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1 Introduction
Kropina metrics are homogeneous Lagrangians defined as the ratio of a Riemannian metric and a one-form,
see [20]. Let S be a connected smooth manifold of dimension at least 2, and let g0, ω be, respectively,
a Riemannian metric and a one-form on S. Let us assume that ω does not vanish at any point on S and, for
each x ∈ S, letNx be the kernel ofωx in TxS. The Kropinametric on S associated to g0 andω is the Lagrangian
K : TS \N→ ℝ \ {0}, defined as K(v) := g0(v,v)

ω(v) , whereN := ⋃x∈S Nx.
For our purposes, it will be convenient to define K onA = {v ∈ TS : −ω(v) > 0} as

K(v) = − g0(v, v)2ω(v) (1.1)

in such a way that K is a positive function on A. On this domain K is a conic Finsler metric according to
[16, Definition 3.1 (iii)], i.e. at each point x ∈ S, Kx is a Minkowski norm onAx, in particular for all x ∈ S and
for each v ∈ Ax its fundamental tensor

gv(u, w) :=
∂2

∂t∂s
1
2K

2(v + tu + sw)|t=s=0,

u, w ∈ TxS, is positive definite [16, Corollary 4.12]. We shall often call the couple (S, K) a Kropina space.
Notice that for all x ∈ S, 0 ̸∈ Ax though it is an accumulation point of the indicatrix Ix of K at x, i.e. the

set of vectors {v ∈ Ax : K(v) = 1}. Thus, K is not extendible by continuity at 0. We point out that {0} ∪ Ix is
a compact strongly convex hypersurface in TxS (it is an ellipsoid, see [8, Proposition 2.57]).

The interest in the study of Kropina metrics (1.1) comes from some geometric and physical models.

*Corresponding author: Erasmo Caponio, Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari, Italy,
e-mail: erasmo.caponio@poliba.it. https://orcid.org/0000-0003-1454-8897
Fabio Giannoni, Scuola di Scienze e Tecnologie, Università di Camerino, Camerino, Italy, e-mail: fabio.giannoni@unicam.it.
https://orcid.org/0000-0002-5610-471X
Antonio Masiello, Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari, Italy,
e-mail: antonio.masiello@poliba.it. https://orcid.org/0000-0003-0746-701X
Stefan Suhr, Fakultät für Mathematik, Ruhr-Universität Bochum, Bochum, Germany, e-mail: stefan.suhr@rub.de.
https://orcid.org/0000-0001-6787-9396



684 | E. Caponio et al., Connecting and Closed Geodesics of a Kropina Metric

A first example where a Kropina space (S, K) appears is in general relativity. Let (S, K) be a Kropina
space, let us consider the product manifold S × ℝ and let us denote by t the natural coordinate on ℝ and
by π : S × ℝ → S the canonical projection. Let g be the bilinear tensor field on S × ℝ defined by

g = π∗g0 + π∗ω ⊗ dt + dt ⊗ π∗ω. (1.2)

Since ω does not vanish on S, we have that g is a Lorentzian metric, t is a temporal function and −∇t is
timelike (see [8, Proposition 3.3]). Hence, (S × ℝ, g) is time-oriented by −∇t; moreover ∂t is a lightlike Killing
vector field. Observe now that a vector (v, τ) ∈ TxS × ℝ is future pointing and lightlike if and only if v ∈ Ax
and τ = K(v), K in (1.1). Analogously, (v, τ) ∈ TxS × ℝ is past pointing and lightlike if and only if v ∈ −Ax
and τ = −K(−v).

Thus, the future (resp. past) lightlike cones of the conformal class of (S × ℝ, g) are described by the flow
lines of ∂t and the graph of the function K onA (resp. −A).

This correspondence has been introduced in [8] extending that one between standard stationary Lorentz-
ian metrics and Finsler metrics of Randers type ([6, 7]). Actually in [8], the class of spacetimes S × ℝ con-
sidered is larger and the Killing vector field ∂t can also be spacelike in some points (but in this case, the
associated Finsler geometry is not simply of Kropina or Randers type, see [8] for details).

A secondmodel inwhichKropina spaces appear is related to the Zermelo’s navigation problemwhich con-
sists in finding the paths between two points x0 and x1 that minimize the travel time of a ship or an airship
moving in a wind in a Riemannian landscape (S, g0) (see [9, 29, 32, 34]). If the wind is time-independent,
then it can be represented by a vector field W on S. When g0(W,W) = 1, called critical wind in [8], the solu-
tions of the problem (if they exist) are the pregeodesics of the Kropina metric K(v) := − g0(v,v)

2g0(W,v) associated
to the Zermelo’s navigation data g0 andW which are minimizer of the length functional associated to K, see
[8, Corollary 6.18 (i)]. This result andmore general ones contained in [8] are strictly connected to the causality
properties of the spacetime S × ℝ which is also associated to Zermelo navigation data ([8, Theorem 6.15]).

Recently, Kropinametrics have alsobeen considered in relation to the so-called chains in aCRmanifoldM
(see [10]). Indeed, these can be viewed as curves which are non-constant projections of null geodesics for an
indefinite metric on a circle bundle over M whose action has infinitesimal generator which is a null Killing
vector field. This interpretation leads to a very interesting relation of Kropina spaces with CR geometries and
Lorentz geometry, see also [11, 18].

In [4, Question 2.5.1], the authors asked if a Kropina metric on a compact manifold admits a closed
geodesic (this problem was posed in [8, Remark 6.29] as well). In the present work, we give some results in
that direction plus results concerning the existence of multiple geodesics between two points.

Organization of the Paper. In Section 2, we introduce some notations, andwe give some preliminary results;
in particular we recall Theorem 2.3 from [8] where a connection between geodesics of a Kropina space (S, K)
and lightlike geodesics of the spacetime (S × ℝ, g), g in (1.2) is established.

In Section 3, we introduce an approximation framework of the spacetime (S × ℝ, g), by a family of space-
times (S × ℝ, gε), ε > 0,where ∂t is a timelike Killing field (recall that ∂t is a null Killing field for the spacetime
(S × ℝ, g)). These type of spacetimes are called in the literature standard stationary and variational methods
for their geodesics and their causal properties are nowdays well-developed (cf. [2, 5–7, 12–14, 22, 23]).
In particular, Theorem 3.1, obtained in [6], is the precursor of Theorem 2.3 and together with Lemma 3.2,
it plays a fundamental role in proving existence of geodesics of the Kropina space associated to the limit
spacetime.We emphasize that the same approximation has been profitably employed in [3] to study geodesic
connectedness of a globally hyperbolic spacetime endowed with a null Killing vector field.

In Section 4, we obtain some results about the existence of geodesics between two given points of
a Kropina space (see Proposition 4.1, Corollary 4.3, Theorem 4.4 and Corollary 4.5). In particular, Corol-
lary 4.5 implies that the Zermelo’s navigation problem associated to the data (S, g0) and W, g0(W,W) = 1,
has always a solution in each connected component of the space of curves between two points x0, x1 ∈ S
(see Corollary 4.6).

Section 5 is devoted to the closed geodesic problem. Existence results are given in Theorem 5.1, Corol-
lary 5.2, Theorem 5.3. In Examples 5.4 and 5.5, we apply Theorem 5.3 to prove the existence of a closed geo-
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desic in some particular type of compact Kropina space (in particular, Example 5.4 for an odd-dimensional
sphere can be considered as the Kropina limit of a family of Finsler metrics of the type in Katok’s example
(see [33]). A couple of results for a compact manifold endowed with a periodic Killing vector field Y and
a one-form invariant by the flow of Y are further given in Theorems 5.6 and 5.8. We notice that the latter
holds for any compact Lie groupendowedwith abi-invariant Riemannianmetric anda left-invariant one-form
(Corollary 5.9).

Finally, we point out that a fundamental and natural assumption for the existence of connecting or
closed geodesics in a Kropina manifold is that the space of paths considered, according to the boundary
conditions that the geodesics have to satisfy, must contain at least one admissible path, i.e. a curve γ such
that ω(γ̇(s)) < 0 everywhere (under the point of view of the Zermelo’s navigation problem, we can say that
there must be a “navigable region”). The problem of the existence of such an admissible path is related to
the existence of horizontal paths for the distribution of hyperplanes pointwise representing the kernel of ω
and, indeed, a non-integrability condition for it ensures that there do exist admissible paths (see Corollar-
ies 4.5 and 5.2). Nevertheless, when there exist points in S which are not reachable from a given point by
an admissible path, we show in the Appendix that the boundary of the set of reachable points is a smooth
hypersurface in S.

2 Some Notations and Known Results
The set of continuous and piecewise smooth, admissible curves from x0 to x1 will be denoted by Ωx0x1 (A),
i.e.

Ωx0x1 (A) := {γ : [0, 1] → S : γ(0) = x0, γ(1) = x1, γ̇−(s), γ̇+(s) ∈ A for all s ∈ [0, 1]}

(here γ̇−(s) and γ̇+(s) denote respectively the left and the right derivative of γ at the point s). A geodesic
of (S, K) connecting a point x0 ∈ S to x1 ∈ S is a critical point of the energy functional

E(γ) = 12

1

∫
0

K2(γ̇)ds,

defined on Ωx0x1 (A). Notice that, as A is an open subset of TS, variational vector fields along a curve
γ ∈ Ωx0x1 (A) are well-defined and then it makes sense to define geodesics as critical points of E. More-
over, since the fundamental tensor of K is positive definite onA, it can be proved that the Legendre transform
of K is injective (see [8, Proposition 2.51]) and then a critical point γ of E is smooth and parametrized with
K(γ̇) = const (see also [8, Lemma 2.52]).

Analogously, a closed geodesic is a critical point of E defined on the set

Ω(A) = {γ : [0, 1] → S : γ(0) = γ(1), γ̇−(s), γ̇+(s) ∈ A for all s ∈ [0, 1]},

Remark 2.1. We observe that, also in the simplest cases, a Kropina space can be not geodesically connected.
This essentially may happen because the set Ωx0x1 (A) is empty. For example, consider a constant one-form ω
on ℝn endowed with the Euclidean metric ⟨ ⋅ , ⋅ ⟩. It can be easily seen that the geodesic of (ℝn , ⟨ ⋅ ,⋅ ⟩ω( ⋅ ) ) are the
straight lines which do not lie on the hyperplanes parallel to the kernel of ω. Hence, there is no geodesic (and
no admissible curve) connecting two points belonging to one of such hyperplanes.

Remark 2.2. Notice also that since K(−v) = −K(v), if γ : [0, 1] → S is a geodesic of (S, K) (hence, according
to the above definition, γ̇([0, 1]) ⊂ A) the reverse curve γ̃(s) = γ(1 − s) is a geodesic of (S, −K)with −K viewed
as a conic Finsler metric on −A.

Geodesics of a Kropina space (S, K) are related to lightlike geodesics of the product spacetime (S × ℝ, g), g as
in (1.2). We recall that, since the coefficients of the metric g do not depend on the variable t, the vector field
∂t ≡ (0, 1) is a Killing vector field for (S × ℝ, g), hence if z = z(s) = (γ(s), t(s)) is a geodesic of (S × ℝ, g), then
g(∂t , ż) = ω(ẋ)must be constant. Then the following theorem can be proved.
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Theorem 2.3 ([8, Corollary 5.6 (i)]). Let γ be a piecewise smooth admissible curve in (S, K). Then γ is a pregeo-
desic of the Kropina space (S, K) such that ω(γ̇) = const < 0 if and only if the curve z defined by

z(s) = (γ(s), t(s) = t0 +
s

∫
0

K(γ̇)dr), t0 ∈ ℝ,

is a future pointing lightlike geodesic of (S × ℝ, g) with non-constant component γ.

Observe that for a given t0 ∈ ℝ, z : [a, b] → S × ℝ connects the points (γ(a), t0) and (γ(b), t0 + L(γ)), where
L(γ) is the Kropina length of γ, i.e.

L(γ) :=
b

∫
a

K(γ̇)ds. (2.1)

In particular, by [8, Theorem 5.5 (i)], if γ : [0, T] → S is a non-trivial unit (i.e. K(γ̇) = const = 1) closed geo-
desic of (S, K), then z(t) = (γ(t), t) is a future pointing lightlike pregeodesic such that its component γ is
periodic with period T = L(γ), z(0) = (γ(0), 0) and z(T) = (γ(0), T).

Remark 2.4. When considering lightlike geodesics connecting a point (x0, t0) to a flow line of ∂t passing
through a point different from (x0, t0), Theorem 2.3 can be interpreted as a version, for spacetimes of the
type (S × ℝ, g), g as in (1.2), of the Fermat’s principle in general relativity, stating that lightlike geodesics
connecting a point to a timelike curve τ are the critical points of the arrival time at the curve τ (see [19, 25]).
Indeed, in the class of spacetimes we are considering, the arrival time of a future pointing lightlike curve
z(s) = (γ(s), t(s)) connecting a point (x0, t0) to an integral curve of the field ∂t is T(γ) = t0 + L(γ). We point
out that here τ, which is an integral line of ∂t, is not timelike but lightlike.

3 The Approximation Scheme with Standard Stationary Spacetimes
In this section we fix a Kropina space (S, K) with a Riemannian metric g0 and a never vanishing one-form ω
on the manifold S. For ε > 0, let us consider the standard stationary spacetime (S × ℝ, gε), where

gε = π∗g0 + π∗ω ⊗ dt + dt ⊗ π∗ω − ε dt2. (3.1)

Notice that for each ε > 0, ∂t is a timelike Killing vector field for gε. Let (x0, t0) ∈ S × ℝ and τ(t) = (x1, t) be
the integral line of ∂t passing through the point (x1, 0). Let∇ be the Levi-Civita connection of the Riemannian
metric g0. Let us denote by d0 the distance induced on S by g0. Moreover, let ‖ ⋅ ‖x be the norm on the space
of linear operators on TxS endowed with the norm associated to the scalar product (g0)x, x ∈ S.

The geodesic equations for (S × ℝ, gε) are the following:

{
ω(ẋε) − ε ̇tε = cε ,
∇ẋε ẋε = ̇tεΩ♯(ẋε) − ω♯ ̈tε ,

(3.2)

while those of (S × ℝ, g) are

{
ω(ẋ) = c0,
∇ẋ ẋ = ̇tΩ♯(ẋ) − ω♯ ̈t,

(3.3)

where cε , c0 ∈ ℝ andω♯ and Ω♯ are the vector field and the (1, 1)-tensor field g0-metrically equivalent respec-
tively to ω and Ω = dω.

The geodesic equations (3.2) for the standard stationary spacetime gε and (3.3) for the metric g can be
obtained as the Euler–Lagrange equations of the respective energy functionals

Iε(x, t) =
1
2

1

∫
0

gε(ż, ż)ds =
1
2

1

∫
0

[g0(ẋ, ẋ) + 2ω(ẋ) ̇t − ε ̇t2]ds
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and

I0(x, t) =
1
2

1

∫
0

g(ż, ż)ds = 12

1

∫
0

[g0(ẋ, ẋ) + 2ω(ẋ) ̇t]ds. (3.4)

We point out that the constants cε and c0 respectively in (3.2) and (3.3) derive from the fact that ∂t is a Killing
vector field both for gε and g, and so it gives rise to the conservation laws gε(żε , ∂t) = cε and g(ż, ∂t) = c0,
where zε = (xε , tε) and z = (x, t) are geodesics respectively for the metric gε and g.

Let us recall now the following:

Theorem 3.1 (Fermat principle in standard stationary spacetimes [6]). A curve zε : [0, 1] → S × ℝ given by
zε(s) = (xε(s), tε(s)) is a future pointing lightlike geodesic of (S × ℝ, gε) if and only if xε is a pregeodesic of the
Randers metric on S

Fε(v) :=
1
ε (
√εg0(v, v) + ω2(v) + ω(v)),

parametrized with εg0(ẋε , ẋε) + ω2(ẋε) = const and

tε(s) = t0 +
s

∫
0

Fε(ẋε(r))dr. (3.5)

From Theorem 3.1, for a future pointing lightlike geodesic of (S × ℝ, gε), we have

tε(1) = t0 + Lε(xε), (3.6)

where Lε(xε) is the length of xε w.r.t. the Randers metric Fε,

Lε(xε) =
1
ε

1

∫
0

(√εg0(ẋε , ẋε) + ω2(ẋε) + ω(ẋε))dr. (3.7)

In the next lemmawe give a condition ensuring that a family of future pointing lightlike geodesics (xε , tε)
converges in the H1-topology to a future pointing lightlike geodesic of (S × ℝ, g). Let H1([0, 1],ℝ) be the
Sobolev space of absolute continuous functions on [0, 1]with derivative in L2. Moreover, let H1

0([0, 1],ℝ) be
the subspace of H1([0, 1],ℝ) consisting of functions τ(s) such that τ(0) = τ(1) = 0. Henceforth, we denote
by P(S) both the Sobolev manifolds Λ(S) of H1 free loops on S or Λpq(S) of H1 paths between two points p
and q (possibly equal) in S.

Lemma 3.2. Assume that the Riemannian manifold (S, g0) is complete and there exists a point x̄ and a positive
constant Cx̄ such that ‖ω‖x ≤ Cx̄(d0(x, x̄) + 1). For each ε ∈ (0, 1), let zε = (xε , tε) : [0, 1] → S × ℝ be a future
pointing lightlike geodesic of (S × ℝ, gε). Let ∆ε := tε(1) − tε(0) and let us assume that ∆ := supε∈(0,1) ∆ε ∈ ℝ.
Then there exists a sequence εn → 0 such that (xεn , tεn ) converges in P(S) × H1([0, 1],ℝ) to a future pointing
lightlike geodesic z = (x, t) of (S × ℝ, g).

Proof. By [22, Theorem 3.3.2 and equations (3.5) and (3.17)], for each ε > 0, xε is a critical point of the
following functional Jε defined on P(S),

Jε(x) =
1
2

1

∫
0

g0(ẋ, ẋ)ds +
1
2ε

1

∫
0

ω2(ẋ)ds − ε2(∆ε −
1
ε

1

∫
0

ω(ẋ)ds)
2

and Jε(xε) = 0, for all ε > 0. Then
1

∫
0

g0(ẋε , ẋε)ds ≤ ε∆2ε + 2∆ε
1

∫
0

|ω(ẋε)|ds ≤ ∆2 + 2∆
1

∫
0

|ω(ẋε)|ds

and, as in [2, Lemma 2.6], we obtain that the family of curves (xε)ε∈(0,1) is bounded in P(S). Moreover, from
the second equation in (3.2), using the fact that ∆ε is bounded, as in [3, Lemma 6.2] we get that the family
( ̇tε)ε∈(0,1) is also bounded in L2([0, 1],ℝ).
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Now, for each ε, zε is a critical point of the energy functional Iε of the Lorentzian metric gε, i.e.
1

∫
0

(g0(ẋε , ∇ẋε ξε) + ̇tεg0(∇ξεω♯, ẋε) + ̇tεg0(ω♯, ∇ẋε ξε))ds +
1

∫
0

ω(ẋε)τ̇ ds − ε
1

∫
0

̇tε τ̇ ds = 0 (3.8)

for any variational vector field ξε, i.e. ξε ∈ TxεP(S), and for any H1
0([0, 1],ℝ) function τ. As ( ̇tε)ε∈(0,1) is

bounded in L2([0, 1],ℝ), we get ε ∫10 ̇tε τ̇ → 0 as ε → 0. Then, as in [22, Lemma3.4.1], there exists a sequence
εn → 0 such that (xεn ) strongly converges to x ∈ P(S) as n →∞. Taking in (3.8) ξεn = 0, for each εn, we get
∫
1
0 ω(ẋεn )τ̇ − εn ∫

1
0
̇tεn τ̇ ds = 0 and then passing to the limit on n, ∫10 ω(ẋ)τ̇ ds = 0. Therefore,ω(ẋ) is constant.

Now let t be the weak limit in H1([0, 1],ℝ) of a sequence tεn , εn ∈ (0, 1), εn → 0 as n → +∞. Then, since xεn
strongly converges to x, the curve z(s) = (x(s), t(s)) satisfies

1

∫
0

(g0(ẋ, ∇ẋξ) + ̇tg0(∇ξω♯, ẋ) + ̇tg0(ω♯, ∇ẋξ))ds = 0 (3.9)

for any ξ ∈ TxP(S). Therefore, z is a critical point of the energy functional I0 in (3.4) of the Lorentzian metric
g defined on P(S) × ({t} + H1

0([0, 1],ℝ)).
By considering any H1 variational vector field along z with compact support in a neighborhood J con-

tained in (0, 1) of any instant s0 ∈ (0, 1), and decomposing it in its components in x∗|J(TS) and H
1(J,ℝ), this

property of z remains true locally. Therefore, as the Lagrangian (p, v) ∈ T(S × ℝ) 󳨃→ gp(v, v) is regular, it can
be proved that z is smooth (see, e.g. [1, pp. 609–610]) and, therefore, it is a geodesic of (S × ℝ, g). (Notice
also that if P(S) = Λ(S), as x satisfies (3.9) it must be a smooth 1-periodic curve.)

Since Iεn (zεn ) → I0(z), as n →∞, and Iε(zε) = 0,we have that z is lightlike. Finally, z is future pointing if,
by definition, ̇t(s) > 0 for all s ∈ [0, 1]. Notice that ̇t(s) cannot vanish at some s ∈ [0, 1] because z is lightlike.
Hence, ̇t cannot be negative otherwise 0 > t(1) − t(0) = limn→∞(tεn (1) − tεn (0)) ≥ 0.

Remark 3.3. Notice that if P(S) = Λ(S) and the limit curve z(s) = (x(s), t(s)) has component x which is
not constant, then −ω(ẋ) > 0, i.e. x is admissible. This comes from the fact that, being zεn future pointing
in (S × ℝ, gεn ),

0 > gεn (żεn , ∂t) = ω(ẋεn ) − εn ̇tεn =
1

∫
0

(ω(ẋεn ) − εn ̇tεn )ds →
1

∫
0

ω(ẋ)ds = ω(ẋ) as n →∞,

and the constantω(ẋ) cannot be0otherwise, as z is lightlike in (S × ℝ, g),wewouldhave g0(ẋ, ẋ) = const = 0.

4 The Existence of Geodesics Connecting Two Points
We refer to [24] for standard notations and notions about causality as, e.g., the subsets I+((x0, t0)) and
J+((x0, t0)) which represent the set of points in a spacetime (S × ℝ, h) which can be connected to (x0, t0) by
a future-pointing timelike or, respectively, causal curve.

Proposition 4.1. Let (S, − g0( ⋅ ,⋅ )2ω( ⋅ ) ) be a Kropina space and let x0, x1 be two points on S such that x0 ̸= x1 and
Ωx0x1 (A) ̸= 0. Assume that the Riemannianmanifold (S, g0) is complete and there exists a point x̄ and a positive
constant Cx̄ such that ‖ω‖x ≤ Cx̄(d0(x, x̄) + 1). Then there exists a geodesic γ of the Kropina space connecting x0
to x1 and which is a global minimizer of the Kropina length functional on Ωx0x1 (A).

Proof. Since g0 is complete and ‖ω‖x ≤ Cx̄(d0(x0, x) + 1), from [28, Proposition 3.1 and Corollary 3.4] the
spacetimes (S × ℝ, gε) are globally hyperbolic, for each ε > 0, with Cauchy hypersurfaces S × {t}, t ∈ ℝ. As
for any vectorw ∈ TS × ℝ, g(w, w) ≤ 0 implies gε(w, w) < 0, also (S × ℝ, g) is globally hyperbolicwith Cauchy
hypersurfaces S × {t}, t ∈ ℝ.

Let Υ = {t ∈ (0, +∞) : (x1, t0 + t) ∈ J+((x0, t0))}. Now let γ0 ∈ Ωx0x1 (A) and consider the curve defined
by z(s) = (γ0(s), t(s)), with t(s) = t0 + ∫

s
0 K(γ̇0)dr, which is lightlike and future pointing in (S × ℝ, g). Then
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L(γ0) ∈ Υ, i.e. Υ ̸= 0. Let T = inf Υ. The point (x1, t0 + T) clearly belongs to J+((x0, t0)) \ I+((x0, t0)) hence
there exists a future pointing lightlike geodesic z(x) = (γ(s), t(s)) connecting (x0, t0) to (x1, T) (see [24, Propo-
sition 10.46]). By Theorem 2.3, the projection γ is a pregeodesic of (S, K) which connects x0 to x1 and mini-
mize the Kropina length functional.

Remark 4.2. As a globally hyperbolic spacetime is causally simple, Proposition 4.1 can be deduced by
[8, Theorem 4.9 (i)] which concerns the more general case of a spacetime S × ℝ where ∂t is a causal Killing
vector field. For a related result see [17, Proposition 3.22].

Following [10, Section 5], we know that the condition of the existence of an admissible curve between two
points in S is ensured provided a non-integrability condition for the kernel distribution N of ω is satisfied.
Precisely, ifω ∧ dω ̸= 0 ina connected, dense subset of S then there exists a smoothadmissible curvebetween
any two points p and q in S. Hence we get the following result about geodesic connectedness of a Kropina
space that extends [10, Theorem 1.5] valid in the compact case:

Corollary 4.3. Let (S, g0)be a complete Riemannianmanifold andω beanowhere vanishing one-form such that
there exists a point x̄ and a positive constant Cx̄ with ‖ω‖x ≤ Cx̄(d0(x, x̄) + 1) and ω ∧ dω ̸= 0 in a connected,
dense subset of S. Then the Kropina space (S, − g0( ⋅ ,⋅ )2ω( ⋅ ) ) is geodesically connected.

A multiplicity result holds if the fundamental group of S is non-trivial. This is based of the observation that
the sequence of the lengths ∆ε : tε(1) − tε(0) (or equivalently of the travel times as measured by observers at
infinity in the standard stationary spacetimes (S × ℝ, gε)), of the geodesics xε in Lemma3.2 can be controlled
fromabove provided these geodesicsminimize the Fε-length in somehomotopy classC ⊂ Λx0x1 (S) containing
at least one admissible curve γ.

Theorem 4.4. Let (S, − g0( ⋅ ,⋅ )2ω( ⋅ ) ) be a Kropina space and let x0, x1 be two points on S, x0 ̸= x1. Assume that
the Riemannian manifold (S, g0) is complete and there exists a point x̄ and a positive constant Cx̄ such that
‖ω‖x ≤ Cx̄(d0(x, x̄) + 1). Then for each connected componentC of Λx0x1 (S) there exists a geodesic of the Kropina
space from x0 to x1, which is a minimizer of the Kropina length functional on C, provided that there exists an
admissible curve γ ∈ C. Moreover, if C corresponds to a non-trivial element of the fundamental group of S, a
geodesic loop in C exists when x0 and x1 coincide.

Proof. Let xε be a geodesic of (S, Fε) with minimal Fε-length in C. From (3.6) we get

∆ε := Lε(xε) ≤ Lε(γ),

for each ε > 0, where Lε is defined at (3.7). Since γ ∈ C is admissible, we obtain

Lε(γ) =
1
ε

1

∫
0

−ω(γ̇)(√ εg0(γ̇, γ̇)
ω2(γ̇)

+ 1 − 1)dr ≤ 1ε

1

∫
0

1
2
εg0(γ̇, γ̇)
−ω(γ̇)

dr = L(γ) (4.1)

for all ε > 0, where L is defined in equation (2.1). Thus, supε∈(0,1) ∆ε ∈ ℝ. After parametrizing xε with
εg0(ẋε , ẋε) + ω2(ẋε) = const (recall Theorem 3.1), a sequence εn → 0 exists such that the curves (xεn , tεn )
converge to a future pointing lightlike geodesic (x, t) of (S, g) by Lemma 3.2. Therefore, by Remark 3.3, x
is admissible and then by Theorem 2.3, it is a pregeodesic of (S, K). In order to show that it minimizes the
length in C, let us assume that there exists an admissible curve γ1 ∈ C such that L(γ1) < L(x). From (4.1),
Lεn (xεn ) ≤ Lεn (γ1) ≤ L(γ1); as Lεn (xεn ) = tεn (1) − tεn (0) → t(1) − t(0) = L(x) we get a contradiction.

Corollary 4.5. Under the assumption of Theorem 4.4, assume also that ω ∧ dω ̸= 0 in a connected, dense sub-
set of S. Then for each connected component C of Λx0x1 (S) there exists a geodesic of the Kropina space from
x0 to x1 which is a minimizer of the Kropina length functional on C. Moreover, if C corresponds to a non-trivial
element of the fundamental group of S, a geodesic loop in C exists when x0 and x1 coincide.

Proof. By Theorem 4.4, it is enough to show that C contains an admissible curve. In fact, if γ0 is any curve in
C, by [10, Theorem 1.5 (A)], we can select a finite number of points pj belonging to the support of γ0 and an
equal finite number of convex neighborhood Uj (convex with respect to the metric g0) covering γ0 such that
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any point in Uj can be joined to pj by an admissible smooth curve (actually a length minimizing geodesic for
the Kropina metric). In such a way we obtain a piecewise smooth admissible curve γ belonging to the same
class C of γ0.

As a consequence, from Corollary 4.5, under the non-integrability assumption for the kernel distribution of
the one-form g0-metrically equivalent to W, we get that the Zermelo’s navigation problem on the complete
Riemannian manifold (S, g0) with critical wind W has a solution in each homotopy class of curves between
x0 and x1 in S.

Corollary 4.6. Let (S, g0)be a complete Riemannianmetric andW bea vector field on S such that g0(W,W) = 1.
Then the Zermelo’s navigation problem (with data g0 andW) between two points x0, x1 ∈ S, x0 ̸= x1, has a solu-
tion in each connected component C of Λx0x1 (S) provided that there exists at least one admissible curve in C.
In particular, this happens if ω ∧ dω ̸= 0 in a connected, dense subset of S. Moreover, if C corresponds to
a non-trivial element of the fundamental group of S, a solution exists when x0 and x1 coincide.

Proof. It is enough to observe that the one-form metrically equivalent toW has constant g0-norm equal to 1
and therefore the assumption on the growth of ‖ω‖x in Theorem 4.4 holds. Thus, the curves which minimize
the length functional of the Kropina metric − g0( ⋅ ,⋅ )

2g0(W,⋅) are solutions of the Zermelo’s navigation problem with
data g0 andW, see [8, Proposition 2.57 (ii) and Corollary 6.18 (i)].

5 The Existence of Closed Geodesics
We first consider the case when the fundamental group of S is non-trivial. It is well known that any Finsler
metric F on a compact manifold S admits a closed geodesic in each connected component of the free loop
space Λ(S)which is aminimizer of the energy functional of F and also of its length functional. As in the state-
ment of Lemma3.2, given a closed geodesic xε in (S, Fε), we denote by ∆ε the time travel of the corresponding
future pointing lightlike pregeodesic zε(s) = (xε(s), tε(s)) in (S × ℝ, gε), tε = tε(s) given by (3.5), which also
coincides with the Fε-length of xε. Therefore, arguing as in the proof of Theorem 4.4 we obtain the following
result that can be interpreted, by the viewpoint of Zermelo’s navigation problem, as the possibility of round
trips which minimize the navigation time if the topology of the sea is non-trivial.

Theorem 5.1. Let S be a compact manifold having zero Euler characteristic and non-trivial fundamental group
endowed with a Kropina metric K := − g0( ⋅ ,⋅ )2ω( ⋅ ) . Then (S, K) admits a (non-trivial) closed geodesic with minimal
Kropina length in each connected component C of Λ(S) which does not correspond to a non-trivial conjugacy
class of the fundamental group provided that C contains at least one admissible closed curve.

Analogously to Corollary 4.5, the following also holds:

Corollary 5.2. Under the assumptions of Theorem 5.1, assume further that ω ∧ dω ̸= 0 in a connected, dense
subset of S. Then (S, K) admits a (non-trivial) closed geodesic with minimal Kropina length in each connected
component C of Λ(S) which does not correspond to a non-trivial conjugacy class of the fundamental group.

We give now an existence result in a setting including possibly the cases that S is simply connected or non-
compact.We also allowω vanishing somewhere in S, andwedenote by S0 the set of points x ∈ Swhereωx = 0
(S0 being possibly empty).

Theorem 5.3. Let (S, g0) be a Riemannian manifold and let ω be a one-form on S. Let (εn)n be an infinitesimal
sequence of positive numbers and, for each n ∈ ℕ, and let xεn be a closed geodesic of the Randers metric Fεn .
Assume that ∆ := supn ∆εn ∈ ℝ and the images of the curves xn are contained in a compact set C included in
an open subset U ⊂ S \ S0 with compact closure such that xn are non-contractible in U. Then the Kropina space
(S \ S0, − g0( ⋅ ,⋅ )2ω( ⋅ ) ) admits a (non-trivial) closed geodesic.

Proof. We can apply Lemma 3.2 to the sequence of standard stationary spacetimes ((S \ S0) × ℝ, gεn ). As
the images of xεn are contained in the compact subset Ū, we can assume both completeness of g0 and
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boundedness of ‖ω‖x. Hence, up to reparametrization, the sequence of future-pointing lightlike geodesics
(xεn , tεn ) converges in Λ(S \ S0) × H1([0, 1],ℝ) to a future pointing lightlike geodesic (x, t) of the spacetime
((S \ S0) × R, g). Since xn → x in the C0-topology, if xwas a constant curve in C̄ then, for εn small enough, xεn
would be contractible in U. Therefore, x is a closed pregeodesic of the Kropina space (S \ S0, − g0( ⋅ ,⋅ )2ω( ⋅ ) ).

In some cases it is possible to control from above the lengths ∆ε of the prime closed geodesics of the Randers
metrics associated to the approximating stationary spacetimes (S × ℝ, gε).

Example 5.4 (Kropina Limit of Katok Metrics). In order to show a class of examples we need to change a bit
the approximation scheme. Let us replace the one-form ω in (3.1) by√1 − εω, so that the stationary Lorentz-
ian metric gε is now given by

gε := π∗g0 + √1 − επ∗ω ⊗ dt + dt ⊗ √1 − επ∗ω − ε dt2.

The Randers metrics
Fε(v) =

1
ε (
√εg0(v, v) + (1 − ε)ω2(v) + √1 − εω(v))

defined by the modified gε is also associated to the Zermelo data

hε =
g0

ε + (1 − ε)‖ω‖2
and Wε = −√1 − εω♯,

see [8, Proposition 3.6] and [26, p. 1634]. Let S = 𝕊n, n ≥ 2 and g0 be the round metric on 𝕊n. Let us assume
thatω♯ is a Killing vector field for g0. Then the Randersmetric Fε obtained in this case is one of the celebrated
examples considered by Katok. It is well known that the resulting Randers metrics admit at least 2m, n = 2m
or n = 2m − 1, closed geodesics which correspond to them great circles Ci invariant by the flow ofω♯, each of
them considered twice according to the orientation (see [26, 33]). Let us assume that ‖ω♯‖x = 1 for all x ∈ Ci
and let us parametrize the Fε-geodesics with unit velocity with respect to the metric g0. Then the Fε length
of these geodesics is given by

∆ε =
2π
ε
(1 − √(1 − ε) = 2π

1 + √1 − ε
if they are parametrized in the same direction of the rotation, and

∆ε =
2π
ε
(1 + √(1 − ε) = 2π

1 − √1 − ε
in the other case. Thus, the first family of geodesics has uniformly bounded length and since for each i,
their support is Ci, they converge to a geodesic of the Kropina space (𝕊2m−1, − g0( ⋅ ,⋅ )2ω( ⋅ ) ) if n = 2m − 1 and of
(𝕊2m \ {p, q}, − g0( ⋅ ,⋅ )2ω( ⋅ ) ) if n = 2m and p, q are two antipodal points on the sphere where ω♯ vanishes. Thus,
both these Kropina space admits at leastm distinct closed geodesics of length π and support them circles Ci.

Example 5.5. The above example can be generalized as follows. Let (S, g0) be a compact Riemannian mani-
fold endowedwith a non-trivial periodic Killing vector fieldW (i.e. all orbits ofW are closed). It is well known
that (S, g0) admits at least one non-constant closed geodesicwhich is one of these orbits (it corresponds to the
geodesicwith initial conditions p andWp where g0(Wp ,Wp) = max{x ∈ S : g0(Wx ,Wx)}). Let γ be such a geo-
desic. Since g0(Wγ(t),Wγ(t)) is constant along γwe call it c2 andwe consider the Killing vector field W

c . Hence,
g0(Wc ,

W
c ) ≤ 1. Let us then consider a perturbation parameter α < 1. Then the Randers metrics on S defined

by the Zermelo navigation data g0 and √αc W, for each α ∈ (0, 1), admit γ as a closed geodesic by [26, Theorem
2], counted twice considering as a different geodesic the one obtained by reversing the orientation of γ. The
shortest of these two geodesics has length

∆α =
T

1 − α (1 −
√α) = T

1 + √α
,

where T is the g0-length of γ. As ∆α are bounded, from Theorem 5.3 by passing to the limit as α → 1, we
conclude that the Kropinametric K(v) = g0(v,v)

2g0(W,v) on S \ S0 admits γ as closed geodesic with Kropina length T
2 .

Assuming that the one-form ω is invariant by the flow of a Killing vector field Y (i.e. the Lie derivative LYω
vanishes) and constant on it, gives a result about existence of at least two closed geodesics even when ω is
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not the one-form metrically associated to Y; in this case the approximation with stationary spacetimes can
be bypassed.

Theorem 5.6. Let (S, g0) be a compact Riemannianmanifold, endowedwith a non-trivial periodic Killing vector
field Y, and let ω be a one-form such that ω(Y) < 0 is constant and LYω = 0. Then there exist at least two closed
(non-trivial) geodesics of the Kropina metric K = − g0( ⋅ ,⋅ )2ω( ⋅ ) .

Proof. Notice that being ω(Y) < 0, Y does not vanish at any point of S and then its orbits are non-constant.
Then the conclusion follows by observing that there are at least two orbits, passing through a minimizer
and a maximizers of the function p ∈ S 󳨃→ g0(Yp , Yp)which are geodesics for the Riemannian metric g0 and,
under our assumptions, they are geodesics of the Kropina metric as well. In fact, let γ : [0, T] → S be one of
these two orbits (the period T depending on γ). Since Y is Killing and LYω = 0, both g0(γ̇, γ̇) and ω(γ̇) are
constant along γ. Moreover, being ω(Y) < 0, γ is a smooth admissible curve. Then the first variation of the
length functional of K with respect to any smooth periodic vector field ξ along γ is well-defined and given by

−
1
2

T

∫
0

(
2g0(γ̇, ∇0γ ξ)

ω(γ̇)
−
g0(γ̇, γ̇)(dω(ξ, γ̇) + d

ds (ω(ξ)))
ω2(γ̇)

)ds, (5.1)

where ∇0γ is the covariant derivative along γ induced by the Levi-Civita connection of the metric g0. Hence,
integrating by parts and using that dω(Y, ξ) = (LYω)(ξ) − ξ(ω(Y)) = 0 (recall that γ is an orbit of Y), we get
that the above integral reduces to

T

∫
0

g0(∇0γ γ̇, ξ)
ω(γ̇)

ds,

which is 0 for all ξ .

Remark 5.7. If Y has constant length too, then (S, − g0( ⋅ ,⋅ )2ω( ⋅ ) ) admits infinitely many closed geodesics.

Nevertheless, the assumption Y has constant length can replace ω(Y) constant.

Theorem 5.8. Let (S, g0) be a compact Riemannianmanifold, endowedwith a non-trivial periodic Killing vector
field Y of constant length, and let ω be a one-form such that ω(Y) < 0 everywhere and LYω = 0. Then there exist
at least two closed (non-trivial) geodesics of the Kropina metric K = − g0( ⋅ ,⋅ )2ω( ⋅ ) .

Proof. As in the previous proof consider the first variation (5.1) of theKropina length of an orbit γ : [0, T] → S
of Y in the direction of a periodic vector field ξ along γ. Note that ω(γ̇) is constant and therefore can be
removed from under the integral. Then the first term vanishes since the length of Y with respect to g0 is
constant and therefore γ is a g0-geodesic.

Next consider the critical points of the function f := p ∈ S 󳨃→ ωp(Yp). Since LYω = 0, it follows that f
is constant along orbits of Y. Let then γ be an orbit whose points are all critical for f . With the formula
dω(Y, ξ) = (LYω)(ξ) − ξ(ω(Y)) = 0and the periodicity of ξ , we see that the first variation of theKropina length
of γ vanishes. As S is compact, there exist at least two critical points of f whose values are both negative. The
orbits through these two points are the required closed geodesic of K.

Notice that in particular Theorem5.8 holdswith the assumptions of a strongKropinametricwith quasi-regular
Killing field of [27].

We finish this section with a result for a Kropina metric on a compact Lie group endowed with a bi-invar-
iant Riemannian metric.

Corollary 5.9. Let S be a compact Lie group endowed with a bi-invariant Riemannian metric and a non-trivial
left-invariant one-form ω. Then the Kropina metric K = − g0( ⋅ ,⋅ )2ω( ⋅ ) on S admits at least two closed (non-trivial)
geodesic.

Proof. We will construct a right-invariant periodic vector field Y such that ω(Y) < 0 everywhere. As g0 is
bi-invariant, the vector field Y is a Killing vector field of g0 with constant length. It further preserves ω since
the form is left-invariant. The claim then follows from Theorem 5.8.
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For the construction of Y we start with an arbitrary right-invariant vector field X on S such that ω(X) < 0
everywhere. This is possible since ω is non-trivial and left-invariant. Let H be closure of the subgroup gen-
erated by X. Since S is compact, it follows that H is a compact abelian group, i.e. H ≅ Tk for some k. We can
now choose a compact 1-dimensional subgroup of H whose generator Ye lies arbitrary close to Xe, especially
ωe(Ye) < 0. The right-invariant vector field Y associated to Ye is then the desired right-invariant periodic
vector field.

A On the Boundary of a Reachable Set
In light of the problem of existence of paths with finite Kropina length between given points the ques-
tion begs itself what can be said about the set of reachable points. Recall from the introduction that
A := {v ∈ TS| − ω(v) > 0}, and an absolutely continuous curve γ : I → S is admissible if γ̇(t) ∈ A for almost all
t ∈ I. For x ∈ S, define then I±ω(x) to be the sets of terminal or initial points of admissible curves with starting
or ending at x. It is well known that these sets are open for all x ∈ S and the induced relation is transitive.
Under the assumption that ω ∧ dω ̸= 0 on a dense and connected set, the Chow–Rashevsky Theorem (see
[15, Section 1]) implies that any pair of points is connected by an admissible curve, i.e. I±ω(x) = S for all x ∈ S.

In analogy to spacetime geometry we will prove the following analog, see [24, Proposition 14.25]. Note
that this is related to the integrability of distributions, see [30, 31].

Theorem A.1. Let S be connected and x ∈ S such that I+ω(x) ̸= S. Then the boundary Σ := ∂I+ω(x) is a (non-
empty) smooth hypersurface which separates S.

Remark A.2. Wemake the following observations.
(a) The opposite set ∂I−ω(x) has the same properties under the appropriate assumptions.
(b) By the Chow–Rashevsky Theorem we know that at every point p ∈ ∂I+ω(x) we have ωp ∧ dωp = 0.

Proof. The result is local in nature therefore the proof is a local argument.

First Step: Σ is a topological hypersurface. Let p ∈ Σ and let us choose coordinates ϕ = (ϕ1, . . . , ϕn) in
a neighborhood U of p such that ϕ(p) = 0 and −ωp = (dϕn)p. By restricting ϕ if necessary, we can assume
that the intersections of kerωq, q ∈ U, with the double cones {v ∈ TU : |dϕn(v)| ≥ ∑n−1i=1 |dϕi(v)|} only contain
the zero section. This follows from the continuity of ϕ and ω. Since any neighborhood of p contains points
in I+ω(x), we obtain

C+ := {q ∈ U : ϕn(q) >
n−1
∑
i=1
|ϕi(q)|} ⊂ I+ω(x).

Analogously it follows from the fact that every neighborhood of p contains points in I+ω(x)
c
that

C− := {q ∈ U : −ϕn(q) >
n−1
∑
i=1
|ϕi(q)|} ⊂ I+ω(x)

c
.

So every line t 󳨃→ (q1, . . . , qn−1, t) will pass Σ exactly once. Like in the case of achronal surfaces (see
[24, Proposition 14.25]) we see that the intersection point depends Lipschitz continuously on (q1, . . . , qn−1).
Therefore, near p the set Σ is the graph of a Lipschitz function σ.

SecondStep: Σ is a C1-hypersurface. Weclaim that Σ has a tangent space everywhere and TΣq = kerωq for all
q ∈ Σ. The claim readily implies the continuous differentiability of Σ. To prove the claim, consider coordinates
ϕ around p ∈ Σ and function σ as before. Further, let η : (−ε, ε) → {ϕn = 0}be a Lipschitz curvewith η(0) = q.
Then t 󳨃→ (η(t), σ ∘ η(t)) defines a Lipschitz curve in Σ. If lim supt→0

|σ∘η(t)|
|η(t)| is positive, up to consider larger

cones than the ones defined in the first step,we conclude that (η(t), σ ∘ η(t)) ∈ I+ω(x) or (η(t), σ ∘ η(t)) ∈ I+ω(x)
c

for |t| sufficiently small, a contradiction. Therefore we have

lim sup
t→0

|σ ∘ η(t)|
|η(t)|

= 0

for every Lipschitz curve η, i.e. TΣq = ker(dϕn)q = kerωq.
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Third Step: Σ is smooth. Without loss of generality, we can assume that the codomain of the local coordi-
natesϕ is the cube [−1, 1]n. Denotewith πn the projection [−1, 1]n → [−1, 1]n−1which forgets the last coordi-
nate. Under this projection we can uniquely lift the coordinate fields ∂ϕ1 , . . . , ∂

ϕ
n−1 on [−1, 1]n−1 to sections

X1, . . . , Xn−1 spanning kerω such that dπn(Xi) = ∂
ϕ
i . Note that the sections are smooth.

Since Σ is everywhere tangent to kerω, the flow lines of any Xi starting in Σ will remain in Σ. This implies
that the flows of the sections Xi commute along Σ and can therefore be used to parameterize the hyper-
surface Σ around p (see for instance [21, Chapter 19]).
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