 

Table 3. Search spaces and the best values of hyper-parameters for DBP. 

Hyper-Parameter Range Best 

Learning rate [0.01, 1.0] 0.136 

Maximum tree depth [2, 20] 15 

Subsample [0.1, 1.0] 0.894 

Subsample ratio of columns by tree [0.1, 1.0] 1.0 

Lambda [1 × 10−9, 200] 120.0 

Alpha [1 × 10−10, 200] 1 × 10−10 

Estimators [50, 6000] 5200 

 

The following section provides an explanation of the hyper-parameters utilized 

in XGBoost. The learning rate is the step size shrinkage used for the update to 

enhance the model’s robustness and prevent overfitting by reducing the feature 

weights. It is selected within the range [0, 1] with typical values in [0.01, 0.2]. The 

maximum depth of a tree is employed to regulate the phenomenon of overfitting. 

As the depth of the tree increases, the model becomes more intricate and more 

susceptible to overfitting. The value 0 is only accepted in a loss-guided growing 

policy, while large values result in a more aggressive consumption of memory. 

Any positive value is acceptable, with typical values in the range [3, 10]. In this 

study, trial and error was employed to modify the upper bound of the range in 
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order to achieve more optimal results. The subsample represents the fraction of 

observations to be randomly sampled for each tree. Its purpose is to prevent 

overfitting. In fact, lower values make the algorithm more conservative, while 

too small values might lead to under-fitting. For this reason, the range is [0, 1] 

and typical values are in [0.5, 1]. The subsample ratio of columns by tree 

represents the subsample ratio of columns when constructing each tree. This 

parameter has a range of [0, 1] and the default value is 1. Lambda is the L2 

regularization term on weights, and an increase in this value makes the model 

more conservative. Alpha is the L1 regularization term on weights and it is used 

in cases of very high dimensionality so that the algorithm runs faster when 

implemented. Finally, estimators are the number of trees in an XGBoost model. 

For the three last hyper-parameters, a trial-and-error method was used to define 

the range. 

2.1.2  NN MODELS 

 

In Python, TensorFlow 2.9.1 was used to define a sequential model with an input 

layer of size n, nine hidden layers, and an output layer. The activation function 

selected for each layer was the Rectified Linear Unit (ReLU). The number of 

hidden layers and neurons was determined through a series of trials. The NN 

model is shown in Fig. 19. For SBP estimation, 𝑛 = 20 while for DBP estimation, 

𝑛 = 25. 
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Fig. 19. NN with nine hidden layers with 1024, 1024, 1024, 512, 512, 512, 128, 64, and 64 

neurons. 

 

Moreover, several optimizers were tested including Adadelta, Adagrad, Adam, 

Adamax, Nadam, RMSprop, and SGD. However, the Nesterov-accelerated 

Adaptive Moment Estimation (Nadam) algorithm yielded the most optimal 

results for both SBP and DBP estimations.  

The fit was made using a batch size of 4,096, 150 epochs, and a validation split of 

0.2. 

The optimal NN architecture was determined through a process of trial and 

error, with the addition of hidden layers being identified as the most promising 

approach. The ReLU activation function was selected due to its suitability for 

normalized inputs, which has resulted in enhanced outcomes. The batch size 

must be selected to align with the memory requirements of the GPU and the CPU 

architecture. Values below the minimum required for optimal performance were 

not considered, as they would exceed the memory constraints of the system. 

Conversely, values above the maximum were not permitted, as they would 

exceed the memory limitations of the CPU. Therefore, the maximum feasible 

batch size was established. The number of epochs was selected in the range [50, 

200] but no improvements were observed beyond the 150th epoch. 
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2.2 RESULTS AND DISCUSSION 

This section will demonstrate the efficacy of ML algorithms. The two models, 

XGBoost and NN, were trained using the features selected by the MRMR 

algorithm, which included the new features obtained on MODWT-enhanced 

PPG pulses. As previously demonstrated, the application of MODWT to the PPG 

signal results in enhanced signal quality, facilitating the identification of 

characteristic points and rendering the signal more similar to the ABP signal. 

The criteria used to evaluate the performance of ML models for estimating BP 

are the RMSE, Mean Absolute Error (MAE), correlation coefficient (R), and Mean 

Error (ME).  

The results were then compared with other methods reported in the literature in 

addition to the standards for BP measurement, which are focused on the 

classification of hypertension states. The predicted BP values from the regression 

model and the true values were employed to validate the correct classification 

into the seven classes delineated by the guideline, taking into account the range 

of values for SBP and DBP. The classification results were evaluated using a 

confusion matrix. 

2.2.1  TRAINING AND TEST OF XGBOOST AND NN 

MODELS 

 

This paragraph presents the results obtained following training and validation. 

Table 4 presents the results of XGBoost and NN models, evaluated in terms of 

RMSE and MAE. 
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Table 4. Validation results for SBP and DBP estimations. 

Model  RMSE (mmHg) MAE (mmHg) 

XGBoost 
SBP 5.60 3.11 

DBP 3.92 2.09 

NN 
SBP 7.80 5.00 

DBP 5.56 3.53 

 

After validation, a test was conducted on both models using a set of 100,000 new 

observations out of the entire dataset of 9.1 × 106 observations (not included in 

the training set). The results were presented in Table 5, which reports the 

performance parameters for SBP, DBP, and Mean Arterial BP (MAP). 

In addition to SBP and DBP, MAP was considered because it is linked to the total 

peripheral resistance and to cardiac output and is associated with HR [63], [64]. 

MAP is a frequently utilized BP parameter. It is defined as the average pressure 

of the artery of a subject during one cardiac cycle (4). It is considered to be a 

superior indicator of organ perfusion in comparison to SBP [65]. 

 

 𝑀𝐴𝑃 =  
𝑆𝐵𝑃 + 2 ⋅ 𝐷𝐵𝑃

3
, (4) 

 

Table 5. Test results using XGBoost and NN models. 

Model  RMSE (mmHg) MAE (mmHg) R 
ME 

(mmHg) 

XGBoost 

SBP 5.67 3.12 0.95 0.020 

DBP 3.95 2.11 0.91 −0.001 

MAP 3.24 2.01 0.93 0.006 

NN 

SBP 7.81 5.00 0.90 −0.420 

DBP 5.60 3.55 0.81 −0.250 

MAP 4.56 3.12 0.85 −0.310 
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The results reported in Table 4 and Table 5 demonstrate that the utilization of 

XGBoost models rather than NN yields superior outcomes for the measurements 

of both systolic and diastolic pressure.  

Moreover, the results for XGBoost models obtained in the final test phase, as 

shown in Table 5, are similar and confirm the ones obtained during the training 

and cross-validation phase, as shown in Table 4. 

Fig. 20 depicts the error probability densities of SBP, DBP and MAP. It is evident 

that the errors obtained using the XGBoost model exhibit a narrower and more 

concentrated distribution around zero than those obtained using the NN model. 

As illustrated in Fig. 21, the XGBoost models yield the most accurate predictions, 

with R values consistently higher than those obtained using the NN models. 

 

 

Fig. 20. Error probability density of SBP, DBP, and MAP estimations. Errors were 

defined as the difference between the predicted pressures (using XGBoost model or NN 

model) and measured ones; then, their histograms were normalized to obtain the 

probability densities shown in the plot. 
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(a) (b) 

  

(c) (d) 

 
 

(e) (f) 
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Fig. 21. (a, c, e) Regression of the predicted output and true response for SBP, DBP, and 

MAP estimations using the XGBoost model; (b, d, f) Regression of the predicted output 

and true response for SBP, DBP, and MAP estimations using the NN model. 

 

During the training phase, it was observed that the training time for NN was 

significantly shorter than that for the XGBoost models. The inference time was 

found to be significantly reduced for XGBoost models, which suggests that the 

trained model could be used for real-time predictions, thus facilitating 

continuous monitoring. Given the computational complexity of current 

implementations for feature extraction and ML models, it is not feasible to 

perform onboard processing on a wearable device. Consequently, a cloud-based 

solution is required. The objective is to streamline feature extraction by including 

only those selected in the present study and to simplify models to permit 

onboard processing, thereby reducing the computational complexity and 

assessing the minimal hardware requirements. 

2.2.2  COMPARISON WITH OTHER METHODS 

 

Comparing results with literature is challenging due to the disparate evaluation 

criteria and distinct datasets. In this Chapter, the type of algorithms and the use 

of features have been employed as criteria for selecting and identifying other 

works in the literature for comparison. In this context, the criterion is the training 

of ML algorithms with features extracted from the PPG signal, namely, the 

methodology employed in the research. 

In Table 6, the performance of other methods is shown. 
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Table 6. Comparison with other works. 

Work Method Data Size 
Performance 

Evaluation 
SBP DBP 

Kachuee et al. 

[18] 
SVM 

MIMIC II (1,000 

subjects) 

RMSE / / 

MAE 12.38 6.34 

R / / 

ME / / 

Kim et al. [66] ANN 
180 recordings, 

45 subjects 

RMSE / / 

MAE 4.53 / 

R / / 

ME / / 

Cattivelli et al. 

[67] 

Proprietary 

algorithm 

MIMIC 

database (34 

recordings, 25 

subjects) 

RMSE 8.37 5.92 

MAE / / 

R / / 

ME / / 

Zhang et al. 

[68] 
SVM 

7,000 samples 

from 32 

patients 

RMSE / / 

MAE 11.64 7.62 

R / / 

ME / / 

Zadi et al. [69] 

Autoregressive 

moving 

average 

(ARMA) 

models 

15 subjects 

RMSE 6.49 4.33 

MAE / / 

R / / 

ME / / 

Chowdhury et 

al. [19] 
GPR 

222 recordings, 

126 subjects 

RMSE 6.74 3.59 

MAE 3.02 1.74 

R 0.95 0.96 

ME / / 

Hasanzadeh et 

al. [21] 
AdaBoost 

MIMIC II 

942 subjects 

RMSE / / 

MAE 8.22 4.17 

R 0.78 0.72 

ME 0.09 0.23 

Kachuee et al. 

[54] 
AdaBoost 

1,000 

subjects 

RMSE / / 

MAE 8.21 4.31 

R / / 

ME / / 

Wang et al. 

[70] 
ANN 

58,795 PPG 

samples 

RMSE / / 

MAE 4.02 2.27 

R / / 

ME / / 

Kurylyak et al. 

[23] 
ANN 

15,000 PPG 

heartbeats 

RMSE / / 

MAE 3.80 2.21 

R / / 

ME / / 
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Fleischhauer et 

al. [71] 
XGBoost 

MIMIC, 

Queensland, PPG 

BP (273 subjects 

and 259,986 single 

beats) 

RMSE / / 

MAE 6.366 / 

R 0.874 / 

ME / / 

Liu et al. 

[72] 
SVR 

MIMIC II 

910 good PPG 

pules cycles 

RMSE / / 

MAE 8.54 4.34 

R / / 

ME / / 

Zhang et al. 

[73] 

Gradient 

Boosting 

Regressor 

(GBR) 

MIMIC II 

2,842 samples from 

12,000 data points 

RMSE / / 

MAE 4.33 2.54 

R / / 

ME / / 

Proposed 

method 
XGBoost 

MIMIC III  

9.1 × 106 PPG 

pulses 

from 1080 subjects 

RMSE 5.67 3.95 

MAE 3.12 2.11 

R 0.95 0.91 

ME 0.01 0.02 

 

A comparison with other works has demonstrated that the trained models, which 

employ XGBoost, the MRMR selection algorithm, and features derived from 

MODWT, have the capacity to enhance PPG pulses, with the concomitant 

reduction of estimation errors for both systolic and diastolic BP measurements. 

It is noteworthy that XGBoost is derivative-free, which may confer an advantage 

when the fitting problem exhibits a considerable degree of freedom. 

Furthermore, the utilization of MODWT enhancement has permitted the 

accentuation of distinctive characteristics within PPG pulses, such as the diastolic 

point. This has the potential to be a critical factor in achieving such results. It is 

evident that the proposed method has yielded a more accurate SBP measurement 

than the other methods presented in Table 6. As previously stated, a direct 

comparison of results is challenging due to the use of disparate datasets and ML 

algorithms, as detailed in Table 6. For example, it should be noted that 

Chowdhury et al. [19] obtained a smaller RMSE for DBP, which may be 

attributed to the distinct dataset utilized and the incorporation of demographic 

features that serve as a robust predictor of BP values. These features include 
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gender, age, and height, which are known to influence the shape of the PPG pulse 

and arterial stiffness. Considering Zhang et al. [73], they employ a GBR 

algorithm, resulting in slightly inferior outcomes when compared to those 

reported in this Chapter, as well as the results reported by Fleischhauer et al. [71] 

using XGBoost are inferior to those of this Chapter. In fact, the optimal results 

are achieved through the implementation of Bayesian optimization for the 

XGBoost models and a distinct selection of features, which were also obtained 

following MODWT enhancement. This approach appears to offer a more 

effective solution than other ML algorithms, as evidenced by the results 

presented in Table 6. 

2.2.3  COMPLIANCE TO STANDARDS AND 

CLASSIFICATION GUIDELINES 

The accurate estimation of BP is of paramount importance for the detection of 

hypertension and the assessment of overall health status. Consequently, the 

accuracy requirements for BP measurement devices and methods have been 

standardized.  

In this Chapter, the protocols proposed by the Association for the Advancement 

of Medical Instrumentation (AAMI) [74], [75] and by the British Hypertension 

Society (BHS) [76] were considered in  order to make a comparison with the 

results reported in this study as also made in [17], [19], [20], [21], [77], [78], [79].  

As the most favorable outcomes were achieved with the XGBoost models, rather 

than the NN models, the subsequent comparisons will focus exclusively on the 

XGBoost models. As shown in Table 7 - Table 10, the proposed method is in 

compliance with the AAMI and BHS grade A standards. The dataset included 

1,080 patients and a total of 9.1 × 106 observations of PPG pulses. 
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Table 7. Comparison of results for the validation set with AAMI standard. 

 
ME 

(mmHg) 

STD 

(mmHg) 

Results 

SBP 0.009 5.60 

DBP 0.019 3.92 

MAP 0.0157 3.21 

AAMI 
SBP 

≤5 ≤8 
DBP 

  
 

Table 8. Comparison of results for the test set with AAMI standard. 

 
ME 

(mmHg) 

STD 

(mmHg) 

Results 

SBP 0.020 5.67 

DBP −0.001 3.95 

MAP 0.006 3.24 

AAMI 
SBP 

≤5 ≤8 
DBP 

  
 

Table 9. Comparison of results for the validation set with BHS standard. 

 Cumulative Error Percentage 

 ≤5 mmHg ≤10 mmHg ≤15 mmHg 

Results 

SBP 80.85% 93.00% 96.84% 

DBP 89.56% 96.86% 98.74% 

MAP 90.89% 98.18% 99.49% 

BHS 

Grade A 60% 85% 95% 

Grade B 50% 75% 90% 

Grade C 40% 65% 85% 

  

Table 10. Comparison of results for the test set with BHS standard. 

 Cumulative Error Percentage 

 ≤5 mmHg ≤10 mmHg ≤15 mmHg 

Results 

SBP 80.96% 92.91% 96.73% 

DBP 89.48% 96.87% 98.68% 

MAP 90.84% 98.07% 99.44% 

BHS 

Grade A 60% 85% 95% 

Grade B 50% 75% 90% 

Grade C 40% 65% 85% 



CHAPTER 2 

74 
 

As can be observed in Table 7 and Table 8, the results align with the AAMI 

standard requirements. According to this protocol, the mean and the STD of the 

errors for both SBP and DBP estimations should not exceed 5 mmHg and 8 

mmHg, respectively. Furthermore, the BHS standard is met, as the absolute error 

of over 60% of the data is less than 5 mmHg. Consequently, the method is 

classified as Grade A. 

Moreover, as established in [21], another guideline was used to evaluate the 

regression models. For this purpose, the guideline [80] provided by the European 

Society of Hypertension (ESH) and the European Society of Cardiology (ESC) 

was considered. This guideline focuses on the state of hypertension and, in fact, 

categorizes it into seven classes:  

• Optimal: if SBP < 120 mmHg and DBP < 80 mmHg; 

• Normal: if 120 mmHg ≤ SBP ≤ 129 mmHg and/or 80 mmHg ≤ DBP ≤ 84 

mmHg; 

• High Normal: if 130 mmHg ≤ SBP ≤ 139 mmHg and/or 85 mmHg ≤ DBP 

≤ 89 mmHg; 

• Grade 1 Hypertension: if 140 mmHg < SBP ≤ 159 mmHg and/or 90 mmHg 

≤ DBP ≤ 99 mmHg; 

• Grade 2 Hypertension: if 160 mmHg ≤ SBP ≤ 179 mmHg and/or 100 

mmHg ≤ DBP ≤ 109 mmHg; 

• Grade 3 Hypertension: if SBP ≥ 180 mmHg and/or DBP ≥ 110 mmHg; 

• Isolated Systolic Hypertension: if SBP ≥ 140 mmHg and DBP < 90 mmHg. 

Since hypertension represents a state of health that is of interest for identification 

purposes, ESH/ESC guidelines have been used to evaluate the regression models, 

with the predicted values being classified into seven classes. The BP ground truth 

and the BP predicted by the XGBoost model were classified according to the 

previously described scheme to evaluate the consistency between the classified 

predicted values and the classified true values in the different states of 
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hypertension. The results are shown in Fig. 22 and in Table 11. The table presents 

the accuracy, sensitivity, specificity, and F1-score values. Two classes exhibited 

low sensitivity: “Grade 3 Hypertension” and “Isolated Systolic Hypertension”. 

The low sensitivity can be attributed to the limited number of training cases in 

the dataset. It is evident that “Grade 3 Hypertension” represents a critical 

condition, while “Isolated Systolic Hypertension” is observed with low 

frequency in young and middle-aged subjects. 

 

 

Fig. 22. Confusion matrix for BP level classification according to ESH/ESC guidelines. 
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Table 11. Results of BP level classification according to ESH/ESC guidelines. 

Class Accuracy Sensitivity Specificity 
F1-

Score 

Actual Class 

Members 

Grade 1 

Hypertension 
91.9% 75.8% 95.6% 77.9% 18.9% 

Grade 2 

Hypertension 
97.7% 66.0% 99.3% 73.6% 4.9% 

Grade 3 

Hypertension 
99.8% 25.6% 99.9% 28.6% 0.1% 

High Normal 87.5% 73.3% 91.4% 71.4% 21.3% 

Isolated Systolic 

Hypertension 
97.9% 29.3% 98.9% 28.9% 1.4% 

Normal 86.0% 72.8% 89.8% 70.1% 22.5% 

Optimal 93.1% 87.5% 95.6% 88.6% 30.8% 

      

Average 90.3% 76.9% 93.5% 77.0%  

 

As is possible to see in Table 11, the average of accuracy, sensitivity, specificity, 

and F1-score are, respectively, 90.3%, 76.9%, 93.5%, and 77.0%. 

2.2.4  BLAND–ALTMAN ANALYSIS 

 

Finally, to test the validity of the prediction of the XGBoost models for SBP, DBP, 

and MAP, a Bland–Altman analysis was performed. This analysis was used to 

determine the limits of agreement (LOA) between two different measurements 

in clinical practice, as described in [81], [82]. The mean and STD of the differences 

between the two measurements are used to determine the statistical limits. The 

mean bias (mean of the differences) and its LOA are provided by the Bland–

Altman plot, which is shown in Fig. 23.  

The black line represents the mean of the differences (BIAS), while the red lines 

represent the upper and lower limits (BIAS ± 1.96 × STD) of the LOA [83]. The 

LOA for errors of SBP is [−11.09, 11.13] mmHg and the percentage of points 

outside the LOA is 5.91%; the LOA for errors of DBP is [−7.75, 7.75] mmHg with 

a percentage of 5.08% points outside while for MAP the LOA for errors is [6.35, 
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6.36] mmHg with a percentage of 5.73% points outside. In light of these findings, 

it can be reasonably concluded that the proposed model exhibits a high degree 

of accuracy. 

  

 
(a) 

 
 

(b) 
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(c) 

Fig. 23. Bland–Altman plots for (a) SBP, (b) DBP, and (c) MAP. 

2.3 CONCLUSION 

The possibility of measuring BP by using PPG signals is advantageous for the 

monitoring of this vital sign since it avoids the use of cumbersome cuff-based 

devices, and it allows continuous monitoring. Nevertheless, the estimation of BP 

using PPG is subject to several criticalities and limitations, including the need to 

eliminate noise, perform individual calibration, and address calibration drift. 

In Chapter 1, the focus was on the extraction of new features from PPG signals, 

including those obtained after the enhancement with MODWT. The significance 

of these features was evaluated by using several criteria, such as MRMR. In this 

Chapter, the features selected by the MRMR algorithm were used to train ML 

models to estimate BP, giving improved results. 

Among the ML models, the XGBoost model with Bayesian optimization was 

found to be most suitable for estimating purposes, yielding superior results to an 

NN model trained on the same data. In fact, the XGBoost model, when combined 

with the use of novel features, demonstrated an improvement in systolic BP 
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measurement compared to literature. 

In addition, the SBP and DBP estimators were found to meet the requirements of 

the AAMI and BHS grade A standards, and also yielded satisfactory 

classification results in accordance with the ESH/ESC guideline. 
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CHAPTER 3 
 

PERFORMANCE COMPARISON OF 
ML MODELS FOR SBP AND DBP 

ESTIMATION4 

INTRODUCTION 

The need to develop non-invasive or minimally invasive treatments for patients, 

particularly in the context of vital sign acquisition and surgical procedures is 

spreading. This is because infections and pain can significantly worsen 

postoperative recovery and increase the risk of complications, particularly in the 

context of invasive BP measurement and surgery [20], [73], [85], [86].

This need for non-invasive, cuff-less, and continuous monitoring of BP has led to 

the use of PPG. 

However, estimating BP using PPG is not straightforward due to the presence of 

noise, such as motion artifacts. Motion artifacts are caused by the subject’s 

involuntary or voluntary movements, as well as respiration. These artifacts 

compromise the accuracy and reliability of the PPG signal, so it is critical to 

identify and implement algorithms that eliminate them [87], [88], [89]. In such 

instances, however, these artifacts can and should be employed to monitor 

additional parameters, such as eye blink [90], [91]. The present study did not 

address the implementation of motion artifact elimination algorithms, as its 

 
4 This Chapter is based on [84]. 
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objective has been the analysis of the performance of several ML models. 

It is evident that there is a significant interest in enhancing BP estimation through 

PPG and ML algorithms. In Chapter 2, XGBoost models and NN models, have 

been trained for regression using a set of significant features.  

Nevertheless, further investigation is required to determine the optimal choice of 

features among the three-selection algorithm and to assess the accuracy of 

different ML models. This is why, in this Chapter, RMSE, MAE, and the training 

times obtained by the ML models using different selections of features, including 

new ones extracted on the MODWT enhanced PPG signal and features already 

known in literature, are compared. Two sets of features were obtained for each 

feature selection algorithm to analyze the impact of introducing new, significant 

features extracted from the MODWT enhanced signal. Additionally, the results 

obtained by using three different feature selection algorithms to identify the 

optimal results regardless of the ML model used were compared. Moreover, 

multiple ML algorithms have been trained using the most significant features 

selected by the RReliefF and MRMR algorithms, allowing for a comparison to be 

made. The ML algorithms were selected based on their demonstrated efficacy 

and serve as the fundamental components of numerous additional techniques. 

The objective of this overview is to provide a comprehensive and valuable insight 

into this field. Furthermore, one of the largest available datasets was selected for 

analysis. By selecting increasing portions of it, it was possible to understand the 

relationship between accuracy and training set size. This will provide useful 

guidance for designing the experiments. It is crucial to expand the dataset to 

assess its accuracy and the time required for training. This allowed to definitively 

state the optimal size, given the considerable burden of data collection, which 

necessitates the recruitment of numerous subjects. As a matter of fact, a smaller 

size will reduce training time and computational cost. This aspect was rigorously 

examined across multiple ML models and a range of training set sizes, including 
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a comprehensive investigation of the XGBoost model. 

3.1 MACHINE LEARNING MODELS AND 

DATASET 

This section serves to introduce the ML models that will be discussed. ML is an 

invaluable tool in a multitude of research areas, particularly for classification and 

prediction purposes. The efficacy of several ML models was assessed in order to 

identify the most effective approach for estimating BP from PPG signals. Many 

of these models have been previously utilized in the existing literature, as 

referenced in [18], [19], [21], [23], [54], [66], [68], [69], [70], [92], [93], [94], [95]. The 

following ML models were investigated: XGBoost models [96], NNs [97], LR 

models [98], RTs [99], SVMs [100], GPR models [101], Kernel Approximation 

Regression (KAR) models [102], Ensemble of trees (ETs) [103]. XGBoost models 

represent the optimal ML algorithms based on a set of decision trees, utilizing a 

gradient boosting framework to minimize errors through gradient descent 

algorithms. It employs the most effective hardware and software optimization 

techniques to achieve superior results with minimal computing resources. NNs 

represent a subset of ML. The structure of NNs is based on the architecture of the 

human brain. They are designed to analyze and process tasks in a manner 

analogous to the manner in which the brain processes information. NNs are 

structured in a layered configuration, comprising an input layer, one or more 

hidden layers, and an output layer. Each layer is composed of neurons that are 

linked to other neurons through weighted connections and are activated above a 

specified threshold. LR models are designed to model the relationship between 

two variables by fitting a linear equation to observed data. In a given statistical 

model, one variable is designated as the explanatory variable, while the other is 

designated as the dependent variable. LR is a statistical method employed in the 
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fields of data science and ML for the purpose of predictive analysis. RTs are a 

fundamental non-linear model that can effectively capture intricate relationships 

between features and targets. A data splitting approach is employed, guided by 

specific criteria, with the objective of identifying homogeneous groups based on 

their predefined hyperparameters. SVMs are a class of linear models that are 

particularly suited to the classification and regression problems that arise in 

many fields of scientific and engineering research. SVMs are capable of solving 

both linear and non-linear problems. The algorithm generates a line or 

hyperplane that separates the data into distinct classes. GPR models provide a 

nonparametric, Bayesian methodology for regression analysis that has become 

standard in ML applications due to their representation flexibility. In the context 

of nonlinear regression with a considerable number of observations, the KAR 

model represents the optimal statistical choice. This study employs a Gaussian 

kernel for the nonlinear regression of data sets comprising a considerable number 

of observations. The kernel function maps the predictor variables into a high-

dimensional space, after which a linear SVM or an ordinary least squares linear 

regression model is fitted to the transformed predictor variables. The efficacy of 

ETs is enhanced when compared to that of single decision trees, due to the fact 

that they combine multiple decision trees in order to achieve superior predictive 

performance. This study employs two techniques: bagging (Bootstrap 

Aggregation), which serves to reduce the variance of a decision tree, and gradient 

boosting, which represents an extension of the boosting method that employs the 

gradient descent algorithm for the purpose of optimizing any differentiable loss 

function. The implementation of gradient boosting is observed to be slower than 

that of extreme gradient boosting, as represented by the XGBoost model. This 

study has examined all of the aforementioned models using the MIMIC III 

Waveform Database. The data has been pre-processed as presented in Chapter 
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1. The final dataset contains 195 features for each PPG pulse and the target values 

of SBP and DBP from the ABP signal. Fig. 24 shows an overview of the data flow. 

 

 
Fig. 24. Overview of data flow. 

 

3.2 COMPARISON OF RESULTS USING ML AND 

FEATURES SELECTED BY THREE SELECTION 

ALGORITHMS 

This section evaluates the performance obtained by considering different sets of 

features. Three feature selection methods were used to choose the best features 

from two large sets for both SBP and DBP measurements, resulting in 12 smaller 

sets overall.  

The first large set, that will be called full standard set 𝔉𝑆, contains 142 features 

already found in the literature; the second large set of 195 features, is expanded 

with features obtained after the enhancement of the PPG signal using the 

MODWT, and will be called full expanded set 𝔉𝐸.  

To make ML training more accessible, the large set of features 𝔉S and 𝔉E have to 

be reduced in a logical manner. To achieve this, three selection methods were 
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used: RReliefF, MRMR, and CFS. These methods assign an importance score to 

each feature, allowing the selection of the most significant features. By applying 

these methods to 𝔉S and 𝔉E, for both SBP and DBP, 12 reduced sets are obtained: 

ℛ𝑖,𝑗,𝑘, where: 𝑖 =SBP,DBP for systolic and diastolic pressure, respectively; 𝑗 =S, 

E for the full standard or full expanded set of features, respectively; and 

𝑘 =RReliefF, MRMR, CFS. The number of features to consider in each set is 

somewhat arbitrary, but to ensure a fair comparison, it must remain consistent 

when the set is used to estimate the same type of pressure, whether SBP or DBP. 

Hence set cardinalities are 𝑀SBP=|ℛ𝑆𝐵𝑃,j,𝑘| and  𝑀DBP=|ℛ𝐷𝐵𝑃,j,𝑘|, for all j and k. 

𝑀SBP = 20 and 𝑀DBP = 25 have been chosen by considering, as a reference, the score 

assigned by the RReliefF algorithm. The threshold for significance has been set 

at 0.001, below which features are discarded. This is because they are deemed not 

significant and uncorrelated to the output. Two ML models were trained and 

evaluated on each reduced set of features, ℛ𝑖,𝑗,𝑘, to appreciate the effects of signal 

enhancement and of features selection methods. The two ML models used here 

are XGBoost and NN. 

In order to gain a deeper insight into the rationale behind this particular section, 

it is essential to recall the features that have been taken into consideration in this 

Chapter, that compose 𝔉𝑆 and  𝔉𝐸, that have already been described in the Table 

A1 of the Appendix A. Moreover, in Chapter 1 the importance scores of the best 

features of the expanded set, ℛ𝑖,E,𝑘, are calculated and reported. These findings 

indicate that a considerable number of the newly introduced features of  𝔉E 

exhibit higher scores than those belonging to 𝔉S alone, suggesting the potential 

for training more accurate ML models. However, due to computational 

constraints, the actual performance of XGBoost and NN models has been 

evaluated exclusively within the specified case ℛ𝑖,E,MRMR and reported in Chapter 

2. It remains uncertain whether an alternative selection method, aside from the 

MRMR approach, could potentially yield enhanced ML outcomes. Furthermore, 
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the potential influence of MODWT enhancement on ML performance remains 

unclear. Hence, in addition to feature sets ℛ𝑖,E,𝑘 already enumerated in Chapter 

1, in the present Chapter it necessary to consider also the sets  ℛ𝑖,S,𝑘, which are 

enumerated in  Fig. 25 and in Fig. 26. 

 

 

(a) 
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(b) 

 

(c) 
Fig. 25. Significant features for SBP using three selection algorithms: RReliefF (a), MRMR 

(b), CFS (c). 
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(a) 

 

(b) 

 

(c) 

Fig. 26. Significant features for DBP using three selection algorithms: RReliefF (a), 

MRMR (b), CFS (c). 

 

In order to ensure consistency with the methodology outlined in Chapter 2, the 

training of both XGBoost and NN models has been conducted using Python 3.9.9. 

For purposes of completeness, the hyperparameters of the XGBoost models are 

presented again here. For SBP, the hyper-parameters are as follows: the learning 

rate was set to 0.226, the maximum tree depth to 15, the subsample to 0.894, the 
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subsample ratio of columns by tree to 1.0, lambda to 120.0, alpha to 1x10-10, and 

the estimators to 5000. The hyper-parameters for DBP are as follows: the learning 

rate was set to 0.136, the maximum tree depth to 15, the subsample to 0.894, the 

subsample ratio of columns by tree to 1.0, the lambda to 120.0, the alpha to 1x10-

10, and the estimators to 5200. In contrast, NN models are sequential models 

comprising an input layer of size 20 for SBP and 25 for DBP, nine hidden layers, 

and an output layer. All neurons employ the ReLU activation function. The 

computations were performed on a NVIDIA GeForce RTX 3060 12 GB GPU. In 

Table 12 - Table 15 the results obtained by ML models are reported. The criteria 

used to evaluate the performance of the ML models for estimating BP are RMSE 

 

                                          𝑅𝑀𝑆𝐸 = √
1

𝐾
∑ (𝐵𝑃�̂� − 𝐵𝑃𝑛)

2𝐾
𝑛=1 ,        (5) 

 and MAE 

                                         𝑀𝐴𝐸 =  
1

𝐾
∑ |𝐵𝑃�̂� − 𝐵𝑃𝑛|𝐾

𝑛=1 ,            (6) 

 

where 𝐵𝑃�̂� and 𝐵𝑃𝑛 are the 𝑛 − 𝑡ℎ predicted and true BP (systolic or diastolic), 

respectively, and 𝐾 in the number of observations used in the validation dataset.  

The results for XGBoost are presented in Table 12 and Table 13, with the RMSE 

and MAE values obtained after 10-fold cross-validation. The training and cross-

validation were conducted using 9×10⁶ observations, with the 90% comprising 

the training set and the remaining 10% constituting the validation set. The results 

for the NN are presented in Table 14 and Table 15, with the RMSE and MAE 

values for the validation set at the conclusion of the training period. 

In light of these findings, it is evident that XGBoost models exhibit superior 

RMSE and MAE compared to NN models. This finding aligns with the 

conclusions of Chapter 2, which focused exclusively on ℛ𝑖,E,MRMR, but it builds 
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upon that study by examining all three selection algorithms for both systolic and 

diastolic pressures, with and without MODWT enhancement. The combination 

of the XGBoost model, MODWT enhancement of the PPG signal, and a selection 

performed by RReliefF or MRMR yielded the most optimal results. The RMSE 

was better for MRMR, while the MAE was better with RReliefF. It is also 

noteworthy that the enhanced results are obtained using RReliefF and MRMR, 

which include MODWT enhancement. Conversely, CFS, which is the least 

effective method in this experimental setup, produces the poorest outcomes. 

 

Table 12. Systolic pressure measurement performance using XGBoost model. 

 
 

Table 13. Diastolic pressure measurement performance using XGBoost model. 

Diastolic case RMSE (mmHg) MAE (mmHg) 

RReliefF features reported in Chapter 1 4.04 2.08 

RReliefF features in literature 4.34 2.29 

MRMR features reported in Chapter 1 3.92 2.09 

MRMR features in literature 4.01 2.15 

CFS features reported in Chapter 1 5.51 3.39 

CFS features in literature 4.58 2.58 

 
 
 

Systolic case RMSE (mmHg) MAE (mmHg) 

RReliefF features reported in Chapter 1 5.77 2.77 

RReliefF features in literature 6.93 3.32 

MRMR features reported in Chapter 1 5.60 3.11 

MRMR features in literature 5.89 3.25 

CFS features reported in Chapter 1 6.77 3.59 

CFS features in literature 6.60 3.49 
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Table 14. Systolic pressure measurement performance using NN model. 

Systolic case 
RMSE 

(mmHg) 
MAE (mmHg) 

RReliefF features reported in Chapter 1 7.05 4.47 

RReliefF features in literature 7.31 4.43 

MRMR features reported in Chapter 1 7.80 5.00 

MRMR features in literature 7.81 5.02 

CFS features reported in Chapter 1 8.96 5.69 

CFS features in literature 8.90 5.62 

 
  

Table 15. Diastolic pressure measurement performance using NN model. 

Diastolic case RMSE (mmHg) MAE (mmHg) 

RReliefF features reported in Chapter 1 4.98 2.93 

RReliefF features in literature 5.13 3.10 

MRMR features reported in Chapter 1 5.53 3.51 

MRMR features in literature 5.57 3.52 

CFS features reported in Chapter 1 7.26 5.01 

CFS features in literature 6.80 4.53 

 

3.3 EFFECTS OF ML ALGORITHMS AND 

DATASET SIZES ON RMSE AND TRAINING 

TIME 

In this section, the Regression Learner App of MATLAB R2022a was employed 

to train seven additional families of algorithms, encompassing numerous 

potential variations, for a total of 34 models overall. The 10-fold cross-validation 

method was utilized for this purpose. However, it was necessary to reduce the 
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size of the dataset due to the considerable amount of computing time required 

for training. Accordingly, a reduced dataset created by random extraction, 

comprising 10,000 observations has been employed for all algorithms, thereby 

facilitating a comparative analysis of the resulting outcomes. The actual training 

durations of each model are presented in Table 16, along with the RMSE 

performance metrics. The feature set utilized for training is ℛ𝑖,E,RReliefF and 

ℛ𝑖,E,MRMR, which are derived from the MRMR and RReliefF algorithms and 

include the novel features extracted from the MODWT enhanced PPG signal. As 

evidenced in the preceding section, these feature sets yielded the most optimal 

outcomes. 

Table 16 presents the RMSE of SBP and DBP and the training times of all ML 

algorithms for the two feature selection methods.  The XGBoost and NN models 

have been included once more, but they have been trained using the reduced 

dataset. XGBoost and NN were trained in Python, while the remaining 

algorithms were trained in MATLAB using the Regression Learner App, as 

previously stated.  

 

Table 16. Performance comparison of ML models and features sets for systolic (a) and 

diastolic (b) pressure measurement. 

(a) 

Model SBP 

 

RMSE 

RReliefF 

(mmHg) 

RMSE 

MRMR 

(mmHg) 

Time 

(s) 

Optimizable GPR 12.23 12.37 1.9561x105 

XGBoost 13.21 13.51 991.00 

Optimizable Ensemble 

(Bayesian optimization) 
13.25 13.74 241.86 
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Rational Quadratic GPR 13.28 14.43 275.57 

Exponential GPR 13.29 14.42 194.37 

Matern 5/2 GPR 13.39 14.50 150.75 

Bagged Ensemble 13.57 13.96 6.60 

Squared Exponential GPR 13.59 14.49 132.34 

Fine Gaussian SVM 13.94 15.55 20.83 

Optimizable SVM 

(Bayesian optimization) 
13.95 16.44 1787.00 

Optimizable NN 

(Bayesian optimization) 
14.65 15.74 3224.8 

Medium gaussian SVM 14.98 15.54 14.98 

Least Squares Regression Kernel 15.25 15.52 21.46 

Medium NN 15.26 15.83 51.06 

Trilayered NN 15.38 15.73 34.29 

Bilayered NN 15.39 15.63 26.67 

NN 15.47 15.45 67.20 

Optimizable Tree 

(Bayesian optimization) 
15.51 15.92 23.83 

Coarse Tree 15.52 16.02 1.30 

SVM Kernel 15.65 16.11 51.36 

Narrow NN 15.66 15.98 19.34 

Boosted Ensemble 15.82 15.98 4.59 

Wide NN 15.92 17.32 156.53 

Medium Tree 16.17 16.62 1.31 

Stepwise Linear 16.54 16.86 4112.7 

Quadratic SVM 16.56 16.97 30.98 

Interactions Linear 16.72 17.00 3.82 

Coarse gaussian SVM 16.75 16.87 14.69 

Robust Pure Quadratic Linear 16.84 17.04 4.74 

Linear 17.00 17.03 1.14 
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Robust Linear 17.01 17.03 1.73 

Linear SVM 17.04 17.09 14.63 

Robust Interactions Linear 17.36 18.24 51.47 

Robust Quadratic Linear 17.38 17.71 62.63 

Fine Tree 17.43 18.00 2.36 

Cubic SVM 19.63 20.32 165.32 

 

                                                                               (b) 

Model DBP 

 

RMSE 

RReliefF 

(mmHg) 

RMSE 

MRMR 

(mmHg) 

Time 

(s) 

Optimizable GPR 7.47 7.52 1.4333x105 

Optimizable Ensemble 

(Bayesian optimization) 
7.85 8.18 688.12 

XGBoost 7.89 7.95 1339.00 

Matern 5/2 GPR 7.90 8.37 154.03 

Exponential GPR 7.90 8.28 157.59 

Rational Quadratic GPR 7.91 8.33 268.85 

Squared Exponential GPR 7.94 8.43 147.43 

Bagged Ensemble 8.03 8.21 7.70 

Fine Gaussian SVM 8.13 8.65 19.38 

Optimizable NN 

(Bayesian optimization) 
8.49 8.83 5038.00 

Medium gaussian SVM 8.64 8.97 14.70 

Boosted Ensemble 8.69 8.82 5.77 

Bilayered NN 8.71 8.97 29.70 

Least Squares Regression Kernel 8.72 8.91 18.96 

Medium NN 8.74 9.13 52.24 

Narrow NN 8.79 9.00 22.52 
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Coarse Tree 8.84 9.24 1.37 

Optimizable Tree 

(Bayesian optimization) 
8.85 9.09 26.13 

NN 8.87 8.74 72.00 

Trilayered NN 8.87 9.15 35.66 

SVM Kernel 9.01 9.34 50.79 

Medium Tree 9.29 9.61 1.35 

Linear 9.30 9.36 1.32 

Stepwise linear 9.36 9.49 15059 

Robust Linear 9.42 9.48 2.90 

Coarse Gaussian SVM 9.52 9.59 13.76 

Wide NN 9.56 10.62 159.69 

Robust Quadratic Linear 9.58 10.82 162.58 

Optimizable SVM 

(Bayesian optimization) 
9.59 9.59 3327.1 

Linear SVM 9.62 9.71 14.24 

Robust Pure Quadratic Linear 9.63 9.47 4.38 

Interactions Linear 9.98 10.31 7.41 

Quadratic SVM 10.01 10.29 27.43 

Robust Interactions Linear 10.12 10.92 141.25 

Fine Tree 10.16 10.55 4.10 

Cubic SVM 28.22 26.70 129.68 

 

Furthermore, Fig. 27 depicts the identical results, arranged in accordance with 

the RMSE obtained through the RReliefF selection. It is evident that the training 

times exhibit a considerable degree of variation; thus, a logarithmic scale has 

been employed for illustrative purposes. It is important to note that the lower 

RMSE models have higher training times, yet there is no straightforward 

correlation between RMSE and training time. As can be observed in Table 16, the 
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RMSE values obtained with RReliefF are, in general, superior to those obtained 

with MRMR, with the exception of the NN model for both SBP (a) and DBP (b). 

This finding corroborates the results previously reported in Table 14 and Table 

15. In contrast, for two additional high RMSE models, namely Robust Pure 

Quadratic Linear and Cubic SVM, MRMR is observed to outperform RReliefF for 

DBP. In general, the use of Optimizable GPR, XGBoost, and Optimizable 

Ensemble resulted in superior RMSE outcomes. Among the models, XGBoost 

and the Optimizable Ensemble appear to offer the optimal balance, reducing 

training time significantly while maintaining low RMSE.  
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Fig. 27. RMSE results for systolic pressure (a) and for diastolic pressure (b) using the 

reduced dataset and two different selection methods namely MRMR and RReliefF. The 

training time is reported in the logarithmic scale.  

 

(b) 

(a) 
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The results are further illustrated in Fig. 28, where the models on the Pareto front 

are explicitly labeled. It is noteworthy that the Ensemble and GPR models appear 

on the Pareto front on two occasions (and frequently among the best RMSE 

scores). This is observed both as specific models (i.e., Bagged Ensemble and 

Exponential GPR) and as optimizable models with reduced RMSE but increased 

training times due to method/kernel and hyperparameters optimization. 

 

 

Fig. 28. Training time and RMSE for SBP measurement, with indication of the Pareto 

front. 

 

Following the training phase, the Optimizable Ensemble has selected the Bag 

method, whereas the Optimizable GPR has chosen the Nonisotropic Rational 

Quadratic kernel. 

A comparison of Table 12 through Table 15 reveals that the reduction in the 

dataset has resulted in an increase in the RMSE for both the XGBoost and the NN 

models. In some cases, the RMSE has doubled, indicating a dependence of 

performance on the dataset size. To further investigate this phenomenon, a study 

was conducted in which the dimension of the dataset varied for four models that 
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demonstrated high performance. The dataset ranged from 1,000 observations to 

100,000 observations, and the results are presented in Fig. 29. The four selected 

models are XGBoost, Optimizable Ensemble, and Exponential GPR, which 

demonstrate a lower SBP RMSE on the Pareto front, and Optimizable Tree, which 

exhibits a median RMSE. Among the optimal models, the Optimizable GPR was 

not considered due to the extensive training time required. However, it can be 

reasonably assumed that its behavior is similar to that of other models. This study 

was conducted exclusively for SBP measurement, utilizing the ℛ𝑆𝐵𝑃,E,MRMR set, as 

superior RMSE outcomes were previously attained (for 9×10⁶ observations) when 

MODWT enhancement and MRMR were employed. Fig. 29 illustrates that an 

increase in the size of the dataset is associated with an improvement in 

performance. However, the rate of improvement is sublinear, as evidenced by 

the logarithmic scale used for the x-axis. These considerations are also supported 

by the literature [104]. As a matter of fact, the performance of the four models is 

more similar when the dataset is reduced in size, while the difference between 

them increases when the dataset is larger. 

Furthermore, a more comprehensive statistical analysis has been conducted for 

the previously selected optimal models, Bagged Ensemble and Optimizable Tree 

Fig. 29. RMSE of SBP measurement, varying the dimension of the training dataset. 
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(which has a median SBP RMSE), in order to more accurately assess the 

significance of the obtained results, as illustrated in Table 17. The Bagged 

Ensemble was included in this further analysis because it is the method selected 

at the conclusion of the Optimizable Ensemble training. Consequently, by 

directly considering this model, it is possible to significantly reduce the training 

time while achieving optimal results. The table presents the mean RMSE 

obtained from the 10-fold cross-validation, the STD of the mean RMSE, and the 

95% confidence interval (CI) of the mean RMSE. With regard to SBP estimation, 

it can be observed that XGBoost and Bagged Ensemble, which exhibit a smaller 

STD of RMSE, yield more consistent results across the repetitions of the 10-fold 

cross-validation. Referring to the measurement of DBP, the STD of the mean 

RMSE for the various methods is comparable, with the exception of XGBoost 

applied to RReliefF selected features, which exhibits a lower value. The results of 

the ANOVA indicate that there is a statistically significant difference between the 

methods under consideration (p-values 0.0006 for SBP RReliefF, 2×10⁻⁵ for SBP 

MRMR, 0.04 for DBP RReliefF, 0.007 for DBP MRMR). In particular, pairwise 

comparisons were performed using Tukey’s HSD tests, which revealed 

significant differences between Optimizable Tree and the other methods. In the 

comparisons regarding Optimizable Tree, higher p-values were observed, 

specifically 0.01 for SBP RReliefF, 0.01 for SBP MRMR, 0.18 for DBP RReliefF, and 

0.08 for DBP MRMR. Therefore, the discrepancies with regard to the Optimizable 

Tree are more pronounced in the estimation of SBP, while they are less 

pronounced in the estimation of DBP and in the selection of RReliefF features. As 

the RMSE of XGBoost, Optimizable Ensemble, Exponential GPR, and Bagged 

Ensemble are comparable, the selection between them can be based on the 

training time, which is shorter for Bagged Ensemble. 
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Table 17. Statistical analysis of the best models for systolic pressure (a) and for diastolic 

pressure (b). 

      (a) 

Model 

SYS 

RReliefF MRMR 

Mean 

RMSE 

(mmHg) 

STD 

RMSE 

(mmHg) 

CI 95% 

Mean 

RMSE 

(mmHg) 

STD 

RMSE 

(mmHg) 

CI 95% 

XGBoost 13.21 0.29 
12.64-

13.78 
13.51 0.18 

13.16-

13.86 

Optimizable 

Ensemble 
13.25 0.40 

12.47-

14.03 
13.74 0.45 

12.86-

14.62 

Exponential 

GPR 
13.29 0.54 

12.23-

14.35 
14.42 0.39 

13.66-

15.18 

Bagged 

Ensemble 
13.57 0.28 

13.29-

14.12 
13.96 0.23 

13.51-

14.41 

Optimizable 

Tree 
15.51 0.44 

14.65-

16.37 
15.92 0.26 

15.41-

16.43 

 

(b) 

 
 

3.4  DISCUSSION 

This section provides a concise overview of the findings presented in the 

Model 

DIA 

RReliefF MRMR 

Mean 

RMSE 

(mmHg) 

STD 

RMSE 

(mmHg) 

CI 

95% 

Mean 

RMSE 

(mmHg) 

STD 

RMSE 

(mmHg) 

CI 

95% 

XGBoost 7.89 0.065 
7.76-

8.02 
7.95 0.13 

7.70-

8.20 

Optimizable 

Ensemble 
7.85 0.30 

7.26-

8.44 
8.18 0.15 

7.89-

8.47 

Exponential 

GPR 
7.90 0.26 

7.39-

8.41 
8.28 0.34 

7.61-

8.95 

Bagged 

Ensemble 
8.03 0.31 

7.42-

8.64 
8.21 0.22 

7.78-

8.64 

Optimizable 

Tree 
8.85 0.27 

8.32-

9.38 
9.09 0.17 

8.76-

9.42 
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preceding sections. In light of the aforementioned findings, the following 

observations can be made. 

The larger dataset of 9x10⁶ observations, considered with both XGBoost and NN 

models (see Table 12 - Table 15), yielded the best results for both systolic and 

diastolic pressures when the features were selected using MRMR and RReliefF, 

in comparison with CFS. 

Furthermore, the most significant finding is that the outcomes achieved through 

the utilization of RReliefF and MRMR selections, which encompass the extracted 

features following the proposed MODWT enhancement as detailed in Chapter 1, 

demonstrate superior performance compared to those obtained through the 

exclusive reliance on features documented in the existing literature without the 

incorporation of MODWT. For instance, systolic RMSE is reduced from 5.89 

mmHg to 5.60 mmHg when MRMR is employed, and from 6.93 mmHg to 5.77 

mmHg when RReliefF is utilized. These results are applicable to XGBoost and 

NN models, and analogous outcomes are observed in the diastolic case and for 

MAE. However, it should be noted that the CFS selection method, which exhibits 

inferior performance with respect to RReliefF and MRMR, does not benefit from 

the MODWT enhancement. 

A comparison of numerous ML models with a reduced dataset of 10,000 

observations, as illustrated in Table 16 and Fig. 27, reveals that the Optimizable 

GPR models yield superior results. However, the training process for both 

systolic and diastolic pressures has been time-consuming, requiring days for 

completion. It is important to note that the training of XGBoost models required 

approximately half an hour. However, the results in terms of RMSE differed by 

only 1.32 mmHg systolic and 0.43 mmHg diastolic with respect to the 

Optimizable GPR model using MRMR selected features. Furthermore, the 

difference in RMSE between the XGBoost and Optimizable GPR models was only 

0.98 mmHg systolic and 0.42 mmHg diastolic using RReliefF selected features. In 
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comparison, for the systolic pressure, the Optimizable GPR reduced the RMSE 

by 7% in comparison to XGBoost RMSE but increased the training time by 197 

times. For the diastolic pressure, the RMSE was reduced by 5%, but the training 

time was increased by 107 times. Similar considerations apply to Ensemble 

(Bagged and Optimizable) and Exponential GPR methods. Therefore, these 

models may be deemed an appropriate option for the estimation of BP.  

The use of MODWT enhancement allows to emphasize characteristic points of 

the PPG signal, including the diastolic point, which leads to excellent results in 

BP estimation. Fig. 29 illustrates an intriguing relationship between the dataset 

size and the RMSE values. Indeed, the RMSE decreases as the number of 

observations in the training dataset increases. This results in the XGBoost model 

producing the values shown in Table 12 and illustrated in Fig. 30, which depict 

the RMSE values for varying sizes (N) of the training dataset. A straightforward 

model can be formulated as follows: 

 

              𝑅𝑀𝑆𝐸 =  𝑎 × log10(𝑁) + 𝑏,               (7) 

 

obtaining the least squares estimates 𝑎 = − 2.6 mmHg, 𝑏 =  24.1 mmHg. This 

relation can be extrapolated up to 𝑁 = 1.5 × 109, where it is no longer significant, 

with an 𝑅𝑀𝑆𝐸 = 0 mmHg. As Fig. 29 shows, the other models will exhibit a 

similar behavior. The RMSE of Optimizable Tree and Optimizable Ensemble will 

improve with N, similarly to XGBoost. Meanwhile, Exponential GPR will 

improve slowly. It is important to note that Optimizable models will benefit from 

tuning their hyperparameters when N changes. 
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Fig. 30. Fitting of RMSE for SBP measurement varying the number of observations using 

XGBoost models. 

 

It would be beneficial to investigate whether the RReliefF or MRMR feature 

selection methods result in superior outcomes. In a previous study [19], it was 

reported that the best RMSE and MAE were obtained using features selected by 

the RReliefF algorithm. This finding aligns with the results of this Chapter when 

considering Table 16. When the models are trained on a reduced dataset, features 

selected by RReliefF provide better RMSE regardless of the model chosen 

(including XGBoost), except for NN and Cubic SVM. In contrast, when the 

models were trained on the larger dataset of 9×10⁶ observations, MRMR yielded 

marginally superior RMSE results for the XGBoost model, while RReliefF 

demonstrated superior performance for the NN model. Indeed, the systolic 

RMSE using the MRMR method is reduced by 0.17 mmHg for XGBoost models 

and increased by 0.75 mmHg for NN models when compared with the RReliefF 

method. A similar comparison of the MRMR diastolic RMSE reveals a decrease 

of 0.12 mmHg for XGBoost models and an increase of 0.58 mmHg for NN models 

with respect to RReliefF. Overall, the MRMR method has demonstrated the 

greatest efficacy in this study for the XGBoost model. It is therefore important to 



CHAPTER 3 

105 
 

note that the relative performance of RReliefF and MRMR is dependent on the 

size of the training set and the ML model selected. Furthermore, for a high-

performance model such as XGBoost, the features selected by MRMR resulted in 

a smaller RMSE for larger datasets.  

Furthermore, another area that is not addressed during training and has not been 

examined in this study is individual calibration. However, the performance 

reported in this section already accounts for variability associated with 

individual differences. Indeed, further enhancement of the results may be 

accomplished through the implementation of individual calibration or TL 

methodologies, thereby ensuring the predictions are tailored to the specific 

subject. This challenging aspect is currently the subject of investigation by 

numerous researchers [105], [106], [107]. 

A more comprehensive comparison is presented in Table 18, as it was essential 

to evaluate a range of ML models and feature selection techniques. In numerous 

published works, a restricted number of features are extracted without the 

utilization of a feature selection method. In other works, the most used methods 

are principal component analysis (PCA), RReliefF, Pearson’s correlation 

coefficients (PCC), and the maximum information coefficient (MIC). It should be 

noted that the table does not present all the analyses conducted in the cited 

works; rather, it shows only those that demonstrated optimal performance. 

Indeed, in some of these papers, the efficacy of multiple feature selection and ML 

methods has been evaluated. It is also noteworthy that the selected ML models 

are predominantly SVM for regression and models from the boosting framework. 

The results reported in the various papers are inferior to those obtained in this 

study. This discrepancy may be attributed to the absence of a methodology for 

selecting features and the disparate features employed. As evidenced by the 

table, the work of Chowdhury et al. [19] has yielded marginally superior 

outcomes (except for SBP RMSE). However, direct comparison of these results 
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with those in this Chapter is not feasible, as the datasets differ, and the features 

selected by RReliefF include those demographics that were not employed in this 

study. The aforementioned features were not accessible in the version of the 

dataset utilized, which is more recent and larger. 

 

Table 18. Comparison of several ML models and features selection methods. 

Work Method Data Size 
Features 

selection 

Performance 

Evaluation 

SBP 

(mmHg) 

DBP 

(mmHg) 

Kachuee et 

al. [18] 
SVM 

MIMIC II 

(1000 

subjects) 

Without 

selection 

RMSE / / 

MAE 12.38 6.34 

Kim et al. 

[66] 
NN 

180 

recordings, 

45 subjects 

PCA 

RMSE / / 

MAE 4.53 / 

Cattivelli et 

al. 

[67] 

Proprietar

y 

algorithm 

MIMIC 

database 

(34 

recordings, 

25 

subjects) 

Only PAT 

peaks 

RMSE 8.37 5.92 

MAE / / 

Zhang et al. 

[68] 
SVM 

7000 

samples 

from 32 

patients 

Without 

selection 

RMSE / / 

MAE 11.64 7.62 

Zadi et al. 

[69] 

ARMA 

models 
15 subjects 

Without 

selection 

RMSE 6.49 4.33 

MAE / / 

Chowdhur

y et al. [19] 
GPR 

222 

recordings, 

126 

subjects 

RReliefF 

RMSE 6.74 3.59 

MAE 3.02 1.74 

Hasanzade

h et al. [21] 
AdaBoost 

MIMIC II 

942 

subjects 

Without 

selection 

RMSE / / 

MAE 8.22 4.17 

Kachuee et 

al. [54] 
AdaBoost 

942 

subjects 
PCA 

RMSE / / 

MAE 11.17 5.35 

Wang et al. 

[70] 
NN 

58,795 PPG 

samples 

Without 

selection 

RMSE / / 

MAE 4.02 2.27 

Kurylyak et 

al. [23] 
NN 

15,000 PPG 

heartbeats 

Without 

selection 

RMSE / / 

MAE 3.80 2.21 

XGBoost RMSE / / 
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Fleischhau

er et al. [71] 

MIMIC, 

Queenslan

d, PPG BP 

(273 

subjects 

and 

259,986 

single 

beats) 

Without 

selection 
MAE 6.37 / 

Liu et al. 

[72] 
SVM 

MIMIC II 

910 good 

PPG 

pules 

cycles 

Without 

selection 

RMSE / / 

MAE 8.54 4.34 

Zhang et al. 

[73] 
GBR 

MIMIC II 

2842 

samples 

from 

12,000 data 

points 

Without 

selection 

RMSE / / 

MAE 4.33 2.54 

Dey et al. 

[108] 

LASSO 

regression 

Own 

dataset 

(205 

subjects) 

Without 

selection 

RMSE / / 

MAE 6.90 5.00 

Mousavi et 

al. [79] 

Adaboost

R 

MIMIC-II 

(441 

subjects) 

PCA 

RMSE / / 

MAE 3.97 2.43 

Duan et al. 

[109] 
SVM 

The 

University 

of 

Queenslan

d Vital 

Signs 

Dataset (32 

cases, 7678 

samples) 

PCC and 

MIC 

RMSE / / 

MAE 4.77 3.67 

Chowdhur

y et al. [94] 
LR 

PPG-BP 

(153 

subjects) 

Without 

selection 

RMSE / / 

MAE 4.75 3.34 

Proposed 

method 
XGBoost 

MIMIC III  

9.1 × 106 

PPG pulses 

from 1080 

subjects 

MRMR 

RMSE 5.67 3.95 

MAE 3.12 2.11 
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3.5  CONCLUSION 

Following the proposal of a features set and a ML model, this Chapter presents a 

more comprehensive analysis and performance comparison of different sets of 

significant features and ML algorithms. The primary objective has been to 

examine the potential of ML models for estimating BP using features extracted 

from the PPG signal. This approach offers a non-invasive alternative to 

traditional cuff-based BP monitoring, facilitating continuous and uninterrupted 

monitoring, which is a crucial aspect in telemedicine applications.  

It has been demonstrated that the enhancement of the PPG signal by using 

MODWT leads to the training of ML models that demonstrate improved 

performance in estimating BP. Nevertheless, the scope of interest has not been 

confined to this particular aspect but has also encompassed a comparison of 

disparate sets of features that have been selected by three distinct algorithms. 

This comparison has revealed that both MRMR and RReliefF outperform CFS.  

Finally, multiple ML models were trained using varying dataset sizes to provide 

an overview of these algorithms within this research area, demonstrating the 

trade-off between prediction performance and training time. The combination of 

XGBoost, Ensemble, and Exponential GPR models with MODWT enhancement 

of the PPG signal demonstrated a favorable trade-off between training time and 

RMSE and MAE. In comparison, other models, such as Optimizable GPR, 

demonstrated a reduction in RMSE by 7% but an increase in training time by a 

factor of 197 relative to XGBoost. 

The results presented here indicate that it is feasible to develop a portable device 

capable of acquiring PPG signals and implementing a BP estimator. The 

development of ML models that take into account the selection of features allows 

the realization of embedded systems. This is because the use of a reduced number 

of appropriately selected features ensures a lower computational cost, enabling 
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onboard processing that allows savings in energy in battery-powered devices. 

Moreover, the examination of the performance of the disparate models enables 

the identification of an optimal balance between the model’s complexity and its 

performance, thereby facilitating the determination of a less resource-intensive 

model that can effectively delineate the minimum requisite hardware 

specifications. Furthermore, an in-depth examination of the various feature 

selection methods and models, along with a comprehensive evaluation of their 

performance and the size of the dataset, is of paramount importance, particularly 

when dealing with limited data. The aforementioned analysis has a direct impact 

on the effectiveness and reliability of the resulting BP estimator. In light of these 

findings, the potential for monitoring BP using the PPG signal is becoming 

increasingly viable and suitable for monitoring patients’ status in their homes, 

with the ultimate objective of enhancing their well-being.
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CHAPTER 4 
 

ABP ESTIMATION THROUGH PPG 
SIGNAL ANALYSIS AND ADVANCED 

LOSS FUNCTION OPTIMIZATION 

INTRODUCTION 

Nowadays, PPG obtains increasing significant attention due to its potential for 

continuous estimation of BP. The application of ML and DL algorithms to PPG 

signals enables the analysis of these signals, thus facilitating the generation of 

accurate BP estimates [16], [17], [21], [22], [73], [78]. DL models, including 

convolutional neural networks (CNNs) and recurrent neural networks (RNNs), 

are perfect at processing intricate patterns within PPG waveforms, enabling the 

capture of subtle variations that are correlated with alterations in BP.

As a matter of fact, these models are trained on extensive datasets to enhance 

their accuracy and reliability. The combination of PPG and DL represents a 

promising path for the development of non-invasive, real-time BP monitoring 

systems. Such systems have the potential to transform hypertension 

management and improve patient outcomes through the implementation of 

more personalized and timely interventions [107], [110], [111], [112], [113], [114], 

[115]. It is clear that these networks are used extensively in many different 

applications, leading to the development of models that produce excellent 

results, not just for BP estimation [116], [117], [118], [119]. 



CHAPTER 4 

111 
 

Nevertheless, the estimation of BP using PPG is not a straightforward process, as 

this signal is susceptible to noise, including motion artifacts and individual 

differences. 

It is therefore crucial to consider the inter-subjectivity aspect when evaluating 

methods for BP estimation from PPG signals [120], [121]. Incorporating data from 

several individuals allows DL models to more effectively capture the variability 

in PPG waveforms across different physiological conditions and anatomical 

differences. However, inter-subjectivity presents a significant challenge for 

researchers. It is crucial to collect and annotate different datasets that adequately 

represent various demographics and health conditions, which is a resource-

intensive process. This variability encompasses factors such as skin tone, age, and 

overall cardiovascular health, which significantly impact the relationship 

between PPG signals and BP levels. Training models on a broad range of subjects 

enhances their ability to generalize and adapt to new individuals, thereby 

improving the accuracy and reliability of BP predictions. This approach mitigates 

biases that might arise from training on a homogeneous dataset and ensures that 

the models can perform effectively across various demographic groups, 

ultimately leading to more robust and inclusive healthcare applications. 

However, it is essential to ensure that models do not overfit specific 

characteristics of the training data while still capturing meaningful inter-subject 

variability. To address these challenges, it is necessary to implement a rigorous 

pipeline or dataset processing, to develop innovative model architectures, and to 

implement effective validation strategies that account for the diverse populations 

under consideration. Once the necessity for an inter-subject approach has been 

established, it is imperative to explore another critical aspect of DL models. One 

of the main aspects affecting the performance of the models is the loss function, 

which plays an important role in the training phase of a DL model, serving as the 

primary metric for optimization [122], [123]. The loss function is used to compute 
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the differences between the predicted outputs of the model and the actual target 

values. This provides a measure of the model’s performance and can be used as 

a proxy for performance evaluation. During the training phase, the objective is to 

minimize the loss function, which indicates that the model is improving its 

predictions. The selection of an appropriate loss function is of paramount 

importance for both ML and DL models. It not only ensures that the model learns 

effectively but also influences the convergence speed and the overall 

performance. It is important for tasks such as classification, regression, and other 

forms of predictive modeling, as it directly affects the model’s capacity to 

generalize from training data to unseen data, thereby ensuring robust and 

reliable predictions. 

The most commonly used loss functions, such as MSE and MAE, are ineffective 

in DL due to the limitations imposed by the activation functions employed in the 

final layer. These limitations result in reduced efficiency and accuracy during 

training, underscoring the need for specialized loss functions tailored to the 

unique characteristics of DL. Accordingly, the development of loss functions 

designed to align with specific objectives has emerged as a pivotal and pressing 

challenge within this field. While there are studies in the literature that 

concentrate on loss functions [124], [125], further investigation is necessary to 

gain a more comprehensive understanding of the matter. In light of these 

considerations, the objective of this Chapter has been to develop an enhanced 

loss function that could potentially contribute to more precise and reliable 

predictions. The proposed method consists in weighting the systolic and diastolic 

points more than the other points of the ABP signal, thus addressing the inherent 

challenges and inaccuracies typically associated with converting PPG to ABP. 

The Chapter is centered on the utilization of the PPG signal to accurately derive 

the ABP signal in an inter-subject approach by using DL models. This approach 

is designed to be applicable across different individuals, thereby increasing the 
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reliability of the method in diverse populations. It should be noted that this 

scenario comprises three distinct sets of patients: the training set, the validation 

set, and the test set. The inter-subject approach avoids concerns regarding the 

potential of data leakage when there are samples in training and test sets that 

share the same patient. The objective is to guarantee a performance evaluation 

that is both realistic and challenging by removing the availability of data from 

the same patient (even if they are different data) to the algorithms during this 

phase. Consequently, the algorithms were only able to access cross-subject BP 

variability during the testing phase. To achieve this objective, a variety of DL 

models were employed, leveraging their capacity to discern intricate patterns 

and relationships within the data. This advancement has the potential to 

markedly enhance non-invasive BP monitoring, providing a more efficacious 

and reliable methodology for medical diagnostics and continuous health 

monitoring through the implementation of a specific loss function. 

4.1 DATASETS 

In this Chapter two distinct datasets have been utilized to validate the results: 

the dataset processed by Kachuee et al. [18], [54] using MIMIC II [31] and the 

MIMIC III Waveform Database processed following the steps presented in 

Chapter 1. The two datasets are mutually exclusive and differ in the processing 

methodologies employed to obtain the final data. In summary, MIMIC-III 

represents a more advanced, comprehensive, and user-friendly dataset 

compared to MIMIC-II, with broader data coverage and improved accessibility, 

making it a preferred choice for most medical research applications. However, 

both datasets have been used to analyze the impact of a different processing 

methodology and also to deploy the same dataset used in other works.  



CHAPTER 4 

114 
 

4.1.1 MIMIC-III DATASET 

The MIMIC-III waveform dataset is an extensive, freely accessible database that 

serves as a critical resource for medical research. The database contains de-

identified health data from over 40,000 patients who have received care in the 

ICU. This dataset integrates a multitude of data types, including demographic 

information, vital signs such as pulse oximetry, BP, ECG, and respiration signals, 

as well as some annotations, thereby facilitating comprehensive analyses in 

healthcare research. A total of 150 patients from the MIMIC-III database, for 

whom both PPG and ABP signals were available, were selected for download. 

Subsequently, the reduced dataset, subsequently designated as Dataset A, was 

subjected to the identical processing procedure described in Chapter 1: 

alignment between PPG signals and the ABP signals computing the cross-

correlation function; denoising of PPG signals by applying a second-order 

Butterworth filter with pass-band 0.5 Hz to 8 Hz; Z-score standardization; 

baseline correction removing a fourth-order fitted polynomial; a tenth-order 

lowpass Yule-Walker recursive filtering with an 8 Hz cut-off frequency applied 

to the ABP; quality and similarity tests to eliminate inappropriate signals. A total 

of 120 patients, representing 80% of the total sample size, were randomly selected 

for the training phase. The remaining 10% were allocated to the validation phase, 

while the other remaining 10% were reserved for the test phase. The final dataset 

comprises PPG and ABP signals from 1,024 samples, corresponding to an 8.192 s 

segment. This dataset will be referred to as Dataset A1. The decision regarding 

the number of samples was made to facilitate the training of DL models by using 

a power of two as the number of samples for each PPG and ABP signal, as well 

as to align with existing literature on this topic.  

It is also important to note that this study has considered a wide range of cases, 

each with varying signal durations. It should be noted that an alternative 

configuration comprises PPG and ABP signals of 1,024 samples, corresponding 
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to a duration of 30 s. This will be referred to as Dataset A2. Moreover, two 

supplementary configurations utilize the input of PPG, the first derivative 

(PPG’), and the second derivative (PPG’’) to train the DL models. This was 

implemented with the objective of aligning the methodology with existing 

literature, thereby facilitating a comparative analysis of the results obtained. 

Furthermore, this configuration allows for the identification of two distinct cases. 

In one instance, the duration of the segments is 30 s (Dataset A3), while in the 

other, it is 8.192 s (Dataset A4). In both cases, the number of samples is 1,024. The 

aforementioned cases are also illustrated in Fig. 31. The signal obtained as a result 

of the MODWT enhancement was not employed in this Chapter for the purpose 

of facilitating a comparison with existing literature. This was due to the fact that 

the objective was to conduct a detailed study on loss functions and on several DL 

models. 

 

 

Fig. 31. Workflow of the processing for Dataset A. 

4.1.2 MIMIC-II DATASET 

The MIMIC II database encompasses a multitude of signals recorded by patient 

monitors at numerous hospitals between the years 2001 and 2008. The waveform 

signals were sampled at a frequency of 125 Hz with at least 8-bit accuracy. 
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Kachuee et al. extracted PPG, ECG, and ABP waveform signals, which were then 

subjected to a series of key processing steps. These included the application of 

average filtering to smooth the signals, the removal of data blocks with 

unacceptable BP and HR values, and the elimination of those with persistent 

discontinuities despite smoothing. Additionally, the PPG autocorrelation 

function was computed to assess the similarity between consecutive pulses, and 

segments displaying significant alterations were also removed. The Kachuee’s 

dataset has been downloaded from the UCI Machine Learning Repository [126], 

the dataset comprises 12,000 records of PPG, ECG, and ABP data from 942 

patients. The processing code made by [114] has been used. The final dataset 

comprises segments of 1,024 samples, or 8.129 s, and will henceforth be referred 

to as Dataset B. The deployment of a widely used database is highly beneficial 

for the research project, as it enables the establishment of connections with 

existing literature and the verification of findings. 

4.2  METHODS AND MODELS 

This study employs the whole PPG signal to accurately estimate the ABP signal. 

It is imperative to employ the whole PPG signal, as it offers a more 

comprehensive representation of the data than the use of extracted features 

alone. Such data includes physiological information, such as variations in 

amplitude, shape, and timing, which are crucial for precise ABP estimation [114], 

[120], [127], [128]. It was evident that a mere examination of features is 

inadequate for capturing the inherent variations of the entire signal. Several 

factors influence BP, and these change over time. These aspects are of critical 

importance for the precise estimation of ABP. Such characteristics reflect the 

dynamic and complex nature of cardiovascular function, and thus must be taken 

into account. Static features are insufficient for capturing these variations, which 
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may result in inaccuracies. The PPG signal comprises a multitude of intricate 

waveform patterns, including those indicative of systolic, diastolic, and dicrotic 

points. Each of these patterns offers valuable insights. The most effective means 

of processing the entire PPG signal is through the use of advanced ML and DL 

algorithms. These algorithms are capable of extracting and exploiting complex 

patterns and dependencies within the signal that would otherwise remain 

hidden when only limited features are used. This comprehensive approach 

enables the identification of previously unrecognized relationships between the 

PPG signal and ABP signal, thereby enhancing the accuracy of the estimation. 

This approach allows for more personalized ABP estimation by accommodating 

individual variations in cardiovascular characteristics, thereby enhancing the 

accuracy of BP monitoring and making it more tailored to individual patients.  

4.2.1 MODELS 

The advent of DL has brought a revolutionary change in numerous fields, 

including signal processing, through the development of highly sophisticated 

algorithms that are specifically designed to address a range of tasks. Among 

these, U-Net [129], [130], Long Short-Term Memory (LSTM) [17], Residual U-Net 

[121], and MultiRes U-Net [114] are particularly noteworthy for their 

effectiveness, especially when adapted for one-dimensional (1D) data. 

The U-Net was originally designed for biomedical image segmentation. It has 

also been successfully adapted for 1D signal processing tasks, including time-

series analysis and sequence data. The distinctive U-shaped configuration of the 

network captures contextual information and enables precise localization. This 

makes it highly suitable for tasks where accurate delineation of signal boundaries 

is of paramount importance.  

LSTM networks are an effective type of RNN used in DL for processing 1D 

signals. LSTMs are good for tasks involving data in order, like time-series 



CHAPTER 4 

118 
 

analysis, speech recognition and anomaly detection. This is because they can 

capture long-range dependencies and temporal patterns. LSTMs fix the 

vanishing gradient problem by keeping information in memory for a long time. 

This makes them very effective at understanding complex patterns and 

remembering important features from earlier steps. LSTMs can model 1D signals, 

predict future values and identify patterns. They are used in many areas, 

including healthcare and natural language processing and are ideal for tasks that 

require understanding of the sequential characteristics of 1D signals. 

The Residual U-Net is an extension of the U-Net. It uses residual connections 

from ResNet. These connections help the network train deeper models more 

effectively. In a Residual U-Net, the output of each convolutional layer is added 

to its input, making it easier for gradients to propagate. This makes the network 

learn better and does complex 1D segmentation tasks better. It lets the model 

learn easier-to-optimize residual functions.  

The MultiRes U-Net makes the U-Net architecture even better for 1D data by 

using multi-resolution analysis. The model combines U-Net with residual 

connections and a multi-resolution block to capture features at different scales. 

The MultiRes block has multiple convolutional layers with different kernel sizes, 

so the network can learn both fine and coarse features. This design helps the 

network to capture multi-scale information, which is important for accurately 

segmenting signals with different patterns and frequencies. Residual connections 

make the network trainable and robust. 

Each of these architectures offers distinctive advantages in the context of 1D 

signal processing. U-Net is particularly adept at precise localization, Residual U-

Net enhances training depth and efficiency, and MultiRes U-Net facilitates 

enhanced multi-scale feature extraction. These developments have rendered 

them indispensable tools in domains such as anomaly detection in time-series 

data, speech signal processing, and other applications where precise and accurate 
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1D signal segmentation is crucial. 

4.2.2 EXPERIMENTAL CONFIGURATION 

This Chapter describes the implementation of the Residual U-Net model, as 

described by Costa et al. [121], as well as the two models described by Ibethaz et 

al. [114] in which the Approximation network is a 1D deeply supervised U-Net 

utilizing deep supervision, while the Refinement network is a 1D MultiRes U-

Net. In contrast, the LSTM model has been implemented with four layers 

comprising 128 hidden nodes, and a dropout layer at the end of each layer with 

a rate of 0.2, the objective being to prevent overfitting. The learning rate for the 

model was set to the default value of 0.001, and the Adam optimizer was 

employed for the training process. The maximum number of training epochs was 

set to 50. 

All subsequent results were obtained using Python 3.11.0 for training DL models 

and processing Dataset B. MATLAB R2023b was employed for processing 

Dataset A and evaluating the models. The MAE and RMSE have been employed 

as performance metrics for the DL models. 

4.2.3 LOSS FUNCTION IMPLEMENTATION 

 

As previously stated in the introduction to this Chapter, the utilization of an 

appropriate loss function is identified as a crucial factor in enhancing the 

performance of DL models. This aspect has underscored the necessity for further 

investigation, which is addressed in this Chapter. In view of this necessity, an 

alternative loss function, distinct from the MSE, was employed to ascertain the 

optimal one that would ensure improvement. 

The loss function that has been implemented is designed to accurately detect 

systolic and diastolic points within the data set. The implemented function has a 
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single, clear objective: to minimize the discrepancy between the ABP signal 

predicted from the PPG signal and the reference ABP signal. This approach 

enables the model to focus on the most clinically significant features of the signal, 

as the critical points have been assigned greater weight and higher penalties have 

been imposed for errors around these peaks. As a result, the model has 

demonstrated enhanced sensitivity and precision in identifying these key 

features. This approach ensures that the network prioritizes these points, thereby 

enhancing its overall performance in detecting anomalies or changes in the 

signal. This is crucial for accurate diagnosis and analysis in medical applications, 

such as monitoring cardiovascular health. This is achieved by utilizing a weight 

function that assigns greater significance to the two points of interest while 

assigning lesser significance to the remaining points of the signal. The 

implemented loss weight is shown in Fig. 32, compared with the ABP signal. 

 

 

Fig. 32. Loss weight compared with the ABP signal to weight the systolic and diastolic 

peaks. 



CHAPTER 4 

121 
 

 

This weight function has been implemented by subtracting the mean of the ABP 

signal from the ABP signal, as the vital signal in question is always positive. This 

allows for the translation of the signal and the obtaining of negative values. The 

power of two permits the obtaining of peaks when a systolic peak occurs, as well 

as when a diastolic point, or valley, occurs. Subsequently, the aforementioned 

weight function is added to its maximum value multiplied by 0.1. This decision 

was made in accordance with the necessity of never utilizing a weight with a 

value of zero. Thereafter, this weight function is utilized to calculate the loss 

function, which is achieved by multiplying it by the square of the difference 

between the true and predicted values. The resulting product is then averaged to 

obtain the mean value. It is explained in the following equations (8): 

 

𝜇𝐴𝐵𝑃 =  
1

𝑛
∑ 𝑦𝑖

𝑛

𝑖=1

 

𝑧 =  (𝐴𝐵𝑃 −  𝜇𝐴𝐵𝑃)2 

     𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑧 + 0.1 ⋅ max(𝑧)                                                    (8) 

𝑆𝐸𝑟𝑟 =  (𝐴𝐵𝑃 − 𝐴𝐵�̂�)2 

𝑙𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =
1

𝑛
∑(𝑆𝐸𝑖 ⋅ 𝑤𝑖)

𝑛

𝑖=1

 

 

with ABP = [𝑦1, … , 𝑦𝑛] as the reference signal, 𝐴𝐵�̂� = [�̂�1, … , �̂�𝑛] as the predicted 

signal, weight = [𝑤1, . . . , 𝑤𝑛], SErr = [𝑆𝐸1, … , 𝑆𝐸𝑛] and n = 1024 samples. 

4.3  RESULTS 

In this study, the deployment of a Residual U-Net as shown in [121] has been 

considered to obtain the ABP signal. Costa et al. paper [121] has been used as a 

reference because that study presents a comprehensive investigation of ML and 
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DL models, employing both intra-subject and inter-subject training approaches. 

Moreover the workflow followed by [114] has been implemented using the two 

models,  approximation and refinement, as mentioned above. In this Chapter, the 

aim has been to implement a loss function that could potentially enhance results 

in conjunction with models that have been previously explored in literature. 

Furthermore, it was possible to gain a more profound comprehension of the 

impact of input signal duration and the diverse inputs in DL models. 

4.3.1 PPG AND ITS DERIVATIVES 

In order to facilitate a comparison of the results with [121], PPG and its 

derivatives of 1024 samples corresponding to a duration of 8.192 s have been 

used. 

This new input dataset has been designated as A4. The Residual U-Net was 

implemented using an inter-subject approach and MSE as the loss function. The 

training process utilized 500 epochs and a batch size of 256, with the Adam 

optimizer. During the fitting process, validation data was provided. The results 

are shown in Table 19 and are reported as MAE computed on the test set, because 

this performance indicator has been reported in Costa et al. paper [121].  

 

Table 19. Comparison of the results with Costa et al for Dataset A4. 

 MAE SYS (mmHg) MAE DIA (mmHg) 

This work 15.46 7.19 

Costa et al. [121] 18.60 10.94 

 

The enhanced outcomes can be attributed to several factors, including the distinct 

processing techniques employed to generate the final dataset from the same 

database. This outcome is noteworthy, particularly in light of the inherent 

challenges associated with achieving enhancements in the inter-subject 

approach, which has proven to be a challenging endeavor. 
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It's interesting to underline that by varying the duration of the signals from 8.192 

s (Dataset A4) to 30 s (Dataset A3) without varying the number of samples which 

is always 1,024, or the model used or the loss function, the better results are 

obtained using Dataset A4 as shown in Table 20. 

 

Table 20. Comparison of results varying the duration. 

 
RMSE SYS 

(mmHg) 

RMSE DIA 

(mmHg) 

MAE 

SYS (mmHg) 

MAE DIA 

(mmHg) 

8.192 s 

(Dataset A4) 
19.66 9.65 15.46 7.19 

30 s (Dataset 

A3) 
21.44 11.59 17.16 8.26 

 

Subsequently, an alternative loss function that differed from the MSE was 

employed in order to identify the one that would guarantee improvement. 

In view of the superior outcomes yielded by Dataset A4 in both predictions, the 

subsequent table will focus on the utilization of this dataset and of Dataset A3, 

as well as on the deployment of the implemented loss function and MSE function. 

In Table 21 the comparison of results between the use of MSE and the 

implemented loss function is shown by using RMSE and MAE. The Dataset A3 

and A4 have been used. 
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Table 21. Comparison of results between the use of MSE and the implemented loss 

functions using Residual U-Net and 30 s PPG and its derivatives (Dataset A3) and 8.192 

s PPG and its derivatives (Dataset A4) on test set. 

 
Loss 

Function 

RMSE SYS 

(mmHg) 

RMSE DIA 

(mmHg) 

MAE SYS 

(mmHg) 

MAE DIA 

(mmHg) 

8.192 s 

Dataset A4 
MSE 19.66 9.65 15.46 7.19 

30 s 

Dataset A3 
MSE 21.44 11.59 17.16 8.26 

8.192 s 

Dataset A4 

Implemented 

loss function 
19.10 9.56 14.98 7.16 

30 s 

Dataset A3 

Implemented 

loss function 
19.94 9.85 15.79 7.64 

 

The aforementioned results pertain to the utilization of 30 s PPG signals and their 

derivatives with 1,024 samples and 8.192 s PPG signals and their derivatives and 

two distinct loss functions. As illustrated in the table, the deployment of the 

implemented loss function facilitates an enhancement in systolic and diastolic 

predictions. 

Thus, the combination of the Dataset A4 with the implemented loss function, in 

both the systolic and diastolic predictions, yields further improved results.  

A comprehensive analysis of the data in the tables, with variations in the 

durations of signals and loss functions, reveals that the systolic and diastolic 

predictions using PPG and its derivatives with 8.192 s signals and MSE as the 

loss function yield improved results, while the use of 30 s signals demonstrates 

inferior outcomes. Furthermore, the utilization of PPG and its derivatives with 

8.192 s signals and the implemented loss function enables additional 

enhancements. As a matter of fact, the combination of PPG and its derivatives is 

not affected by the type of prediction (systolic or diastolic), thereby enabling the 

attainment of superior results for both predictions through the utilization of 8.192 

s signals. 
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4.3.2 PPG SIGNALS AS ONLY INPUT 

The following results have been obtained using the same Residual U-Net and the 

PPG signal as the only input (without derivatives) of the model but varying the 

signal duration and the loss function. 

A first comparison was made by considering 8.192 s PPG signals of 1,024 samples 

(Dataset A1) and the use of MSE and of the implemented loss function, which is 

reported in Table 22. 

 

Table 22. Comparison of results between the use of MSE and the implemented loss 

functions using an 8.192 s PPG signal and Residual U-Net (Dataset A1) on test set. 

 
RMSE SYS 

(mmHg) 

RMSE DIA 

(mmHg) 

MAE SYS 

(mmHg) 

MAE DIA 

(mmHg) 

MSE 17.95 8.04 14.19 6.01 

Implemented 

loss 
17.30 7.77 13.86 5.68 

 

In this framework, another aspect analyzed is the duration of the input PPG 

signal, by comparing results for Dataset A1 and Dataset A2. It has been 

emphasized that the use of the implemented loss function tends to yield better 

outcomes. But also, that 8.192 s signals improve the result with respect to the use 

of 30 s signals as shown in Table 23. 
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Table 23. Comparison of results by using the implemented loss function and MSE and 

two different lengths of the signal and Residual U-Net on the test set. 

 
Loss 

function 

RMSE SYS 

(mmHg) 

RMSE DIA 

(mmHg) 

MAE SYS 

(mmHg) 

MAE DIA 

(mmHg) 

8.192 s PPG 

(Dataset 

A1) Implemented 

loss function 

17.30 7.77 13.86 5.68 

30 s PPG 

(Dataset 

A2) 

18.20 7.54 14.58 5.86 

8.192 s PPG 

(Dataset 

A1) 
MSE 

17.95 8.04 14.19 6.01 

30 s PPG 

(Dataset 

A2) 

18.95 7.64 15.34 5.82 

 

As a matter of fact, the use of only the PPG signal of 8.192 s and the implemented 

loss function for both predictions yields superior outcomes compared to the use 

of MSE. Moreover the 8.192 s signals give better results for systolic prediction 

than 30 s signals for both the loss functions considering RMSE and MAE. While 

the use of the implemented loss function consistently yields improvements, the 

signal duration when only the PPG signal is utilized has a notable impact on 

performance. In fact, it has been demonstrated that an 8.192 s signal produces 

superior results in the systolic prediction and inferior results in the diastolic 

prediction relative to a 30 s signal. 

Other results are obtained on a LSTM model and on the models used by Ibethaz 

et al. [114] as shown in Table 24 using Dataset A1. It is noteworthy that by 

varying the model, the systolic prediction is consistently enhanced when the 

implemented loss function is utilized, whereas the diastolic prediction is 

adversely affected. Consequently, the implemented loss function always 

improves the accuracy of the systolic prediction considering all the results 

shown. 
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Table 24. Comparison of results by using the two different loss functions and different 

models on test set. 

 Model 
Loss 

Function 

RMSE 

SYS 

(mmHg) 

RMSE 

DIA 

(mmHg) 

MAE 

SYS 

(mmHg) 

MAE 

DIA 

(mmHg) 

 LSTM 

MSE 17.42 8.05 13.87 6.31 

Implemented 

loss function 
15.97 8.55 12.56 6.33 

Ibethaz 

et al. 

models 

Approximation 

Model 
MAE 

18.18 7.80 14.68 6.02 
Refinement 

Model 
MSE 

Ibethaz 

et al. 

models 

Approximation 

Model 
MAE 

16.64 8.53 13.07 6.51 
Refinement 

Model 

Implemented 

loss function 

4.3.3 SIGNALS FROM DATASET B 

The next results are obtained with Dataset B, this dataset has been processed 

following Ibethaz’s paper. In the Table 25 the two approximation and refinement 

models that are employed by Ibethaz et al. are considered. However, the models 

were retrained, and the results were obtained on the test set using MATLAB, 

identifying the systolic and diastolic points on both reference and predicted ABP 

signals and calculating the errors and the performance indicators. This decision 

was made because Ibethaz et al. indicated that for each estimated ABP signal, the 

maximum and minimum values among many pulses were considered 

respectively as systolic and diastolic values, while it is considered that it is more 

appropriate to consider all systolic and diastolic values of the signal, rather than 

focusing on a single value. 
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Table 25. Comparison of results by using Dataset B and the Approximation-Refinement 

models with different loss functions. 

 Model 
Loss 

function 

RMSE SYS 

(mmHg) 

RMSE 

DIA 

(mmHg) 

Results on the 

retrained models 

Approximation MAE 

6.21 3.95 

Refinement MSE 

Proposed work 

Approximation 

Implement

ed loss 

function 
7.42 4.97 

Refinement 

Implement

ed loss 

function 

Approximation MAE 

6.15 4.97 

Refinement 

Implement

ed loss 

function 

 
 

As illustrated in the Table 25 for the models utilized by Ibethaz et al., distinct 

combinations of loss functions were contemplated, including the integration of 

the implemented loss function for both models and the maintenance of the loss 

function for the Approximation model while modifying only the loss function of 

the refinement model. Evidently, the selection of a linear function for the 

Approximation model facilitates an enhancement over the use of the 

implemented loss function.  

It is evident that the combination of the MAE function for the Approximation 

model and the implemented loss function for the Refinement guarantees an 

improvement in the systolic prediction, while this is not true for the diastolic 

prediction. This finding is consistent with the results obtained using the other 
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dataset. 

4.4  DISCUSSION 

In the context of DL for 1D signal processing, the duration of the signal input 

exerts a pronounced influence on both the performance of the model and the 

complexity of the training process. Longer signals provide more comprehensive 

information, enabling the capture of extended temporal dependencies and subtle 

patterns. However, this increased comprehensiveness also increases the 

computational burden and risk of overfitting. Conversely, shorter signals may 

result in the omission of crucial patterns, leading to underfitting and poor 

generalization. Hence a quantitative evaluation was necessary. 

Indeed, the first results demonstrate the effectiveness of using the PPG and its 

derivatives of 8.192 s as input for the Residual U-Net after the processing 

described in Chapter 1 with results showing clear improvements in both systolic 

and diastolic prediction compared to Costa et al. [121]. Moreover, the use of 8.192 

s signals produces superior results compared to 30 s signals. Furthermore, 

regardless of signal duration, the implemented loss function consistently 

enhances results. As a matter of fact, the use of 8.192 s signals and the 

implemented loss functions gives the best results. 

In addition, the utilization of the implemented loss function in conjunction with 

the PPG signal as the only input (without derivatives) to the Residual U-Net has 

been demonstrated to result in enhanced performance in both systolic and 

diastolic predictions also varying the duration of the signals. 

Nevertheless, when the model is modified such as LSTM or the cascade of 

Approximation and Refinement, the implemented loss function enables the 

attainment of enhanced outcomes solely with regard to the systolic prediction. 

Additionally, it seems that varying the dataset and implementing the loss 
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function in a similar way may yield improved results for the systolic prediction.  

Based on this consideration it’s necessary to underline that the detection of the 

diastolic point of PPG signals represents a significant challenge, which may 

explain the motivation behind the different models that produce inferior results 

when using the implemented loss function. It may therefore be advisable to select 

the loss function based on the predicted variable. However, it’s important to 

highlight that this deterioration does not occur when the PPG signal and its 

derivatives are employed. 

4.5  CONCLUSION 

This Chapter demonstrates that the application of DL to 1D biomedical signals 

and the implementation of a tailored loss function has the potential to markedly 

enhance diagnostic and monitoring capabilities. The study highlights that the 

efficacy of DL models can vary considerably depending on the features of the 

dataset and on the selected architectural configuration. The Residual U-Net 

model, with its robust residual connections and the incorporation of PPG and its 

derivatives, has the capacity to yield superior outcomes in comparison to existing 

literature with regard to both systolic and diastolic predictions. 

Furthermore, the selection of the loss function is crucial for optimizing model 

performance. Prioritizing clinically significant features, such as systolic and 

diastolic points in biomedical signals, through the adaptation of loss functions 

improves the accuracy and reliability of these models. In this Chapter, two 

distinct loss functions and a variety of model architectures to ascertain the 

optimal performance for the given task have been employed. It has been shown 

that implementing a weighted loss function that assigns greater importance to 

critical points is an effective method for focusing the model on the most relevant 

aspects of the signal, leading to enhanced diagnostic outcomes. This approach 



CHAPTER 4 

131 
 

guarantees that the DL model accurately represents the signal and emphasizes 

the most crucial parts for clinical interpretation. The use of the implemented loss 

function has allowed improvements for both systolic and diastolic predictions 

when used with Residual U-Net, regardless of the model input and segment 

duration. Furthermore, it consistently demonstrates superior performance in 

systolic prediction when the model and dataset are varied.  

It is evident that comprehensive studies which compare disparate datasets, 

models, and loss functions are indispensable for the development of robust and 

generalizable DL solutions. By conducting experiments with different datasets, 

insights have been gained into how different models perform under varying 

conditions. This process allowed to ensure that the models are not overfitting to 

particular datasets but are, in fact, capable of generalizing effectively to novel, 

unseen data. Furthermore, varying the datasets has revealed that the models 

perform consistently in accordance with the same criterion. Another aspect that 

has been subjected to analysis has been the duration of the signals and the 

different inputs. This has allowed to highlight the superior performance achieved 

using 8.192 s signals. Additionally, the use of PPG signals as the only input of the 

model has also been shown to yield enhanced results.  

In light of these considerations, it seems clear that a comprehensive 

understanding of the relationship between signal duration, loss functions, 

datasets, and model architecture is essential for the development of robust and 

accurate DL models for the prediction of systolic and diastolic BP. This aspect 

must be taken into account in accordance with the specific task at hand. 

In conclusion, the development of DL models that demonstrate proficiency in 

processing 1D biomedical signals and the implementation of loss function will 

contribute to more accurate diagnostics, efficient monitoring, and improved 

patient outcomes. This will be important for more personalized and effective 

healthcare solutions.
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 CHAPTER 5 
 

HARDWARE IMPLEMENTATION 
FOR AN EMBEDDED SOLUTION 

INTRODUCTION 

This Chapter presents the design and implementation of a wearable embedded 

solution for the remote acquisition of physiological data in the framework of 

telemedicine [3], [4], [5], [6], [131], and it consists of two units. The master board 

contains the microcontroller, the power supply and the provision for the use of a 

display that is intended to facilitate greater interactivity. The slave board is 

equipped with a PPG sensor for monitoring HR, SpO2, RR, BP, as well as an 

inertial measurement unit (IMU) with nine degrees of freedom. The placement 

in direct contact with the lower part of the wrist is strategic as it enhances the 

accuracy of the parameters while reducing interference with the user’s daily 

movements in order to overcome the motion artifacts problem. The two boards 

are interconnected using a flat cable that can be easily integrated into a strap. A 

high-speed serial interface is used for communication between the boards. The 

firmware has been developed for the asynchronous acquisition of data from the 

sensors via interrupts, their subsequent processing, calculation of statistics, and 

transmission to the remote server.

The results demonstrate the efficacy of this design, indicating that the solution is 

suitable for continuous monitoring of vital parameters, with potential 

applications in healthcare. This study contributes to advancements in wearable 
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technologies for the acquisition and monitoring of biomedical data, ensuring the 

possibility of further innovations. Embedded systems, which are designed to 

perform specific tasks within larger systems, provide an efficient and reliable 

means for capturing and processing biomedical data. The acquisition of these 

data using embedded systems and telemedicine is fundamental in healthcare, 

offering novel solutions for patient monitoring, diagnosis, and treatment.  

It facilitates real-time acquisition and analysis of data, thereby enabling prompt 

and accurate medical assessments. Such systems are equipped with 

microcontrollers or specialized processors, which enable the execution of 

sophisticated algorithms for the processing and interpretation of biomedical 

signals in real time. This not only improves the speed and efficiency of medical 

responses but also enhances data security by reducing the necessity for data 

transmission to external servers. 

Patients may be provided with wearable devices that are capable of continuously 

tracking their health metrics and transmitting data to healthcare providers via 

secure communication channels. This allows healthcare professionals to monitor 

patients’ conditions, provide timely interventions, and offer consultations 

without the necessity of physical presence.  

Nowadays, a measurement technique that is spreading for real-time monitoring 

of vital signs is PPG, which permits non-invasive optical measurement of 

changes of blood volume in tissues [26], [27], [132], [133]. As already discussed, 

this method employs a light source and a photodetector at the surface of the skin 

to measure the variations in light absorption, which correspond to the pulsatile 

nature of blood flow caused by heartbeats. PPG signals are extensively employed 

in wearable devices for the continuous monitoring of physiological parameters, 

including HR, SpO2, RR, BP and stress levels. The simplicity of integration and 

the minimal discomfort associated with PPG sensors render them optimal for 

incorporation into wearable health and fitness trackers, allowing users to 
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monitor their health metrics in real-time and maintain an informed lifestyle [105], 

[134]. The existing literature reports the development of devices designed for BP 

estimation using PPG signals acquired at multiple sites, or PPG signals combined 

with ECG signals [135], [136]. 

5.1 HARDWARE DESIGN 

The architecture of the developed wearable device is structured as a dual-board 

configuration according to the master-slave paradigm, a common approach in 

embedded systems that enhances efficiency and resource management, as shown 

in Fig. 33. In this configuration, the slave board is controlled by the master one, 

that coordinates its actions and facilitates communication. Moreover, this 

configuration permitted the physical separation of two sub-systems, with the 

sensors situated in the lower part of the wrist and the microcontroller (with the 

possibility of adding a display), positioned in the upper part of the wrist. 

 

 
Fig. 33. Developed system architecture. 
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In accordance with the proposed architecture, the designed master board, shown 

in Fig. 34 is the control unit and contains the microcontroller, the conditioning 

electronics, the battery management system (BMS), and a Universal Serial Bus 

(USB) port for charging and communication, moreover it guarantees the power 

management of the system and of its components. It is the primary interface with 

the user, facilitating interaction through the Universal Asynchronous Receiver-

Transmitter (UART) and Wi-Fi. 

 

 
Fig. 34. Master BOARD. 

 

The slave board is located on the lower part of the wrist and is dedicated to 

sensing. The master board is notified by the slave board, shown in Fig. 35, of new 

data and gives commands. The lower board includes a PPG sensor, a suite of 

nine-axis inertial sensors, and a piezoresistive force sensor. Its strategic 

placement enables more accurate data acquisition, less affected by wrist 

movements. The two boards communicate via an Inter Integrated Circuit (I2C) 

interface, ensuring efficient and low-latency data transfer. 
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Fig. 35. Slave BOARD. The PPG sensor, not shown here, is soldered into the opening on 

the right side of the board. 

This subdivision enables the optimization of component distribution, thereby 

enhancing the ergonomics and functionality of the device. Furthermore, it 

facilitates more effective management of hardware resources and acquisitions. 

5.1.1 DESIGN SPECIFICATIONS 

In the conceptualization stage, the design specifications were established as a 

reference point for the subsequent hardware design process. These requirements 

concern a range of aspects related to wearable devices, with the objective of 

ensuring their miniaturization, efficiency, convenience, and safety. 

Firstly, it was essential to reduce the device’s size and weight in order to 

guarantee that it could be worn on the wrist for extended periods without 

causing any discomfort to the patient. It was imposed a limit of approximately 

40x30 mm for both boards considering the average wrist size. Similarly, the 

dimensions of the LiPo battery (12x31x4 mm) can be accommodated within a 

case, provided that the overall thickness is not excessive and does not present 

any anatomical issues. Considering the task to be pursued, it was imperative to 

utilize a microcontroller with a great processing capacity. This was crucial for the 
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real-time analysis of data acquired by the sensors and the transmission of data to 

the server via Wi-Fi. The incorporation of a rechargeable lithium-ion battery was 

a strategic decision that facilitated the achievement of objectives pertaining to 

mobility and operational continuity. In fact, the battery enables the patient to 

utilize the device without the constant need for an external power source, thus 

ensuring freedom of movement and daily usability. However, the integration of 

a rechargeable battery necessitates the implementation of a BMS that ensures 

reliable and efficient charging, preventing overcharging and irreversible 

damage. Furthermore, since the selected components operate at lower voltages 

than those of the power supply, it was necessary to provide an appropriate 

power conditioning circuit comprising a step-down converter and protection ICs. 

A micro-USB port has been used given the minimal requirements imposed by the 

design specifications. As a matter of fact, the Micro USB port remains a proven 

and cost-effective solution. In order to facilitate the replacement of the battery in 

the event of a malfunction, a 2-pin JST PH connector was utilized.  Regarding the 

sensors, it was necessary for the device to support: a PPG sensor for the detection 

of HR, SpO2, RR, etc.; an IMU for the detection of motion and orientation; a force 

sensor for assessing how the device has been worn. 

5.1.2 MICROCONTROLLER 

The ESP32-C3 microcontroller was chosen for its features and versatility. It 

contains a 32-bit RISC-V core that has guaranteed flexibility in firmware 

development and optimization due to the open-source nature of its toolchain. It 

operates at a maximum frequency of 160 MHz and exhibits commendable energy 

efficiency in data processing. The microcontroller is augmented by an internal 

SRAM memory of 400 kB and a built-in flash memory of 384 kB. One of the most 

notable characteristics of the ESP32-C3-WROOM-02 module is its integration of 

a USB interface that enables direct connection without the necessity of additional 
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components. The USB interface of the module is in accordance with the USB 2.0 

specifications and supports Full-Speed mode, thereby ensuring reliable and fast 

data transmission. The incorporation of the USB interface into the design of the 

printed circuit board (PCB) has resulted in a notable reduction in the overall 

complexity and cost of the circuitry, as well as a considerable decrease in the size 

of the PCB itself. The microcontroller is reachable by an external host system, 

such as a workstation for firmware development, by means of a virtual COM 

port thereby facilitating interaction with the device and charging. The module 

offers advanced connectivity, including Wi-Fi 4 (802.11 b/g/n) and Bluetooth Low 

Energy 5.0 (BLE). The implementation of Wi-Fi has guaranteed the establishment 

of a robust communication link and high-speed data transfer with a remote 

server for data collection. The module’s interface with sensors is ensured by the 

presence of the I2C bus and support for interrupt signals, including both timer 

and hardware interrupts. The ESP32-C3 has been designed to operate in 

conditions of low power availability, which is a critical and often underrated 

aspect of battery-powered wearables. As a matter of fact, it is designed to be 

highly energy-efficient, with a deep-sleep mode that significantly reduces energy 

consumption. Additionally, it is capable of intelligently managing the frequency 

of the clock and disabling non-essential peripherals, further enhancing its 

energy-saving capabilities. 

5.1.3 POWER MANAGEMENT 

The power management system has to provide a stable power supply to the 

various components of the proposed measurement system, while simultaneously 

protecting them from potential failures or abnormal conditions. The limited 

battery capacity and the necessity for careful energy management have been 

taken into account to ensure prolonged operational autonomy without access to 

recharging sources. 
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The power management system is situated on the main board, which is 

subdivided into three subsystems: battery management, battery protection, 

output voltage adjustment. 

The lithium-ion battery is charged by the integrated MCP73832T, a linear 

controller manufactured by Microchip Technology for single-cell LiPo batteries 

shown in Fig. 36. This integrated circuit was selected for its capacity to provide 

safe and controlled charging, which is essential for extending the battery life 

cycle. 

 

 

Fig. 36. The schematic of power management circuit based on MCP73832T. 

 

One feature of the MCP73832T is its capacity to regulate the charging current and 

voltage through the implementation of a three-stage charging methodology: 

current constant, constant voltage, and end charge phases. During the first phase, 

the integrated circuit applies a constant charging current until the battery voltage 

reaches the desired regulation level. Subsequently, during the second phase, it 

gradually reduces the current until the recharge is complete. Moreover, a 

programming resistor with a value of 10 kΩ is incorporated into the integrated 
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circuit’s output to limit the charging current to 100 mA to preserve battery health. 

A Schottky diode, specifically the 1N5819HW model, has been also incorporated. 

By connecting a LED to the STAT pin of the MCP73832T, it was possible to 

implement a battery charge status indicator. Specifically, the LED illuminates 

during charging and turns off when charging is complete. The remaining passive 

components of the battery management subsystem play an important role in 

stabilizing the operation of the integrated circuit. For example, the 4.7 µF 

capacitor is responsible for filtering noise and stabilizing the input voltage, which 

greatly improves the effectiveness of the charging process. The device battery is 

safeguarded and regulated by a circuit comprising the DW01A integrated circuit 

and the FS8205 dual MOSFET in Fig. 37. 

 

 

Fig. 37. Schematic of DW01A and of FS8205. 

 

The DW01A is an integrated circuit that monitors the voltage of the battery and 

the current being sourced or sinked, thereby ensuring that the battery remains 

within its safety limits. In the event of an overcurrent or over-discharge condition 

being detected, the integrated circuitry will interrupt the circuit in order to 

prevent damage to the battery. This mechanism is achieved by the activation or 

deactivation of the dual FS8205 MOSFET, which serves as an electronic switch 

for battery connection. The FS8205 is configured as a two-way switch, enabling 
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or preventing current flow contingent on the conditions monitored by DW01A. 

In the event of an abnormal condition, such as a short circuit, DW01A commands 

the FS8205 to immediately cease the flow of current, thereby protecting the 

battery and the entire system. One of the distinctive features of the 

microcontroller is its ability to operate at a voltage of 3.3 V, which can be derived 

from the 5 V supplied in input via port USB or from the 4.2 V supplied via 

lithium-ion battery. To ensure a stable supply voltage compatible with the 

various components of the system, the TLV757P voltage regulator, produced by 

Texas Instruments, was utilized as shown in Fig. 38. This is a linear regulator that 

performs the function of converting the input voltage to an output voltage of 3.3 

V. 

 

 

Fig. 38. Schematic of TLV757P. 

 

This LDO (Low Dropout Regulator) has been selected for its particularly low 

voltage drop, this allows for higher energy efficiency than other integrated 

systems in the same category. Once more, two 1 µF capacitors were situated at 

the input and output of the voltage regulator, respectively, with the objective of 

performing the functions of filtering and stabilizing voltages. This was done in 

order to reduce electrical noise and improve transient response. 
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5.1.4 SAFETY 

To prevent the entire solution from being compromised by overvoltage and 

overcurrent, a fuse and a bidirectional diode array were incorporated as shown 

in Fig. 39. Additionally, a 100 nF capacitor was placed on the line input power 

supply to filter high noise and stabilize the voltage supplied to the system.  

 

 

Fig. 39. Protection circuit. 

 

The incorporation of 22 Ω resistors (R1 and R2) on the DOUT+ and DOUT- lines 

reduced reflection phenomena that typically compromise signal integrity and 

transmission. This adaptation is necessary to meet the 90 Ω differential 

characteristic impedance required for USB data lines, thereby enhancing the 

reliability of communication. The Littelfuse 1206 Slo-Blo Fuse Series 468 is a thin-

film device that serves to protect the circuit from overcurrent. It opens when the 

current exceeds the threshold value and automatically resets once the current 

returns to a safe level. This functionality helps to prevent damage to downstream 

components. The USBL6C6 protection integrated circuit from STMicroelectronics 
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is a diode array designed to safeguard against transient overvoltage and 

electrostatic discharge. The dual-diode configuration provides bidirectional 

protection, absorbing and redirecting voltage spikes to ground while 

safeguarding the microcontroller pins from surges that may occur during USB 

cable insertion or removal, up to a maximum of ± 15 kV. The low capacitance (3.5 

pF) and low internal resistance of the integrated circuit (1 Ω) maintain signal 

integrity and data transfer rate. The incorporation of this integrated circuit was 

of great importance to guarantee the durability and reliability of the system in 

operational environments susceptible to electromagnetic interference and static 

discharge. 

5.2  SENSORS 

The three digital sensors chosen for this project are Maxim Integrated MAX30102, 

BMI270 from Bosch Sensortech, and QMC5883L from QST Corporation. 

These sensors were selected for their ability to provide a framework that is 

accurate and highly representative of the conditions of the patient, from 

physiological parameters to his movement.  

An additional analog sensor has been added to the system, namely thin film 

piezoresistive force sensor, to be installed between the lower board and the wrist 

for the monitoring and compensation of the forces exerted by the wrist during 

the acquisition of the patient’s biomedical parameters. It is a resistive sensor, 

whose resistance varies in accordance with the pressure exerted by the wrist, so 

a simple voltage divider was incorporated into the circuitry to convert changes 

in resistance into changes in voltage. To facilitate communication between the 

hosted sensors and the secondary board and microcontroller, an 8-pin flat cable 

was utilized. This type of cable has been demonstrated to be ideal for its 

flexibility and capacity to adapt to the anatomical shape of the wrist, as well as 
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its ability to be easily integrated and hidden in a strap. The utilization of the flat 

cable has led to the inclusion of FPC (Flexible Printed Circuit) connectors, which 

ensure a stable electrical connection, thereby reducing the likelihood of 

accidental disconnection. 

5.2.1 MAX30102 

The MAX30102 is an optical sensor designed by Maxim, shown in Fig. 40, for the 

measurement of HR and SpO2 by using the PPG technique. 

The device employs two LEDs to emit light at specific wavelengths, specifically 

red and infrared. The light emitted by these LEDs penetrates the tissue and is 

partially reflected by the blood. Through the use of a photodiode, it is possible to 

capture the variations caused by the heart pulses, thereby converting them into 

signals. These signals are then digitized by an 18-bit Analog to Digital Converter 

(ADC), resulting in the acquisition of accurate information regarding HR and 

SpO2. 

 

 
Fig. 40. Functional diagram of the MAX30102 [137]. 

 

The MAX30102 sensor has not been utilized in its standalone configuration as 

shown in Fig. 41. It was preferred to use the MAXREFDES117 module which, in 

addition to MAX30102, also houses: the MAX1921, which is a step-down 
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converter that adapts the supply voltage to the sensor requirements (1.8 V) and 

its LEDs (3.3 V); and the MAX14595 that is a level translator that adapts the 

logical levels of the sensor to the microcontroller. 

 

 

Fig. 41. Components of the MAXREFDES117 [138]. 

5.2.2 BMI270 

The BMI270 is a 6-axis IMU manufactured by Bosch Sensortech for incorporation 

into wearable and portable applications. This device contains a triaxial MEMS 

(micro electro-mechanical systems) accelerometer and a triaxial gyroscope, 

which are utilized for motion detection and the management of wrist orientation. 

One of the defining characteristics of the BMI270 is its minimal energy 

consumption, perfect in applications where the solution is battery powered. The 

BMI270 can operate within a dynamic range of ± 2 g to ± 16 g for the accelerometer 

and ± 125 deg/s to ± 2000 deg/s for the gyroscope. Both have a 16-bit resolution, 

in particular 0.06 mg/LSB for the accelerometer and 0.004 dps/LSB for the 

gyroscope. The output data rate (ODR) is from 12.5 Hz to 1.6 kHz for the 

accelerometer and from 25 Hz to 6.4 kHz for the gyroscope. While the noise 

density is 160 µg/√Hz for the accelerometer and 0.008 dps/√Hz for the gyroscope. 

The device offers a low-power mode and a suspension mode, as well as an I2C 
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bus interface. 

5.2.3 QMC5883L 

The QMC5883L is a triaxial magnetometer, manufactured by QST Corporation. 

The device employs AMR (anisotropic magneto-resistive) technology, enabling 

it to attain up to ± 8 G range, a resolution of 0.1 µT and high accuracy in fact it 

enables 1° to 2° compass heading accuracy. The QMC5883L is designed for 

integration into low-power devices, with a typical current consumption of less 

than 100 µA under standard operating conditions. Furthermore, the sensor’s 

power efficiency is enhanced when it is on standby or sleep mode, which 

contributes to the extension of battery life when the system is not connected to a 

power source. The 16-bit ADC transmits the output data to the microcontroller 

via the I2C interface. 

5.3  PCB DESIGN 

A classic two-layer stack-up was used to design the two boards, with the feeder 

polygons on the top layer and the copper fill polygons on the bottom layer. The 

top layer is used primarily for signal and power, while the bottom layer is used 

for ground and very short signal traces. The use of polygons in the top layer 

allows power voltages to be distributed with a significant reduction in resistive 

losses. The ground plane of the bottom layer serves as a common reference for 

the circuit and contributes to effective management of interference and electrical 

noise. The thickness of each printed circuit is 1.6 mm, with a solder mask of 0.01 

mm. The corresponding layer is 0.035 mm, and the core is 1.5 mm. Signal 

integrity has been considered in the design of the PCB layout. 

The initial phase of the process was the placement of the components on the two 

boards. During the placement phase, it was essential to take the necessary 
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precautions to ensure a stable and clean power supply. This involved placing the 

filter supply capacitors near the components that required them. The function of 

the filter capacitors is to stabilize the voltage and to attenuate current 

fluctuations, which could otherwise result in the generation of noise and 

interference within the circuit. The placement of the components near the power 

pins of the integrated circuits allows for a reduction in the inductance and 

resistance of the connections. Once the placement of the components was 

finished, the tracks were traced. To further improve the layout and management 

of the connections between the two layers of each board, vias were used. These 

are through holes that allow track connections between layers, facilitating the 

creation of an efficient electrical path and improving space management on the 

board. The utilization of vias was optimized with the objective of minimizing 

parasitic inductances. Additionally, special attention was given to the 

minimization of ground loops and the management of electromagnetic 

interference, with the aim of ensuring that signals passed through the circuit 

without distortion. Any power or ground planes were interrupted beneath the 

microcontroller antenna. This was crucial for the prevention of electromagnetic 

interference, which could otherwise affect the overall performance of the system, 

because the presence of a feed or ground plane could have resulted in 

disturbances thereby reducing signal quality and communication range. 

Moreover, the area beneath the antenna was maintained free from any 

conductive traces to guarantee the optimal functionality of the microcontroller 

communication system. A cut-out was created on the slave board to facilitate the 

integration of the MAXREFDES117, thereby maximizing the quality of the 

sensor’s adhesion to the wrist. The configuration of the cut-out enables the 

creation of holes that closely resemble those with a castellated structure, while 

simultaneously reducing the cost burden associated with production. In fact, this 

approach allows for the same functionality to be achieved in a more cost-effective 
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manner, but with a slightly less refined result. 

5.4  SYSTEM FUNCTIONALITIES 

The device firmware has been optimized to facilitate the simultaneous processing 

of multiple sensors. The device establishes a connection with the Wi-Fi network 

and transmits its local IP address within the network via the serial port. The 

device boot time is calculated, and the local time is synchronized through a 

request to the Network Time Protocol (NTP) server, which is initiated via 

Hypertext Transfer Protocol (HTTP). A Hypertext Markup Language (HTML) 

page for the purpose of modifying parameters is accessible at the communicated 

local IP address. The device remains in a listening state until the required 

configuration parameters have been correctly specified, accompanied by a 

notification of the outcome. Afterwards, the selected sensors are enabled, and the 

setup operations are performed. The system is capable of asynchronous 

acquisition from the sensors, which is triggered by interrupt signals and permits 

the insertion of collected data into circular buffers. When the predefined number 

of samples has been acquired, the data is transformed into a format conforming 

to a purposely defined communication protocol. Upon completion of the 

acquisitions, the device transmits the formatted data to the server, which is then 

acknowledged with a positive message indicating the completion of the 

acquisition task. Subsequently, the signals from the server can be processed to 

obtain biomedical parameters, such as HR, SpO2, RR, BP. An interface has been 

developed in MATLAB to visualize the acquired PPG signals and estimate key 

vital parameters. The ultimate goal is to enhance the processing algorithms for 

more accurate vital parameter estimation, including BP. In order to achieve this, 

a dataset must be created, which should be collected using the prototype 

designed to acquire PPG signals and the corresponding BP readings obtained 
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with a sphygmomanometer. The MATLAB interface enables the configuration of 

acquisition parameters for the PPG signal, taking into account the specific 

characteristics of the sensor as shown in Fig. 42. Furthermore, it enables the 

generation of a text file comprising patient data, which is crucial for the 

compilation of a comprehensive dataset. 

 

 

Fig. 42. Parameters for the acquisition. 

 

The Fig. 43 shows an example of signal acquisition in the red and infrared 

wavelengths, along with the estimation of vital parameters. This process will be 

further enhanced by the inclusion of BP estimation. 
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Fig. 43. MATLAB interface for PPG signal acquisition and vital parameters. 

 

The integration of data coming from the accelerometer, gyroscope and 

magnetometer can be very useful since it will permit to study motion artifacts 

that may compromise vital signs measurement. Indeed, a useful application of 

the proposed system can be the monitoring of a person even while driving, 

giving valuable information about the driver’s condition such as fatigue, 

drowsiness, stress, and distraction. In this case the challenge lies in the vehicle 

vibration caused by road’s condition, vehicle’s type, and shock absorbers, that 

can reduce the quality of vital sign measurements. The development of such a 

driver monitoring system (DMS) [139] may enable  the study of the comfort and 

safety of the driver, which is related to road roughness,  environmental 

conditions, and physiological indicators. 
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5.5  CONCLUSION 

The results obtained demonstrate the effectiveness of the modular design 

adopted, which not only optimized the distribution of components while 

improving the ergonomics of the device, but also enabled efficient management 

of hardware resources and data acquisition. Furthermore, experimental tests 

confirmed the proper functioning of the wearable device, demonstrating its 

ability to host a web page for setting sensor parameters, acquiring data, 

formatting it, and sending it to the server. Nevertheless, it became evident that 

the management of multiple acquisitions necessitates further enhancement. The 

proposed solution offers potential applications in various areas, including 

healthcare, driver’s health [139], continuous monitoring of HR, RR, SpO2, BP, 

which will facilitate further developments in the field of wearable technologies. 

In the future, further optimizations, integration of new sensors, and 

implementation of advanced algorithms for data analysis will allow for the 

expansion of system functionalities and applications for non-invasive monitoring 

of biomedical parameters.
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CHAPTER 6 
 

OTHER BIOMEDICAL APPLICATION 
FOR A TELEMEDICINE SOLUTION5 

INTRODUCTION 

Wearable technologies for health monitoring, including smartwatches and 

fitness trackers, have captured the attention of consumers in recent years. 

Wearable devices are no longer just for tracking simple fitness measurements like 

steps. They are also used to monitor important health data and telemedicine 

systems transmit data to healthcare professionals, ensuring proper assistance. 

This is best achieved through the use of wireless communication protocols like 

Wi-Fi or Bluetooth technology, as demonstrated in [140]. 

The literature contains several systems that measure and share medical 

parameters, making vital signs measurements available online [140], [141], [142], 

[143], [144], [145]. However, the integration of measuring devices from different 

manufacturers has remained a significant challenge. Many systems are based on 

purposely developed hardware, which further complicates matters. This Chapter

presents the software development for integrating a new Bluetooth medical 

device, Checkme Pro, manufactured by Viatom®, into a web-based telemedicine 

solution. This telemedicine solution fully exploits the potential of the medical 

device, which can also be worn using a wristband or waist belt. This activity has 

 
5 This Chapter is based on [5]. 
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been conducted as part of a telemedicine project carried out by a company in the 

medical sector. The goal was to implement the hospital at home paradigm.  

The chosen architecture, based on a smartphone app, a database, and a web app, 

provided the necessary flexibility to tailor it to the project’s needs. Specific 

implementation solutions were used to enable real-time monitoring of patients 

at home, based solely on measurement data. Furthermore, this work addressed 

the need to store additional health data not originally calculated by the medical 

device, including glycemia, BP, and SpO2 classification. 

The manufacturer currently provides only two options for downloading data to 

a PC: a cabled connection or an app to save data to a smartphone via Bluetooth. 

The user receives a PDF report for each measurement. An Android app has been 

developed and it allows patients to download data using Bluetooth connectivity, 

send it to a database, and visualize it in a web app. This overcomes the limits of 

the manufacturer’s solution. This integration will allow data to be included in a 

telemedicine system. This data can then be retrieved from a database and 

displayed in a telehealth room via a dashboard. Furthermore, although 

numerous Bluetooth-compatible devices are currently on the market, most of 

these devices only store data locally on the smartphone, which severely limits 

their potential for use in telemedicine. The smartphone allows the use of medical 

device anywhere, making the telemedicine solution portable and enabling data 

transmission to a doctor for analysis, diagnosis, treatment prescription, or advice. 

This allows to monitor useful parameters non-invasively.  

The system has recently been enhanced with a new feature: the ability to obtain 

BP from ECG and PPG after calibration with an auxiliary device, namely a digital 

sphygmomanometer, which communicates with the medical device via 

Bluetooth. Each user must be calibrated every three months. To do this, it’s 

possible to acquire daily check signals using the medical device and BP 

measurements using the sphygmomanometer at the same time. The medical 
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device uses PTT to obtain systolic BP by acquiring ECG and PPG waveforms 

simultaneously during the daily check function. This innovative method for BP 

measurement is currently being researched [12]. 

6.1 ARCHITECTURE OVERVIEW 

For clarity, the different architectural styles must be classified according to the 

aspects given in [146]: the communication type is defined by factors such as 

Service Oriented Architecture (SOA) and message bus; the deployment type is 

defined by factors such as client/server, N-Tier, and multitenant cloud; the 

structure type, such as component-based and layered architecture. 

SOA enables communication between a service and its provider, ensuring 

adaptability and integration into a highly distributed system. However, SOA is 

a monolithic architecture, and microservices have emerged as the architectural 

style of choice for decomposing business tasks into a distributed system of 

services. In this context, Representational State Transfer (REST) is the most 

commonly used architecture for creating web service application programming 

interfaces (APIs) that can be used with HTTP. It imposes a set of constraints on 

the design of web services.  

A message bus architecture guarantees communication between software 

systems or subsystems using a message-oriented middleware approach. 

N-Tier separates features into segments for tiers located on physically separate 

computers. The client/server architecture is a two-tier architecture that separates 

the system into two applications. The client makes requests to the server, while 

the server contains a database and the relevant stored procedures that implement 

the application logic. Cloud computing is the new model for network access to 

shared resources. 

This Chapter presents a three-tier architecture, as illustrated in Fig. 44. It consists 
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of the Android app that reads data from the medical device via Bluetooth and 

shows and stores it on the smartphone; the server accepts data sent by the 

smartphone and stores it on a MariaDB database; the web dashboard retrieves 

data from the database and shows it to users and healthcare professionals.  

 

 
Fig. 44. Block diagram of architecture developed. 

6.2 SOLUTION’S IMPLEMENTATION 

The Android app is the solution for connecting a smartphone with that medical 

multi-parametric vital sign monitor. This device is a low-risk, portable medical 

device that has been classified and certified as Class 1 by the US Food and Drug 

Administration (or equivalently as Class I under the EU Medical Devices 

Regulation). It supports dual mode connectivity: Bluetooth Classic and BLE 4.0. 

This medical device allows for the monitoring of vital signs using internal sensors 

as well as external accessories. It can measure HR using a single lead ECG, 

temperature, SpO2, sleep, and motor activity. Furthermore, BP and glycemia can 

be accurately measured using auxiliary sensors via Bluetooth connectivity.  

The application can read and download data from the medical device using 

Bluetooth connectivity. It also allows to read downloaded data and send it by 

HTTP requests to a database, where it can be displayed in a web app that has 

been specifically developed for this purpose. 

6.2.1 COMMUNICATION PROTOCOL OF THE 

CHECKME PRO  

This project uses Bluetooth technology to download data from the medical device 



CHAPTER 6 

156 
 

to an Android device. The user interface was created in Android Studio using the 

software development kit (SDK) of the medical device and Kotlin programming 

language.  

Bluetooth technology is the optimal wireless data transmission standard for 

exchanging information between different devices. It is an economical and secure 

method that uses the 2.4 GHz frequency in the ISM band (Industrial Scientific 

and Medical band) [147]. The medical device supports both Bluetooth 2.0 and 

BLE 4.0, with a frequency range between 2.4 Hz and 2.4835 Hz, allowing to create 

a point-to-point network topology with a maximum distance of 100 m indoors. 

The Bluetooth SPP and SPPLE profiles are supported, which emulate a serial 

cable connection. 

As stated in the communication protocol provided by the manufacturer, the 

medical device acts as a slave during each communication session, with the 

connection requested by a master. Command packets are sent from the master to 

the slave, which replies with a data packet. In case of a CRC (Cyclic Redundancy 

Check) error or if a timeout occurs, the command packet is retransmitted. 

Once the medical device is located, data can be accessed from the smartphone. It 

uses the device’s Universally Unique Identifier (UUID) and two UUIDs for 

notification and writing to manage the connection between the medical device 

and the Android device. The Bluetooth interfacing protocol uses command and 

response packets. The BTConstant.java file of the software project defines the 

command packet lengths and values. 

6.2.2 ANDROID APP  

In order to receive data, it is necessary to connect the medical device in question 

with an Android mobile device that is Bluetooth 4.0 compliant and on which the 

developed application has been installed. Upon detection of the medical device 

in Bluetooth mode, the acquired data may be downloaded via a designated 
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protocol. Subsequently, the downloaded data are stored in smartphone memory, 

thereby enabling the user to access the data in offline mode. To enhance 

flexibility, all data are managed internally via a data class bean in Kotlin, which 

enables the initialization of values that are subsequently modified following data 

retrieval. 

The user interface was developed using XML files due to the fact that Android 

Studio provides a straightforward XML vocabulary and also offers a layout 

editor that allows for the construction of XML layouts through a drag-and-drop 

interface. The data visualization functions permit the user to view information 

pertaining to a specific user ID that has been selected. Subsequently, a menu may 

be visualized, displaying all the different acquisitions of vital signs and the 

measurements made. For each measurement, emoji are displayed alongside the 

data to facilitate comprehension for non-expert users. The use of different emoji 

is managed by the medical device, therefore only the corresponding bytes can be 

managed. Fig. 45 illustrates several measurements performed with the daily 

check function, as well as systolic non-invasive BP obtained after proper 

calibration. Fig. 46 depicts a scenario where calibration was not performed.   

 

 

 
Fig. 45. Daily check measurements, after calibration of BP by means of a 
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sphygmomanometer. The second measurement (top) is repeated about 1 minute after 

the first one (bottom).   

 

 
Fig. 46. Daily check measurements, before (bottom) and after (top) calibration of BP by 

means of a sphygmomanometer. 

 

Communication with the server has been developed with a specific HTTP API, 

with the purpose of sending data to a database web application. All data are 

inserted in JavaScript Object Notation (JSON) strings using the Jackson library, 

and an ObjectMapper has been created to facilitate the serialization of an object 

of type Bean into JSON. Subsequently, the HTTP request was configured by 

defining the type and properties of the aforementioned strings. Subsequently, the 

OutputStreamWrite class and its write() method were employed to transmit the 

data string to the Uniform Resource Locators (URL) of the database. 

Furthermore, device information can be obtained and transmitted to the database 

via an HTTP POST request. 

Fig. 47 illustrates the interface through which data can be transmitted via HTTP 

requests to the database.  
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Fig. 47. Data sending screen. 

 

It is possible to send data to the web application via several different connection 

threads. On the server side, Hypertext Preprocessor (PHP) scripts are employed 

for the purpose of data reception and the establishment of a database connection 

for the storage of the data.  

In order to facilitate communication with the server, it was necessary to create an 

.xml file for the purpose of configuring the network security. This allows 

applications to customize their own settings in a declarative manner, without the 

need to modify the application code. In this file, the URL of the server in question 

should be specified. 

Moreover, the “My Device” menu provides access to information regarding the 

device in question. Upon establishing a connection with the medical device, the 

JSON string is returned and can be conveniently displayed or transmitted via an 

HTTP POST request to the database for visualization in the web application. In 

the event that the medical device is not connected, the general details of the 

device are displayed. 

6.2.3 DATABASE STORAGE 

The server application was developed using XAMPP, a software platform 
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comprising Apache HTTP Server, MariaDB database, and tools for PHP and Perl 

programming languages. Indeed, the software includes a PHP 8.0.8 interpreter 

and the “phpMyAdmin” 5.1.1 application for the management of web-based 

databases. All data are inserted into the database via PHP scripts, which are used 

to create new tables and to insert data using PHP functions. 

Several HTTP requests to particular URLs refer to scripts written in the PHP 

programming language, which are used for the creation of tables and the entry 

of data. As the data were transmitted in the JSON string format, it was essential 

to correctly parse the string and verify its integrity. A total of 12 tables were 

created for the purpose of collecting various types of measurement data. The 

tables are utilized for the collection of users’ data, SpO2 and pulse index (PI), BP, 

glucose levels, temperature, sleep monitoring, and motor activity. Additionally, 

there are tables for the collection of daily check acquisitions, ECG metadata 

(including the timestamp, electrode placement, and identified health status), and 

information about the device. In addition, two further tables have been employed 

for the purpose of collecting ECG waveforms from the daily check and ECG 

measurements. These also include ECG information such as QRS, QT, QTc, ST 

durations, HR, filtering mode, and electrode placement. In addition, the database 

also stores health status bytes, which are the result of a classification performed 

by the medical device based on the ECG waveform. Glycemia, BP, and SpO2 

classifications that are not performed by the medical device are instead calculated 

by the Android application through the use of thresholding and stored in the 

database. 

All the tables were populated in a uniform manner, with distinct parameters for 

each, and each table has its own primary key. 

As a prerequisite to accessing the database, two scripts are employed to define 

the requisite database parameters and to establish a connection. 

To facilitate the storage of data, a series of PHP scripts were developed to 
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accommodate the diverse range of measured quantities. In each script, the 

function file_get_contents() enables the reception of JSON data in the form of a file 

from the smartphone and its subsequent reading into a string. Subsequently, the 

JSON string is decoded using the json_decode() function, which converts it into an 

associative array. For each key, the corresponding value is retrieved and stored 

in the database using the SQL command INSERT INTO. In the event that a 

database table does not already exist, one will be automatically created. 

6.2.4 WEB DASHBOARD 

The web application has been developed using HTML and PHP on the XAMPP 

server. The user interface is structured with a homepage and a menu, which 

allows the user to select the desired function. The data may be presented to the 

user in tabular form or with plots. From the menu, the user may select a specific 

measurement quantity. Fig. 48 illustrates the customized web app and its menu. 

The data are organized as follows: in the “Measurements” section, users can view 

the following data: personal information; ECG data with electrode placement; 

SpO₂ data with acquisition type, PI, and HR; sleep monitoring data with time, 

minimum, and mean SpO₂; temperatures and acquisition type; and other 

pertinent data; in the “Graphs” section, users can view the time behavior of all 

measurements. As an illustration, the daily check section enables the user to 

select HR, SpO2, PI, and the systolic value of BP, and to plot these variables.    

The plotting of ECGs and other quantities has been implemented using JpGraph, 

which is a crucial feature for providing an overview of a patient’s health 

condition and monitoring improvements following a therapeutic intervention. 
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Fig. 48. Sections of the web app menu. 

 

For each measurement, a query is generated and executed against the database 

in order to retrieve the requisite data and display it. Another implemented 

function is the selection of all data pertinent to a specific user ID. Furthermore, 

the final section enables the retrieval of data pertaining to the device and 

accessories utilized. All fields that may be populated by the user are validated, 

and the user is alerted in the event of an error. Fig. 49 illustrates the user IDs and 

their corresponding personal data in tabular form, whereas Fig. 50 depicts the 

HR time behavior in a graphical format. 

 
 

 
Fig. 49. Personal data of user section. 
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Fig. 50. Plot of HR with timestamp of acquisitions. View of web app screen. 

6.3 VALIDATION 

The simulation and validation processes are of great importance in numerous 

fields of engineering, including, but not limited to, photonics [148], sensor 

networks [149], and bioengineering as it pertains to surgical procedures [150]. 

Consequently, a series of tests were performed on the Android application to 

simulate the vast majority of potential usage scenarios. It was of fundamental 

importance to conduct back-end testing to ensure the accuracy and integrity of 

the database schema, tables, and triggers. Consequently, a series of operations 

were executed, including record insertions, queries, and deletions, to ascertain 

the accuracy and integrity of each action initiated by the Android application. 

Subsequently, cross-browser compatibility testing was conducted to ascertain 

the availability of web app features and functionalities for users of disparate 

browsers, with the objective of verifying graphic and layout consistency. 

Furthermore, the criteria for input field validation were also verified. 

A validation test was conducted to ascertain the equivalence of the data stored 

in the database and that displayed by Android and web applications. A further 

comparison was conducted between the data displayed by both applications and 

those presented by the desktop application provided by the manufacturer. 
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Furthermore, the responsiveness and ease of use have been verified. 

The data illustrated in Fig. 45 pertain to acquisitions obtained from the same 

patient using the certified medical device, with a one-minute interval between 

acquisitions. It is evident that the SpO2 remains unaltered, whereas the other 

quantities exhibit a minimal change. The HR exhibited a decrease from 72 to 71 

bpm, while the systolic BP value demonstrated a slight decline from 105 to 104 

mmHg. Additionally, the PI exhibited a modest increase from 4.0% to 4.9%. As 

illustrated in Fig. 46, the emoji associated with the initial acquisition indicate a 

potential issue based on the analysis of the ECG waveform conducted by the 

medical device. Despite the normal HR of 75 bpm, the irregular rhythm suggests 

a possible concern. The medical device is programmed to perform a series of 

condition classifications. For instance, an HR reading above 100 bpm is classified 

as high, while an HR below 50 bpm is classified as low. Additionally, the device 

is equipped with a classification system for QRS and ST duration. 

For the BP measurements illustrated in Fig. 45, a calibration procedure was 

conducted in accordance with the manufacturer’s instructions using the digital 

sphygmomanometer Air BP, which is capable of measuring BP with an accuracy 

of 3 mmHg. To calibrate the device, both the cuff and the medical device were 

placed at heart height to initiate BP measurement with Air BP, activating the 

daily check function of the medical device. Subsequently, it was necessary to 

manually input the systolic pressure data into the medical device. This procedure 

was repeated two times. It should be noted that calibration is a process that 

differs from one patient to another and must therefore be performed at regular 

three-month intervals. In the absence of calibration data, non-invasive BP 

measurement is rendered invalid, as illustrated in the lower portion of Fig. 46. 

Subsequently, a performance test was conducted by comparing data transmitted 

by the medical device to both the Android and web applications, as well as 

parameters set on a vital signs’ simulator, the Fluke ProSim 8, which served as a 
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reference point. The medical device was utilized to obtain and transmit ECG and 

SpO₂ data to the Android application, which subsequently relayed this 

information to the web application for remote storage. Fig. 51 depicts the 

configuration utilized for the validation process. During the validation process, 

a series of simulations were conducted to assess the device’s performance under 

various patient conditions, including normal, hypertension, hypotension, 

tachycardia, and bradycardia. Table 26 presents the data utilized for the 

validation of the measurements acquired by the Checkme Pro, with a comparison 

to the data provided by Fluke ProSim 8. The Checkme Pro device has an 

uncertainty of 2 bpm for HR, whereas for SpO2 it is 2% in the range 80% - 100%, 

and 3% in the range 70% - 79%, as indicated in reference. Therefore, the values 

provided by the telemedicine system are within the specified uncertainty of the 

reference system for SpO2 measurements. 

 

 
Fig. 51. Experimental setup used for validation with Fluke ProSim 8 (red box) and 

Checkme Pro medical device (blue box). 
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Table 26. Data used to validate the measurements acquired by the medical device. 

Reference values are provided by Fluke ProSim 8. 

Condition Reference  

HR  

(bpm) 

Acquired 

HR 

 (bpm) 

Reference 

SpO2  

(%) 

Acquired 

SpO2 

(%) 

SpO2 

Relative 

error 

(%) 

Normal 60 60 97 98 1.0 

Hypertension 130 130 94 96 2.1 

Hypotension 40 40 95 97 2.1 

Tachycardia 180 180 88 91 3.4 

Bradycardia 30 30 85 89 4.7 

 

6.4 CONCLUSION 

The primary objective has been to develop a telemedicine system that enables 

patients and healthcare professionals to access vital parameter measurements, 

thereby facilitating a comprehensive assessment of the patient’s health status. 

This system allows for the evaluation of the necessity for further examinations or 

treatment modifications and the observation of therapeutic outcomes.  

The web application enables the presentation of data in tabular form, the 

insertion of inputs, and the visualization of graphs of variables of interest. This 

allows for the visualization of disparate data sets, as well as the daily check data 

associated with non-invasive measurements of vital signs, including BP, ECG, 

and SpO2. A healthcare professional, including a physician, nurse, or other 

trained individual, can oversee the patient’s health and provide necessary 

assistance when required. 

As the use of telemedicine becomes increasingly prevalent, tools such as those 

can ensure continuous monitoring for patients, thereby enhancing their safety 

even in the absence of a physician. The Android app interface, enabled by 

Bluetooth connectivity, facilitates straightforward and intuitive data transfer, 
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displaying all information associated with measurements made by the medical 

device. Additionally, the ability to navigate between screens and send data to a 

database enables users to display them on the web app. Furthermore, the web 

app allows for graphical visualization of trends in variables of interest over time. 

This work has demonstrated the feasibility of leveraging Bluetooth connectivity 

in a commercial medical device, thereby overcoming its inherent limitations in 

data sharing capabilities and enabling its integration into a telemedicine system. 

Another limitation that can be addressed by the proposed system is the fact that 

data are analyzed by the medical device using fixed thresholds and parameters 

that are not subject to control and, in particular, do not take into account the age 

of the patient in order to evaluate the HR condition. Therefore, a potential future 

development could be the management of data to enable the classification of HR 

using age-dependent thresholds. 

A noteworthy attribute is the potential for leveraging the daily assessment 

functionality of the medical device and the proposed telemedicine solution to 

obtain BP readings in a non-invasive manner. This is particularly crucial in 

identifying hypertension, as accurate BP measurement is a key diagnostic 

indicator. This approach obviates the necessity for a sphygmomanometer, not 

only for the initial calibration, given the requisite positioning and potential 

discomfort during measurement. The deployment of the developed telemedicine 

system will facilitate the aggregation of data from multiple patients, thereby 

enabling the assessment of the accuracy of the non-invasive BP measurement 

technique. This technique has demonstrated to be highly accurate, and it has the 

potential to confer significant benefits in terms of health and economic outcomes 

[39].
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CHAPTER 7 
 

ECG WAVE SEGMENTATION FOR 
AN AUTOMATIC ANALYSIS6 

INTRODUCTION 

CVDs affect a significant proportion of the population in developing countries, 

resulting in a considerable burden of morbidity and mortality. CVD encompasses 

a range of conditions that can affect the heart or blood vessels. Atherosclerosis, 

for instance, is a disease that can lead to several cardiovascular issues, including 

myocardial infarction and stroke. Additionally, it can cause arrhythmia and 

affect the function of the heart valves [152]. It is therefore of the utmost 

importance to detect these CVDs at the earliest possible stage. A highly effective 

method for predicting and diagnosing CVDs is ECG. An ECG is the primary 

diagnostic tool for recording the electrical activity of the heart. The analysis of 

key segments of this vital sign is the most common method for identifying 

cardiac pathologies affecting the heart. Additionally, it is a non-invasive, cost-

effective, and safe procedure. From this perspective, the proliferation of wearable 

[153], [154] and wireless devices [155], [156], which can be utilized for specific 

tasks in telemedicine [1], [5], [157], [158], [159] and for patient home monitoring, 

represents an important advancement for the individual health improvement. 

These devices facilitate the monitoring of vital signs and associated parameters,

 
6 This Chapter is based on [151]. 
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including HR [11], [25], [160], [161], SpO2, RR, and others. 

ECG measures the electrical activity of the heart over time. This activity is caused 

by the action potentials that are generated and propagated in the organ during 

each cardiac cycle. In more detail, the electrical impulses that cause the 

contraction and relaxation of myocardial fibers can be measured via electrodes 

placed on the surface of the skin. These electrodes allow the potential difference 

to be recorded, and this is made possible by the conductivity of the interstitial 

fluids in the human body.  

Once an ECG signal has been acquired, a voltage reading (measured in millivolt) 

is obtained as a function of time. A typical ECG signal is characterized by the 

following peaks: P, Q, R, S, and T, as illustrated in Fig. 52. These peaks represent 

the depolarization and repolarization of the atria and ventricles, whose impulses 

spread along the routes of the cardiac conduction system. 

 

 
Fig. 52. ECG signal morphology of a cardiac cycle. 

 

The QRS complex is the depolarization of both ventricles. The P wave is the result 

of the depolarization of the atrium. The PR segment represents the phase of the 

passage of the impulse to the ventricles and the beginning of the atrial diastole. 

The T wave represents the ventricular diastole [162], [163]. Cardiac diagnosis is 

based on the morphology of the ECG waves and the duration of each segment. 
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The segmentation of the ECG signal is crucial for helping doctors and caregivers 

diagnose and monitor heart conditions. 

Literature has recently proposed different methods to improve ECG wave 

segmentation. The automatic segmentation is challenging due to the great 

variability in the shape of the QRS complex between different individuals, the 

less marked P wave, and the various morphologies of the T wave related to the 

condition of the myocardium. Furthermore, there is no universal method for 

defining the exact positions of the characteristic points. 

The most effective methods include Pan-Tompkins’s algorithm [164], Short Time 

Fourier Transform (STFT) [165], Wavelet transform (WT) [166], [167], Empirical 

Mode Decomposition (EMD) and the associated Hilbert spectral analysis for 

nonstationary signals [168], [169], [170], [171], [172], and other algorithms as 

reported in [173]. Furthermore, most algorithms are based on transforming or 

filtering the ECG signal to highlight relevant sections and identify points of 

interest. Other techniques include the exploitation of CNN, SVM, and DL 

approaches [174], [175], [176], [177], [178]. 

Many proposed algorithms in literature have successfully segmented the QRS 

complex, but the detection of P and T waves still needs improvement. It is clear 

that the algorithms in literature allow the identification of peaks without 

indicating the beginning and end of the waves. This temporal information is 

useful for diagnostic purposes. This Chapter presents a new method for ECG 

segmentation that does not rely on artificial intelligence. It combines WT with a 

purpose-built algorithm to detect the QRS complex, P and T waves. The method 

is demonstrated by a system comprising a Data Acquisition (DAQ) device 

overseen by a LabVIEW Virtual Instrument and a Sparkfun one-lead heart rate 

monitor based on Analog Devices AD8232 amplifier. The system acquires the 

ECG signal and performs pre-processing, while the waves’ segmentation and 

analysis of results are done in MATLAB R2022b. 
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7.1 ACQUISITION SYSTEM 

The ECG signal before the amplification exhibits a relatively low amplitude, with 

a range on the order of mV and displays artifacts and noise. The signal may be 

affected by 50 Hz interference, deviation from the baseline, and the electrical 

activity of other muscles, which can compromise the quality of the information 

contained in the signal. Typically, the utilization of an operational amplifier in 

conjunction with an appropriate filtering mechanism is essential for the 

generation of a more suitable ECG signal. In this study, the ECG signal is 

acquired using the AD8232 single-lead heart rate monitor, which employs only 

three electrodes. This HR monitor is an integrated signal conditioning block that 

can be used for ECG and other biopotential measurement applications. It is 

capable of producing an ECG signal with a clearly distinguishable output, 

exhibiting the characteristic waves of a single cardiac cycle. Its deployment 

enables the extraction, amplification, and filtering of small biopotential signals in 

the presence of noise, such as that generated by electrode movement or remote 

positioning. 

The HR monitor AD8232 board, illustrated in Fig. 53, is equipped with nine pins 

that facilitate its integration with any analog acquisition system. The 

nomenclature of the pins is as follows: SDN, LO+, LO-, OUTPUT, 3.3V, GND. 

Additionally, there are pins designated RA (right arm), LA (left arm), and RL 

(right leg) that can be connected and utilized with the user’s own signal 

conditioning circuits. The raw ECG signal is obtained by subtracting the 

biopotential recorded from the RA from that recorded from the LA, with the RL 

serving as the reference point. This signal can be acquired from the RA, LA, and 

RL pins. However, it is not yet conditioned, which makes it challenging to 

interpret. This is because the signal is weak in amplitude and corrupted by noise. 
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Fig. 53. AD8232 single lead heart rate monitor in a break-out board developed by 

Sparkfun. 

 

In order to reduce the noise in the HR monitor output signal, it is essential that 

the three electrodes are correctly positioned. Accordingly, the positioning of the 

sensor pads is based on the Einthoven triangle, as illustrated in Fig. 54. 

 

 

Fig. 54. Positioning of electrodes based on Einthoven triangle (black pad corresponds to 

the right arm, blue pad corresponds to the left arm and the red one to the right leg). 

 

In this study, the data from the HR monitor were acquired using a DAQ board 

from National Instruments, and the subsequent processing was conducted using 

LabVIEW. Fig. 55 depicts the experimental setup, wherein the DAQ device, the 
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AD8232, and the bench power supply are illustrated. The DAQ device utilized is 

a NI USB 6212, which is a 16-bit board with a maximum sampling frequency of 

400 kHz. 

 

 

Fig. 55. Experimental setup for ECG acquisition. 

7.2 ECG SEGMENTATION 

An ECG is a straightforward and expeditious diagnostic tool that produces a 

graphical representation of the electrical impulses generated by the heart. It is a 

widely utilized technique for the detection of cardiac dysfunction. Indeed, the 

segmentation and feature extraction processes are essential for the generation of 

a diagnosis. This section presents a novel approach to the segmentation of QRS 

complexes, T waves, and P waves in ECG waveforms, with the aim of facilitating 

the early detection of cardiac diseases.  

Despite the numerous algorithms that have been proposed and successfully 

demonstrated the ability to segment QRS complexes in ECG data, there remains 

a gap of effective detectors for P and T waves. The proposed algorithm is based 

on a threshold calculated using the Otsu method to detect R-peaks in the ECG 

waveform. Moreover, it enables the segmentation of all other ECG waves 
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through the application of wavelet filters and a local maxima algorithm. The 

segmentation of each waveform is defined by both its onset and offset. 

7.2.1 RAW SIGNAL ACQUISITION 

The ECG signal was obtained using the DAQ device, with the parameters for the 

acquisition set by the front panel to fully utilize the ADC range. The sampling 

rate has been set to 200 Hz, with a maximum voltage value of +5 V and a 

minimum voltage value of -5 V. Prior to the analysis and extraction of the ECG 

signal parameters, a pre-processing step was required to detrend the signal and 

reduce the 50 Hz disturbance. Accordingly, LabVIEW has been employed to filter 

the signal using WT, with the requisite parameters duly established [179]. A 

threshold frequency of 0.35 and a db06 mother wavelet with a symmetric 

extension were employed to compute the detrend. Subsequently, wavelet 

denoising was performed using an undecimated WT with db06 and 8 levels. For 

the threshold settings, a single-level rescaling method and a universal 

thresholding rule with a soft threshold were employed. Fig. 56 and Fig. 57 

illustrate the raw and processed ECG signals, respectively. 

 

 

Fig. 56. Raw ECG signal. 
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Fig. 57. Filtered ECG signal. 

 

In this study, real ECG signals and simulations at varying HR have been obtained 

and analyzed. The Fluke ProSim 4 was employed for the purpose of simulating 

an ECG signal. 

7.2.2 R-PEAK DETECTION 

The proposed algorithm enables the detection of the R-peak position and 

amplitude in the unprocessed ECG signal, as well as the onset and offset of the 

QRS complex. As illustrated in Fig. 58, the R-peak position and amplitude are 

identified within the unprocessed ECG signal. 

 

 

Fig. 58. R-peak detection algorithm. 

 

Following the aforementioned signal processing, an undecimated WT with db02 

as the mother wavelet, a multiple levels rescaling method with 10 levels, and a 

universal thresholding rule with a soft threshold have been applied. This step is 

essential for the purpose of mitigating P and T waves from each cardiac cycle, 

thereby leaving only the QRS complex for each cardiac cycle. The resulting signal 

after WT is illustrated in Fig. 59. 
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Fig. 59. ECG signal after WT. 

 

Secondly, an image processing technique [180] has been employed to detect R-

peaks using a threshold value derived from Otsu’s method [181], a non-

parametric and unsupervised approach to automatic threshold selection based 

on the histogram. By applying the aforementioned threshold to the wavelet-

filtered signal, each R-peak is identified within a window, which is represented 

as a square signal in Fig. 60. 

 

 

Fig. 60. ECG signal after WT transform (blue) and square signal (red). 

 

Subsequently, the maximum value of the raw ECG signal is identified, which 

corresponds to the R-peak as illustrated in Fig. 61. 
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Fig. 61. R-peak detection on Raw ECG signal. 

 

After having determined R-peak position, the mean HR can be computed, 

evaluating the mean time of R-R segments: 

𝐻𝑅 =
𝑚𝑒𝑎𝑛(𝑅 − 𝑅)

60
 

7.2.3 QRS ONSET AND OFFSET DETECTION 

In order to ascertain the onset and offset of the QRS complex, the STD of the 

wavelet-filtered signal is calculated over a sliding window comprising 5 

elements, including the centered sample. The window is constructed with 5 

elements backward in the sequence (ka), 5 elements forward (kb), and the 

centered sample. The length of this window is empirically determined based on 

the sample frequency utilized to acquire the ECG signal. For a sample frequency 

of 100 Hz, the optimal values for both ka and kb are 1. The resulting signal is 

illustrated in Fig. 62. 
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Fig. 62. Standard deviation of sliding window (blue) and zeros detected from zero-

crossing algorithm. 

 

Subsequently, the zero-crossing algorithm is employed to identify the onset and 

offset of the QRS complex. The onset is defined as the final zero value of the STD 

on the left of the i-th R-peak, while the offset is defined as the initial zero value 

of the STD signal on the right of the i-th R-peak. 

In order to identify the Q wave, it is necessary to determine the minimum value 

within the onset of the QRS complex and the time elapsed between the R-peak 

and the onset. Similarly, the S wave is obtained by identifying the minimum 

between the R-peak and the offset of the QRS complex. 

The segmentation of the QRS complex based on this algorithm is illustrated in 

Fig. 63. 
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Fig. 63. QRS complex segmentation. 

7.2.4 P WAVE SEGMENTATION 

The detection of the P wave is of critical importance due to its relatively small 

amplitude in comparison to that of the R-peak. Furthermore, the visibility of the 

P wave is often compromised due to the interference of noise at its onset and 

offset.  

Accordingly, the algorithm illustrated in Fig. 64 is proposed. 

 

 

Fig. 64. P wave and T wave detection algorithms. 

 

Following the identification of R-peaks, a windowing technique was applied to 

the signal for each peak (except for the first and last, in order to avoid 

uncompleted cycles). This defined a signal portion, beginning at the onset of each 

ECG cardiac cycle and extending to the corresponding QRS onset, which 
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included the P wave. A fourth-degree polynomial fitting was performed on the 

aforementioned signal portion, which was then subjected to Otsu’s method 

thresholding. The maximum value within this window has been designated as 

the P-peak, and the edges of the window have been identified as the onset and 

offset of the P wave, as illustrated in Fig. 65. 

 

 

Fig. 65. P wave segmentation. 

7.2.5 T WAVE SEGMENTATION 

The detection of the T wave presents a significant challenge due to its smaller 

size in comparison to the R-peak, coupled with the presence of noise that 

obscures the boundaries. Furthermore, the lack of universal detection rules 

presents a challenge in the detection of both the T wave and the P wave. 

Consequently, researchers have concentrated their efforts on defining automatic 

detection algorithms. 

In this Chapter, the same approach previously utilized for P-wave detection is 

employed for T-wave detection. 

Indeed, a windowing technique has been applied to the ECG signal from the 

corresponding QRS offset to the end of the cardiac cycle for each R-peak. 

Subsequently, a fourth-degree polynomial fitting and Otsu’s thresholding have 
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been employed. The T-peak has been defined as the maximum value within the 

aforementioned window, and the boundaries have been defined as the two 

edges, as illustrated in Fig. 66. 

 

Fig. 66. T wave segmentation. 

7.3 RESULTS 

The proposed algorithm was applied to 100 cardiac cycles of three different 

patients, whose ECG signals were acquired using the system developed in this 

work. The following results were obtained. Fig. 67 provides a more detailed 

illustration of the number of points of interest detected by the algorithm for the 

P wave, T wave, and QRS complex in all the recorded data acquired by the single-

lead HR monitor. As illustrated in the Fig. 67, the QRS complex is consistently 

identified, along with the T and P peaks. Conversely, the accuracy of the onset 

and offset detection of these two waves exhibits a decline. 

 



CHAPTER 7 

182 
 

 

Fig. 67. Percentage of detection. 

 

Table 27 presents the mean time error and the STD for all points of interest within 

the ECG waveform. The discrepancies between the locations of points identified 

by the proposed algorithm and those marked by handcrafted annotations were 

calculated to obtain the aforementioned errors. 

 

Table 27. Mean time error and standard deviation for each ECG wave, onsets, and 

offsets. 

 Mean (s) STD (s) 

P onset -0.045 0.052 

P peak 0.000 0.053 

P offset 0.000 0.012 

QRS onset -0.010 0.012 

Q peak 0.000 0.002 

R peak 0.000 0.001 

S peak 0.000 0.000 

QRS offset 0.015 0.011 

T onset -0.002 0.014 

T peak 0.005 0.001 

T offset -0.010 0.011 

 

Furthermore, Fig. 68 illustrates the IOU (intersection over union) for the P wave, 
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QRS complex, and T wave. As illustrated in the figure, the maximum value is 

observed for the T wave, while the minimum value is observed for the P wave. 

 

 
Fig. 68. IOU for all the ECG waves. 

7.4 CONCLUSION 

This Chapter presents a novel approach for ECG segmentation based on WT 

combined with Otsu’s method, which can be applied to ECG signals acquired by 

a single lead HR monitor. 

Regarding the acquired records, the algorithm enables the detection of R-peaks 

with a score of 100%, thereby facilitating the precise determination of the heart 

rate. Moreover, the QRS complex of all ECG recordings with noise has been 

correctly segmented with a low time error. Moreover, the approach enables the 

detection of P and T waves, which are more challenging to segment. This remains 

an unresolved issue in the literature.
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CONCLUSION 

In this thesis accurate BP measurement methods from PPG signals using ML and 

DL techniques have been proposed. To achieve this objective, it was necessary to 

analyze the PPG signal and the ABP signal and identify the characteristics points 

useful for BP estimation. To this end, an enhancement technique using the 

wavelet was proposed to improve the PPG signal and facilitate the extraction of 

features useful for training ML models. The utilization of the wavelet, in 

conjunction with the extraction of novel features, has been demonstrated to be 

advantageous. This is evidenced by the fact that, when employing three distinct 

feature selection algorithms, these features were identified as being among the 

most significant, and also by the high accuracy of the results obtained. A 

comprehensive discussion and analysis of these findings has been presented in 

Chapter 1. Following the identification of the significant feature set, Chapter 2 

has been dedicated to training ML models, namely XGBoost and NN, to estimate 

systolic and diastolic pressure values. This Chapter has presented improvements 

over existing literature using the XGBoost model and the selected significant 

features, which were identified using the MRMR selection algorithm. A further 

analysis has been therefore carried out in Chapter 3 to investigate the results 

obtained using different feature selection methods and feature sets, including or 

excluding the new features introduced in Chapter 1. A comparison of various 

ML models was also conducted to determine the optimal trade-off between 

training time and results. The size of the dataset was also taken into account. 

Then the objective of Chapter 4 has been to examine the utilization of DL models
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for the estimation of the ABP signal from the PPG signal, rather than from the 

features. This Chapter has presented an analysis of the performance of several 

DL models, with a focus on the impact of varying datasets, input signal duration, 

model input, and the use of different loss functions. Since the final aim of this 

thesis was to develop a telemedicine solution that incorporates a wearable device 

for the acquisition of PPG signals and the estimation of BP, Chapter 5 has 

outlined the preliminary prototype that has been developed for this purpose. In 

the final Chapters, Chapter 6 and Chapter 7, some potential telemedicine 

solutions for other biomedical applications have been put forward for 

consideration.  

All the aspects analyzed in this thesis could be integrated into a comprehensive 

system to improve patient health by monitoring not only BP but also other vital 

signs. 
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APPENDIX A 

Table A1 below defines the more relevant features calculated on PPG signals, 

which are in the set of selected features shown in Chapter 1. They are grouped 

by domain (e.g. energy, width-related, amplitude related, …) and they are noted 

as: (*) calculated on 𝑥𝐹𝐼𝐿𝑇  (i.e. before MODWT enhancement), (°) calculated on 

𝑥𝑀𝑂𝐷𝑊𝑇 (i.e. after MODWT enhancement), (-) calculated on the normalized signal 

𝑥𝑁𝑂𝑅𝑀, (+) new feature and (#) already known feature.  

In the table the following notation has been used: 𝑓𝑠 is signal sampling frequency;  

𝒙 = [𝑥1, … , 𝑥𝑖 , … , 𝑥𝑁] is the sampled PPG pulse signal of length 𝑁, with 𝑖 = 1, … , 𝑁; 

𝑀𝑂𝐷𝑊𝑇{𝒙}𝑙𝑘 is the MODWT wavelet coefficient up to scale 2𝐿  , with 𝐿 =

⌊log2 𝑁⌋, calculated at scale 2𝑙, with 𝑙 = 1, … , 𝐿 and location 𝑘, with 𝑘 = 1, … , 𝑁; 𝑋 

is the PPG chunk.

 

Table A1. Features. 

Symbol Definition Notes 

Energy-related features 

𝑠𝑖𝑔𝑁2 

Squared signal Energy 

𝑠𝑖𝑔𝑁2 = ∑ |𝑥𝑖|2

𝑁

𝑖=1

 
*   +  

𝑤𝑡𝑁2 

Squared signal energy obtained from 

summing the wavelet coefficients over all 

levels 

𝑤𝑡𝑁2 = ∑ ∑|𝑀𝑂𝐷𝑊𝑇{𝒙}𝑙𝑘|2

𝑁

𝑘=1

𝐿

𝑙=1

 

 °  +  

Width-related features 

𝑤 Width of the pulse * °   # 
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𝑤 =
𝑁

𝑓𝑠
 

𝑑𝑖𝑎𝑤33 
Width from DP to the subsequent 

intersection of 𝒙 with level 0.33 × 𝐴𝑆𝑃 
*    # 

𝑑𝑖𝑎𝑤50 
Width from DP to the subsequent 

intersection of 𝒙 with level 0.50 × 𝐴𝑆𝑃 
*    # 

𝑑𝑖𝑎𝑤66 
Width from DP to the subsequent 

intersection of 𝒙 with level 0.66 × 𝐴𝑆𝑃 
*    # 

𝑑𝑖𝑎𝑤75 
Width from DP to the subsequent 

intersection of 𝒙 with level 0.75 × 𝐴𝑆𝑃 
*    # 

𝑠𝑦𝑠𝑤33 
Width from intersection of 𝒙 with level 

0.33 × 𝐴𝑆𝑃 to SP 
*    # 

Amplitude-related features 

𝐴𝑆𝑃 Amplitude of the systolic peak of 𝒙 * °   # 

𝐴𝐷𝑃 Amplitude of the diastolic peak of 𝒙 * ° -  # 

𝐴𝐷𝑁 Amplitude of the dicrotic notch of 𝒙 * ° -  # 

𝑅𝑃 
𝑅𝑃 =  

𝐴𝐷𝑃

𝐴𝑆𝑃
 

also known as the augmentation index 
 °   # 

𝐷1 𝐷1 = 𝐴𝑆𝑃 − 𝐴𝐷𝑁  °  +  

𝐷2 𝐷2 = 𝐴𝐷𝑃 − 𝐴𝐷𝑁  °  +  

𝑅𝐷 𝑅𝑃 =
𝐷1

𝐷2
  °  +  

𝐴𝑀𝑆 
Amplitude of the max slope point (MSP) 

of 𝒙 
*  -  # 

𝐴𝐷𝑁

𝐴𝑆𝑃
 Ratio between 𝐴𝐷𝑁 and 𝐴𝑆𝑃 of 𝒙 *    # 

Time-related features 

𝑇𝑃 Time interval from DP to the SP of 𝒙 * °   # 

𝑇𝑆𝑃 Time interval from 𝑥1 to the SP of 𝒙 * °   # 

𝑇𝐷𝑃 Time interval from 𝑥1 to the DP of 𝒙 * °   # 

𝑇𝐷𝑁 Time interval from 𝑥1 to the DN of  𝒙 * °   # 

𝑇𝐼𝑃 Time interval from 𝑥1 to the IP of  𝒙 *    # 

𝑇1 Time interval from the DN to the SP of 𝒙  °  +  

𝑇2 Time interval from the DP to the DN of 𝒙  °  +  

𝑝2𝑝𝑖 
The peak-to-peak interval is the distance 

between 𝑆𝑃𝑖+1 and 𝑆𝑃𝑖 
*    # 

𝑀𝑒𝑎𝑛 𝑜𝑓 
𝑇𝑃

𝑝2𝑝𝑖
 Mean of ratio between 𝑇𝑃 and 𝑝2𝑝𝑖 of 𝒙 *    # 

𝑀𝑒𝑎𝑛 𝑜𝑓 
𝑇𝐷𝑁

𝑝2𝑝𝑖
 Mean of ratio between 𝑇𝐷𝑁 and 𝑝2𝑝𝑖 of 𝒙 *    # 

1

𝑇𝐷𝑁 − 𝑇𝑆𝑃
 

Reciprocal of difference between 𝑇𝐷𝑁 

and 𝑇𝑆𝑃 of 𝒙 
*    # 

1

𝑇𝐼𝑃 − 𝑇𝑆𝑃
 

Reciprocal of difference between time 

interval of IP (𝑇𝐼𝑃) and 𝑇𝑆𝑃 of 𝒙 
*    # 

𝐴𝐷𝑃

𝑃𝐼 − 𝑇𝐷𝑁
 The ratio of 𝐴𝐷𝑃 to the differences *    # 
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between pulse interval (PI) and 𝑇𝐷𝑁 of 𝒙 

1

𝑇𝑃
 

Stiffness of the large arteries: the inverse 

of 𝑇𝑃 of PPG pulse 
*    # 

𝐴𝐷𝑁

𝑃𝐼 − 𝑇𝐷𝑁
 

The ratio of AND to the differences 

between 𝑃𝐼 and 𝑇𝐷𝑁 of 𝒙 
*    # 

𝑇𝐷𝑃

𝑝2𝑝𝑖
 Ratio of 𝑇𝐷𝑃 and 𝑝2𝑝𝑖 of 𝒙 *    # 

PI 
Pulse interval of 𝒙 is the distance between 

𝑥1 and 𝑥𝑁 
*    # 

Area-related features 

𝐴1 
Area under the curve from 𝑥1to the DN of 

𝒙 
* °   # 

𝐴2 Area under the curve from DN to 𝑥𝑁 * °   # 

𝑅𝐴 𝑅𝐴 =  
𝐴2

𝐴1
  °  +  

𝐴𝑟𝑒𝑎 𝑓𝑟𝑜𝑚 𝑥1 𝑡𝑜 𝑀𝑆𝑃 Area under the curve from 𝑥1 to MSP of 𝒙 *    # 

𝐴𝑟𝑒𝑎 𝑓𝑟𝑜𝑚 𝐼𝑃 𝑡𝑜 𝐷𝑃 Area under the curve from IP to DP of 𝒙 *    # 

𝐴𝑟𝑒𝑎 𝑓𝑟𝑜𝑚 𝐷𝑃 𝑡𝑜 𝑥𝑁 Area under the curve from DP to 𝑥𝑁 of 𝒙 *    # 

Statistic features 

𝑀𝑒𝑎𝑛 
Mean of 𝒙 

µ =  
∑ 𝑥𝑖

𝑁
𝑖=1

𝑁
 

* ° -  # 

𝑆𝑇𝐷 

Standard deviation of 𝒙 

𝜎 = √
∑ (𝑥𝑖 − 𝜇)2𝑁

𝑖=1

𝑁 − 1
 

* ° -  # 

75 − 𝑝𝑒𝑟 75-th percentile of 𝒙 *    # 

𝐼𝑄𝑅 

Inter Quartile Range of 𝒙 
𝐼𝑄𝑅 = 𝑄3 − 𝑄1 

where 𝑄3 is the third quartile and 𝑄1 is 

the first quartile 

*    # 

Mean of PPG before 

standardization 

Mean of PPG signal before 

standardization 
*    # 

STD of PPG before 

standardization 
STD of PPG signal before standardization *    # 

𝑆𝑘 

Skewness of 𝒙 

𝑆𝑘 =

∑ (𝑥𝑖 − 𝜇)𝑁
𝑖=1

3

𝑁
𝜎3

 

*    # 

Time domain features 

𝑅𝑀𝑆 

Root mean square 

𝑅𝑀𝑆 =  √
∑ |𝑥𝑖|2𝑁

𝑖=1

𝑁
 

* ° - +  

𝑆𝐹 

Shape factor of pulse 

𝑆𝐹 =
𝑅𝑀𝑆

𝑀𝐴𝑉
 

where 𝑀𝐴𝑉 is the mean absolute value 

* ° - +  
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𝑀𝐴𝑉 =  
∑ |𝑥𝑖|𝑁

𝑖=1

𝑁
 

𝑆𝑁𝑅 

Signal to noise ratio 

𝑆𝑁𝑅 =  
𝑃𝑥

𝑃𝑛
 

where 𝑃𝑥  is the power of 𝒙 and 𝑃𝑛 is the 

power of noise 

* °  +  

𝑇𝐻𝐷 

Total harmonic distortion 

𝑇𝐻𝐷 =  √∑
ℎ𝑗

ℎ1

𝑛ℎ

𝑗=2

× 100 

where ℎ1 is the power at the fundamental 

frequency, ℎ𝑗 is the power at the 𝑗-th 

harmonic component, and 𝑛ℎ is the 

number of components 

* °  +  

𝑆𝐼𝑁𝐴𝐷 

Signal to noise and distortion ratio in 

decibels 

𝑆𝐼𝑁𝐴𝐷 = 20 log
𝑃𝑥

(𝑃𝑛 + 𝑃𝑑)
 

where 𝑃𝑑 is the power of distortion 

* °  +  

𝐶𝑟𝐹 
Crest factor: 

𝐶𝑟𝐹 =
𝐴𝑆𝑃

𝑅𝑀𝑆
 

* °  +  

𝐶𝑙𝐹 

Clearance factor: 

𝐶𝑙𝐹 =
𝐴𝑆𝑃

(
∑ √|𝑥𝑖|𝑁

𝑖=1

𝑁 )

2 * ° - +  

𝐼𝐹 

Impulse factor: that is the ratio between 

𝐴𝑆𝑃 and 𝑀𝐴𝐴 

𝐼𝐹 =
𝐴𝑆𝑃

𝑀𝐴𝐴
 

where 𝑀𝐴𝐴 is the mean of the absolute 

amplitude 

* ° - +  

Frequency domain features 

𝑀𝑒𝑎𝐹 
Mean frequency of the power spectrum 

of 𝒙 
* °  +  

𝑀𝑒𝑑𝐹 
Median frequency of the power spectrum 

of 𝒙 
* °  +  

𝐴𝑃 Average band power of 𝒙 * °  +  

𝑂𝐵 Occupied bandwidth at 99% of 𝒙 * °  +  

𝐻𝐵 Half-power bandwidth at 3 dB of 𝒙 * °  +  

𝑃𝑆𝐴 Peak spectral amplitude of 𝒙 * °  +  

𝑆𝑃𝐿 Spectral peak location of 𝒙 * °  +  

Features related to the first and second derivative 

𝑎1 
The first maximum peak from the first 

derivative of 𝒙 
*    # 
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𝑎2 
The first maximum peak from the second 

derivative of 𝒙 after 𝑎1 
*    # 

𝑏1 
The first minimum peak from the first 

derivative of 𝒙 after the 𝑎1 occurred 
*    # 

𝑏2 
The first minimum peak from the second 

derivative of 𝒙 after 𝑎2 
*    # 

𝑡𝑎1 
The time interval from 𝑥1 to the time at 

which 𝑎1 occurred of 𝒙 
*    # 

𝑡𝑎2 
The time interval from 𝑥1 to the time at 

which 𝑎2 occurred of 𝒙 
*    # 

𝑡𝑏1 
The time interval from 𝑥1 to the time at 

which 𝑏1 occurred 
*    # 

𝑡𝑏2 
The time interval from 𝑥1 to the time at 

which 𝑏2 occurred 
*    # 

𝑀𝑒𝑎𝑛 𝑜𝑓 𝑡𝑏1 
Mean of the time intervals from 𝑥1 to the 

time at which 𝑏1 occurred 
*    # 

𝑀𝑒𝑎𝑛 𝑜𝑓 𝑡𝑏2 
Mean of the time intervals from 𝑥1 to the 

time at which 𝑏2 occurred 
*    # 

𝑀𝑒𝑎𝑛 𝑜𝑓 
𝑡𝑏1 − 𝑡𝑏2

𝑝2𝑝𝑖
 

Mean of the ratios of difference between 

𝑡𝑏1 and 𝑡𝑏2 and 𝑝2𝑝𝑖 
*    # 

𝑀𝑒𝑎𝑛 𝑜𝑓 
𝑡𝑏1

𝑝2𝑝𝑖
 Mean of ratio between 𝑡𝑏1 and 𝑝2𝑝𝑖 of 𝒙 *    # 

𝑀𝑒𝑎𝑛 𝑜𝑓 
𝑡𝑏2

𝑝2𝑝𝑖
 Mean of ratio between 𝑡𝑏2 and 𝑝2𝑝𝑖 of 𝒙 *    # 

𝑀𝑒𝑎𝑛 𝑜𝑓 
𝑡𝑎1

𝑝2𝑝𝑖
 Mean of ratio between 𝑡𝑎1 and 𝑝2𝑝𝑖 of 𝒙 *    # 

𝑀𝑒𝑎𝑛 𝑜𝑓 
𝑏1

𝑎1
 Mean of the ratio between 𝑏1 and 𝑎1 of 𝒙 *    # 

𝑀𝑒𝑎𝑛 𝑜𝑓 𝑡𝑎2 Mean of 𝑡𝑎2 of 𝒙 *    # 

𝑀𝑒𝑎𝑛 𝑜𝑓 𝑎2 Mean of 𝑎2 of 𝒙 *    # 

𝑀𝑒𝑎𝑛 𝑜𝑓 
𝑡𝑎2

𝑝2𝑝𝑖
 Mean of ratio between 𝑡𝑎2 and 𝑝2𝑝𝑖 of 𝒙 *    # 

FFT features 

Area from 2 to 5 
Area under the curve from 2 Hz to 5 Hz 

for the FFT of 𝑋 
*    # 

𝑃𝑒𝑎𝑘1 
The amplitude of the first peak from the 

FFT of 𝑋 
*    # 

𝐹𝑟𝑒𝑞1 
The frequency at which the first peak 

from the FFT of 𝑋 occurred 
*    # 

𝐹𝑟𝑒𝑞2 
The frequency at second peak from the 

FFT of 𝑋 
*    # 

Area from 0 to 2 
Area under the curve from 0 Hz to 2 Hz 

for the FFT of 𝑋 
*    # 

𝐹𝑟𝑒𝑞1

𝐹𝑟𝑒𝑞3
 

The ratio of 𝐹𝑟𝑒𝑞1 to the frequency at 

third peak from the FFT (𝐹𝑟𝑒𝑞3) of 𝑋 
*    # 
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𝐹𝑟𝑒𝑞1

𝐹𝑟𝑒𝑞2
 

The ratio of 𝐹𝑟𝑒𝑞1 to the frequency at 

second peak from the FFT (𝐹𝑟𝑒𝑞2) of 𝑋 
*    # 

𝐹𝑚𝑎𝑥 
The value of highest frequency in the 

spectrum of 𝑋 
*    # 

𝐴𝑟𝑒𝑎 𝑓𝑟𝑜𝑚 0 𝑡𝑜 2

𝐴𝑟𝑒𝑎 𝑓𝑟𝑜𝑚 2 𝑡𝑜 5
 

Ratio between 𝐴𝑟𝑒𝑎 𝑓𝑟𝑜𝑚 0 𝑡𝑜 2 and 
𝐴𝑟𝑒𝑎 𝑓𝑟𝑜𝑚 2 𝑡𝑜 5 

*    # 

Non-linear functions of features 

Logarithm IP 
Logarithm of location of IP (𝐿𝐼𝑃) of 𝒙 

𝐿𝑜𝑔𝑎𝑟𝑖𝑡ℎ𝑚 𝐼𝑃 =  ln 𝐿𝐼𝑃 
*    # 

Logarithm of DN 
Logarithm of location of DN (𝐿𝐷𝑁) of 𝒙 

𝐿𝑜𝑔𝑎𝑟𝑖𝑡ℎ𝑚 𝐷𝑁 =  ln 𝐿𝐷𝑁 
*    # 
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