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Robust Forecasting Aided Power System State
Estimation Considering State Correlations

Junbo Zhao, Student Member, IEEE, Gexiang Zhang, Member, IEEE,
Zhao Yang Dong, Senior Member, IEEE, Massimo La Scala, Fellow, IEEE

Abstract—With the increase of load fluctuations and the
integration of stochastic distributed generations (DGs), there have
been more and more research interests in forecasting-aided state
estimation. In this paper, we propose a robust generalized maxi-
mum likelihood (GM)-estimator based power system forecasting-
aided state estimation (GM-PSE), which integrates the statistical
characteristics of both loads and DGs, i.e., spatial and temporal
correlations. A first order vector auto-regressive model (VAR(1))
is developed to capture the statistical characteristics of load and
DGs, facilitating short-term loads and DGs forecasting. These
forecasted power injections are further combined with power
balance equations to derive a new state transition model, where
the relationship between forecasted state vector and predicted
power injections is expressed explicitly. After that, a redundant
batch regression model that simultaneously processes predicted
state vector and received observations is derived, allowing the
development of a robust estimator. To this end, we propose a
robust GM-estimator that leverages modified projection statistics
and a Huber convex score function, to bound the influence
of observation outliers while maintaining its high statistical
estimation efficiency. Finally, the iteratively reweighted least
squares (IRLS) algorithm is adopted to solve the GM-estimator.
Numerical comparisons on IEEE benchmark systems with DGs
integration demonstrate the efficiency and robustness of the
proposed method.

Index Terms—State estimation, distributed generation, vector
auto-regression, forecasting-aided state estimation, robust estima-
tor, power systems.

I. INTRODUCTION

REAL-time states play a vital role for reliable and se-
cure power system operations. These states are usually

obtained by the power system static state estimation (SE)
using redundancy measurements from SCADA or PMUs. By
the definition of static SE, the current state is determined
exactly by present measurements regardless of the previous
state. However, due to the continuous variations of loads and
generators, a power system is slowly changeable with time
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rather than static. Once loads of a power system change, the
generators have to keep up with the changes and consequently
power flows and injections at all buses will change [1]. On the
other hand, in recent years, with the integrations of more and
more renewable-based distributed generation (DG) and micro-
grids, the power grid faces with new stochastic operating
behaviors and dynamics [2]. For example, the uncertainty
of loads and stochastic (intermittent) characteristics of DGs
increases the probability of sudden changes in bus voltage
phasor in a short time-frame [3]. These changes are mainly
driven by the changes in active or reactive power injections
from DGs or loads. Consequently, the estimation results from
static state estimation (SSE) may not effectively reflect the
present system operation states.

To address this issue, the forecasting-aided SE (some re-
searchers also call it dynamic state estimation (DSE)) [4]– [13]
was proposed using various Kalman filter (KF) like methods,
such as extended Kalman filter (EKF) and unscented Kalman
filter (UKF). The investigations in [6] extended the regression-
based state forecasting method developed in [7] to consider
fast sampling rates of voltage and phasor measurements from
PMUs in DSE. The accuracy of the predicted state can be
greatly improved and the trend in state variations can also
be provided for power system operators. In [8], a PMU
placement strategy in EKF-based DSE was developed to track
states of a power grid. The number and locations of PMUs
installed in the system to ensure a satisfactory state tracking
performance were discussed. In [9], a method to extract the
dynamic real-time model of an electric power system using
PMU and SCADA data obtained in substations was proposed.
The method is an extension of the standard SSE and is
mainly based on data analysis techniques. The study in [10]
presented a PMU-based DSE algorithm and discussed the
impact of PMUs on a DSE technique. The effects of the
number and locations of PMUs, and weighting factors on
the accuracy of DSE were discussed. While in [11]–[13],
DSE using different measurement weighting functions was
proposed to handle outliers and system sudden changes. In
[14], Gaussian mixtures models were adopted to account for
the stochastic characteristic of power flow in SE process. But
this method is a SSE and does not have forecasting ability.
In [15], a short-term load forecasting method based static SE
was proposed to consider the impacts of load variations on
SE. However, the DG integration was not considered. In [1],
the temporal correlations among loads and DGs were modeled
and integrated into the EKF-based DSE method, resulting in
improvement of SE accuracy. But it does not account for the
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spatial correlations among loads and DGs [16], [17]. Besides,
since KF like methods are not robust to outliers, bad data in
measurements would produce large biases to SE results.

To solve these problems, we propose a robust generalized
maximum likelihood (GM)-estimator based power system
forecasting-aided state estimation (GM-PSE). This estimator
provides an alternative way to integrate both spatial and tem-
poral correlations of DGs and loads explicitly, and is also able
to mitigate the negative impacts caused by bad measurements.
To be specific, the first order vector auto-regressive model
(VAR(1)), which is a good time-series analysis technique
for modeling statistical characteristics of random variables, is
developed to capture the spatial and temporal correlations of
the loads and DGs. The forecasted system power injections
(active and reactive power injections of the loads and DGs)
are further used to derive a new dynamic state transition
model through power balance equations, where the relation-
ship between system state and the system power injections
is presented explicitly. We then derive the redundant batch
regression model that simultaneously processes the predicted
states and the present observations. This redundancy regression
model is very helpful for developing robust estimator to handle
outliers occurred in the observed measurements. Thus, this pa-
per extends the robust Kalman filter in [18] for a linear system
to a nonlinear power system SE problem. The GM-estimator is
developed to bound the influence of observation outliers while
maintaining high estimation statistical efficiency. Finally, the
iteratively reweighted least squares (IRLS) algorithm is used
to solve the GM-estimator.

This paper is organized as follows: the spatial and temporal
correlations of loads and DGs are modeled and analyzed in
Section II. The state transition model and the batch regression
model are derived in Section III. Section IV presents the pro-
posed robust Schweppe-type Huber GM estimator for solving
the regression problem. Numerical simulation results on IEEE
test systems with DGs integration are provided in Section V,
followed by conclusions and future work in Section VI.

II. SHOT-TERM LOAD AND DGS FORECASTING
INTEGRATING SPATIAL AND TEMPORAL CORRELATIONS

Similar to [1], [19], we consider only the randomness caused
by loads and DGs in modeling and analysis for simplicity.
In the literature, time series model based statistical methods
[20], [21], i.e., auto-regressive (AR) process, auto-regressive
moving average (ARMA) process, etc., for loads and DGs
forecasting have been widely used and demonstrated to be
effective. For example, a vector auto-regressive (VAR) model
for solar power forecasting was proposed in [17]. Field data
based tests were conducted to highlight its effectiveness and
the improved performance compared with a simple auto-
regressive (AR) model. [20] has evaluated both AR and AR
with exogenous input (ARX) models for solar power fore-
casting, where the latter takes numerical weather predictions
(NWPs) as input. The results suggested that AR is suitable
for short-term forecasting while AR with exogenous input
(ARX) achieves better performance in a long-term forecasting.
In [21]–[23], AR-type time series models have been shown

to be good statistical methods for short-term wind power
forecasting. Since we are interested in short-term loads and
DGs forecasting, AR-type time series model is adopted. On the
other hand, except for temporal correlations among loads and
DGs in the same geographic area due to weather, economic,
social behavior, the changes of some loads and DGs also
affect other generators and loads in the same geographic
area, presenting cross-correlation, i.e., spatial correlations [24].
Therefore, to perform short-term predictions of loads and
DGs considering their spatial and temporal correlations, the
VAR model is advocated. The time series for active (Pg) and
reactive (Qg) power of DG and active (Pl) and reactive (Ql)
power of load by the order p and dimension D VAR model,
i.e., VARD(p), is expressed as,

Xk = φ1Xk−1 + · · ·φpXk−p + εk, (1)

where X = [Pl Ql Pg Qg]
T ; φ1, · · ·φp ∈ RD×D are

coefficient matrices; εk ∈ RD is Gaussian noise and assumed
to follow N (0,S), where the positive definite matrix S is not
necessary diagonal. In this model, temporal correlations are
contained in the diagonal elements of the estimated φ̂ terms
and the error covariance matrix Ŝ, while spatial correlations
are reflected in the non-diagonal elements of φ̂ terms and Ŝ.
To estimate these auto-regression model parameters, the Yule-
Walker estimator (YW) [25] can be used.

By multiplying by XT
k−j

, j = 1, · · · , p on both sides of (1)
and taking the expectations, we obtain

Π(i) =

p∑
i=1

Π(i− j), i = 1, · · · , p , (2)

where Π(0), · · · ,Π(j) can be estimated by using the sample
covariance matrices

Π (ℓ) =
1

M

M−ℓ∑
k=1

(Xk+ℓ − µ) (Xk+ℓ − µ)
T
, (3)

where ℓ ∈ [0, M − 1], M is the number of considered history
terms; µ is the sample mean of the chosen historical data. In
order not to violate the stationariness and to ensure acceptable
forecasting accuracy, the value of M = 20 is chosen [12], [26].
Then, the forecasting error covariance matrix can be calculated
through [26]

Ŝ = Π (0)−
p∑
i=1

φ̂jΠ (j). (4)

In this paper, following previous work [3], [24], the VAR(1)
is adopted here, yielding the following forecasting model

Xk = φ̂1Xk−1 + εk, (5)

with the forecasting error covariance matrix Ŝk = Π(0) −
Π(1), where φ̂1 = Π(1) ·Π(0)−1.

Remark 1: There might be a singularity problem of inverting
the matrix Π(0) due to small variations in nodal loads and
DGs. To mitigate this issue, the concept of “eligible buses”
and its related determination procedures in [3] can be used.
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III. DERIVATION OF STATE TRANSITION MODEL AND
BATCH REGRESSION MODEL

A. Derivation of the State Transition Model

As mentioned above, the system dynamic changes are
driven by loads and DGs. This means the system state vec-
tor X should be the power injections of loads and DGs,
while the conventional state vector x including nodal voltage
magnitudes and angles should be regarded as the algebraic
state vector. In this paper, the algebraic state vector x is
augmented with X , leading to the full system state vector
Ξ = [XT xT ]T . In fact, power flows at any observed node
is a linear combination of real and reactive power of loads
and generators. Besides, for any node of a power system, the
power balance equation f should be satisfied,

f(Ξ) = f(x,X) = 0. (6)

The full derivation on the above equation indicates

∂f

∂x
dx+

∂f

∂X
dX = Hdx+ dX = 0, (7)

where H = ∂f/∂x = ∂h/∂x is the Jacobin matrix and
h(x) is the power flow equation vector that relates the power
injections of load and generator to the system algebraic state
vector x; I = ∂f/∂X is an identity matrix; dX is the
active and reactive power differences of loads or generators.
Therefore, the commonly used algebraic state vector can be
calculated as

dx = −H−1dX. (8)

In a short time interval, a power system is assumed to
operate under quasi-steady operation status, and loads and
generators do not have large sudden changes. Thus, for two
successfully adjacent system equilibrium operating points, i.e.,
f(xk+1,Xk+1) = 0, f(xk,Xk) = 0, H can be assumed to
be constant. Therefore, we can derive from (8)

xk+1 − xk = −H−1 (Xk+1 −Xk) +wk, (9)

where wk is the linearization error between two equilibrium
operation points and is assumed to be normally distributed
with zero mean. By taking expectations on both sides of (9),
the new algebraic state prediction model is derived as

xk+1|k = x̂k|k −H−1(Xk+1|k −Xk|k) = x̂k|k −H−1X◦
k ,

(10)
where x̂k|k is the filtered algebraic state at time k; Xk+1|k is
the forecasted vector of loads and DGs; Xk|k represents the
actual power injections of loads and DGs at time k; X◦

k =
Xk+1|k−Xk|k . It is clear that in the derived state forecasting
model, the change of system state vector is driven by the power
injections from the loads and generators.

Comment: If there is a singularity problem of inverting the
Jacobian matrix H , the voltage stability issue might occur
[27], [28]. Thus, some preventive actions should be taken to
avoid voltage collapse. In the mean time, we can perform only
a robust static SE [29] to determine the current system states
using received measurements while ignoring the forecasted
state vector.

B. Derivation of the Batch Regression Model
To develop robust estimator, a regression model is the

premise. In [18], the regression model for linear KF has been
derived. However, the power system SE problem is nonlinear.
Thus, a batch regression model for nonlinear SE should be
developed. In this paper, when the state prediction from former
time instant is available, the first-order Taylor series expansion
is applied to linearize the nonlinear measurement function, i.e.,

zk+1 = g(xk+1) + ζk+1, (11)

at the forecasted state xk+1|k , resulting in

zk+1
.
= g

(
xk+1|k

)
+G

(
xk+1 − xk+1|k

)
+ ζk+1, (12)

where zk+1 is the observed measurement vector; g(·) is
the nonlinear measurement function; G = ∂g/∂x is the
measurement Jacobin matrix evaluated at xk+1|k ; ζk+1 ∼
N (0,Rk+1) is the measurement error vector with the error
covariance matrix Rk+1. Combining predictions with obser-
vations zk+1 yields the following batch regression form[

zk+1 − g
(
xk+1|k

)
+Gxk+1|k

xk+1|k

]
=

[
G
I

]
xk+1+

[
ζk+1

δk+1

]
,

(13)
where I is an identity matrix; δk+1 is the error between true
state vector xk+1 and its predicted state vector xk+1|k , and
its covariance matrix is

Σk+1|k = cov (δk+1) = Σk|k +H−1Ŝk
(
H−1

)T
, (14)

where Σk|k and Ŝk are the algebraic state filtering error
covariance matrix and the prediction error covariance matrix
of loads and DGs at time sample k, respectively. (13) can be
put in the following compact form

zk+1 = Hk+1xk+1 + ek+1, (15)

where the covariance matrix of the error e
k+1

is

Ck+1 = E
[
ek+1e

T
k+1

]
=

[
Rk+1 0
0 Σk+1|k

]
= Lk+1L

T
k+1,

(16)
where Lk+1 is obtained by Cholesky decomposition. Before
the prewhitening, we need to detect and downweight the
outliers as they are adding negative impacts. This can be
carried out by using the projection statistics (PS) algorithm.
For example, [18] proposed to apply PS to the matrix Z with
the column vectors zk+1 and zk. However, since the presence
of the term G in (13) would induce smearing effect once bad
data occurs in the predicted state vector, we propose to modify
the PS and apply it to the matrix Z as

Z =

[
zk+1 − g(xk+1|k) zk − g(xk|k−1)

xk+1|k xk|k−1

]
, (17)

where zk+1 − g(xk+1|k) is the innovation vector. Then, the
i-th computed projection statistic value, PSi, is compared to
a given threshold. The flagged outliers are then downweighted
using the following weight function: ϖi = min

(
1, d2/PS2

i

)
,

where d = 1.5 is set to yield good statistical efficiency.
Then, we perform prewhitening by multiplying L−1

k+1
into

both sides of (15),

L−1
k+1

z
k+1

= L−1
k+1

Hk+1xk+1 +L−1
k+1

ek+1, (18)
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yielding the following final batch regression model

y
k+1

= Ak+1xk+1 + ηk+1, (19)

where E[ηk+1η
T
k+1

] = I can be easily verified.
Remark 2: The batch regression model in (19) is a standard

linear squares regression problem with identity weight matrix.
By using the weighted least squares estimation, the state vector
can be estimated as

x̂k+1|k+1 =
(
AT

k+1
Ak+1

)−1

AT
k+1

yk+1, (20)

with the estimation error covariance matrix

Σk+1|k+1 =
(
AT

k+1
Ak+1

)−1

. (21)

Remark 3: With the forecasted state vector xk+1|k and the
nonlinear measurement model in (11), extended Kalman filter
(EKF) technique is widely used in the existing forecasting-
aided SE methods (see [4], [6], [7] for example) to perform
the state filtering. It is interesting that equations shown in
(20) and (21) are equivalent to the state filtering and state
estimation error covariance matrix updating in EKF. This can
be easily proved using the Matrix Inversion Lemma and simple
algebraic operations.

Remark 4: The weighted least squares estimation and EKF
are not robust to any type of outliers since their influence func-
tions are not bounded [18], [30]. Therefore, robust estimator
should be proposed to mitigate the impacts of outliers.

IV. PROPOSED ROBUST ESTIMATOR

To estimate xk+1 in a robust way, this paper proposes to
use the GM estimator that combines the modified PS and the
Huber convex score function. The objective function of the
proposed estimator is expressed as

J(x) =
m∑
i=1

ϖ2
i ρ(rS), (22)

where ρ(·) is the Huber function and can be defined as:

ρ (rS) =

{
r2
S
/2 for |rS | ≤ β

β |rS | − β2/2 for |rS | > β
(23)

associated with its first derivative with respective to rS ,
ψ (rS) = ∂ρ (rS) /∂rS . The parameter β is set to 1.5 with
high efficiency at Gaussian noise [18]; rS is the standardized
residual, i.e., rS = ri/ (sϖi), where ri = yi − aTi x̂ is
derived from (19) and aTi is the ith column vector of the
matrix AT

k+1; s = 1.4826 bm mediani |ri| is the robust scale
estimate and tends asymptotically to σ when the observations
follow N (µ, σ2). In this paper, since the covariance of ηk+1

is an identity matrix, s tends asymptotically to 1; ϖi has been
determined by applying PS on (17). Note that, in the proposed
robust estimator, the ϖi is used to bound the influence of the
measurement and structural errors, while the Huber function
is chosen to bound the influence of the residuals.

A. Solving Proposed Robust Estimator Using IRLS Algorithm
To solve the objective function, we calculate the first order

derivation with respect to x

∂J (x)

∂x
=

m∑
i=1

−ϖiai

s
ψ (rSi) = 0. (24)

It is clear that this is a system of nonlinear equations and
iterative method is required to solve it. Here, the iteratively
re-weighted least square (IRLS) algorithm [18] is adopted.
Multiplying and dividing function ψ(rSi) by rSi yields

m∑
i=1

ai
ψ (rSi)

rSi

·ϖi

s
· rSi = 0, (25)

which can be arranged as a matrix form

(Ak+1)
T
Q

(
y −A

k+1
x̂
)
= 0, (26)

where q (rS) = ψ (rS) /rS and Q = diag (q (rS)).
Then, the estimated states can be obtained through the

following iterations

x̂(l+1)
k+1|k+1

=
(
AT

k+1
Q(l)Ak+1

)−1

AT
k+1

Q(l)yk+1, (27)

where l is the iteration counter. The algorithm converges if∥∥∥x̂(l+1)
k+1|k+1

− x̂(l)
k+1|k+1

∥∥∥
∞
≤ tol, e.g., 10−2, (28)

where ∥·∥∞ is the infinity norm.

B. Estimation Error Covariance Matrix Updating
After the convergence of the IRLS algorithm, the estimation

error covariance matrix Σ
k|k should be replaced and updated

by Σ
k+1|k+1

so that the state forecasting (see equations (10)
and (14)) in the next time sample, i.e., k+2, can be performed.
According to Hampel’s proposal, the asymptotic variance
matrix V of a linear regression model (Y = Xθ + ε for
example) using M-estimator can be derived by the Influence
Function (IF) and is expressed as [30]

V = lim
m→∞

V
(√

mθ̂m

)
= E

[
IF · IF T

]
=

E[ψ2(r)]
(E[ψ′ (r)])

2

(
XTX

)−1 , (29)

where r is the residual. However, in this paper, the GM-
estimator is used, yielding new IF . Following the work in
[18], [30], the new IF can be derived as (due to the space
limitation, the derivation process is not shown here.)

IF (r,Φ) =
ψ (rS)

(EΦ [ψ′ (rs)])
2

(
ATA

)−1
aϖ, (30)

where Φ is the cumulative probability distribution function of
the residual r. Using (29), the asymptotic covariance matrix
of Σ

k+1|k+1
is

Σk+1|k+1 = E
[
IF · IF T

]
=

EΦ[ψ2(rS)]
{EΦ[ψ′ (rS)]}2

(
ATA

)−1(
ATQωA

)(
ATA

)−1 , (31)

where A refers to Ak+1; Qω = diag
(
ϖ2
i

)
. In this paper,

since the threshold β for the Huber estimator is 1.5, the value
of the first term in the right hand side of equation (31) is
1.0369. Please see the Appendix for the detailed calculation.
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C. Algorithm Implementation

The implementation of the proposed robust SE integrating
temporal and spatial correlations of loads and DGs can be
summarized as follows:

Step 1: Estimate the correlation matrix φ̂1 using the his-
torical load and DG data and perform the short-term power
injections of loads and DGs forecasting by equation (5).

Step 2: Perform the state forecasting using equation (10)
and calculate its associated error covariance matrix through
equation (14).

Step 3: Adopt the projection statistic (PS) algorithm to
identify and downweight outliers, followed by the robust
prewhitening using (18).

Step 4: Construct the batch regression model leveraging
equation (19)

Step 5: Use the IRLS algorithm to solve the proposed robust
GM-PSE in an iterative way using equation (27).

Step 6: Increase the loop counter to l ← l + 1 and judge
if the IRLS algorithm has converged for a given tolerance
threshold, otherwise return to Step 5.

Step 7: Calculate and store the estimated injections of the
loads and DGs and update the estimation error covariance
matrix Σ

k|k with Σ
k+1|k+1

.
Step 8: Turn to Step 1 if measurements for the next time

sample, i.e., k + 2, and the historical load and DGs data at
k + 1, are available.

V. NUMERICAL RESULTS

Numerical simulations are conducted on the IEEE bench-
mark test systems with DGs integration for validating the
performance of GM-PSE. This section first describes the test
systems. Then, the evaluation indices are introduced. Finally,
numerical results are presented and analyzed.

A. Description of Test Systems

To test the performance and robustness of GM-PSE, simu-
lations on IEEE 14, 30, 57 and 118 bus test systems are used,
whose data are available in [31]. The scaled 10-min load and
wind data from BPA [32] are used for simulations. This 10-min
interval is filled with 30 samples, which is similar to the sim-
ulations conducted in [3]. The generator outputs are changed
according to the assignment of the participation factors. To
simulate the variations of the systems, the smooth load changes
over a period of time are obtained by successfully running
load flows under different loading conditions. The outcome
of the power flow are regarded as true states and true values
of measurements, which include bus voltages, bus injections
and line flows. The measurements are generated by adding
random additive Gaussian noises with zero mean and standard
deviations of 1% (voltages) or 2% (powers). The measurement
configuration for the four test systems are shown in Table I,
where NoS, NoPJ, NoPF and NoV represents the numbers
of states, power injections, power flow measurements, and
voltage measurements, respectively. The maximal iterations for
the proposed GM-PSE is 20; the threshold for the convergence
is 10−2. All the tests are performed in MATLAB environment
using Intel Core i5 2.5Hz CPU with 8 GB memory computer.

TABLE I
MEASUREMENT CONFIGURATION FOR THE FOUR TEST SYSTEMS

Test system NoS NoPJ NoPF NoV Redundancy
IEEE 14-bus 27 10 34 1 1.67
IEEE 30-bus 59 16 76 2 1.61
IEEE 57-bus 113 36 168 2 1.82
IEEE 118-bus 235 44 352 4 1.70

B. Evaluation Indices
In this study, three methods are used to make comparisons

under different simulation conditions:
• Method 1: Traditional EKF-based SE method (TSE) with

the state space model based state forecasting, where the
state transition matrix is identified by using the Holt’s
linear exponential smoothing method [4].

• Method 2: EKF-based SE method considering the
temporal correlation (SETC). The state forecasting is
performed using the first-order auto-regressive (AR(1))
model and the state accuracy-based weighting function is
used to improve the robustness of the estimator, which is
our previous work in [12].

• Method 3: Proposed robust power system SE method
considering both temporal and spatial correlations (GM-
PSE). The VAR(1) model is used to capture the correla-
tions of loads and DGs, and the GM-estimator is proposed
to robustify the SE.

In order to provide more generalized simulation results
and higher statistical significance, NMC=100 Monte-Carlo
simulations are run for all simulations. The performances of
the three methods are evaluated by the following indices [11]:

Prediction indices: the mean-absolute-error (MAE) of fore-
casted voltage magnitude ṼMAE and voltage angle θ̃MAE ,

ṼMAE =
1

NMC

NMC∑
j=1

1

Ns

Ns∑
i=1

∣∣∣Ṽi − V ∣∣∣ (32)

θ̃MAE =
1

NMC

NMC∑
j=1

1

Ns

Ns∑
i=1

∣∣∣θ̃i − θ∣∣∣ (33)

Filtering indices: the mean-absolute-error (MAE) of filtered
voltage magnitude V̂MAE and voltage angle θ̂MAE ,

V̂MAE =
1

NMC

NMC∑
j=1

1

Ns

Ns∑
i=1

∣∣∣V̂i − V ∣∣∣ (34)

θ̂MAE =
1

NMC

NMC∑
j=1

1

Ns

Ns∑
i=1

∣∣∣θ̂i − θ∣∣∣ (35)

where V , Ṽ , V̂ represent the true, predicted and filtered volt-
age magnitude value, respectively; while θ, θ̃, θ̂ represent the
true, predicted and filtered voltage angle value, respectively;
Ns is the number of states (voltage magnitudes or voltage
angles).

C. Results and Discussion
The effectiveness and robustness of GM-PSE is investigated

from three aspects: normal operation condition, occurrence of
outliers and the occurrence of sudden load change.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TSG.2016.2615473

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON SMART GRID, VOL. , NO. , 2016 6

TABLE II
COMPARISON OF FORECASTING ERROR FOR VOLTAGE MAGNITUDES IN

DIFFERENT TEST SYSTEMS

Method 14-bus 30-bus 57-bus 118-bus
TSE (in pu) 0.0084 0.0611 0.113 0.145

SETC (in pu) 0.0072 0.0574 0.0847 0.104
GM-PSE (in pu) 0.0036 0.0268 0.0365 0.0618

TABLE III
COMPARISON OF FORECASTING ERROR FOR VOLTAGE ANGLES IN

DIFFERENT TEST SYSTEMS

Method 14-bus 30-bus 57-bus 118-bus
TSE (in degree) 0.00938 0.1045 0.1181 0.1217

SETC (in degree) 0.00821 0.0921 0.102 0.1104
GM-PSE (in degree) 0.00345 0.0424 0.0631 0.0703

TABLE IV
COMPARISON OF FILTERING ERROR FOR VOLTAGE MAGNITUDES IN

DIFFERENT TEST SYSTEMS

Method 14-bus 30-bus 57-bus 118-bus
TSE (in pu) 6.5× 10−4 0.0084 0.0095 0.012

SETC (in pu) 5.4× 10−4 0.0063 0.0091 0.0104
GM-PSE (in pu) 4.2× 10−4 0.0047 0.0065 0.0072

TABLE V
COMPARISON OF FILTERING ERROR FOR VOLTAGE ANGLES IN

DIFFERENT TEST SYSTEMS

Method 14-bus 30-bus 57-bus 118-bus
TSE (in degree) 0.0036 0.005 0.0061 0.012

SETC (in degree) 0.0026 0.0036 0.0041 0.0068
GM-PSE (in degree) 0.0023 0.0033 0.0039 0.0047
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Fig. 1. Comparison results of estimating the voltage magnitude at bus 3 in
the IEEE 118-bus system.

5 10 15 20 25 30
15.2

15.25

15.3

15.35

15.4

15.45

15.5

15.55

15.6

15.65

Time sample

E
st

im
at

ed
 A

ng
le

 fo
r 

B
us

 3

 

 
True
TSE
SETC
GM−PSE

Fig. 2. Comparison results of estimating the voltage angle at bus 3 in the
IEEE 118-bus system.

1) Normal Operation Condition: In this subsection, we
consider the slowly changing loads, which are obtained by
adding a random fluctuation with a linear trend (1%-3%) to
the load curve, and the measurement set does not contain bad
data. Tables II-V show the test results for all systems. As it can
be seen from these tables, the GM-PSE that uses the VAR(1)
model considering both temporal and spatial correlations is
able to provide us more accurate forecasting results than the
other two methods. The SETC, which only considers temporal
correlation, performs a little better than the state space model
based forecasting method. These tables also indicate that GM-
PSE method obtains better filtering results than the other two
methods due to the more accurate forecasting results and the
robust filtering technique with high statistical efficiency. For
example, Figs. 1 and 2 show the performance comparisons
of the three approaches in terms of estimating the voltage
magnitude and voltage angle at bus 3 in the IEEE 118-bus
test system. It is clear that GM-PSE obtains the best results
for tracking the trajectory of voltage changes, followed by
the SETC method. Another observation from these results is
that the estimation accuracy of the voltage magnitude of all
three methods is quite similar while that of voltage magnitude
is much different. This indicates the temporal and spatial
correlations among voltage angles are more significant than
those among voltage magnitude.

2) Occurrence of Outliers: To investigate the effects of
outliers on the performance of three estimation methods, all
measurements coming from bus 2 in the IEEE 30-bus system
are contaminated with gross errors at time sample 25, i.e.,
all the measurements related to bus 2 have been increased to
1.8 times of their original values. The simulation results are
presented in Figs. 3 and 4. It is obvious that the standard EKF
based filtering technique, i.e., TSE method, is vulnerable to the
effects of outliers. However, our previous robust SETC method
and the proposed robust estimator, i.e., GM-PSE can bound
the influence of outliers. Thanks to the accurate forecasting
results and the high statistical efficiency of the GM-estimator,
the GM-PSE performs better than the SETC method. The
MAE for filtered voltage magnitude V̂MAE are 0.0034 and
0.0039 for GM-PSE and SETC, respectively. While the MAE
for the filtered voltage angle θ̂MAE of GM-PSE and SETC are
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Fig. 3. Comparison results of estimating the voltage magnitude at bus 2 in
the IEEE 30-bus system when outliers occur.
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Fig. 4. Comparison results of estimating the voltage angle at bus 2 in the
IEEE 30-bus system when outliers occur

0.0048 and 0.0070, respectively. This indicates the efficiency
improvement of estimating voltage magnitude and angle by
using GM-PSE compared with SETC method.

To quantify how many outliers the proposed method can
handle without giving unreliable estimation results, that is,
the breakdown point of the proposed estimator, extensive
simulations on the IEEE 30-test system are conducted. By
replacing a varying number of data points by outliers in the
observation vector zk+1, it is observed that the GM-EKF can
handle up to 25% of outliers among the data set no matter
whether they are vertical or leverage outliers, the worst case
being clustered ones. It is interesting to notice that this is
consistent with the theoretical breakdown point of a GM-
estimator in linear structured regression (e.g., in linearized
power system state estimation model, which involves sparse
Jacobian matrices) [33].

3) Sudden Load Change: To investigate the three methods
in handling the system sudden changes, the estimation of states
of bus 2 in the IEEE 14-bus test system is taken as an example,
where the real power of the load at bus 2 is changed to 0.4
p.u. at the time sample k=4. The reason for change of test
system from the IEEE 30 bus system to the IEEE 14 bus
system is to test the scalability and adaptiveness of the three
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Fig. 5. Comparison results of estimating the voltage magnitude at bus 2 in
the IEEE 14-bus system when sudden load change happens.
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Fig. 6. Comparison results of estimating the voltage angle at bus 2 in the
IEEE 14-bus system when sudden load change happens.

methods (Actually, we have also tested three methods in IEEE
30 bus system and other systems with sudden load change
and the results are consistent with those in the IEEE 14 bus
system here). Figs. 5 and 6 show the simulation results. Since
the voltage magnitude and angle are closely related to the
change of reactive and real power in the transmission system,
respectively, the sudden change of real power at a load will
cause larger voltage angle variations than that of the voltage
magnitudes. This can be seen through Fig. 5, where the voltage
at bus 2 changes more than that of voltage magnitude. It is
obviously observed that with sudden load change, both TSE
and SETC can not track the dynamic variations of the voltage
magnitude and angle at bus 2. However, the GM-PSE can
effectively track their dynamics by putting larger weights for
observations while downweighting the unreliable predictions
significantly. To be more specific, when unpredictable sudden
change happens in power system, the predicted value will be
far away from the actual system states. Unlike the proposed
GM-PSE, the TSE and SETC can not obtain a good tradeoff
between predictions and observations, resulting in unreliable
estimation results.
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VI. CONCLUSION AND FUTURE WORK

The role of forecasting-aided state estimation is increasingly
important for power system real-time modeling and control
in modern energy management center. In this paper, a novel
robust GM-estimator for power system forecasting-aided state
estimation that integrates both temporal and spatial correla-
tions of loads and DGs is proposed. The time series analysis
technique, VAR(1), is used to model the temporal and spatial
correlations. These correlations are further integrated into the
state forecasting model through power flow analysis, resulting
in more accurate state forecasting results. Finally, a GM-
estimator is proposed to bound the influence of observation
outliers while maintaining a high statistical efficiency. Sim-
ulation results on different IEEE test systems under various
operating conditions demonstrate the efficiency and robustness
of the proposed method.

Future work will apply this approach for large-scale realistic
power systems with high penetration of renewable energy
integration. Besides, the robust time series based forecasting
technique, e.g., the Median-of-Ratios Estimator (MRE) [34]
and the Phase-Phase Correlator (PPC) [35], which have high
breakdown points, will be adopted and investigated. Finally,
we are currently working on developing robust detector for
system topology or parameter errors. It is well known that to
handle system topology or parameter errors [36], [37]: (i) the
topology or parameter errors detection problem needs to be
reformulated, which might be different from the state estima-
tion; (ii) a very high level of local measurement redundancy
is required, which is difficult to achieve in practical power
system due to the economic constraints; (iii) a robust detector
with high breakdown point is required since the outliers caused
by topology or parameter errors are strongly correlated. In
our proposed method, because of the enhanced redundancy
from forecasted measurements, and the good robustness of the
projection statistics, measurements corrupted by the topology
or parameter errors can be identified as outliers. However, how
to correlate outliers with topology or parameter errors is still
a challenging problem.
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APPENDIX

In this paper, since the covariance of ηk+1 is an identity
matrix, ηk+1 has been standardized to the standard Gaussian
distribution. Therefore, the probability distribution function of
the residual r can be expressed as ϕ (r) = 1√

2π
e−

r2

2 . On the
other hand, from the Huber function with β = 1.5, we can
calculate

ψ (r) =

{
r for |r| ≤ β
βsign (r) for |r| > β

, (36)

ψ
′
(r) =

{
1 for |r| ≤ β
0 for |r| > β

. (37)

Then, we can further obtain

E
[
ψ

′
(r)

]
=

∫∞
−∞ ψ

′
(r)ϕ (r) dr = 1√

2π

∫∞
−∞ e−

r2

2 dr

= 2Φ (β)− 1 = 0.8664,
(38)

E
[
ψ2 (r)

]
=

∫∞
−∞ ψ2 (r)ϕ (r) dr

= 2 β2

√
2π

∫ −β
−∞ e−

r2

2 dr + 1√
2π

∫ β
−β r

2e−
r2

2 dr

= β2Φ(−β)− 2β√
2π
e−

β2

2 + 2Φ (β)− 1

= 0.7784.

(39)

Finally, we can calculate

E
[
ψ2 (r)

]
(E [ψ′ (r)])

2 =
0.7784

(0.8664)
2 = 1.0369. (40)
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