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Abstract

In an increasingly wide range of work and personal life settings, sensors and

micro-devices embedded into objects generate continuous data streams with

high volume, velocity and heterogeneity. Such data can be analyzed to detect

and infer knowledge about phenomenons and events of interest. By learn-

ing from data, Artificial Intelligence (AI) methods enable automating an ever

larger amount of activities and decision-making tasks with comparable or bet-

ter proficiency than human experts. Big Data applications based on perva-

sive Internet of Things (IoT) deployments are now a well-established reality:

they feed large Machine Learning (ML) models, which are trained exploiting

the huge computational resources of cloud computing infrastructures to offer

increasingly accurate prediction capabilities on fresh data. However, the in-

creasing miniaturization of IoT devices equipped with highly accurate sensors

enables novel Cyber-Physical Systems (CPSs) with tight feedback loops cou-

pling computation, communication and control tasks. CPS applications are

expanding in sensitive fields like high-precision manufacturing, telemedicine,

and self-driving vehicles. Those scenarios require real-time response, high

computational and bandwidth efficiency, cost-effectiveness to support busi-

ness scalability and strict data privacy constraints. For this reason, classical

cloud-based approaches are progressively integrated with the Edge Comput-

ing (EC) architectural model, which distributes significant processing and

storage resources at the edge of the local network, in closer proximity to field

devices and sensors. This paradigm allows AI-based IoT applications to scale

even more, as models are trained with massive amounts of data generated

by large deployments of micro- and nano-devices, and ML inference achieves

ever greater accuracy. In this context, the Edge Intelligence paradigm –which

promotes the integration of EC and AI– is increasingly adopted to execute

inference on data at the border of local networks, employing models trained

in the cloud. The next logical step in Cloud-Edge AI cooperation is to enable

training tasks on edge nodes as well. However, as of now flexible approaches

to combine Edge Intelligence with cloud infrastructures, allowing dynamic



migration of training and inference tasks, are not available yet. This the-

sis proposes a Cloud-Edge AI microservice architecture, based on Osmotic

Computing principles. A full pipeline consisting in data collection from local

devices, preprocessing, AI model training and inferencing is supported either

on the edge, on the cloud or both, exploiting computational resources op-

portunistically based on device status, available bandwidth, and application

requirements on latency, prediction accuracy, and privacy. To demonstrate

the feasibility of the proposed framework, a prototype has been realized with

commodity hardware leveraging open-source software technologies. It has

been used in a small-scale intelligent manufacturing case study, carrying out

experiments on elapsed time and network activity in (i) data gathering, (ii)

AI model training and validation, and (iii) prediction tasks. Obtained results

validate the key benefits of the approach.

In addition to architectural aspects, open issues still limiting the full ap-

plicability of EC include the heterogeneity of devices, services, and informa-

tion that arise in pervasive contexts, the integrity of the gathered data, and

the trustworthiness and dependability of autonomous decisions. The Seman-

tic Web of Things (SWoT), coalescing the Semantic Web and IoT paradigms,

has been proposed to overcome these problems. In SWoT environments,

the dynamic exchange of knowledge fragments expressed in logic-based for-

malisms in volatile wireless networks of independent agents enables decentral-

ized collaborative service discovery, autonomous decision and user decision

support. A relevant problem in such scenarios consists in evaluating agree-

ments and disagreements about knowledge produced by different interacting

agents, in order to possibly reconcile conflicts and determine the best over-

all outcome to accomplish distributed coordination. In AI, Argumentation

is recognized as a powerful formalism to negotiate and solve disagreements

within a group of agents, which convey knowledge represented as a constel-

lation of arguments and counterarguments. The argumentation literature

provides a wealth of frameworks for agent decision-making and coordina-

tion. Nevertheless, few proposals leverage Semantic Web languages and tech-

nologies, which can provide a well-known formal model for arguments, well-

studied inference algorithms for the assessment of argument relations and

approaches to evaluate argument acceptability. This thesis presents a novel



Bipolar Weighted Argumentation Framework, where arguments are modeled

as Description Logics concept expressions in Web Ontology Language (OWL)

2, and their relations are assessed via semantic matchmaking, leveraging non-

standard inference services with logic-based outcome explanation. Argument

acceptability is computed via a novel propagation-based ranking semantics,

which supports argument cycles and information fading. In order to make

the proposal suitable for pervasive semantic agents in resource-constrained

devices, optimizations in argument assessment and ranking evaluation are

adopted, while a graph simplification approach via pruning is proposed and

experimentally tested as a tunable trade-off between computational resource

usage and accuracy of results. Validation of the approach has been carried

out by means of a prototypical implementation of a player agent for the Star-

Craft II real-time strategy game, whose environment allows simulating the

complexities of real CPS scenarios.



Chapter 1

Introduction

The Internet of Things (IoT) [78] vision is increasingly enabling the diffu-

sion of micro- and nano-devices incorporated into objects dipped in everyday

environments and capable of collecting, storing, processing and exchanging

non-negligible amounts of information. Cyber-Physical Systems (CPSs) inte-

grate computational, physical sensing/actuation, environmental, and human

components to implement, control, and automate complex operations in the

real world by leveraging IoT technological advancements [116]. Consequently,

huge quantities of data from natural and human-made settings and processes

can be gathered and analyzed.

At the same time, Artificial intelligence (AI) methods and technologies

are evolving with fast pace and diversification. They allow simulating ex-

tremely accurate rational behavior in machines by learning from data and

outperforming skilled professional humans in an increasing range of tasks

[32]. Current AI trends make use of ever-larger information corpora to train

Machine Learning (ML) models and offer inference (i.e., prediction) capabili-

ties on measurements with increasing accuracy. Early IoT-based AI solutions

uploaded all data to cloud computing infrastructures for model training and

inference. Conversely, the rising proliferation of powerful processing devices

on nodes at the boundary of local area networks has led to a significant

increase in the use of Edge Computing (EC) [2] for those purposes. The

fundamental goal of EC is to move computing and communication resources

from the cloud to the edge of networks, in order to provide services and carry

1



out quick computations while preventing conspicuous communication latency

and facilitating quicker replies for end users.

Due to the relevance of the EC and AI trends, the new Edge Intelligence

(EI) paradigm [44, 88] promotes the confluence of the two. Commonly, EI

provides the ability to run AI models on Edge devices while still leaving the

computationally more expensive task of training AI models to powerful cloud

datacenters. The next evolutionary step has been recognized as collabora-

tive Cloud-Edge Intelligence, where model training and prediction tasks can

be carried out either in edge or cloud nodes, depending on application re-

quirements and resource availability [146]. However, due to the complexity

of dynamically managing resources and services across the Edge and Cloud

tiers, effective practical architectures and solutions are challenging to realize.

Osmotic Computing (OC) [135] is an innovative methodology aimed at highly

distributed and federated environments, powered by advanced EC capabili-

ties. In OC, dynamic orchestration enables the automatic deployment and

elastic migration of microservices from edge to cloud infrastructure nodes and

vice versa, in order to optimize availability and performance with respect to

variable workloads, network topology, and mobility of devices and resources.

This thesis presents a novel Cloud-Edge AI microservice architecture for

IoT-oriented CPSs based on the OC paradigm. It supports gathering data

streams from local cyber-physical devices, preprocessing them and perform-

ing AI model training and inference in ML classification and regression prob-

lems. Most notably, the same AI microservices –encapsulated in containers–

can be deployed either to edge nodes or to cloud infrastructure opportunis-

tically, i.e., exploiting resources available in the neighborhood of the task to

be completed and in the current time frame [79]. Edge AI can grant lower

prediction latency and turnaround time, in addition to inherently higher data

privacy; conversely, cloud AI can maximize model accuracy and provide fur-

ther large-scale analytics capabilities. By supporting hybrid Cloud-Edge AI

solutions, the proposed platform aims to offer the best of both worlds to end

users.

Although EC is suitable for solving the typical problems of centralized

Big Data solutions concerning communication latency, security, and viola-

tion of privacy in data transmission, some open questions persist, limiting

2



its full applicability: the heterogeneity of devices, services and information

that emerge in pervasive contexts, the truthfulness of the information col-

lected, and the reliability of the decisions autonomously recommended by

the devices. While the Semantic Web community [20] has provided stan-

dard frameworks, languages and tools to describe resources with semantic

metadata, query them and reason upon them, the communication and coor-

dination aspects have usually been left to individual applications or vertical

interest groups. The Semantic Web of Things (SWoT) paradigm [112] aims

at integrating Semantic Web and Internet of Things technologies in pervasive

computing scenarios. SWoT environments support automated reasoning on

so-called ubiquitous knowledge bases (u-KBs), comprising individual knowl-

edge fragments physically disseminated among heterogeneous smart objects

interconnected in mobile ad-hoc networks (MANETs). Knowledge exchange

occurs via machine-to-machine interactions based on collaborative protocols.

These dynamic interactions can be considered as an ongoing dialogue among

independent agents [83]. This means agreements or conflicts about object as-

sertions can happen. Particularly, disagreements should be solved in order to

achieve decentralized coordination and decision-making in wireless networks.

The branch of AI called argumentation provides a principled approach to

deal with these situations. Argumentation studies the general problem of

multi-agent discussion. Arguments represent knowledge asserted by agents;

they are defeasible, i.e., their validity can be disputed by other arguments,

if new information becomes available. A set of arguments is organized as a

constellation, i.e., a graph, where edges represent relations between pairs of

arguments. Abstract Argumentation (AA) [49] evaluates the acceptability of

each argument only according to those relations, abstracted from the content

of the arguments themselves. Structured Argumentation (SA) [21], instead,

adopts formal models to represent arguments and studies automated meth-

ods to assess relations. The SWoT knowledge interchange fits very well the

classical argumentation paradigms, nevertheless mature proposals exploit-

ing rich Knowledge Representation and Reasoning (KRR) frameworks such

as the ones investigated within the Semantic Web initiative are lacking in

the SA literature. Their adoption can expand the possibilities for effective

argumentation frameworks among pervasive agents, while at the same time

3



posing challenges concerning the characterization of the formal properties of

such new frameworks as well as their computational feasibility and practical

applicability.

In this perspective, the thesis proposes a novel general-purpose SA frame-

work, exploiting Description Logics-based KRR for argument representation,

relation appraisal and acceptability evaluation. Information generated and

shared by an agent are expressed as Web Ontology Language 2 annotations

[96]. The approach is compatible with Dung-style AA [49], where each ar-

gument is represented by a semantic annotation. Specifically, it refers to a

Bipolar Weighted Argumentation Framework (BWAF) [97], which allows a

fine-grained characterization of relations by means of weights representing

their type (attack or support) and strength. Relation appraisal leverages

non-standard, non-monotonic inference services Concept Contraction, Con-

cept Abduction and Concept Bonus [104]. A novel propagation-based gradual

semantics –which also handles cyclic argumentative graphs– computes an

acceptability score for each argument and identifies the most and least ac-

ceptable ones, enabling autonomous decision and user decision support in

Multi-Agent Systems (MAS) [103]. In fact, the framework has been inte-

grated with the Real-Time Strategy (RTS) game engine StarCraft II (SC2)

in order to select the most appropriate strategic plan in a given instant of

the battle.

The remainder of this dissertation is organized as in what follows.

Chapter 2 introduces the research context and recalls the technological

background for the work.

Chapter 3 provides in detail a functional description of the Cloud-Edge

AI microservice architecture. An intelligent manufacturing case study is

presented to allow a better understanding of the proposal and the realized

prototype, along with performance evaluation experiments.

Chapter 4 describes the proposed deductive argumentative framework.

Validation of the approach has been carried out by means of a prototypical

implementation of a player agent for SC2. Details about experimental results

are provided as well.

Chapter 5 concludes the dissertation by summarizing the main contri-

butions and outlining open research perspectives.

4



Chapter 2

Background

This chapter presents an overview of the state of the art trends in the Edge

Computing. Compared to conventional cloud solutions, by placing an in-

creasing amount of processing and storage resources close to data sources, in

this paradigm processing times and bandwidth usage are typically reduced.

Limitations and present concerns that restrict the EC full usability are ana-

lyzed, in order to outline the problems tackled in the research work for this

thesis. Moreover, basics are discussed on the languages and tools for Knowl-

edge Representation and Reasoning in the Semantic Web of Things and on

Argumentation theory. Their visions and foundational technologies are de-

scribed, in order to provide a theoretical and technical background for the

subsequent chapters.

2.1 Edge Computing

In modern IoT applications, information generation mainly takes place at

the edge of the network and response times are required to be increasingly

short. The data processing phase is also gradually moving to the edge, with

a consequent positive impact on issues concerning performance efficiency and

security.

So far, scheduling all processing activities on the cloud has proved to be an

efficient methodology for analyzing large amounts of data, as the computing

resources available on cloud infrastructures far exceeded the computational

5
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Figure 2.1: Cloud Computing paradigm

capabilities of common smart objects adopted at the edge of the network.

However, the continuous and rapid growth of data production rate and the

progressive consumption of currently available network resources make data

transmission rate the real bottleneck of cloud solutions [122]. Figure 2.1

shows the architectural scheme of a conventional cloud computing solution.

In this architecture, end devices act as data sources, generating raw data

from processes in the field and transferring them to the cloud platform, while

entities known as applications issue requests to the cloud in order to retrieve

and use information on behalf of users.

This type of architecture does not appear the most suitable solution for

IoT applications where (i) latency is mission-critical, (ii) the large amount of

data produced causes an excessive use of bandwidth at the edge of the net-

work and (iii) there are stringent data privacy protection constraints. Some

architectural paradigms, such as micro-datacenters [1], cloudlet [82] and fog

computing [12], have been introduced to compensate these shortcomings of

cloud computing in processing the data produced by IoT device networks.

Moreover, in highly dynamic scenarios characterized by unpredictable de-

vice and resource availability, opportunistic computing [39] has emerged as a

paradigm oriented to build platforms which are capable of maximizing the

exploitation of available resources in the environment to execute distributed

computing tasks. The main challenge with opportunistic computing is mak-

ing effective use of volatile connections to ensure that data is easily accessible

and that collaborative computing services are provided to both applications

and users. In this perspective, middleware services must hide disconnections

and delays as well as handle a variety of computing resources, services, and

data.

6
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Edge Computing (EC) is a new paradigm in which substantial comput-

ing and storage resources are placed at the local network’s edge, in close

proximity to field devices and sensors [110]. The term “edge” denotes any

computing and network resource along the path between the data source and

the cloud data center: for example, in the healthcare sector a smartphone is

the edge between wearable devices and a cloud service, while a gateway in

a home automation network is the edge between smart sensors and a cloud

platform. Basically, the goal of the EC paradigm is to perform computational

tasks closer to data sources.

A generic EC architecture is depicted in Figure 2.2. In this model, an

intermediate layer of edge nodes is deployed between end devices and the

cloud. An edge node can (i) collect data from sensors and field devices, (ii)

perform pre-processing activities and/or propagate them to the cloud, and

(iii) request services and exchange contents with the cloud. In an IoT appli-

cation design, leveraging edge nodes ensures the offloading, storing, caching,

and processing of data, as well as distributing the computational load within

the local network.

2.1.1 Edge Intelligence

Edge Computing is considered a disruptive and rapidly growing architectural

paradigm in today’s technological era [71]. Placing computing and commu-

nication resources at the edge of the network where device generate data

reduces communication latency and increases responsiveness for end users in

pervasive scenarios ranging from digital healthcare to smart manufacturing

[3, 99]. Meanwhile, Artificial Intelligence (AI), in its most various tech-

7



niques, is strongly modifying our daily lives, making machines increasingly

capable of planning, learning, reasoning, problem solving, knowledge repre-

sentation, perception, navigation, object manipulation, language processing,

social intelligence and content generation, all domains traditionally belong-

ing to human intelligence. Since AI is useful in cyber-physical systems for

analyzing huge volumes of data and extracting higher-level information from

them, a strong demand to integrate Edge Computing and AI has emerged

in recent years, giving rise to the Edge Intelligence paradigm [44, 88]. Edge

Intelligence is not the simple combination of Edge Computing and AI, but

it covers many concepts and technologies, often interconnected in a complex

way.

So far, researchers have conveyed their interests on EI according to dif-

ferent perspectives. The work in [44] proposes a broad vision suggesting the

division of EI into two areas: “AI for edge” and “AI on edge”.

• AI for edge focuses on providing a better solution to constrained opti-

mization problems in Edge Computing by adopting powerful AI tech-

nologies. Here, the edge is endowed with more intelligence and effi-

ciency by means of AI. Consequently, it can be thought of as Intelligence-

enabled Edge Computing (IEC).

• AI on Edge investigates how to execute AI models on edge. This ap-

proach enables training of and inference with AI models through a

device-edge-cloud synergy and aims at extracting insights from huge

and distributed data to satisfy requirements of algorithm performance,

cost, privacy, reliability, efficiency, etc.

Currently, there is still no formal definition of Edge Intelligence, albeit in

[145] it is defined as the paradigm that allows the local execution of AI algo-

rithms on a terminal device, with data and signals generated by it. Although

this is the current most common approach to EI in real-world applications,

this definition greatly narrows its scope of applicability. Running compu-

tationally expensive algorithms on embedded devices requires considerable

computing power. This requirement not only increases the cost of an EI

solution, but is also hardly compatible with current end devices, which have

limited processing capabilities.

8



Figure 2.3: Six levels of EI [146]

In light of this, in [146] it is argued that the EI applicability should not

be limited to executing AI models exclusively on devices or edge servers. AI

models should be run with an edge-cloud coordination allowing to reduce

both end-to-end latency and power consumption w.r.t. the local execution

approach. These practical benefits promote the integration of a collaborative

hierarchy into the design of effective EI solutions. Most frequently, only the

inference phase of an AI model takes place at the edge of the network, since

the training phase is delegated to cloud datacenters where much larger com-

putational resources are available. However, this implies massive amounts of

training data have to be moved to the cloud, leading to excessive commu-

nication costs and data privacy concerns. Data preprocessing and reduction

at the edge are useful methods to handle these large amounts of data effi-

ciently before storage, transmission and analysis. Nevertheless, scalability

and latency are still open research problems [98].

Conversely, Edge Intelligence takes full advantage of the data and re-

sources available across the hierarchy of terminal devices, edge nodes and

cloud datacenters to optimize the overall training performance and sub-

sequently exploit trained models for inference. Therefore, using the EI

paradigm does not necessarily mean that the AI model is fully trained or

9



inferred at the edge of the network, but that these operations can take place

in a coordinated cloud-edge fashion through data offloading. Particularly, ac-

cording to the amount and path length of data offloading, Zhou et al. [146]

classify Edge Intelligence in six levels, as depicted in Figure 2.3 and explained

in what follows.

• Cloud Intelligence: training the AI model and inferencing fully in

the cloud.

• Level 1 – Cloud-Edge co-inference and Cloud training: training

the AI model in the cloud, but inferencing through edge-cloud cooper-

ation, which entails a partial data offload to the cloud.

• Level 2 – In-Edge co-inference and Cloud training: training

the AI model in the Cloud, but inferencing at the network edge, by

completely or partially offloading the data to the edge nodes or nearby

devices.

• Level 3 – On-Device inference and Cloud training: training the

AI model in the Cloud but inferencing in a fully local on-device manner.

This implies that no data would need to be offloaded.

• Level 4 – Cloud-Edge co-training and inference: both training

and inferencing occur in the edge-cloud cooperative way.

• Level 5 – All In-Edge: training and inferencing fully occur at the

edge.

• Level 6 – All On-Device: both training and inferencing occur on

local (field) devices.

As the level of Edge Intelligence increases, the amount and length of

the data offloading path decreases. As a result, data privacy increases and

transmission latency and bandwidth cost decrease. However, this is achieved

at the cost of higher computational latency. Power consumption in the local

area network likewise undergoes a variable trade-off between communication

and processing. This analysis shows there is no “best” level in absolute, but

the “best level” should be decided for each application by jointly taking into
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account a variety of factors, including latency, energy efficiency, privacy, and

bandwidth costs.

2.1.2 Current issues and limitations

The adoption of the Edge Computing architectural paradigm supports the

localized processing and storage of data at the peripheral nodes of the net-

work, in close proximity to the end user. Compared to classic cloud solutions

with centralized servers, EC promotes an evolution towards more distributed

approaches and consequently reduces processing latencies by partitioning the

computational load, limits energy consumption and guarantees flexibility in

development. In view of the intrinsic potential and the application advan-

tages of this architectural model, there are yet some limitations and open

research challenges described hereafter.

Naming

A typical EC infrastructure includes a large number of nodes to be managed.

From an architectural perspective, on top of the edge nodes several appli-

cations are running, each with its own distributed computing architecture

and providing a particular service to the end user. As with all computer

systems, the naming scheme in EC is crucial for programming, addressing,

object identification, and data transmission. Unfortunately, a reliable and

consistent naming system for this kind of architectural paradigm has not yet

been built and standardized. A useful scheme must be able to manage the

mobility of objects in a highly dynamic network topology, while ensuring the

protection of privacy and security.

Traditional identification mechanisms, such as the Domain Name Service

(DNS) and the Uniform Resource Identifier (URI), meet the requirements of

most current networks very effectively; however, they are not flexible enough

to handle the dynamics of EC architectures. New naming techniques ap-

plied to EC include Named Data Networking (NDN) [144] and MobilityFirst

[101]. Specifically, the mechanism underlying NDN (i) provides a hierar-

chical and well-structured addressing scheme for dynamic networks based

on content/data, (ii) is straightforward in the management/configuration of
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services and (iii) offers good scalability for Edge solutions. Nevertheless, the

NDN solutions proposed so far focus on networks based on the Internet Pro-

tocol (IP), without offering mechanisms to configure additional proxies for

the adaptation and integration of other IoT-oriented communication proto-

cols as Bluetooth [24] or ZigBee [54]. Security is another issue with NDN,

since it is very challenging to differentiate hardware information from service

providers [37].

MobilityFirst is able to keep the name associated with an edge device

separate from its network address by means of a dynamic mapping procedure.

This allows supporting the main edge services even when the nodes have

highly dynamic mobility. Nevertheless, the main issue of MobilityFirst lies in

the difficulty of managing and deploying the services, due to the complicated

and unintuitive configuration process.

Privacy and Security

In edge solutions, privacy management and data security are crucial require-

ments to be fulfilled. A home or work environment equipped with several

IoT objects could be the source of large amounts of sensitive information,

which could be inferred through data mining and analysis. In such scenarios,

security- and privacy-oriented architectures and the support for monitor-

ing and management services represent very important challenges. Moving

computing from cloud infrastructures to the edge of the network can con-

tribute effectively in protecting data privacy and security. Pre-processing

data –particularly of sensitive nature– at the edge of the network to consoli-

date information can help reduce the data streams transmitted to the cloud

through the Internet, thus mitigating the risks of snooping and tampering

[141]. However, several issues are still open:

• The awareness of the community that privacy and security issues play

a key role in architectures of this type is still limited [5]. Service

providers, system integrators, application developers and end users

must be aware that privacy can be violated without warning especially

at the edge of the network: for example IP cameras, health monitoring

devices and smart home automation equipment can be easily hacked if
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not protected properly.

• The ownership of the data collected at the edge can be compromised.

Similarly to mobile applications, data collected from disparate smart

objects in pervasive contexts is stored, transferred and analyzed by a

service provider. However, from a security perspective, it could be bet-

ter to store information in or close to the location where it is gathered.

The data gathered at the network’s edge should be maintained on the

edge node and possibly transferred to a service provider for processing

only after a thorough evaluation by the user or the data protection of-

ficer [80]. In fact, during this authorization process, some data deemed

particularly sensitive could also be removed from the information trans-

ferred over the network.

• The absence of effective tools for managing privacy and security at the

data collection points.The majority of end devices are heavily resource-

constrained; consequently, in many cases they cannot sustain typical

computation-intensive security procedures. An edge node is an opti-

mized venue to deploy IoT security solutions since: (i) it has more

resources than IoT end devices; (ii) it can satisfy real-time require-

ments needed in security design; (iii) the large availability of data col-

lecting from many different sources enhances the accuracy of security

algorithms [117]. Furthermore, the mobility of nodes can make the

network itself more difficult to protect.

Optimization metrics

The following performance indicators must always be taken into account and

optimized while designing an infrastructure based on the EC paradigm.

Latency. Latency is one of the most crucial metrics for assessing the

performance of a computing architecture, particularly for real-time applica-

tions in pervasive computing. Cloud computing infrastructures have a large

amount of computing resources and can handle large and complex work-

loads, such as image processing or speech recognition, in a relatively short

time. However, latency is not determined by computation time alone. Any
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delays introduced in end-to-end communications within a Wide Area Net-

work (WAN) can significantly influence the behavior of real-time interactive

applications. In order to decrease response times, computation should take

place as close as possible to the devices which collect data and requests. For

example, in a manufacturing plant, an edge node can be leveraged to lo-

cally process the photos of the manufactured product, for automated quality

inspection. Then, only faulty components’ information can be sent to the

cloud, instead of all products’. However, the physical layer closest to the

data may not always be an optimal solution, due to insufficient computa-

tional capabilities, especially when running concurrent tasks. An optimal

trade-off would be achieved by appropriately balancing the available amount

of computing resources and the maximum acceptable waiting time for an

application [6].

Bandwidth. In addition to latency, bandwidth impacts transmission times,

especially for applications that transfer large amounts of data. If the work-

load can be handled at the network edge, latency is greatly improved com-

pared to running in the cloud. At the same time, the required bandwidth is

reduced and the transmission reliability is improved. Furthermore, in case

an edge node does not have the computational capabilities to fulfill a specific

computing request, it is always possible to carry out some form of data pre-

processing (e.g., data integration, data normalization, data transformation,

data reduction, feature selection, instance selection) [58, 98] to decrease the

amount of information to be transferred to the cloud.

Energy. Energy represents the most valuable resource for battery-powered

wireless nodes in IoT-based pervasive computing. For an endpoint, offloading

workload to the edge can be deemed as an energy-saving method [89]. How-

ever, in order to assess whether it is more efficient to (partially) transfer the

workload to the edge or process it locally, the trade-off between the amount

of energy used for computation and for information transmission must be

taken into account. In general, the amount and type of required comput-

ing resources, the intensity of the network signal, the size of the data to be

processed and the available bandwidth should be considered first to produce

an objective estimate of the energy impact required by a specific task [67].

Edge Computing should only be employed if the overhead of transmitting
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data is less than the cost of local processing. However, considering the entire

network architecture rather than just the endpoints involved in the transmis-

sion, the total energy consumption is represented by the sum of the energy

cost of each device used from the data collection stage to processing phase;

the per-device energy cost can be estimated as local computation cost plus

transmission cost [143]. In this case, the optimal load allocation strategy

may change, depending on whether a local node is busy with other activities

or not. In the first case, the computational task is progressively transferred

to the edge (or cloud) resources and the multi-hop data transmission could

increase the overload of network nodes, causing higher power consumption.

Cost. Reduced cost is among the benefits that encourage companies to

invest in EC technologies and architectures. In 2021 Gartner predicted that

in 2022 over 50% of enterprise-generated data will have been created and

processed outside a traditional data center or cloud [43]. Currently, even

though the expensive cloud datacenters have been replaced by using on-

demand pay-per-use IT resources, the operating costs for companies adopting

this architectural model are still high. In an EC solution, the costs essentially

concern the infrastructure i.e., sensors, compute systems, and network [132].

In fact, using the local area network for data processing provides enterprises

higher bandwidth and storage at lower costs compared to cloud computing.

Additionally, since processing takes place at the edge, less data needs to be

transferred to the cloud or data center for further processing. As a result,

the amount of data that must travel as well as the entire solution’s price are

reduced.

AI integration

The continuous proliferation of innovative AI/MLmethodologies has prompted

the scientific community to merge AI with Edge Computing into the Edge

Intelligence paradigm [88]. EI offers several benefits:

• pre-processing raw data at the network edge decreases the data dimen-

sionality to be transferred to the Cloud for deeper analysis and reduces

bandwidth requirements;

• heterogeneous sensor data fusion algorithms at the network edge lowers
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the workload in cloud platforms;

• using the computing capabilities of edge nodes helps to accelerate the

response of distributed AI algorithms in Big Data scenarios.

Nevertheless, the EI paradigm increases complexity of edge computing in

non-trivial ways: [139]

• the introduction of structured solutions and paradigms to integrate ML

in a cloud-edge continuum;

• the need to adapt AI/ML algorithms for distributed computing and

distributed storage systems;

• the administration of computing and memory resources required for

model training and prediction on data, as well as for training and pre-

diction services themselves.

This thesis proposes an innovative general-purpose Cloud-Edge Intelli-

gence distributed framework (see Chapter 3) to handle the aforementioned

issues. It employees an Osmotic Computing paradigm-compliant microser-

vice architecture to enable opportunistic resource exploitation by means of

dynamic distribution of service modules to different devices at the edge of the

network and/or in the cloud. The ML model training and prediction activi-

ties can be carried out in edge or cloud nodes, as well as through cloud-edge

collaboration, which is a key feature of the approach.

Further open questions limiting a wider applicability of EC solutions per-

sist: the heterogeneity of devices, services and information that arise in

pervasive contexts; the truthfulness of the collected information; the reli-

ability of the decisions autonomously suggested by pervasive devices. This

work addresses these issues by defining an innovative framework that inte-

grates Knowledge Representation and Reasoning with Argumentation in a

Semantic Web of Things perspective (Chapter 4). In SWoT environments,

knowledge exchange among intelligent objects can be considered as an on-

going dialogue among independent agents: in this scenario, conflicts about

assertions can happen due to the variability of data and volatility of devices.

They could be solved to accomplish decentralized coordination by exploiting
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general-purpose formalisms as the argumentation theory. In the following,

preliminary notions regarding the Description Logics-based KRR and Argu-

mentation are recalled to make the work self-contained.

2.2 Knowledge Representation and Reason-

ing

In ubiquitous and pervasive contexts, intelligent software agents running on

personal devices can extract, process, and exchange meaningful information

fragments in order to enable adaptive context-aware behaviors in many differ-

ent applications. As agents interact with other agents and with the surround-

ing environment in a typical perception-decision-action-evaluation loop, they

must be able to integrate detected and received information and manage

possible agreements and disagreements on perceptions in a collaborative and

coordinated way. Furthermore, high degrees of autonomic capability are re-

quired in order to trigger actions or make interventions on the environment

according to the detected context without human interaction. Knowledge

Representation and Reasoning techniques and technologies allow informa-

tion modelling based on formal and rigorous interpretation of its meaning

(semantics). This enables not only greater interoperability across different

hardware/software platforms, but also reasoning tasks i.e., inferences, to ex-

tract new implicit insight from information explicitly asserted in a Knowledge

Base (KB). Among the many available KRR languages and tools, those born

from the Semantic Web initiative have gained widespread acceptance with

well-known algorithmic properties and highly optimized implementations. In

the following subsections, Description Logics family and reasoning tasks rel-

evant for this work are recalled in detail.

2.2.1 Description Logics

Description Logics (DLs) [13] are a family of Knowledge Representation (KR)

languages in a decidable fragment of First Order Logic (FOL) [30, 48]. DLs

allow to represent knowledge by means of:
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• concepts a.k.a. classes, representing sets of objects;

• roles a.k.a. properties, defining relationships between concepts pairs;

• individuals, i.e., named instances of classes.

An ontology (a.k.a. terminology, terminological box, TBox) [125] is com-

posed by two types of assertions involving classes and properties: inclusion,

which allows to define is-a relationships between classes (A ⊑ D where A

and D are concept expressions); equivalence, which allows to give a name to

a particular concept expression (A ≡ D). Individuals make up the assertion

box (ABox). A Knowledge Base (KB) consists of a ⟨TBox, ABox⟩ pair.
DLs are distinguished by the constructors they provide. This work adopts

the Attributive Language with unqualified Number restrictions (ALN ) DL

as reference. It provides adequate expressiveness while keeping polynomial

complexity, both for standard and non-standard inferences [46]. Constructs

of ALN are reported in what follows and Table 2.1 summarizes syntax and

semantics of constructors and assertions in ALN .

• ⊤, universal concept. All the objects in the domain.

• ⊥, bottom concept. The empty set.

• A, atomic concepts. All the objects belonging to the set A.

• ¬A, atomic negation. All the objects not belonging to the set A.

• C ⊓D, intersection. The objects belonging to both C and D.

• ∀R.C, universal restriction. All the objects participating in the relation

R whose range are all the objects belonging to set C.

• ∃R, unqualified existential restriction. There exists at least one object

participating in the relation R.

• (≥ nR)1, (≤ nR), (= nR)2, unqualified number restrictions. Respec-

tively the minimum, the maximum and the exact number of objects

participating in the relation R.

1Notice that ∃R is equivalent to (≥ 1R).
2Notice that (= nR) is a shortcut for (≥ nR) ⊓ (≤ nR).
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Table 2.1: Syntax and semantics of ALN

Name Syntax Semantics

Top ⊤ ∆I

Bottom ⊥ ∅
Intersection C ⊓D CI ∩DI

Atomic negation ¬A ∆I\AI

Universal quantification ∀R.C {d1 | ∀d2 : (d1, d2) ∈ RI → d2 ∈ CI}

Number restrictions
≥ nR {d1 | ♯{d2 | (d1, d2) ∈ RI} ≥ n}
≤ nR {d1 | ♯{d2 | (d1, d2) ∈ RI} ≤ n}

Inclusion A ⊑ D AI ⊆ DI

Equivalence A ≡ D AI = DI

Web Ontology Language (OWL)

Web Ontology Language (OWL) [96] is a World Wide Web Consortium

(W3C) Recommendation extending RDF Schema for creating ontologies and

expressing metadata on resources in the Semantic Web. OWL uses the In-

ternationalized Resource Identifier (IRI) for unique resource naming and is

based on the Resource Description Framework (RDF) [63] knowledge model.

The first version of OWL branched into three different levels of complexity,

from the least to the most expressive:

• OWL Lite: allows very basic taxonomy and constraint definition;

• OWL DL: enables a fairly wide expressiveness while retaining com-

putational tractability. The name indicates a direct correspondence

between OWL and Description Logics;

• OWL Full : provides the highest level of flexibility and expressiveness,

sacrificing computational decidability.

OWL Lite is a subset of OWL DL, which is in turn a subset of OWL Full. The

subset of OWL DL elements allowing to express the ALN DL is presented

in Table 2.2 in RDF/XML syntax [111].

In pervasive scenarios featured by volatile nodes interacting in an oppor-

tunistic fashion in order to achieve a common goal, OWL Full is not suitable

because of its intractability, while suitable fragments of OWL DL provide
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Table 2.2: Correspondence between OWL RDF/XML and DL syntax

OWL RDF/XML syntax DL syntax
<owl:Thing> ⊤
<owl:Nothing> ⊥

<owl:Class rdf:ID=“C”> C
<owl:ObjectProperty rdf:ID=“R”> R

<rdfs:subClassOf> ⊑
<owl:equivalentClass> ≡
<owl:disjointWith> ¬
<owl:intersectionOf> ⊓
<owl:allValuesFrom> ∀

<owl:someValuesFrom> ∃
<owl:maxCardinality> ≤
<owl:minCardinality> ≥
<owl:cardinality> =

a good trade-off between expressiveness and complexity. In this work the

domain of interest was modeled using the latest specification of OWL lan-

guage, i.e., OWL 2 [96]. It supports a variety of syntaxes to read, store and

exchange knowledge conceptualization among applications. OWL 2 includes

three sublanguages, named profiles :

• OWL 2 EL, a fragment that has polynomial time reasoning complexity;

• OWL 2 QL, designed to enable easier access and query to data stored

in databases;

• OWL 2 RL, a rule subset of OWL 2.

Each profile fits specific use cases of practical interest and offers a different

trade-off between expressiveness and reasoning efficiency. Unlike early OWL

sublanguages, OWL 2 profiles are mutually unrelated.

2.2.2 Reasoning services

Polynomial-complexity structural reasoning algorithms for ALN concept de-

scriptions can be exploited in order to enable distributed information aggre-

gation and discovery in resource-constrained agent networks and MASs [113].
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To this aim, when an ALN KB is loaded, it is preprocessed with unfold-

ing and Conjunctive Normal Form (CNF) normalization [104] procedures.

Particularly, given a TBox T and a concept C, unfolding recursively expands

references to axioms in T within the concept expression itself. In this way,

T is not needed any more when executing subsequent inferences. The CNF

translation is then obtained by applying a set of pre-defined substitutions.

Any concept expression C in CNF can be expressed as:

C ≡ CCN ⊓ C≤ ⊓ C≥ ⊓ C∀

with

• CCN : conjunction of (possibly negated) concept names;

• C≤: conjunction of maximum cardinality restrictions, at most one per

role;

• C≥: conjunction of minimum cardinality restrictions, at most one per

role;

• C∀: conjunction of universal restrictions, at most one per role; fillers

are recursively in CNF.

Normalization preserves semantic equivalence with respect to models induced

by the TBox; furthermore, CNF is unique (up to commutativity of conjunc-

tion operator) [46]. The normal form of an unsatisfiable concept is simply

⊥.

Given a DL ontology T and S, R two satisfiable concepts in T , the

satisfiability and subsumption standard inference services provided by DL-

based systems [13] can be formalized as follows:

• Satisfiability : verifies if the conjunction of S and R is satisfiable w.r.t.

the ontology T , i.e., T ̸|= S ⊓R ⊑ ⊥.

• Subsumption: checks if S is more specific than R w.r.t. the ontology

T , i.e., T |= S ⊑ R.
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In real-world application scenarios featuring articulated and –oftentimes–

conflicting descriptions, standard inference services like Subsumption and

Satisfiability are inadequate, as they provide just a Boolean answer. An

outcome explanation is required in more advanced settings, dealing with

heterogeneous information from several independent sources. Non-monotonic

reasoning tasks originally defined for belief revision are needed. The following

non-standard inferences are particularly relevant for the purposes of this

work:

• Concept Contraction [104]: if T |= S ⊓ R ⊑ ⊥, i.e., S and R are

not compatible with each other, Concept Contraction (CC) is able to

determine a pair of concepts ⟨G,K⟩ such that T |= R ≡ G ⊓ K, and

K⊓S is satisfiable in T . Then K is called a contraction of R according

to S and T . G (for Give up) represents “why” R is incompatible with

S i.e., which part of R is conflicting with S and must be retracted to

obtain an expression K (for Keep) such that K ⊓ S is satisfiable in T .

Hence, Concept Contraction Problem (CCP) amounts to an extension

of (in)satisfiability.

• Concept Abduction [104]: if T |= S ⊓ R ̸⊑ ⊥ and T |= S ̸⊑ R, i.e.,

S and R are compatible but S does not subsume R, then Concept

Abduction (CA) finds a concept H (for Hypothesis) such that T |=
S⊓H ⊑ R. Basically, H represents what is in R but not specified in S.

In particular, solving a Concept Abduction Problem (CAP) provides

an extension and an explanation to (missed) subsumption.

• Concept Bonus [38]: extracts a concept B from S which denotes what

S provides even though it is not specified in R. Formally, finding the

Bonus B of S with respect to R is equivalent to find H in a Concept

Abduction problem where R and S are swapped.

For both Concept Abduction and Concept Contraction , minimality crite-

ria are defined –since one usually wants to hypothesize or give up as little as

possible– which induce numerical distance (penalty) functions, based on the

CNF norm of expressions H and G respectively. These penalties can be com-

bined through a utility function (a.k.a. score combination function) in order
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to evaluate goodness of match approximation and are studied and applied in

semantic matchmaking problems [38]. Basically, semantic matchmaking is

the process of finding the best matches to a request (named R in the above

definitions) among available resource descriptions (named S above), where

both the request and the resources are semantically annotated w.r.t. a com-

mon reference ontology [38]. In such scenarios, the result is a ranked list of

appealing resources with respect to the request.

The principles underpinning semantic matchmaking are:

• Open World Assumption. The absence of a characteristic in a descrip-

tion should not be interpreted as a constraint of absence, but as un-

known or irrelevant information.

• Non-symmetric evaluation. A semantic matchmaking system may give

different evaluations to the match between two concept expressions S

and R, depending on whether it is trying to match S with R, or R with

S.

Five different match classes (categories) [47, 77], summarized in Table

2.3, are originated by matchmaking process. The most desired match is

obviously the exact one, but from the viewpoint of a requester full match

is equally acceptable. However, potential and partial matches are the most

common in real complex scenarios. By means of Concept Contraction and

Concept Abduction it is possible to move from a partial match to a full one

by exploiting a query refinement process:

partial → potential → full

2.2.3 State of the art

The widespread and stable availability of hefty computational and network-

ing resources characterizes classical Semantic Web contexts. Conversely, in

SWoT scenarios, hardware is severely constrained and information sources

are distributed across physical environments on tiny devices, inducing sev-

eral issues. Highly volatile connectivity, unexpected disconnections, location

dependency, and limitations of wireless communication links and energy sup-

ply make pervasive scenarios different from traditional wired and dependable
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Table 2.3: Match classes

Match class Description Semantics

Exact

S ia semantically equivalent to R. All
the requirements expressed in R are
in S and S does not expose any ad-
ditional feature w.r.t. R.

T |= R ≡ S

Full

S is more specific than R. All the
requirements expressed in R are pro-
vided by S and S exposes further char-
acteristics both not required by R and
not in conflict with the ones in R.

T |= S ⊑ R

Plug-in

R is more specific than S. All the char-
acteristics expressed in S are requested
by R and R exposes also other require-
ments both not exposed by S and not
in conflict with characteristics in S.

T |= R ⊑ S

Potential
R is compatible with S. Nothing in R
is logically in conflict with anything in
S and vice-versa.

T ̸|= S ⊓R ⊑ ⊥

Partial
R is not compatible with S. At least
one requirement in R is logically in
conflict with some characteristic in S.

T |= S ⊓R ⊑ ⊥
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computing contexts. Mobile agents endowed with quick decision support,

query answering and stream reasoning capabilities are required [55, 81] to

support user activities and provide general-purpose innovative services. In

these contexts, reasoning engines are exploited as decisional and organiza-

tional systems: specific non-standard inference services may be more suitable

than standard ones [114]. Additionally, since mobile and embedded devices

typically have limited resources, they require inference engines optimized to

run efficiently on low-resource platforms, whereas common reasoners typi-

cally impose non-trivial hardware and software constraints, particularly on

main memory.

Due to architectural constraints and computational complexity of De-

scription Logics reasoning, the majority of early mobile inference engines

provided only rule processing for entailment materialization in a KB. Propos-

als include 3APL-M [75], COROR [127], MiRE4OWL [72], Delta-Reasoner

[92] and the system in [115], that results unsuitable to support applications

requiring non-standard inference tasks and extensive reasoning over ontolo-

gies [92].

Pocket KRHyper [123], a Java Micro Edition library for theorem proving

and model generation based on the hyper tableau calculus, was the first

reasoning engine specifically designed for mobile devices. It was exploited in

a DL-based matchmaking framework between user profiles and descriptions

of mobile resources/services [74]. However, frequent “out of memory” errors

strongly limited the size and complexity of manageable logic expressions.

To overcome these constraints, tableaux optimizations to reduce memory

consumption were introduced in [126] and implemented inmTableaux, a mod-

ified version of Java Standard Edition (SE) Pellet reasoner [124]. Compara-

tive performance tests were performed on a PC, showing faster turnaround

times than both unmodified Pellet and Racer [64] reasoners. Nevertheless,

the Java SE technology is not tailored to mobile and embedded devices. In

fact, several inference engines cannot run on common mobile platforms, since

they rely on Java class libraries incompatible with most widespread mobile

OS (e.g., Android). In [142] four Semantic Web reasoners were successfully

ported to the Android platform (Pellet, CB [69], Hermit [120] and JFact, a

Java port of Fact++ [131]), albeit with significant rewriting or restructuring
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effort in some cases. Similarly, in [70] the ELK reasoner was optimized and

evaluated on Android. However, all ported systems were designed mainly for

batch jobs over large ontologies and/or expressive languages. This makes mo-

bile device usage less suitable due to computation and memory constraints.

Furthermore, the above reasoners only support standard inference services

such as satisfiability and subsumption, which are not enough for pervasive

scenarios. Non-monotonic reasoning tasks are needed in order to enable the

creation of software agents able to provide quick decision support and/or

on-the-fly organization in such intrinsically unpredictable environments.

Mini-ME [113] was an Android-oriented matchmaker and reasoner, com-

patible with Java SE. It provides both standard and non-standard inferences

for semantic matchmaking. The rule engine for Android in [138] introduced

the novel RETEpool algorithm on OWL 2 RL rulesets, capable of balanc-

ing memory usage and time performance. Mini-ME Swift [107] was the first

OWL reasoner for iOS, re-designed from the above Mini-ME with the OWL

API for iOS [106].

Tiny-ME (the Tiny Matchmaking Engine) [105] is a matchmaking and

reasoning engine designed and implemented with a compact and portable

C core. It provides a larger set of standard and non-standard inference

services w.r.t. its predecessor Mini-ME in a moderately expressive OWL 2

fragment corresponding to the ALN DL. It has a multiplatform architecture

with multiple Applications Programming Interfaces (APIs) ensuring native

support for Windows, Linux, macOS, Docker containers, Android, iOS, and

embedded systems like Apache NuttX. In this work, the Tiny-ME C ver-

sion has been integrated into the deductive argumentative reasoning engine

prototype discussed in Chapter 4.

2.3 Argumentation basics

For people, argumentation is a pervasive phenomenon in everyday life; it is

particularly important for negotiating decisions and managing conflicts, sub-

jective points of view, opinions, objectives, and in general any scenario in

which the available information is incomplete or inconsistent. Several theo-

retical studies have attempted to formalize the dynamics that characterize it.
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Figure 2.4: F1: AF example

The interest in these issues has pushed the scientific community towards the

creation of computational tools and models in areas such as human-machine

dialogue systems, multi-agent systems, decision support systems and plan-

ning: over the last years, computational argumentation has been gaining

increasing relevance across the board within Artificial Intelligence (AI) [19].

Argumentation is the process by which arguments and counterarguments are

built and assessed. It may involve comparing arguments, evaluating them

in some respects, and judging a constellation of arguments and counterargu-

ments to consider whether any subset of them is warranted according to some

criterion [23]. Abstract Argumentation (AA) [49] assesses the acceptability of

each argument solely in terms of those relations, abstracted from the content

of the arguments themselves. In contrast, Structured Argumentation (SA)

[21] uses formal models to represent arguments and relies on inferences to

evaluate relationships.

Dung’s seminal work [49] defined an Argumentation Framework (AF)

as a graph-based formalism to reason over conflicting knowledge without

considering the internal structure of the arguments, but only their mutual

relations of attack –denoting the conflicts between pairs of arguments– and

the semantics for evaluating them, i.e., for determining what arguments can

be considered as acceptable.

Definition 1 (Argumentation Framework) An Argumentation Frame-

work (AF) is a pair F = ⟨A,R⟩, where A is a finite set of arguments and

R ⊆ A×A is the set of relations. The relation α R β means that α attacks

β, or equivalently β is attacked by α.

Commonly, an AF is represented as a directed graph whose nodes are

the arguments and each edge between a pair of nodes represents the relation

from the attacker to the attacked argument. An example of AF is depicted

in Figure 2.4.
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2.3.1 Argumentation semantics

An argumentation semantics is the formal definition of a method ruling the

argument evaluation process. In order to evaluate the justification of an

argument the notion of defense is important.

Definition 2 (Defense) Given an AF F = ⟨A,R⟩, a set S ⊆ A and an

argument α ∈ A, α is defended by S iff for each β ∈ A: β R α ⇒ ∃ γ ∈
S | γ R β.

Extension-based semantics

In the extension-based approach [17], a semantics specifies how to derive from

an AF a set of extensions, where an extension E of an AF ⟨A,R⟩ is a subset of
A, intuitively representing a set of arguments which can “survive together” or

are “collectively acceptable”. Thus, a specific extension-based argumentation

semantics provides a way to select reasonable sets of arguments among all

the possible ones, according to some criterion embedded in its definition.

Definition 3 (Extension-based Semantics) Given an AF F = ⟨A,R⟩,
an extension-based semantics S associates F with a subset of 2A, denoted as

ES(F).

This approach enables the existence of a set of alternatives for a single

argumentation framework. However, it can happen that a semantics is de-

fined so that a single outcome is prescribed for each AF. Formally, if for any

AF F it holds that |ES(F)| = 1 then the semantics is said to belong to the

unique-status (or single-status) approach, while in general it is said to belong

to the multiple-status approach. Furthermore, one or many extensions may

be prescribed by a given semantics S but in general, it is possible that no

extensions are prescribed for an AF, i.e., ES(F) = ∅. This corresponds to

the case where the semantics S is undefined in F since no extensions com-

pliant with the definition of S exist. In the following, DS denotes the set of

AFs where a semantics S is defined, i.e., DS = {F | ES(F) ̸= ∅}.
The most basic concept shared by all argumentation semantics in litera-

ture is conflict-freeness. Arguments in an extension should not be in conflict
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with each other. Consequently, if an argument α attacks another argument

β, then α and β can not be in the same extension.

Definition 4 (Conflict-freeness) Given an AF F = ⟨A,R⟩, a set of ar-

guments S ⊆ A is conflict-free iff there are not α, β ∈ S, such that α R β.

The collection of all conflict-free is denoted as cf (F).

By this definition, self-attacking arguments can never be in any conflict-

free set. As all semantics share the concept of conflict-freeness, self-attacking

arguments cannot be part of any extension of any semantics. Since ∅ is

conflict-free by definition, there is always at least one conflict-free set in any

arbitrary AF.

Example 1 Consider the AF F1 = ⟨A1,R1⟩ depicted in Figure 2.4. The

conflict-free sets in F1 are cf (F1) = {∅, {α} , {β} , {γ} , {δ} , {α, γ} , {α, δ} , {β, δ}}.
Since ϵ is self-attacking, there is no E ∈ cf(F1) with ϵ ∈ E.

A further requirement corresponds to the idea that an extension is a set

of arguments which “can stand on its own”, i.e., it is able to withstand

the attacks it receives from other arguments by replying with other attacks.

Formally, this corresponds to the property of admissibility.

Definition 5 (Admissible set) Given an AF F = ⟨A,R⟩, a set of argu-

ments S ⊆ A is an admissible set if S is conflict-free and S is defended by

itself, i.e., ∀ β ∈ A, ∀ α ∈ S, β R α ⇒ ∃ γ ∈ S such that γ R β. The

collection of all admissible sets is denoted as adm(F).

By definition, there is always at least one admissible set, as ∅ is not only

conflict-free, but also defended by itself, and therefore ∅ ∈ adm(F ) for any

AF F .

Example 2 Consider the AF F1 = ⟨A1,R1⟩ in Figure 2.4. The admissi-

ble sets are adm(F1) = {∅, {α} , {γ} , {δ} , {α, γ} , {α, δ}}. Considering the

conflict-free set {β, δ}, argument δ defends itself and β from attacker γ, but

β is not defended from attacker α. Therefore {β, δ} is not admissible. On

the other hand, the set {γ, ϵ} is defended by itself but not conflict-free as ϵ

attacks itself, therefore it is not admissible either.
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Definition 6 (Admissibility Principle) Given an AF F = ⟨A,R⟩, a se-

mantics S satisfies the admissibility principle iff ∀ F ∈ DS : ES(F) ⊆
adm(F), i.e., ∀ E ∈ ES(F) it holds that:

α ∈ E ⇒ (∀ β ∈ A: β R α ⇒ E R β).

The property of reinstatement is an essential feature of defeasible reason-

ing w.r.t. the notion of defense. Intuitively, if the attackers of an argument

α are in turn attacked by an extension E, it may be assumed they have

no effect on α: then α should be, in a sense, reinstated, therefore it should

belong to E. This leads to the following reinstatement principle.

Definition 7 (Reinstatement Principle) A semantics S satisfies the re-

instatement principle iff ∀ F ∈ DS , ∀ E ∈ ES it holds that:

(∀ β ∈ A: β R α ⇒ E R β) ⇒ α ∈ E.

The justification state of an argument α can be conceived in terms of its

extension membership. A basic classification encompasses only two possible

states for an argument, either justified or not justified. In this respect, two

alternative types of justification can be considered.

Definition 8 (Types of justification) Given a semantics S and an AF

F ∈ DS , an argument α is:

• skeptically justified iff ∀ E ∈ ES(F): α ∈ E;

• credulously justified iff ∃ E ∈ ES(F): α ∈ E.

Clearly, the two notions coincide for unique-status approaches, while, in

general, credulous justification includes skeptical justification.

Adopting the aforementioned general notions, several extension-based se-

mantics have been proposed in literature. From a historical point of view, it

is possible to distinguish between:

• four “traditional” semantics, introduced in Dung’s original paper [49]

and called complete, grounded, preferred, and stable;
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• subsequent proposals introduced by various authors, often to overcome

limitations or fix undesired behaviors of traditional approaches; they

include naive [26], stage [133], semi-stable [33], ideal [50], eager [34],

cf2 [16], stage2 [53], resolution-based grounded [15], and prudent [40]

semantics.

From a taxonomy point of view, semantics can be classified into admissible-

and naive-based. Admissible-based semantics are those semantics which are

built on the concept of admissible sets. Naive-based semantics are those se-

mantics which are built to overcome the requirement of accepting arguments

outside an odd-length attack cycle. On the basis of this requirement, all

Dung’ semantics fall into the category of admissible-based semantics, whereas

naive, stage, cf2 and stage2 belong to the naive-based semantics.

Ranking semantics

In applications involving a large number of arguments, it can be problem-

atic to have only two levels of evaluation, i.e., arguments either accepted or

rejected. For instance, this is a limitation when using argumentation for deci-

sion support systems in pervasive contexts, where the collected information is

highly heterogeneous, conflicts are frequent and even sub-optimal solutions

can be considered useful, due to unpredictable context changes and strict

computational limitations of devices. In order to overcome these shortcom-

ings, one may want to adopt semantics which distinguish arguments with a

larger number of degrees of acceptability; the degree of acceptability of an

argument is sometimes called overall strength. A possible approach to select

a set of acceptable arguments is to rank them from the most to the least

acceptable. Ranking-based semantics [7, 28] (a.k.a. gradual semantics) aim

at determining such an ordering in among arguments. Several ranking-based

semantics can be found in literature, with a range of behaviors and logical

properties.

Definition 9 (Ranking-based Semantics) A ranking-based semantics S
associates to any AF F = ⟨A,R⟩ a ranking ⪰S

F on A, where ⪰S
F is a preorder

( i.e., a reflexive and transitive relation) on A. α ⪰S
F β means that α is at

least as acceptable as β.
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Figure 2.5: F2: AF example for Ranking-based semantics

Useful notions are recalled in what follows, in order to formalize ranking-

based semantics as required in this work.

Definition 10 Let F = ⟨A,R⟩ be an AF and α, β ∈ A. Then,

• a path p from α to β is a sequence ⟨a0, . . . , an⟩ of arguments such that

a0 = α, an = β and ∀i < n, (ai, ai+1) ∈ R. The length lp of the path p

is n;

• a defender of β is an argument at the beginning of an even-length path.

The multiset of defenders of β is denoted by R+
n (β). An argument β is

defended if R+
2 (β) ̸= ∅;

• an attacker of β is an argument at the beginning of an odd-length path.

The multiset of attackers is denoted by R−
n (β). The direct attackers

of an argument β are the arguments in R−
1 (β).

In literature ranking-based semantics have been characterized by means

of several logical properties, including abstraction (Abs), independence (In),

void precedence (VP), self-contradiction (SC), cardinality precedence (CP),

quality precedence (QP), counter transitivity (CT), defense precedence (DP);

their definitions can be found in [28]. All these properties are not manda-

tory for a single semantics, but they are useful as informative indicators

to highlight the differences in behavior between them. Some well-known

ranking-based semantics that return a unique ranking between arguments

are recalled hereafter.

The work in [22] has proposed a Categoriser function, which assigns a

score to each argument, given the value of its direct attackers.
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Definition 11 (Categoriser) Given an AF F = ⟨A,R⟩, the categoriser

function Cat : A ↦→]0, 1] is defined as:

Cat(α) =

⎧⎨⎩1 if R−
1 (α) = ∅

1
1+

∑︁
γ∈R−

1 (α)
Cat(γ)

otherwise

The ranking-based semantics Categoriser associates to F a ranking ⪰Cat
F

on A such that ∀ α, β ∈ A, α ⪰Cat
F β iff Cat(α) ≥ Cat(β).

Example 3 Consider the AF F2 depicted in Figure 2.5. The categorisers

are Cat(α) ≈ 0.38, Cat(β) ≈ 1, Cat(γ) ≈ 0.5, Cat(δ) ≈ 0.65, Cat(ϵ) ≈ 0.53.

Therefore, the ranking is β ≻Cat
F2

δ ≻Cat
F2

ϵ ≻Cat
F2

γ ≻Cat
F2

α.

Categoriser takes into account only the value of the direct attackers to

compute the overall strength of an argument. In fact, in F2 the argument

ϵ, which is attacked by arguments that are attacked by a non-attacked argu-

ment, is ranked higher than γ, which is attacked just once, but by a stronger

argument.

The Discussion-based semantics (Dbs) [7] is centered on the notion of

linear discussion, which recalls the “argumentation line” defined in [57]. A

linear discussion is a sequence of arguments such that each argument attacks

the argument preceding it in the sequence.

Definition 12 (Linear discussion) Given an AF F = ⟨A,R⟩ and an ar-

gument α ∈ A, a linear discussion for α in F is a sequence s = ⟨a1, . . . , an⟩
of elements of A such that a1 = α and ∀i ∈ {2, 3, . . . , n} ai R ai−1. The

length of the linear discussion s is n; s is won iff n is odd. Conversely, s is

lost iff n is even.

Dbs compares arguments by counting, for every positive integer i, the

number of linear discussions of length i for every argument. Lost discussions

are counted positively while won discussions are counted negatively, so that

the smaller the calculated number, the better the outcome for the reference

argument.

Definition 13 (Discussion-based Semantics) Given an AF F = ⟨A,R⟩,
α ∈ A and i ∈ N+.
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The discussion count of α, denoted DisF(α) = ⟨DisF1(α), DisF2(α), · · · ⟩, is
defined as:

DisFi
(α) =

⎧⎨⎩−N if i is odd

N if i is even

where N is the number of linear discussions for α in F of length i.

The ranking-based semantics Dbs associates to all argumments in an AF

F , taken by lexicographical order, a ranking ⪰Dbs
F on A such that ∀ α, β ∈

A, α ⪰Dbs
F β iff one of the two following cases holds:

• ∀i ∈ {1, 2, . . . }, DisFi
(α) = DisFi

(β);

• ∃ i ∈ {1, 2, . . . }, DisFi
(α) < DisFi

(β) and ∀ j ∈ {1, 2, . . . , i− 1},
DisFj

(α) = DisFj
(β).

Table 2.4: Count of discussions for the arguments in F2

i α β γ δ ϵ

1 -1 -1 -1 -1 -1

2 2 0 1 1 2

3 -1 0 0 -2 -3

Example 4 Consider the AF F2 depicted in Figure 2.5 and the Table 2.4 of

linear discussions number for every argument in F2. By adopting Dbs, the

obtained ranking is β ≻Dbs
F2

δ ≻Dbs
F2

γ ≻Dbs
F2

ϵ ≻Dbs
F2

α.

Another well-known semantics is the Burden-based semantics (Bbs) [7].

It follows a multi-step process, where a burden number is assigned to every

argument at each step. In the initial step, this number is 1 for all arguments.

Then, in each step, all the burden numbers are simultaneously recomputed

on the basis of the number of direct attackers and their burden numbers from

the previous step.

Definition 14 (Burden-based Semantics) Given an AF F = ⟨A,R⟩,
α ∈ A and i ∈ N.
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The Burden number of α, denoted by BurF(α) = ⟨BurF0(α), BurF1(α), · · · ⟩,
is defined as:

BurFi
(α) =

⎧⎨⎩1 if i = 0

1 +
∑︁

β∈R−
1 (α)

1
BurFi−1

(β)
otherwise

where by convention if R−
1 (α) = ∅, then

∑︁
β∈R−

1 (α)
1

BurFi−1
(β)

= 0.

The ranking-based semantics Bbs associates to any AF F by using the

lexicographical order, a ranking ⪰Bbs
F on A such that ∀α, β ∈ A, α ⪰Bbs

F β iff

one of the two following cases holds:

• ∀i ∈ {0, 1, . . . }, BurFi
(α) = BurFi

(β);

• ∃i ∈ {0, 1, . . . }, BurFi
(α) < BurFi

(β) and ∀j ∈ {0, 1, . . . , i− 1},
BurFj

(α) = BurFj
(β).

Table 2.5: Burden numbers for the arguments in F2

i α β γ δ ϵ

0 1 1 1 1 1

1 3 1 2 2 3

2 2.5 1 2 1.33 1.83

Example 5 Consider the AF F2 depicted in Figure 2.5 and the Table 2.5

which presents the burden numbers for every argument in F2. By adopting

Bbs, the ranking obtained is β ≻Bbs
F2

δ ≻Bbs
F2

γ ≻Bbs
F2

ϵ ≻Bbs
F2

α.

Like in the previous two examples, Dbs and Bbs often return the same

ranking, since both semantics disregard possible dependencies between an

argument and one of its attackers, as well as the dependencies between two

attackers. Also, Dbs and Bbs are not able to handle AFs with attack cy-

cles between arguments; they produce the ranking only on the basis of the

structure obtained by “unrolling” the cycles.

2.3.2 Generalizations of Argumentation Framework

Standard argumentation frameworks provide various semantics for accept-

ability, but there are still several limitations. There have been a number of
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proposals for extending Dung’s framework in order to allow for more sophis-

ticated modeling and analysis of conflicting information. A common idea in

some proposals is the observation that not all arguments and their relations

are equal: in many scenarios there exists a propensity to define preference

relations or to add values/weights to the arguments. Furthermore, in Dung’s

AF it is only possible to represent support implicitly, via defended argu-

ments, but in many situations an independent type of relations w.r.t. attacks

could be useful. Moreover, all attacks have always the same strength, but

it might be beneficial to assign different levels of strength for attacks, e.g.,

gradual weights associated with attacks. In order to cope with the above

requirements, several generalizations of the basic AF have been proposed.

Hereafter, the most relevant ones for this work are briefly recalled.

Bipolar Argumentation Framework

Generally speaking, pairs of arguments may be in conflict, due e.g., to the

presence of inconsistency in knowledge bases. Indeed, in all argumentation

systems, an attack relation is considered in order to capture the conflicts.

However, most logical theories of argumentation assume that defense is an

implicit form of support. For instance, if an argument α attacks an argument

γ and γ attacks an argument β, then α supports β. In this case, the notion of

support does not have to be formalized differently from the notion of attack

and Dung’s AF model is enough, in which only one kind of interaction is

explicitly represented by the attack relation. In this context, the support of β

by another argument α can be represented only if α defends β in the meaning

of [41]. It is a parsimonious strategy, but it is not a correct description of

the process of argumentation in general.

A Bipolar Argumentation Framework (BAF) [36, 10] is an extension of

the standard AF, in which two kinds of interactions between arguments are

possible: attack and support. These two relations are independent, which

leads to a bipolar representation of the interplay between arguments. Hence,

the BAF can convey explicitly the difference between defense and support.

Definition 15 (Bipolar AF) A BAF is a triplet B = ⟨A,Ratt,Rsup⟩, where
A is a finite set of arguments, Ratt is a binary relation on A called attack
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Figure 2.6: BAF example

and Rsup is a binary relation on A called support. Given two arguments α

and β, α R attβ (respectively α Rsup β) means that α attacks β (resp. α

supports β).

A BAF is typically represented by a directed graph, where two kinds

of edges are used to distinguish the two relation types: solid edges denote

attacks from the attacker to the attacked node, while dashed edges denote

supports. A BAF example is depicted in Figure 2.6.

In BAFs, new kinds of attack emerge from the interaction between the

direct attacks and the supports: there are a supported attack, represented

by a sequence of supports followed by one attack, and an indirect attack,

represented by an attack followed by a sequence of supports. Formally:

Definition 16 (BAF Supported and Indirect Attacks) Let

B = ⟨A,Ratt,Rsup⟩ be a BAF.

A supported attack for an argument β ∈ A from an argument α0 is a

sequence α0 R1 · · · Rn β, with n ≥ 2, such that Ri = Rsup ∀ i = 1, . . . , n−1,

and Rn = Ratt.

An indirect attack for an argument β ∈ A from an argument α0 is a

sequence α0 R1 · · · Rn β, with n ≥ 2, such that Ri = Rsup ∀ i = 2, . . . , n,

and R1 = Ratt.

Taking into account sequences of supports and attacks leads to the fol-

lowing definitions, applicable to sets of arguments.

Definition 17 (Defense for BAF) Let B = ⟨A,Ratt,Rsup⟩ be a BAF.

A set S ⊆ A set-attacks an argument β ∈ A, iff there exists a supported

attack or an indirect attack from an element of S to β.
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A set S ⊆ A set-supports an argument β ∈ A, iff there exists a sequence

α1 Rsup . . . Rsup αn, with n ≥ 2, such that αn = β and α1 ∈ S.
A set S ⊆ A defends collectively an argument α ∈ A, iff for each

argument β ∈ A, if {β} set-attacks α, then ∃ γ ∈ S such that {γ} set-attacks

β.

The acceptability of arguments has been investigated also in the case

of bipolar framework. Following Dung’s methodology, in the original BAF

proposal [36] the well-known stable and preferred semantics are generalized

for a BAF by enforcing the coherence requirement for an acceptable set of

arguments. A more recent work [140] provides a principle-based analysis of

28 BAF semantics to obtain a better understanding of the different kinds

of support (i.e., deductive, necessary, evidential) and to choose the best-fit

argumentation semantics to a particular application.

Weighted Argumentation Framework

A Weighted Argumentation Framework (WAF) [52, 51] is an extension of

the standard AF, in which attacks between arguments are associated with a

numeric weight, indicating the relative strength of the attack. There can be

several interpretations of these weights:

• Weighted Majority Relations : represents a weight as the number of

votes in support of the attack, in the context of collective decision-

making. The most natural interpretation of the attack weights refers

to the number of agents of a given group in accordance with the attack

relationship under consideration. In this case a WAF can be considered

as an aggregated view of the classical argumentation frameworks within

a group of agents. This is a straightforward way to aggregate the points

of view of the agents.

• Weights as Beliefs: equates weights to subjective beliefs, assigning

value false to the attacked argument when the attacking argument is

believed true. In structured argumentation, unlike Dung’s classic ap-

proach, arguments have their own internal structure, often represented

in some logical formalism. In this context, the notion of attack can

38



be refined and different attack strengths can be defined by determin-

ing “how much” an argument attacks another one. This leads for in-

stance to evaluate how much the conclusion of an argument is inconsis-

tent with the premises of another one, using an inconsistency measure.

Since it does not depend on any additional information, but just on the

structure of the arguments, this situation is commonly called “implicit

strength”.

• Weights as Ranking: perhaps the most intuitive interpretation, in

which weights are used to rank the relative strength of attacks be-

tween arguments, i.e., the higher the weight, the stronger the attack.

In this interpretation, the criteria for ranking attacks can be subjective

or objective. Weights can reflect the evaluation of the strengths of the

attacks between arguments. In some applications, it proves sensible to

split the attack relation into a relatively small set of different types of

attacks. A classic partition consists in labeling attacks either as weak,

medium or strong: weak attacks are attacks that are not completely

reliable, while strong ones are attacks that cannot be ignored. Different

attack strengths can also be derived when attacks come from different

sources, which can be more or less reliable, reputable or significant.

This case is called “explicit strength”, since it requires some additional

information which must be given explicitly when the WAF is built.

Definition 18 (Weighted AF) A WAF is a triplet W = ⟨A,R, w⟩, where
⟨A,R⟩ is the standard AF and w : R ↦→ R+ is a function assigning positive

real-valued weights to attacks.

As shown in Figure 2.7, a WAF can be represented by a directed graph,

where the value labeling each edge represents the weight of the attack relation

from the attacker to attacked node.

In this framework, attacks must have a strictly positive weight because

allowing 0-weight attacks would be counter-intuitive, since it could be in-

terpreted as the absence of attack relation. Here, the traditional notion of

conflict-free sets of arguments is relaxed: some inconsistencies are tolerated

in a set S of arguments, assuming that the sum of the weights of attacks be-

tween arguments in S does not exceed a given inconsistency budget β ∈ R+,
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Figure 2.7: W1: WAF example

that is, given β, attacks up to a total weight of β could be neglected. Stan-

dard abstract argumentation systems assume an inconsistency budget of 0;

by relaxing this constraint, WAFs can attain more solutions.

Definition 19 (Inconsistency Budget) Let W = ⟨A,R, w⟩ be a WAF.

The function sub, which takes an attack relation R, a weight function w,

and an inconsistency budget β ∈ R+, returns the set of subsets C of R whose

total weight does not exceed β, i.e.,

sub(R, w, β) = {C ⊆ R |
∑︂

⟨α1,α2⟩∈C

w(⟨α1, α2⟩) ≤ β}

WAFs generalize unweighted AFs and have some advantages over them.

As unweighted AFs give always consistent solutions, it may be the case that

a consistent solution could be the empty set. WAFs, in contrast, have the

following property: for every set of arguments S ⊆ A, Given a function f ,

S is β-f if ∃ C ∈ sub(R, w, β) such that S ∈ f(⟨A,R\C⟩) [51]. For example,

S is β-conflict free if ∃ C ∈ sub(R, w, β) such that S is conflict free in the

argument system ⟨A,R\C⟩.

Example 6 Consider the WAF W1 shown in Figure 2.7. The only conflict-

free set of arguments in W1 is the empty set. However, for β = 1 the set {α5}
is 1-conflict-free, since the attack ⟨α4, α5⟩ can be disregarded. For β = 2, the

sets {α4} and {α5} are 2-conflict-free.

Therefore in a WAF any set of arguments is conflict-free at some cost,

and the cost required to make a set of arguments conflict-free immediately
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w ∈ [−1, 0[ w ∈]0, 1]

Figure 2.8: BWAF legend: b1 attacks a1, b2 supports a2

provides a preference ordering over sets of arguments. Admissibility is defined

in the standard way, and standard semantics are considered leading to various

notions of β-extensions of Dung-style ones, e.g., grounded, preferred, stable

extensions [52].

Bipolar Weighted Argumentation Framework

As a further generalization of Dung-style AFs, the Bipolar Weighted Argu-

mentation Framework (BWAF) [97] allows not only weighted attack rela-

tions between abstract arguments, but also weighted support relations. This

is achieved by assigning a weight to each relation which can be positive or

negative.

Definition 20 (Bipolar Weighted AF) A BWAF is a triplet G = ⟨A,R, w⟩,
where A is a finite set of arguments, R ⊆ A×A and w : R ↦→ [−1, 0[ ∪ ]0, 1].

Attack relations are defined as Ratt = {⟨a, b⟩ ∈ R | w(⟨a, b⟩) ∈ [−1, 0[ } and

support relations as Rsup = {⟨a, b⟩ ∈ R | w(⟨a, b⟩) ∈ ]0, 1] }. Given two

arguments a, b ∈ A and a path ⟨a, x1, x2, . . . , xn, b⟩ from a to b, then:

• a bw-attacks b if w(⟨a, x1⟩) · w(⟨x1, x2⟩) · . . . · w(⟨xn, b⟩) < 0.

• a bw-supports b if w(⟨a, x1⟩) · w(⟨x1, x2⟩) · . . . · w(⟨xn, b⟩) > 0.

BWAF generalizes the notion of defense, based on a multiplication rule,

so that: (i) it complies with the Dung-style property that even-length paths

of attacks imply a defense (the attack of an attack is a defense); (ii) BAF

notions of indirect attack and supported attack maintain their definitions.

As depicted in Figure 2.8, a BWAF can be represented as a digraph whose

nodes are the arguments, attacks and supports are represented by solid and

dashed edges respectively, and weights indicate the relative strength of rela-

tions. The work in [97] proposes a ranking semantics to evaluate argument

acceptability in BWAFs. The approach relies on strength propagation of
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indirect relations ending in each argument. Unfortunately, it only manages

acyclic graphs, which is suitable for scenarios like discussion forums but may

be inadequate for networks of agents in SWoT contexts.

The deductive argumentation framework proposed in Chapter 4 is a DL-

based structured argumentation extension of the abstract BWAF framework.
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Chapter 3

Cloud-Edge Artificial

Intelligence

This chapter presents a novel cloud-edge AI microservice architecture based

on the OC paradigm for IoT-oriented CPSs [85]. It enables the collection of

data streams from nearby cyber-physical devices, preprocessing, AI model

training and inference for ML classification and regression tasks. Particu-

larly, AI microservices are encapsulated in containers and can be deployed

without modification either to edge nodes or to cloud infrastructure. While

cloud AI can manage larger datasets to maximize model accuracy and can

offer additional analytics for end users, edge AI can deliver lower prediction

latency and turnaround time, as well as inherent bandwidth savings and

greater data privacy. The containerized AI service architecture allows for

training and inference to be executed on the edge, cloud, or a combination of

the two, taking advantage of available computational resources dynamically

and opportunistically, with various trade-offs between computational/storage

requirements and prediction accuracy.

One of the most significant roadblocks for novel edge AI proposals is the

required high level of custom development and configuration. To overcome

this issue, a direct mapping has been carried out between the proposed ar-

chitecture components and Commercial-Off-The-Shelf (COTS) tools. This

is facilitated by the microservice encapsulation of each architectural module

with an accurate characterization of roles, responsibilities, and interactions,
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thus increasing feasibility by lowering development costs and time to market.

A fully working platform prototype has been implemented, using open-source

software tools and commodity hardware, in order to demonstrate the viabil-

ity of the proposal. A case study on cloud-edge AI in a smart manufacturing

scenario and an experimental campaign validate the key value propositions

of the approach from functional and performance standpoints.

3.1 State of the art

Edge Intelligence has been conceived as a paradigm that maximizes the per-

formance of training AI models and inferencing, by fully exploiting the data

and computational resources available throughout the hierarchy of end de-

vices, edge nodes, and cloud datacenters [146]. EI applications can work in

a cloud-edge device coordination, according to the six-level classification of

architectures discussed in Section 2.1.1. Moving from “Cloud Intelligence” to

“All On-Device”, data privacy increases, while data offloading volume and

path length decrease, as well as transmission latency and bandwidth cost.

As a consequence, cloud and edge resources should be exploited opportunis-

tically when designing complex pervasive cyber-physical systems.

The bulk of existing cloud AI platforms fall under the “In-Edge co-

inference” level of the aforementioned classification, where model training

takes place exclusively in the cloud and inferencing (prediction) is executed

at the edge. A notable instance of this category is the GEM-Analytics plat-

form for energy management: [130] it uses the cloud infrastructure to train

and evaluate models, then periodically sends them to edge nodes, where they

are used for day-to-day operations in power plants.

Osmotic Computing is one of the most actively studied approaches to

overcome the difficulty to coordinate AI tasks across edge and cloud tiers.

The main issues and challenges in designing and implementing AI-based ap-

plications in an OC environment are outlined in [91]. The OC paradigm has

been employed in several works in a variety of contexts. The trust man-

agement framework for Pervasive Online Social Networks (POSNs) in [119]

exploits OC for an efficient computational offloading among the many users

of a POSN. An OC architecture is also proposed in [95] for a smart class-
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room where deep learning models are exploited to control IoT devices and to

recognize entities and chalkboard handwriting. However, since microservices

are not containerized and a dynamic orchestration is missing, adopted OC

features are quite basic. The Apollon OC platform, presented in [84] for pol-

lution monitoring, allows for opportunistic filtering and integration of data

from various mobile and IoT devices in urban environments. Similarly, by

orchestrating microservices built on the R open-source statistical software,

the RAPTOR [60] osmotic platform enables the development, deployment,

and integration of customizable data analysis applications.

Recent works extend the core OC properties with more advanced capa-

bilities. The framework Osmosis [134] focuses on microservices deployment

across cloud, edge and IoT environments. Design principles of an osmotic

smart orchestrator are investigated, capable of migrating MicroELements

(MELs) composed of microservices along with microdata they work on. The

aforementioned architecture is leveraged in [35] to accomplish a distributed

healthcare system, and a Body Area Network (BAN) case study highlights

key benefits of the approach. In [100] further orchestration mechanisms are

proposed to implement a Message-Oriented Middleware (MOM) for IoT envi-

ronments, based on OC principles. The framework En-OsCo [68] focuses on

managing resources in an energy-aware manner. It uses a hyper-heuristic for

the best service dispatch on incoming workloads and an extended Kalman

filter to monitor edge datacenters. The Mobile Augmented Reality Net-

work (MARN) architecture in [118] exploits OC for migrating and effectively

scheduling various services across multiple servers. As they are crucial to

support distributed mobile augmented/virtual reality applications, key re-

quirements of low latency, robustness, and tolerance are tracked.

Table 3.1 summarizes relevant features of the above frameworks. In com-

parison, the proposed approach is the only one using both osmotic orchestra-

tion of containerized microservices and Cloud-Edge Intelligence, enabling to

exploit predictive ML models trained and executed on edge and on cloud.
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Table 3.1: Comparative table of frameworks (✓: supported, ✗: not sup-
ported)

Reference
Containerized
Services

Osmotic
Orchestration

AI
Model
Training

Pacheco et al. [95] ✗ ✗ ✓ Pre-trained

Apollon [84] ✓ ✓ ✓ On cloud

Grzelak et al. [60] ✓ ✓ ✓ ✗

Carnevale et al. [35] ✓ ✓ ✗ ✗

En-OsCo [68] ✓ ✓ ✗ ✗

Osmosis [134] ✓ ✓ ✗ ✗

Sharma et al. [118] ✗ ✓ ✗ ✗

Tovazzi et al. [130] ✓ ✗ ✓ On cloud

This framework ✓ ✓ ✓
On cloud
and edge

3.2 Osmotic Cloud-Edge architecture

The architecture shown in Figure 3.1 serves as the foundation for the pro-

posed framework. Microservices –denoted by little green cubes– are pack-

aged in containers and opportunistically deployed to devices. A container

only comprises specific components of the operating system (OS), middle-

ware, and application-level software needed to run a certain (micro)service.

Compared to employing a hypervisor, containers use OS-level virtualization

to drastically reduce distribution overhead and increase instance density per

device. Therefore, the new container-based techniques enable the deploy-

ment of lightweight services on resource-constrained programmable edge de-

vices like gateways, network switches, and routers. They also improve the

dynamic administration of microservices within cloud datacenters.

The orchestration and deployment of various containers on the available

devices in the reference architecture adhere to the Osmotic Computing prin-

ciples. Strategies for service orchestration consider the ever-changing re-

quirements of both the infrastructure (such as load balancing, dependability,

and availability) and applications (such as sensing and actuation capabili-

ties, context awareness, topological closeness, and Quality of Service –QoS–

characteristics). As a result, it is crucial to manage the migration of mi-

croservices between the cloud and the edge in both directions. Due to the
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Figure 3.1: Osmotic Cloud-Edge architecture

significant degree of physical resource heterogeneity, the provisioning of con-

tainers must adapt the virtual environment to fit the destination hardware.

Moreover, dynamic and effective management of virtual network resources

is required for the transfer of services in the cloud-edge system in order to

prevent application failures or QoS degradation. To address these problems,

the management of data and applications (data plane) is separated from the

control of network and security services (control plane). This strategy is

supported by the OC paradigm, which offers an adaptable infrastructure for

autonomous and secure provisioning of microservices.

The proposed architecture, as depicted in Figure 3.1, spans two main

infrastructure layers: cloud and edge. In the cloud, datacenters host various

service kinds that are built in accordance with high-level application needs.

The edge-level computing environment, located between neighborhood IoT

devices and the Internet, consists of gateway nodes and data acquisition

points that may process data generated by end devices. The latter collect

raw data with frequencies depending on a variety of factors, including:

• rate of change of the observed phenomenon;
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• environment and context constraints;

• capacity of the device itself to gather or store data;

• operational system requirements to be met.

Due to computing resource limitations, only lightweight data preprocess-

ing is possible on edge components, acting on the gathered raw data to

prepare them for mining workflows:

• encrypting outgoing and decrypting incoming data streams for security;

• transcoding data streams between different formats;

• integrating various data streams from groups of devices;

• preprocessing and filtering streams to remove spurious data, noise and

artifacts;

• summarizing raw data to reduce volumes with minimal information

loss.

In traditional solutions, the most sophisticated and computationally chal-

lenging operations are allocated to the cloud infrastructure, including:

• advanced input data stream preprocessing, such as transform functions

to representations in the frequency domain;

• feature extraction and selection for data dimensionality reduction;

• model training from features;

• prediction using the trained model.

Conversely, in the architecture herein described, edge nodes are capable

to run both prediction-only tasks using pre-trained models and the complete

feature extraction–training–prediction workflow. Due to the various require-

ments and capabilities of cloud and edge systems, it is appropriate to design a

heterogeneous architecture where different types of resources are distributed

on the two layers. In this perspective, components at the edge level usually
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have considerably lower processing and memory capacity, therefore model

training tasks can leverage larger datasets in cloud w.r.t. edge deployments.

As a result, model training and prediction should be deployed to the edge

when prediction accuracy is less important than other criteria, such as reduc-

ing response latency or maintaining data locality owing to privacy concerns;

in those situations, suboptimal accuracy is an acceptable trade-off.

Due to the direct relationship between container performance and the

capabilities of the physical host, it is crucial to define the way composite

microservices must be dynamically adapted to deployment sites, taking lo-

cation and distribution context into account. As depicted in Figure 3.1,

the following logical components are used to accomplish a dynamic service

orchestration based not only on restrictions specified by the particular appli-

cation and by the infrastructure provider, but also on a real-time feedback

loop to detect changes in infrastructure performance and QoS metrics:

• one or more edge nodes programmed to acquire raw data and to pro-

cess them locally using machine learning algorithms for classification

or regression tasks;

• one or more cloud nodes able to receive aggregate data from the edge

and perform classification/regression tasks by operating on a larger and

more feature-rich data set, while also being able to act as backup hosts

for edge microservices in the case of unavailability of edge nodes e.g.,

due to failures or energy depletion;

• a Data Stream Management System (DSMS) capable of conveying data

coming between the edge of the network and the cloud modules, while

also providing support for data storage operations;

• an Orchestrator, following the OC paradigm to manage the different

containers implementing the required functional blocks as microser-

vices.

Individual components are detailed in the next subsection, while tech-

nological choices for their reference implementation and integration are ex-

plained in the subsequent one.
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3.2.1 Microservices

The proposed architecture relies on a number of lightweight services that are

loosely connected, enable granular scalability, and support flexible compo-

sition patterns to satisfy the requirements and constraints of applications.

The following services have been defined.

Local Storage: stores locally and temporarily the data gathered from

IoT field devices. For the sake of latency and bandwidth optimization, cen-

tralized and shared data storage should be avoided. In fact, each data pro-

cessing service requires the data to be located as close as possible. This

service provides simple access mechanisms like RESTful (REpresentational

State Transfer) APIs (Application Programming Interfaces) and event-driven

interaction.

Data Processing: performs preprocessing for subsequent ML model

training tasks. For complex and high-volume CPSs, the overall task is dis-

tributed among edge nodes to spread the computational load and exploit

data locality. In fact, data from the local storage service are accessed directly,

thereby reducing bandwidth consumption and latency, while also mitigating

common issues of edge devices, such as power and connectivity outages.

Data Stream Management System (DSMS): acts as Message Bro-

ker (MB) for the platform, forwarding data and event streams from edge to

cloud and vice versa. It adopts the publish/subscribe pattern, enabling ef-

ficient event-driven asynchronous communication. This paradigm is partic-

ularly well suited for microservice architectures [100]. Each Edge node can

send messages to unique topics marking different information types. Each

topic has zero to many consumers subscribing to it, and refers either to raw

or preprocessed data streams, or to events and control messages. The DSMS

allows also the discovery of available topics, published by data producers at

the edge. Furthermore, it acts as an event stream processor, by combining

and possibly converting input data from multiple selected topics to produce

an output flow which is subsequently processed by the Cloud Intelligence

modules to train a global model. It is crucial for the DSMS to be interopera-

ble with the most widespread IoT communication protocols, such as MQTT

(Message Queuing Telemetry Transport) [14] or CoAP (Constrained Appli-
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cation Protocol) [121], as many kinds of commercial IoT devices cannot be

upgraded to support new protocols due to proprietary firmwares as well as

computational resource and deployment capability limitations.

Data Producer: sends data from an edge node to other edge or cloud

nodes. The message broker supports the connection.

Data Consumer: receives data sent by a data producer. It is typically

deployed on cloud nodes to get preprocessed information from edge nodes,

in order to be mined.

Edge Intelligence: executes algorithms on Edge devices for ML prob-

lems like classification and regression. This microservice is also able to pro-

vide model training and validation, based on the data provided by the local

storage. The following benefits ensue: (i) privacy and security, as the trans-

fer of sensitive data across the Internet can be avoided; (ii) low latency, as

the local model can be trained without uploading data to the cloud and

downloading models or prediction outcomes; (iii) scalability, as distributed

learning is able to manage high volumes of data produced in pervasive IoT-

based CPSs.

Cloud Intelligence: the cloud counterpart of the Edge intelligence ser-

vice. It runs ML algorithms on data streams gathered through the edge layer.

For example, the cloud node can train a classification or regression model on

streamed sensor data, collected from multiple data producer instances. This

approach enables a feedback control loop to update the model and improve

its quality progressively; a less accurate model can be trained and used on

edge devices, while a more accurate one is trained in the cloud by collecting

larger amounts of data and is then transferred to the edge. This loop can be

repeated periodically when new data batches are collected.

Data Analytics: carries out further business intelligence analytics on

data gathered at the cloud layer. In particular, it provides functionalities and

tools to support a presentation layer, e.g., a dashboard where aggregated

statistics as well as predictions and performance of trained models can be

reported.

Orchestrator: manages the aforementioned microservices by means of a

container-based approach. In particular, it schedules the migration of services

from edge to cloud and vice versa, based on real-time resource conditions and
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availability. For example, the orchestrator can reassign containers in case of

network infrastructure changes, high service demand or edge node failures.

3.2.2 Technologies

One of the main objectives of the presented platform architecture is to facil-

itate the realization and integration of autonomous microservices by utiliz-

ing commercial-off-the-shelf software components to implement both system

functionalities and fundamental application modules, allowing for reduced

platform development time and effort.

Table 3.2: Reference COTS tools

Service/
Module

Technology Version License
Release
Date

Container
technology

balenaOS 2.54.2 Apache 2.0 Aug 12, 2020

Orchestrator openBalena 3.1.1
GNU Affero
GPL 3.0

Nov 10, 2020

Data Stream
Management
System

Apache Kafka
2.5.0 (with
Scala 2.12)

Apache 2.0 Apr 15, 2020

Data
Producer

Kafka
Producer API

2.0.1-python Apache 2.0 Feb 19, 2020

Data
Consumer

Kafka
Consumer API

2.0.1-python Apache 2.0 Feb 19, 2020

Local
Storage

Redis 6.0.9
3-Clause
BSD

Oct 26, 2020

Data
Processing

Python scripts 3.9.0
PSF & Zero-
Clause BSD

Oct 5, 2020

Edge/Cloud
Intelligence

TensorFlow
Keras API

2.3.1
2.4.3

Apache 2.0
MIT

Sep 24, 2020
Jun 25, 2020

Data Analytics
& Visualization

Streamlit 0.72.0 Apache 2.0 Dec 2, 2020

Table 3.2 illustrates the mapping of each architecture component (Figure

3.1) with the corresponding selected technology. To choose tools appropriate

for each microservice, a comprehensive and in-depth market investigation has

been conducted, analyzing functionality, technological characteristics, pric-

ing, licensing, and hardware and software requirements. COTS components

with the following features have been preferred:

52



• open source software license;

• active developer community;

• proven track record of reliability, security and performance;

• full compatibility with container technologies;

• interoperability with widespread IoT platforms and protocols;

• support for multiple hardware architectures;

• compliance with cutting-edge functional and architectural paradigms

of software engineering.

The following technologies have been selected to implement and integrate

the proposed platform:

balenaOS:1 a lightweight operating system based on the Yocto project2

for Linux distribution customization. balenaOS is tailored to run applica-

tion containers on single-board computers and embedded devices. The OS

provides robust networking functionalities as well as virtualization and provi-

sioning support. For container management balenaOS includes balenaEngine,

a Docker 3-compatible daemon optimized for application service images, con-

tainers and volumes deployed on resource-constrained devices. With respect

to other existing container technologies, this tool overcomes common virtu-

alization problems related to embedded scenarios such as resource overhead

and lack of hardware support, as balenaOS is available for several device

types and different CPU architectures.

openBalena:4 a balenaOS-based provisioning and orchestration plat-

form to deploy and manage containers on fleets of devices. It is exploited

to configure application containers, push updates, share network parame-

ters and distribute container images on each device according to multiple

strategies.

1https://www.balena.io/os
2https://www.yoctoproject.org
3https://www.docker.com
4https://www.balena.io/open
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Apache Kafka:5 a distributed event streaming platform for communi-

cation among several devices and applications, characterized by horizontal

scalability, high throughput, low latency and interoperability with existing

IoT communication protocols through an ecosystem of plug-ins and connec-

tors. Kafka has been adopted as DSMS for sending/receiving streams of

event data collected by the container applications. Messages can also con-

tain event feedback forwarded to edge nodes and the outputs of the ML

algorithms exchanged between cloud and edge microservices.

Kafka Producer/Consumer API:6 each microservice can produce

(i.e., send) or consume (i.e., receive) data through the Kafka API. The

Producer API allows containers to send data to other services subscribed

to the same topics, whereas the Consumer API can be exploited to retrieve

information marked with specific topics in the Kafka platform. Both APIs

are available for several programming languages; Python7 has been chosen

as it facilitated integration with other Python-based platform components,

like the ML APIs and the custom scripts developed for the Data Processing

microservice.

Redis:8 in-memory data store used to collect information coming from

sensors and field devices according to a key-value data model. Several fea-

tures make it appropriate for Edge Computing scenarios: (i) low CPU and

memory requirements; (ii) lightweight data structures particularly appropri-

ate for time-series data; (iii) simple but versatile data model, useful to store

information produced by heterogeneous devices; (iv) append-only storage

options optimized for flash memories, usually adopted in IoT devices.

TensorFlow:9 an open source machine learning library, exploited to

process the collected data on both edge devices and cloud nodes. The Keras10

high-level API has been used to define and train classification and regression

models based on deep neural networks, as well as to make predictions on

data.

5https://kafka.apache.org
6https://kafka.apache.org/documentation/#api
7https://www.python.org/
8https://redis.io
9https://www.tensorflow.org

10https://keras.io
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Streamlit:11 Python-based library used to create interactive Web ap-

plications able to: (i) plot sensor data, also highlighting basic statistics and

patterns; (ii) support exploratory data analysis; (iii) visualize performance

results of ML predictive models.

3.3 Case study

Smart manufacturing is a challenging scenario for cyber-physical systems.

Several Industry 4.0 [94] initiatives are accelerating the adoption of IoT and

AI technologies, changing manufacturing with significant organizational, so-

cietal, and economic impacts. Extensive networks of smaller, individually

configurable sensing and actuation components are replacing collections of

large, monolithic machines and robots in plants. Multiple continuous data

streams are feeding numerous distributed decision points, either autonomous

or under human supervision.

The reference setting considered for the case study involves impurity

prediction on iron concentrate in the mining industry. An iron extraction

plant operates in an industrial area. Process variables and surrounding air

flow must be continuously monitored, carrying out an autonomous intelligent

manufacturing task to maximize mineral quality. Mining activities face a

constant decrease in ore concentration. Various processing methods are em-

ployed nowadays to enhance the recovery of ore from raw materials and are

key components of contemporary separation processes utilized in the mining

sector. Flotation is one of the most widely used techniques, allowing the sep-

aration of gangue from ore. However, since the impurity (silica) in iron ore

is commonly measured every hour, being able to predict the amount of im-

purity could constantly support the activity of engineers and technicians, by

providing useful information in advance to promptly improve the extraction

process.

A prototype of a monitoring platform has been created adopting the pro-

posed architecture. Sensors and actuators embedded in the extraction plant

have been simulated by means of the dataset in [87]. Inspection features

11https://www.streamlit.io
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Figure 3.2: Components of the proposed prototype

include starch and amina (reagents) flow, ore pulp flow, ore pulp pH, and ore

pulp density, which are the most important variables for the final mineral

quality. Further data include level and air flow inside the flotation columns,

i.e., cylinders where mineral slurry and air flows are introduced from above

and from below, respectively, in order to induce mixing. The proposed ar-

chitecture allows for opportunistically combining this data and predicting

the amount of silica that will be extracted using Cloud-Edge Intelligence

algorithms.

3.3.1 Prototype implementation

In accordance with the architecture discussed in Section 3.2, a prototype

testbed has been developed to demonstrate the feasibility of the proposal and

assess its performance and capabilities. Figure 3.2 shows the main elements

of the industrial IoT-based CPS environment: a cloud node, an orchestrator

and Message Broker (MB in the following), and two edge nodes, representing
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Figure 3.3: Message Broker/Orchestrator and Edge devices in the platform
prototype

two distinct plant sectors. Edge devices and the MB are connected through

an IEEE 802.11 wireless local network, and the MB is the only module com-

municating with the remote cloud node through an Internet connection.

Various single-board computers have been used on the edge side, as shown

in Figure 3.3. Considering Figure 3.2, each microservice has been deployed

on a distinct board: this demonstrates how logically related microservices

can be distributed over several hardware devices in the proposed framework

rather than being contained in a single node. The system scales horizontally

according to available devices within the target environment. In contrast

to boards with higher-performance CPUs, which can be employed for more

computationally demanding activities, devices with lower computing capacity

may be used as Storage modules, collecting data from physical sensors. High

modularity and scalability are the main benefits of the adopted OC approach.

A Raspberry Pi 4 Model B12 (RPi4) has been used as the MB, running

12https://www.raspberrypi.org/products/raspberry-pi-4-model-b
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an instance of Apache Kafka, a MQTT-to-Kafka connector, and the Orches-

tration service in different balenaOS-based containers. It is equipped with

a quad-core 1.5 GHz ARM64 CPU, 4 GB of RAM, and 32 GB of Secure

Digital (SD) storage memory. As per the publish/subscribe pattern, each

message published by any node to a topic is received by all subscribers for

the topic. The following topics have been defined: control, used to transmit

messages regarding the (dis)connection of Sensor nodes, or data availability

in a Storage module; data, used to share messages related to data processing

and results of the inference algorithms.

Each edge node as depicted in Figure 3.3 is composed of two devices run-

ning different containerized modules on balenaOS. The first edge node (E1)

includes a Raspberry Pi 3 Model B+13 (RPi3+) to perform Edge Intelligence

tasks (E1a) and a local Storage module running on a Raspberry Pi 1 Model B

(RPi) (E1b). The RPi3+ is equipped with a quad core 1.4 GHz ARM64 CPU,

1 GB RAM, and 32 GB storage memory, whereas the RPi has a single-core

ARM11 CPU at 700 MHz, 512 MB RAM, and 8 GB SD storage memory.

Similarly, the second edge node (E2) has been configured using a Raspberry

Pi 3 Model B14 (RPi3) equipped with a slightly slower quad core 1.2 GHz

ARM64 CPU, 1 GB RAM and 32 GB SD storage memory (E2a), which runs

the Edge Intelligence service, and a RPi acting as a second Storage device

(E2b). Two additional RPi devices (E1c and E2c) with the same specifications

replicate actual sensing devices in a sensor network, transmitting raw data

to the Storage modules via dedicated MQTT topics.

The cloud node containers have been deployed to a Microsoft Azure D32as

v5 virtual machine, configured with an Intel Xeon CPU E5-2673, 32 GB of

RAM and 128 GB of storage. The Internet connection between the local net-

work (including the Message Broker) and the Cloud is an asymmetric Fiber

To The Cabinet (FTTC) small office link with downstream and upstream

nominal bandwidth of 100 Mbps and 30 Mbps, respectively.

Different message formats have been used for communication. Simulated

Sensor devices communicate with the MB to discover available Storage mod-

13https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus
14https://www.raspberrypi.org/products/raspberry-pi-3-model-b
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ules, then they start transmitting data serialized in the Apache Arrow 15

format, a language-independent standard proposed for general-purpose seri-

alization and data transfer. Since it is based on a column-oriented layout, the

Arrow format is particularly suitable for tasks requiring fast data processing

and information sharing between Storage devices. On the other hand, all

messages transmitted through the MB via the control and data topics are

serialized in JSON (JavaScript Object Notation)16 format. In particular,

control messages have the following attributes, summarized in Table 3.3:

• id : unique message identifier;

• type: indicates the kind of control message. Acceptable values are:

– storage connected (SC): a new Storage module is available on the

network;

– storage disconnected (SD): a Storage module is currently unreach-

able or down;

– sensor data (SDT): a Sensor measurement is available on a storage

module for running a prediction algorithm;

– dataset (DS): a Sensor dataset, including several sensor measure-

ments, is available on a Storage module for training or updating

the ML models;

– query (QR): used to list available Storage modules and related

data;

– response (RS): indicates a response to a query message.

• host : contains the reference module IP address;

• data key : unique identifier used to retrieve data from a specific Redis

datastore;

• query type: used to retrieve information about a single measurement

(sensor data), a subset of data (dataset) or the whole collection (stor-

age);

15https://arrow.apache.org
16https://www.json.org
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• query id : message id of the query originating current response;

• storage id : unique identifier of the Storage module containing the data.

Table 3.3: Attributes of control message

Type Id Host Data Key Query Type Query ID Storage ID

SC ✓ ✓
SD ✓
SDT ✓ ✓ ✓
DS ✓ ✓ ✓
QR ✓ ✓
RS ✓ ✓ ✓

Table 3.4 summarizes the attributes of data messages:

• type: indicates the kind of data notification:

– input : contains data samples for which an inference task is re-

quested;

– output : contains results of a prediction task;

– model : returns information about the performance of the trained

ML models.

• id : identifies the processed sensor data (in case of input and output

messages) or the Cloud/Edge Intelligence module providing the predic-

tion model;

• data: an array of raw information;

• module id : identifies the Intelligence node running the predictive algo-

rithm;

• result : output of the prediction task;

• time: prediction time in milliseconds;

• r2 : coefficient of determination (R2), used as a performance metric for

a regression model;
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• mse: mean squared error, i.e., the average squared difference between

predicted and real values;

• download time, training time and evaluation time: time spent by the

Intelligence node to retrieve the whole dataset, train the model and

evaluate performance, respectively.

Table 3.4: Attributes of data messages

Type input output model

Id ✓ ✓ ✓
Data ✓

Module ID ✓
Result ✓
Time ✓
R2 ✓

MSE ✓
Download Time ✓
Training Time ✓

Evaluation Time ✓

An ore purity monitoring and prediction process has been developed with

a regression model through the above prototype. Basically, it entails the

sequence of interactions reported in the UML (Unified Modeling Language)

diagram of Figure 3.4 and described in what follows:

1. when a Storage module is available on the network, it sends a stor-

age connect control message to notify all Sensor modules subscribed to

the control topic (blue messages in Figure 3.4). As an alternative,

each Sensor module can explicitly perform a query to retrieve all the

available Storage devices;

2. the Sensor module collects data during its observation period and sends

them to Storage devices through a dedicated MQTT topic. The Apache

Arrow data format is used for message serialization (red color in Figure

3.4);

3. a dataset notification is sent to advertise the availability of new data.

Datasets can be used to train or update prediction algorithms on active
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Figure 3.4: Sequence diagram for edge-side prediction

Cloud/Edge Intelligence modules, but also to plot information on a

remote dashboard. Intelligence modules can autonomously query the

MB to obtain information about available datasets;

4. data are retrieved from one or more Storage devices and used to train

a regression model. Performance results are then exposed through a

model message on the data topic (drawn in orange in Figure 3.4);

5. subsequently collected sensor data represent the input of the prediction

model and are forwarded through the MB to the subscribed Intelligence

nodes. Results of the regression process are finally returned through
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an output notification.

Final prototype specification concerns the ML model trained in the In-

telligence nodes for the case study: it is a multi-layer perceptron regressor

[59] with 5 hidden layers and 200 neurons per layer, with a Rectified Linear

Unit (ReLU) activation function. The network is trained for 10 epochs using

the Keras implementation of the Adam [73] optimizer, with default param-

eters and mean squared error loss function. This model has been selected

since it generally provides satisfactory prediction performance, while being

sufficiently lightweight to run in a timely manner on resource-constrained

devices.

3.4 Experimental evaluation

An experimental campaign has been carried out to assess the prototype per-

formance. The whole set of data [87] adopted to simulate the intelligent man-

ufacturing use case containsN = 737453 samples, collected in a 7-month time

span, for a 160 MB total size. The deployed architecture is the one described

in Section 3.3.1, where each logical node is composed of two devices: Edge

Intelligence and Storage. In order to test the dependency of performance on

dataset size and to simulate deployments on a larger scale than what was

allowed by available physical devices, four scenarios have been configured,

with data dimension set to N, N
2
, N

4
, N

8
respectively, and samples extracted

randomly. In each configuration, a validation set has been obtained by hold-

ing out 1/7 of the dataset, and the remaining 6/7 have been used to train

the predictive models, with 3/7 for the two simulated Sensor devices, E1c

and E2c. With regards to all experimental results, each reported value is the

average of five cold runs.

Data gathering

The first test has simulated data upload by Sensor devices to Storage. To

reduce network load and memory usage, due to Redis being an in-memory

store, data have been first compressed using the zlib format [45]. Basically,

compression increases CPU usage on both Sensor and Edge devices, while
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Figure 3.5: Time required for data import

a range of network bandwidth and RAM to CPU usage trade-offs can be

achieved by tuning the compression parameters, or by replacing the format

altogether, so as to meet scenario requirements. Data upload has been carried

out according to steps 1-3 of the sequence in Section 3.3.1. Figure 3.5 reports

elapsed times for each scenario. Results show linear dependence of import

time on the number of samples.

Model training and validation

The second test has involved measuring training times and the related net-

work load. As explained in steps 4-5 of the sequence in Section 3.3.1, each

Intelligence module needs to fetch data from Storage before training. On

training completion, it performs predictions on the validation set. Table 3.5

reports on network loads for this phase, with device labels referring to Figure

3.3. Predictably, the busiest modules from the network point of view are the

Storage ones, which both receive information from Sensors and upload them

to requesting nodes. Despite appearing inefficient, this method separates

data generated by field devices from data consumed by Edge Intelligence

modules, which is convenient as their variability and/or velocity may differ

greatly.
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Table 3.5: Training: Network activity

Node Device Label Download (kB) Upload (kB)

Broker broker MB 4768 7603

intelligence E1a 33386 993
Edge 1 storage E1b 35951 36043

sensor E1c 2379 35259

intelligence E2a 33685 1142
Edge 2 storage E2b 35522 35858

sensor E2c 2193 35088

In order to compare the performance of the proposal against a centralized

cloud solution, the same Intelligence container used in the edge nodes has

been deployed on the cloud via the OC Orchestrator on the MB node. The

cloud node first downloads the full dataset by querying all the edge Storage

devices, then proceeds to train a predictive model. Turnaround times and

model validation results are reported in Table 3.6. Considering that edge

nodes use half of the samples to train their models, it can be noticed how

Storage data retrieval takes a comparable amount of time for both cloud

and edge nodes, while training time is significantly shorter on the cloud (al-

most an order of magnitude), as expected due to its more powerful hardware.

While this may be mitigated by deploying Edge Intelligence services on more

capable devices, it is not a crucial issue, as training on the whole dataset

only happens once, or at worst periodically, depending on the use case. Ac-

tually, in real applications it is advisable to train models periodically and

incrementally, using small-size datasets. As explained in Section 3.2, the

prototype also allows for cloud-edge cooperation in model training: while

edge components can train models “on-the-fly” on smaller datasets, retain-

ing their independence from the Cloud albeit with suboptimal accuracy, a

cloud node may aggregate more data coming from multiple local networks

in order to train better models, finally feeding them back to the edge. It

is also important to point out that the prototype represents a rather opti-

mistic setting for the Cloud node, where it is mostly idle w.r.t. hardware and

network resources. In a realistic industrial scenario, where the premises In-

ternet connection towards the cloud is shared by a large number of devices,
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the uplink may be temporarily unavailable or may be saturated by sensor

data and inference requests, making it a potential bottleneck. Similarly, the

full processing resources of the cloud node(s) will be shared across highly het-

erogeneous workloads, and company budget pressures will induce IT officers

to seek a relatively high utilization baseline [25]. In such settings, Edge In-

telligence capabilities can improve both the availability and the timeliness of

predictions, by scaling the workload across multiple relatively capable boards

located near data generators.

Table 3.6: Training time and validation results

Node R2 MSE
Download
Time (s)

Training
Time (s)

Validation
Time (s)

Cloud 0.983 0.0222 50.788 437.986 3.081

Edge 1 0.972 0.0348 24.603 2086.653 25.415

Edge 2 0.971 0.0337 33.085 2574.005 28.976

Dataset size dependency

Table 3.7 reports on training times and validation metrics (R2 and MSE)

for different dataset sizes on the Edge Intelligence node E1a. Results indicate

there is an acceptable trade-off between model accuracy and training time in

Edge Intelligence applications, in agreement with existing evidence suggest-

ing how fractional datasets do not induce a large degradation in prediction

accuracy if their distribution is representative of the whole dataset [4]. This

outcome supports the aforementioned claims about Cloud-Edge Intelligence

cooperation. Additionally, it is important to note that the prototype has been

set up with separate devices for data storage and model training for exper-

imentation purposes. In real scenarios, the OC Orchestrator may eliminate

download latency by deploying Edge Intelligence and Storage microservices

on the same component, provided it has enough resources; this would both

eliminate download time and reduce the overall network load.
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Table 3.7: Training on Edge node: reduced datasets

Samples R2 MSE
Download
Time (s)

Training
Time (s)

Validation
Time (s)

737454 0.983 0.021 42.451 5155.740 32.072

368727 0.972 0.035 24.603 2086.653 24.608

184363 0.959 0.055 10.688 1066.539 10.688

92182 0.931 0.088 5.087 564.569 5.087

46090 0.894 0.135 2.815 263.953 2.815

Table 3.8: Prediction: Network activity

Node Device Label Download (kB) Upload (kB)

Broker broker MB 42 78

Edge 1
intelligence E1a 26 26

sensor E1c 36 34

Edge 2 intelligence E2a 26 26

Table 3.9: Prediction: time and latency

Node
Inference
Time (ms)

Communication Latency (ms) Turnaround
Time (ms)S to MB MB to I I to MB MB to S

Cloud 31.377 91.510 19.752 42.549 44.970 230.158

Edge 1 230.598 87.259 4.362 19.461 37.773 379.453

Edge 2 301.887 84.812 7.590 22.844 30.555 447.688
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Prediction performance

Further experiments have been carried out to evaluate both computational

and network performance in prediction tasks. Sensor device E1c has been

configured to send 10 input messages on the data topic. Subscribed Intelli-

gence nodes compute predictions and return output response messages. Table

3.8 shows the data exchange for this test is minimal, as expected. Sending

individual data samples through the MB incurs in some network bandwidth

overhead, though this can be mitigated by publishing multiple samples to-

gether, if possible. The last experiment has assessed prediction time and

latencies both at the edge and on the cloud. Outcomes are reported in Table

3.9 and are described in what follows:

• inference time: the time elapsed in predicting the regression value for

a sample locally, as measured by the Intelligence module;

• communication latency : the time required for sending and receiving

messages between the different components of the architecture in the

prediction phase. As Table 3.9 shows, it is made of four components:

(i) from Sensor to Message Broker (S to MB), (ii) from Message Broker

to Intelligence (MB to I), (iii) from Intelligence to Message Broker (I

to MB), and from Message Broker to Sensor (MB to S). In the pro-

totype the last two components simply concern the prediction values,

but in general scenarios they could concern set points for appropriate

actuators in a control feedback loop, computed on the basis of the ML

predictions;

• turnaround time: is the overall time between input sample upload and

prediction, evaluated on the Sensor node uploading the samples.

While prediction time is significantly lower on the cloud, the edge nodes

have notably lower communication latencies. Although the overall turnaround

time is lower in the cloud case, the actual availability of a stable connection is

far from certain in a real industrial plant. In fact, whenever bandwidth avail-

ability decreases due to other computing and/or control activities deriving

from large numbers of local devices interacting with the cloud –a condition

which is not replicated in the experimental setup–, transferring training and
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prediction to the edge may improve the overall system performance by alle-

viating some of the outbound network pressure.

Osmotic microservice allocation

In order to assess the capability of the proposed architecture to dynamically

adapt to variable workloads and node availability by migrating microservices

between the edge and the cloud, two alternative scenarios to the baseline

behavior described in Section 3.3.1 have been tested:

1. A Sensor module looks for an available Storage service, but the Orches-

trator is unable to meet the request due to the unavailability of Storage

microservice instances and to the lack of a suitable device to host them.

The Orchestrator therefore pushes the Storage container to the cloud,

which –once ready– announces itself through a storage connect mes-

sage. The Orchestrator is now able to notify the Sensor module, which

can then upload its data. At some point in time, a new edge device

with the required capabilities to act as a Storage host connects to the

network. For load balancing purpose, the Orchestrator hangs the Stor-

age microservice to the new device, which can take over the role of

Sensor data collector.

2. In case of a shortage of Edge Intelligence nodes (e.g., due to device

failure), the Orchestrator pushes the Intelligence microservice to the

cloud, where it can resume its learning and inference tasks, albeit with

higher network latency. Eventually, a new device connects at the edge,

and the Orchestrator assesses it as being able to host an instance of the

Edge Intelligence service. The microservice is therefore linked to the

new device, thus offloading the cloud and restoring normal operation.

The main difference from the baseline essentially consists of the Orches-

trator pushing containers to cloud and edge nodes, while the rest of the

system keeps working as usual. Microservice deployment times and band-

width usage are reported in Table 3.10: the load time column reports on the

time taken to address the container from the Orchestrator to the target node

and load it in balenaEngine. Conversely, startup time refers to the time it
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Figure 3.6: Dataset transfer times

takes to bootstrap the container after it has been loaded. Both load and

startup times are higher for edge nodes, as expected due to being signifi-

cantly less capable, but still within one order of magnitude of their cloud

counterparts. Times for the Intelligence container are much closer, which is

likely due to the allotted edge device being a RPi3+, versus a RPi for the

Storage container; this hints at the dominance of container loading time in

balenaEngine over network transfer time for slower devices. Bandwidth us-

age has been measured on the Orchestrator, and it is generally lower for the

edge node: this is due to the size of container images being different between

the target devices, as reported in the image size column.

Table 3.10: Microservice deployment performance

Node Service
Load
Time (s)

Startup
Time (s)

Broker Bandwidth (MB) Image
Size (MB)Download Upload

Cloud
Storage 71.163 2.983 4.144 255.726 239.974

Intelligence 224.451 2.768 12.648 765.300 718.205

Edge
Storage 314.577 23.424 1.713 149.924 137.782

Intelligence 244.422 3.108 3.424 718.291 694.802

Finally, Figure 3.6 shows dataset upload and download times when the
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Storage microservice is deployed to the edge and cloud nodes, represent-

ing Sensor data compression and upload in the first scenario, and dataset

download and decompression by Edge Intelligence nodes in the second sce-

nario, respectively. Processing time is mostly noticeable in the upload phase,

as data is compressed by an RPi device before uploading them to the Re-

dis data store, while it is negligible when an RPi3 device decompresses the

downloaded dataset. Transfer time is significantly higher for the cloud node,

which is due to the network connection being asymmetrical, with much higher

downlink than uplink bandwidth. In any case, transfer time is consistently

higher when the Storage microservice is deployed to the cloud, as expected,

though again in the same order of magnitude. This confirms that the elastic

–osmotic– allocation of the Storage microservice between the edge and the

cloud is a viable solution which can be carried out without significant impact

on the overall framework performance.
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Chapter 4

Deductive Argumentation

Framework

This chapter introduces a novel approach for improving argumentation frame-

works adopting Description Logics-based Knowledge Representation and Rea-

soning to represent arguments, evaluate their relations and rank their accept-

ability [56]. The approach is general-purpose, but it is particularly tailored

to SWoT-enabled EC contexts, like the ones supported by the framework

discussed in the previous chapter.

Information generated and shared by an agent is annotated according to

reference ontologies in standard Semantic Web languages, grounded on De-

scription Logics [13]. Specifically, the framework refers to a Web Ontology

Language (OWL) 2 [96] subset corresponding to the Attributive Language

with unqualified Number restrictions (ALN ) DL, which allows polynomial-

time standard and non-standard inference procedures for acyclic ontologies.

The approach can be integrated with any classical Abstract Argumentation

framework, where each semantic annotation takes the role of an argument.

However, in order to allow more nuanced analysis, the proposed approach

adopts a Bipolar Weighted Argumentation Framework, as discussed in Sec-

tion 2.3.2, including both attack (a.k.a. defeat) and support relations in the

interpretation introduced by [36], with an assigned weight to represent con-

nection type and strength. The type and weight of relations are computed by

means of non-standard, non-monotonic inference services including Concept
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Contraction, Concept Abduction and Concept Bonus, [104] recalled in Section

2.2.2. This enables a more meaningful appraisal of individual relations and

interpretability of results, by virtue of logic-based explanation capabilities of

the exploited deductions. The framework includes a novel propagation-based

ranking semantics to compute an acceptability score for each argument. The

proposed method adds a fading mechanism to path strength propagation, in

order to cope with agents’ computational resource limitations. Unlike most

existing BWAF proposals, it also copes with cyclic argumentative graphs, by

using an iterative algorithm with halt conditions.

In order to clarify the proposal and highlight its peculiarities, a case study

concerning tactical decision-making in the Real-Time Strategy (RTS) game

engine StarCraft II has been conducted. The choice is due to the similarity

of RTS game environments with real-world pervasive contexts from unpre-

dictability and complexity standpoints. While general purpose, a significant

motivation for the framework is to be feasible even in pervasive comput-

ing contexts. Hence, an approach for argumentation graph simplification via

edge pruning is proposed: its effects have been investigated w.r.t. both reduc-

tion in computational overhead and stability of the outcomes of the ranking

semantics, in order to evaluate whether it can provide an acceptable trade-off

between approximation of results and resource consumption, as is often the

case in Edge Intelligence applications on resource-constrained devices [44].

The KRR-based argumentation framework can leverage the Cloud-Edge

AI architecture proposed in Chapter 3 to create a completely distributed

system. A constellation of devices in a sensor network typically produces

raw data, which can be stored, annotated and used to train ML models

or infer context descriptions, possibly by means of semantic-enhanced ML

methods [109]. Such descriptions can act as arguments for constructing and

evaluating a BWAF in the Intelligence modules. Cloud nodes could serve

as repositories of processed argumentation graphs and ranking outcomes,

which can be utilized for additional analysis, statistics, and user-friendly

presentation.
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4.1 State of the art

In latest years, the argumentation theory originated by Dung [49] has been

increasingly applied to IoT scenarios for modeling interactions among smart

agents and to enable argumentation-based self-coordination. In [86], argu-

mentation is exploited to coordinate smart vehicles on a congested road.

Arguments model both data collected through vehicle devices and possible

actions. By processing the argumentation graph, each vehicle agent is able

to solve conflicts, identify winning arguments (i.e., suggested actions) and

change lane according to the current road configuration. Similarly, in [83]

the argumentation graph models object interactions like dialogues in natural

language. The main goal –exemplified in case studies on traffic management

and ambient-assisted living– is to define an argumentation-based decision-

making system, overcoming the limits of conventional rule-based approaches

in IoT contexts. Despite both works show the feasibility and usefulness of

argumentation in IoT, exploitation of formal argument models and relation

evaluation methods are not covered there. A game-theoretic weighted vot-

ing scheme is proposed in [61] for conflict resolution in argumentation-based

decision making for Social IoT. Each smart object in the environment votes

in favor of or against a particular argument in order to find the best possible

conclusion. However, this approach lacks the ability for each social object to

issue a gradual vote for each identified conclusion, instead of a basic “yes/no”

vote.

Combining knowledge representation and reasoning with argumentation

frameworks can lead to significant improvements, allowing to handle issues

such as defeasibility and inconsistency [102]. Along this vision, early pro-

posals have exploited abstract argumentation for reasoning over inconsistent

knowledge bases. In [90], a Generalized Argumentation Framework (GenAF)

has been defined to build an argumentation graph upon an underlying KB,

where (i) each argumental atom represents a formula in the KB and (ii) each

attack relation between two arguments models inconsistency or incoherence

between conflicting sources of information. While this work provides a gen-

eral extension to abstract argumentation, adaptable to different logics for rep-

resenting knowledge inside arguments, conflict recognition is based only on
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consistency check, i.e., satisfiability check on the conjunction of arguments.

A fuzzy argument-based classification scheme named CLeFAR has been pro-

posed in [62] for fall detection in ambient-assisted living. By combining a

fuzzy reasoning process and the Extended Social Abstract Argumentation

(ESAA) framework, CLeFAR verifies whether the event class predicted by

a common classifier is correct or not, thus outperforming basic classification

schemes. Unfortunately, obtained ontology-based fuzzy arguments are not

exploited to evaluate relations between them. A deductive argumentation

framework has been proposed in [31] to reason with conflicting and uncer-

tain ontologies. Two different relations underlie the argument structures;

unlike [90], each argument is also associated with a weight representing the

information certainty degree. In both the above cases, the final argumenta-

tion graph is used to study acceptability of arguments, but implementations

in concrete scenarios have not been proposed and the reference logical for-

malisms have not been linked to standard Semantic Web languages, hence a

comprehensive working framework is de-facto lacking.

As highlighted in [65], knowledge-based approaches can be exploited to:

annotate arguments w.r.t. a reference ontology providing the conceptual-

ization and vocabulary for the particular knowledge domain; simplify graph

sharing among different agents; autonomously identify support and attack

relations among argument descriptions. The present proposal aims to define

an ontology-based argumentation framework where DLs are used not only

for modeling information, but also to introduce a process –based on seman-

tic matchmaking– identifying and weighting relations through non-standard

inferences. Early proposals like DILIGENT [129] acknowledged the potential

of OWL-based formal models of argumentation, but cast perplexity on their

applicability to a group of human agents. This framework aims to remove

this barrier with an approach oriented to software agents.

Another essential aspect that the proposed approach addresses is the

argument acceptability process. In applications with a large number of ar-

guments, labeling arguments with the classical accepted/rejected evaluation

of extension-based semantics is too simplistic and inappropriate for correct

decision-making by autonomous agents. In contrast, gradual semantics pro-

duces finer assessments of the arguments, based on numerical scores and
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rank-order arguments from the most to the least acceptable ones [7]. Fur-

thermore, it can be better suited to pervasive contexts, since even sub-optimal

solutions can be considered useful due to unpredictable context changes and

the strict computational constraints of devices.

The work in [18] analyzes the literature on the properties of gradual eval-

uation methods in argumentation. It has identified groups of conceptually

related properties, which can be regarded as based on common patterns.

In [28] a comparative study on ranking-based semantics has been carried

out, underlining their differences in behavior and applicability. Based on a

set of 13 well-defined principles that a semantics should satisfy in a bipolar

setting, the comparison in [8] has shown extension semantics do not exploit

support relations, as they declare all supported and non-supported arguments

as equally acceptable. The authors have proposed a novel exponent-based se-

mantics for bipolar weighted argumentation, which satisfies all the principles

and is not affected by the problem. However, it does not exploit argument

relation chains to identify and evaluate supported attacks or indirect attacks;

moreover, it only deals with acyclic graphs. The latter issue affects also the

gradual BWAF semantics in [97], which has notwithstanding provided useful

inspiration for devising the approach proposed in this work. On the other

hand, some ranking semantics are able to deal with cyclic weighted argumen-

tative graphs. In [11] three novel semantics are proposed and comprehen-

sively compared with existing semantics defined in literature for evaluating

arguments in weighted graphs. Unfortunately, WAFs have some limitations

and it is not possible to fully compare them with BWAFs, as (i) attack is

the only possible relation between pairs of nodes and (ii) the weight (called

basic score) is preliminarily assigned to each argument and not to relations,

as in the proposed framework. The work in [9] introduces a formalization of

the notion of compensation in classical Dung-style AF, whereby an argument

receiving one strong attack is as good as an argument receiving several weak

attacks. A strong attack is made by a non-attacked argument, whereas an at-

tack is deemed weak if it comes from an argument that is attacked by several

non-attacked arguments. A large family of semantics allowing compensation,

called α-BBS (α Burden-Based Semantics), is formalized.

The role of non-attacked arguments in AFs has been also investigated
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in [27], defining six semantics based on the propagation of the weight of

each argument to its neighbors. The propagation method encompasses two

steps: (i) assigning an early weight to each argument so that the weight

of unattacked arguments is greater than the attacked ones and (ii) itera-

tive propagation of these weights into the graph, changing their polarities in

order to comply with the meaning of attack and defense relations. In [27]

propagation occurs with respect to weights defined a priori randomly for

each argument. On the contrary, in the presented approach all arguments

are assigned the same base score, then the strength propagation of paths is

calculated by multiplying the weights of all relations in the path. Therefore

it actually takes into account both the polarity and the intensity of each

relation, which are determined via inferences on the DL concept descriptions

representing the arguments. This makes the outcome of strength propagation

on each path more clearly interpretable and explainable.

In the extension [29] of the aforementioned work, the authors have in-

troduced a new ranking semantics based on propagation, with an additional

parameter to gradually decrease the impact of arguments when the length

of the path between two arguments increases. This semantics satisfies two

persuasion principles: procatalepsis, i.e., it is often effective to anticipate

counter-arguments from interlocutors, and fading, i.e., long paths of argu-

mentation become ineffective. However, even in that case, propagation takes

place with respect to the weights associated to arguments in a preliminary

step, by discriminating attacked arguments from unattacked ones.

Ultimately, with respect to the aforesaid literature efforts, the ranking

semantics proposed in this framework: (i) is suitable for BWAF; (ii) exploits

the propagation of relation weights, formally evaluated in a semantic match-

making process between pairs of annotations in ALN DL; (iii) promotes an

accurate argument ranking process that satisfies the fading property; (iv)

complies with ten of the eleven group properties in [18] for well-defined grad-

ual argumentation semantics.
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4.2 Proposed framework

This section describes the proposed deductive argumentative reasoning frame-

work. Semantic Web Languages and non-standard inference services are ex-

ploited for the construction, evaluation and explanation of an argumentation

graph. The BWAF argumentation model is adopted as reference: bipolar

weighted relations between pairs of arguments grant higher flexibility in the

evaluation of both relation strength and argument acceptability. Further-

more, a novel propagation-based ranking semantics assesses the acceptability

of each argument by assigning a numeric score.

4.2.1 Interpretable Bipolar Weighted Argumentation

Let us consider a multi-agent system and an argumentation graph induced

by the semantic annotations exchanged among objects. The argumentation

process occurs through the following stages: (i) argument relation appraisal,

(ii) argument acceptability evaluation, (iii) explanation of outcomes. The

proposed approach exploits non-standard reasoning recalled in Section 2.2.2

to give a structured argument representation to a BWAF. Logic-based ex-

planations concerning the argumentation graph facilitate an interpretable

general-purpose argumentation pipeline.

In the directed weighted graph, arguments are knowledge fragments (i.e.,

semantic annotations) shared by agents. They are expressed as (unfolded

and CNF-normalized) ALN concept expressions w.r.t. a scenario-dependent

ontology T . That set of exchanged annotations takes the role of A in the

BWAF G, as recalled in Section 2.3.2, and the set of pairwise agent in-

teractions coincides with the set of relations R between the corresponding

arguments. More formally, given two generic agents AR and AS in a network

(e.g., smart devices in a pervasive computing environment, supported by the

cloud-edge framework described in Chapter 3), their annotations –denoted

as R and S respectively– are treated as arguments, since they represent con-

clusions reached at the end of an internal information processing. If AS

communicates with AR (AS ⇝ AR), the proposed matchmaking-based ap-

proach considers R as request and S as resource: inspired by SWoT MAS

frameworks such as [108], in fact, S can “respond to needs” expressed in R.
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Begin

Request R,

Resource S

End

Consistency?

Attack Relation

Compute Watt

Support Relation

Compute Wsup

NO YES

Figure 4.1: Relation type definition algorithm between pairs of arguments

This peculiarity shows a possible argumentative relation can exist with edge

orientation from S to R.

Once the direction of a relation is defined, the algorithm illustrated in

Figure 4.1 performs the appraisal of its type, discriminating whether S at-

tacks or supports R. A preliminary semantic consistency check is performed:

if R ⊓ S is satisfiable w.r.t. T , the relation that links S to R is a support,

otherwise it is an attack [56]:

wR (⟨S,R⟩) =

⎧⎨⎩wR,att (⟨S,R⟩) if T |= R ⊓ S ⊑ ⊥

wR,sup (⟨S,R⟩) otherwise
(4.1)

Different strategies are defined for the two cases in Equation 4.1 to properly

weigh the S ⇝ R edge, exploiting non-standard inference services. This

process is iterated for each pair of nodes interacting in the graph.

An attack relation exists only if there is inconsistency between the se-

mantic annotations of two arguments. Hence, the following informative con-

tributions are taken into account to compute its weight [56]:

1. the amount of conflicting information between the two arguments;

2. the amount of information confirmed by both arguments;

3. the amount of information in the attacked argument which is neither

confirmed nor rebutted by the attacker;
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4. any amount of additional information in the attacker which is not

present in the attacked argument.

For weighing an attack, Concept Abduction, Contraction and Concept Bonus

(Section 2.2.2) can thus be combined in a formula. Each of the above con-

tributions is represented by a signed term of an algebraic sum. Since the

weight of an attack must be a real negative value in BWAF, the maximum

importance should be given to the term 1, whilst the remaining three contri-

butions intuitively mitigate the attack strength, and therefore they are given

a positive sign. This model leads to the following formula:

wR,att (⟨S,R⟩) =− α
pc(R, S)

∥R∥
+ β

∥Bonus(Bonus(K,S), S)∥
∥R∥

+ γ
pa(K,S)

∥R∥
+ δ

∥Bonus(R, S)∥
∥R∥ · ∥S∥

(4.2)

where pc and pa are the penalties of Concept Contraction and Abduction

(see Section 2.2.2), respectively, and ∥ · ∥ is the CNF norm. Considering

the matchmaking results and constraining the attack weight in the interval

[−1, 0[, coefficients have been determined empirically in preliminary tests as:

α = 2.5, β = 0.1, γ = 0.05, and δ = 0.05.

Given an inconsistency between R and S, Concept Contraction penalty

pc(R, S) evaluates the amount of conflicting information, computed as norm

of the Give Up concept: pc(R, S) = ∥G∥. That term is normalized by ∥R∥,
i.e., the worst-case value of pc(R, S) (all the information in R is rebutted by

S). Second term in Equation 4.2 is obtained via a nested pair of Bonuses:

the inner Bonus(K,S) gives the additional information in S w.r.t. K (the

consistent part of R obtained from Concept Contraction); the outer Bonus

identifies what is “not additional”, i.e., common to both K and S. The

third term comes from the penalty pa of Concept Abduction between Keep

K and S: it is computed as ∥H∥, where the Hypothesis H is the part of

K not matched by S, and thus the part of R which is neither in conflict

nor confirmed w.r.t. S. Both second and third terms are normalized by

∥R∥, which is the maximum possible value. Finally, the last component in

Equation 4.2 quantifies the additional information the attacking argument
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S has w.r.t. to the attacked one R; in this case the normalization is by the

product of the norms of R and S.

As explained previously, an argument S supports R only if no clash be-

tween them exists. Treating R as request and S as resource in typical match-

making settings, two contributions entail [56]:

1. the amount of information missing in S to reach a full match with R;

2. the amount of additional information S has w.r.t. R.

This model leads to the following formula:

wR,sup (⟨S,R⟩) = 1− pa(R, S)

∥R∥

(︃
1− ∥Bonus(R, S)∥

∥S∥

)︃
(4.3)

where pa and Bonus have been already defined. The maximum support of S

to R occurs when T |= S ⊑ R ⇔ H ≡ ⊤ ⇒ pa(R, S) = 0, whereas support

is minimum when H = R ⇒ pa(R, S)/∥R∥ = 1. The last term of Equation

4.3 quantifies the additional information of S w.r.t. R through the Bonus

inference, analogously to the Attack formula.

4.2.2 Propagation-based ranking semantics

In highly dynamic and unpredictable scenarios, collaborative autonomous

decision-making depends on fine-grained information evaluation. Therefore

gradual argument acceptability assessment can be beneficial w.r.t. classical

extension-based semantics. This section outlines the novel argumentative

ranking semantics, based on path strength propagation in an interpretable

BWAF.

Definition 21 (Strength Propagation) Let G = ⟨A,R, wR⟩ be a BWAF

and x1, xn ∈ A two arguments such that there exists a path p∗ = ⟨x1, x2, . . . , xn⟩.
The strength propagation (sp) from x1 to xn for p∗ is given by:

sp (x1, xn)p∗ =
n∏︂

i=2

wR (⟨xi−1, xi⟩) (4.4)
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Basically, sp (x1, xn)p∗ computes the strength of a path p∗ from x1 to xn

by multiplying the weight of its constituent relations. By construction, sp (·)
is always in [−1, 0[∪]0, 1] and returns a measure of the role x1 is playing for

xn: a positive value means a bw-supports relation, otherwise a bw-attacks one.

Each path between any two arguments has its own strength propagation.

In a BWAF, the possibility for an argument to be the target of a relation

determines its type. This consideration leads to what follows.

Definition 22 (Connected and free arguments) Let G = ⟨A,R, wR⟩ be
a BWAF. The set of arguments A is partitioned in two disjoint subsets:

• Ac = {y | y ∈ A ∧ ∃ x ∈ A s.t. ⟨x, y⟩ ∈ R} is the subset of arguments

which receive at least one attack or support, denoted as connected ar-

guments;

• Af = A\Ac is the subset of arguments in A which are not attacked or

supported by any other argument, hereinafter called free arguments.

The proposed ranking semantics is based on the fading principle [29], stat-

ing that the length of a chain of arguments should be inversely proportional

to the impact of that chain on the final argument. The idea of fading derives

from the observation that, in common dialogue, longer chains of arguments

become less effective, because short-term memory is limited and people easily

lose track of far-reaching consequences of arguments and relations. Similarly,

the majority of pervasive computing devices have strictly constrained mem-

ory and storage space, therefore fading allows agents to weigh less or “forget”

those arguments which are farther in time and/or space. The proposed path

strength propagation via multiplication of relation weights achieves this prop-

erty rather naturally: regardless of polarity, the absolute value of each weight

is in ]0, 1] and therefore the overall intensity can never increase and will likely

decrease for longer paths.

In the proposed BWAF ranking semantics, the acceptability assessment

of arguments is an iterative process, outlined in Algorithm 1. It starts after

arguments in the graph have been annotated with DL descriptions and re-

lation edges have been directed and weighed as explained in Section 4.2.1.
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Require: BWAF G = ⟨A,R, wR⟩, ζ ∈]0, 1[, ϵ ∈ R+, computation of Af , Ac

Ensure: Ranking of arguments R = {⟨ai, si⟩}, ai ∈ A, si ∈ [−1, 1]
1: R := ∅
2: for all ai ∈ A do
3: if ai ∈ Ac then
4: flagStopcounter[ai] := 0
5: end if
6: si := 0
7: add ⟨ai, si⟩ to R
8: end for
9: fastStop := false
10: for j := 1, fastStop ̸= true, j ++ do
11: for all ai ∈ Ac do
12: X := Y := 0
13: ⟨Pf

j (ai),Pc
j (ai)⟩ := retrievePaths(ai, j) // retrieve all free-born and

connected-born paths with lenght j, ending in ai, and satisfying
constraints (C1) and (C2)

14: if (Pf
j (ai) ̸= ∅) then

15: X = ζj

|Pf
j (ai)|

∑︁
p∈Pf

j (ai)
sp(α, ai)

16: end if
17: if (Pc

j (ai) ̸= ∅) then

18: Y = (1−ζ)j

|Pc
j (ai)|

∑︁
p∈Pc

j (ai)
sp(α, ai)

19: end if
20: rankupd := si +X + Y
21: update ⟨ai, si := rankupd⟩ in R
22: if (|rankupd − si| < ϵ then
23: flagStopcounter[ai] + +
24: if (flagStopcounter[ai] == 2) then
25: remove ai from Ac

26: end if
27: else
28: flagStopcounter[ai] := 0
29: end if
30: if (Ac == ∅) then
31: fastStop := true
32: end if
33: end for
34: end for
35: convertRanking(R)

36: return R

Algorithm 1: Propagation-based Ranking Semantics
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Its outcome consists of a ranking, associating each argument θ ∈ A with an

acceptability score consisting in a real number in the [−1, 1] interval, where

0 stands for neutrality, and higher (respectively, lower) values proportion-

ally label acceptable (resp. unacceptable) arguments. At each step i > 0,

the procedure identifies all paths of length i ending in the argument under

evaluation.

Definition 23 (Path length) Let G = ⟨A,R, wR⟩ be a BWAF and x1, xn ∈
A two arguments s.t. there exists a path p∗ = ⟨x1, x2, . . . , xn⟩. The length i

of the path p∗ is the number n− 1 of relations ⟨xj−1, xj⟩, where j = 2, . . . , n.

As per Definition 22, the kind of source node of a path defines its type;

consequently, Algorithm 1 evaluates the different contributions separately in

computing the acceptability score (lines 14–19).

Definition 24 (Free-born and connected-born paths) Let G = ⟨A,R, wR⟩
be a BWAF and α, θ ∈ A two arguments. Any path p∗ = ⟨α, . . . , θ⟩ of any

length i ending in θ belongs to one of the following two disjoint sets:

• Free-born paths Pf
i (θ), starting in an argument α ∈ Af

• Connected-born paths Pc
i (θ), starting in an argument α ∈ Ac

However, w.r.t. the strength propagation value taken by each path, the

sets of free-born (respectively, connected-born) paths is further separable into

two disjoint subsets as reported hereafter.

Definition 25 Let G = ⟨A,R, wR⟩ be a BWAF, θ ∈ A, Pf
i (θ) and Pc

i (θ)

the sets of free-born paths and connected-born paths of any length i ending in

θ. Each path p∗ ∈ Pf
i (θ) can be assigned to:

• Support Free-born paths set Pf+
i (θ), if sp (·)p∗ ∈]0, 1], or

• Attack Free-born paths set Pf−
i (θ), if sp (·)p∗ ∈ [−1, 0[

Similarly, each path q∗ ∈ Pc
i (θ) is in:

• Support Connected-born paths set Pc+
i (θ), if sp (·)q∗ ∈]0, 1], or
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• Attack Connected-born paths set Pc−
i (θ) if, sp (·)q∗ ∈ [−1, 0[

Consequently Pf
i (θ) = Pf+

i (θ) ∪ Pf−
i (θ) and Pc

i (θ) = Pc+
i (θ) ∪ Pc−

i (θ).

The iterative ranking procedure initially assumes neutral acceptability for

all arguments: ∀ θ ∈ A : s0(θ) = 0 (lines 6–7 of Algorithm 1). This is also

the final score for free arguments, while for each connected argument θ ∈ Ac

at each step i > 0, lines 11–34 compute:

si(θ) = si−1(θ) +X + Y (4.5)

where:

X =

⎧⎨⎩
ζi

|Pf
i (θ)|

(︁
|Pf+

i (θ)|
∑︁

p∈Pf+
i (θ) sp(αp, θ) + |Pf−

i (θ)|
∑︁

p∈Pf−
i (θ) sp(αp, θ)

)︁
if Pf

i (θ) ̸= ∅

0 otherwise

Y =

⎧⎨⎩
(1−ζ)i

|Pc
i (θ)|

(︁
|Pc+

i (θ)|
∑︁

p∈Pc+
i (θ) sp(αp, θ) + |Pc−

i (θ)|
∑︁

p∈Pc−
i (θ) sp(αp, θ)

)︁
if Pc

i (θ) ̸= ∅

0 otherwise

with sp(αp, θ) evaluated for the path starting in argument αp and ending in

argument θ as per Equation 4.4 and 0 < ζ < 1 a coefficient (empirically set to

0.8 after preliminary tests) having two purposes: satisfy the fading principle

(by means of the exponential) and give greater weight to free-born paths. The

latter idea is justified by the void precedence property in ranking semantics

[7], stating that non-attacked arguments should have a higher acceptability

rank than attacked ones, and also bears some similarity to the evidential

interpretation of support [93], as free-born arguments include prima facie

arguments as defined in that context.

In order to ensure termination and make the algorithm less computation-

ally expensive, two constraints are imposed in identifying the paths (with

increasing length i) suitable to update the acceptability score of an argument

θ. For each step i ∈ N, i > 0, any path p∗ = ⟨x1, x2, . . . , xi, xi+1 = θ⟩ with

length i is admissible for computation only if both the following constraints

are satisfied:

(C1) the source argument x1 and any other argument xk, with k = 2, 3, . . . , i
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are different from the argument xi+1 = θ whose acceptability is being

evaluated;

(C2) for each argument a repeated n ≥ 3 times in the path p∗, all the n− 1

sequences of arguments included between pairs of occurrences of a are

different from each other.

Constraint (C1) is imposed because (i) the sp of any path originating from

an argument θ must not impact the computation of the acceptability rank

of the same argument θ, and, (ii) if the same θ is in a position k < i + 1 of

path p∗, it is plausible that the contribution of the path to the rank of θ has

already been considered in one of the previous iterations. Constraint (C2)

prevents infinite loops, instead, by discarding paths with repeated sub-paths.

In addition to path admissibility, in order to prevent non-termination,

lines 22–29 of Algorithm 1 further check the acceptability score. In fact, if

the absolute value of the difference between si+1(θ) and si(θ) is less than

a constant ϵ for two consecutive iterations, score convergence is accepted

and the procedure stops. Preliminary tests have found the value ϵ = 0.05

consistent with this purpose. In Algorithm 1, following a preliminary ini-

tialization in lines 3–5, structure flagStopcounter keeps for each connected

argument how many times the absolute value of the difference between two

consecutive scores is less than ϵ. If for a connected argument ai the value

flagStopcounter[ai] is equal to 2, the argument ai is removed from the set

Ac, since the convergence of the acceptability score has been reached and no

iteration is needed anymore (lines 24–26).

At the end, to ensure the convergence of the acceptability scores of each

argument of a particular BWAF graph in the interval [-1,1] and to extract

quantitative information on the acceptability of the arguments from the rank-

ing, the convertRanking function is adopted (line 35). Let f be the logistic

function and x = si the score of each argument ai computed by the algorithm;

then

convertRanking(x) = 2f(kx)− 1 (4.6)

with k sigmoid smoothing factor, which has been set to 3 after preliminary

tests.
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The proposed ranking semantics complies with all the group properties

(GPs) identified in [18], except GP9. GPs identify groups of conceptually

related properties in literature, which can be regarded as based on common

patterns for gradual argumentation. The proposed approach does not comply

with GP9 (“A higher base score gives a higher strength” [18]) by design, since

the base score is equal for all the arguments (line 6 of Algorithm 1) in the

bipolar weighted graph.

It should be noted that, in this approach, the number of required itera-

tions to compute the acceptability score is not the same for all arguments in

a BWAF: the early score for free arguments is 0 and no further calculations

are needed; conversely, for each connected argument the number of iterations

depends on the number, length and sp of the paths ending in it.

Finally, the proposed semantics induces a gradual acceptability ranking

of arguments in a BWAF.

Property 1 The propagation-based semantics S(·) associates a ranking ⪰S
G

on A to any BWAF G, such that ∀ a, b ∈ A, a ⪰S
G b iff S(a) ≥ S(b).

Overall, the ranking procedure ensures a gradual assessment of the ac-

ceptability of the arguments in a BWAF. Main features of the adoption of

this semantics can be summarized as:

• the ability to manage bipolar weighted graphs with cycles and paths of

any length;

• completeness of the algorithm thanks to path admissibility constraints

and convergence condition;

• persistence of the value 0 as acceptability threshold as well as the score

of free arguments;

• convergence of the acceptability scores of the connected arguments in

the interval [−1, 1] and correlation between the numerical value and

the acceptability of the argument i.e., the closer to 1 the score of an

argument, the more acceptable it is;

• compliance with the fading principle, as the strength for longer paths

is dampened.
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Compared toDiscussion-based semantics (Dbs) [7], which basically counts

the number of linear discussions (LDs) of an argument as the LD length

increases, the proposed approach computes the weighted contributions sp

of the individual paths at each iteration and discriminates free-born from

connected-born paths. The Burden-based semantics (Bbs) [7] elaborates the

ranking by comparing the arguments lexicographically, based on their bur-

den numbers, and the update of the burden numbers occurs considering all

the attack relationships between arguments in an AF as equivalent. Unlike

the semantics presented, both Dbs and Bbs are unable to solve graphs with

cycles, as recalled in Section 2.3.1.

The above framework is general-purpose, while striving for an efficient

usage of computational resources, which is essential particularly for pervasive

computing agents.

4.3 Case study

In order to validate the proposal and highlight its characteristics, a case study

has been conducted in the real-time strategy game StarCraft II (SC2). It is

a competitive MAS which has been chosen because its complexity and fast

dynamics have significant similarities to pervasive computing contexts. The

(player) agent is constantly interacting with the (game) environment, receiv-

ing stimuli and performing actions; the environment cannot be considered

merely as a setting or substrate for the agents’ decisions and actions, but it

is a first-class entity in the MAS [137].

Figure 4.2 shows the proposed deductive argumentative agent architec-

ture. The strategic player agent is made up of five main blocks interacting

in a continuous loop with SC2:

• Field Data Collection: gathers real-time game state features from a

running SC2 instance exploiting the StarCraft II API 1;

• Semantic Annotation: performs semantic enrichment of raw data with

respect to a reference DL domain ontology, producing annotated con-

cept descriptions;

1StarCraft II API: https://github.com/Blizzard/s2client-proto
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Figure 4.2: Deductive argumentative agent architecture

• Interpretable BWAF Construction: adopts the semantic annotations

as arguments in a bipolar weighted graph, and evaluates the type and

weight of relations between arguments by exploiting non-standard infer-

ence services for semantic matchmaking, as explained in Section 4.2.1;

• Strategy Ranking and Selection: performs a context-dependent accept-

ability ranking of the arguments in the graph, by means of the strength

propagation semantics described in Section 4.2.2. This step allows to

decide the agent plan among all arguments representing possible strate-

gies;

• Strategy Enactment : encodes the semantic annotation representing the

selected strategy into a sequence of game commands to be applied

through the SC2 environment interface.

For the sake of clarity, a simple example of skirmish match is now de-

scribed among allied units (Player 1 ), controlled by the argumentative de-

ductive reasoning agent, and enemy units (Player 2 ). Since a match ends

when all the units of one of the two players are destroyed, it is essential for

a player to identify the best assault and defense strategies to win.

In an asymmetrical battle scenario, 6 Marine units of the Terran enemy

faction are exerting an assault on 3 Zealot units of the Protoss allied army.

Although outnumbered, the allied army has better health conditions than the
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Figure 4.3: SC2 case study scenario

opponent. Figure 4.3 depicts the situation.

The case study aims to show the argumentation process for selecting

the best strategy in a given instant of the battle. Each possible plan is

described via a semantic annotation providing information about both its

type and game conditions which make it suitable. The StarCraft II battle

state features which have been taken into account include: types and number

of involved units; differences in assault range, movement speed, and armor

between the two brigades; type of assault suffered by the player agent’s army;

Hit Points (HPs) and shields availability levels of the allied and enemy units.

In this setting, let us consider the following five strategies:

1. Healthiest Assault (HA): assault the healthiest enemy unit;

2. Nearest Assault (NUA): assault the nearest enemy unit;

3. Least Healthy Assault (LHA): assault the enemy unit with the lowest

health level;

4. Least Healthy Defense (LHD): protect the agent’s unit with the lowest
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health level, by adopting a compact formation and counter-assaulting

the nearest enemy unit assaulting it;

5. Kiting (KT): defend by distancing enemy units, as the assault range

of the agent’s units is longer, so they can hit without being counter-

assaulted.

The aforementioned battle plans are grouped in two families: the first

three strategies are Assaults and the remaining ones are Defenses. This

strategy hierarchy is useful for dividing the decision-making process in two

subsequent steps: determine first the most promising type of approach to

the enemy in the current context, and subsequently select the most proper

strategy among those in the selected category. This stratification decreases

the number of alternatives to assess in each step, thereby reducing the size of

the argumentation graph and leading to computational cost savings. Validat-

ing this kind of hierarchical decision-making approach is also useful to make

the whole framework more easily transferable to scenarios where distributed

computing devices (i) are resource-constrained in terms of processing and

memory capabilities and (ii) can be grouped in clusters by locality.

For the case study an OWL 2 Knowledge Base has been modeled in

the moderately expressive ALN DL: the language choice depends on the

non-standard inferences explained in Section 2.2.2. An acyclic ontology T
contains the domain conceptualization along specific patterns. Figure 4.4

reports an excerpt of the modeled SC2 ontology exploited by the knowledge-

based agent: for each feature (e.g., units numerousness, hit points, armor,

attack range, damage per second, shields), T includes a partonomy, i.e.,

each parameter is modeled by means of a taxonomy of concepts (each one

with its own properties) representing all significant configurations or value

ranges it may take in the domain of interest. Therefore, all modeled classes

describe the game state features the player agent can sense or act upon

through the game API. For the sake of simplicity, the example focuses on

units numerousness, health and tactical conditions of ally and enemy units,

and enemy units position and formation. They are information fragments

gathered from SC2 API-based probes equivalent to sensing peripherals in

scenarios involving agents embodied in smart devices. Furthermore, each
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Figure 4.4: Ontology excerpt for the StarCraft II agent
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available strategy and relevant in-game condition is modeled as an individual

of the ABox and is used as a single argument in the BWAF. The Tiny-ME

reasoner [105] has been leveraged to identify type and weight of interactions

between pairs of arguments, as discussed in Section 4.2.1.

UN

A D

TC HC−0.17

−0.29
−0.85

−0.83
−0.28

0.77
0.56

0.51

Figure 4.5: G1: BWAF of the first deductive argumentative stage

Based on the scenario depicted in Figure 4.3, the BWAF G1 shown in

Figure 4.5 is generated in order to select the most appropriate family of

strategies. The node describing the Assault (A) category is supported by:

(i) Health Condition (HC ), as ally units have high HPs and medium amount

of shields whereas enemy units have medium HPs and very low shield levels;

and (ii) Tactical Condition (TC ), as the allied player has a medium amount

of armor and, due to their intrinsic characteristics, its units have higher at-

tack range and Damage Per Second (DPS) than the enemy units. On the

other hand, argument A is attacked by Units Numerousness (UN ), since

allied units are outnumbered, a fact which discourages offensive tactics. Du-

ally, the Defense (D) strategies are attacked by HC and TC, as a protective

battle plan is not completely justified if allied units are mostly healthy and

the enemy army has low armor values; conversely, Defense is supported by

UN, due to the numerical inferiority of allied units. Finally arguments A and

D attack each other, as they are mutually exclusive. To clarify and illustrate

how argument relations are assessed, an example referred to the evaluation

of the relation between UN and A is detailed. Arguments are reported in

OWL 2 Manchester Syntax [66] for the sake of readability.

93



A: AttackStrategy and (hasAllyUnitsAttacked some owl:Thing) and

(hasAllyUnitsAttacked only LowAllyUnitsAttacked) and

(hasUnitsNumerosity some owl:Thing) and (hasUnitsNumerosity only

UnitsParityOrAdvantage) and (hasAllyArmor some owl:Thing) and

(hasAllyArmor only MHAllyArmor) and (hasAllyHitPoints some owl:Thing) and

(hasAllyHitPoints only HAllyHitPoints) and (hasEnemyArmor some owl:Thing)

and (hasEnemyArmor only LEnemyArmor) and (hasEnemyHitPoints some

owl:Thing) and (hasEnemyHitPoints only MLEnemyHitPoints) and

(hasEnemyShields some owl:Thing) and (hasEnemyShields only LEnemyShields)

and (hasEnemyUnitsAttacking some owl:Thing) and (hasEnemyUnitsAttacking

only LowEnemyUnitsAttacking)

UN: AllyPlayer and (hasAllyUnitsAttacked some owl:Thing) and

(hasAllyUnitsAttacked only AllAllyUnitsAttacked) and

(hasUnitsNumerosity some owl:Thing) and (hasUnitsNumerosity only

UnitsDisadvantage) and(hasEnemyUnitsAttacking some owl:Thing) and

(hasEnemyUnitsAttacking only AllEnemyUnitsAttacking)

A and UN play the roles of request and resource, respectively, in the al-

gorithm in Figure 4.1 used to identify the type of relation as an attack or

a support. The preliminary consistency check fails, as the conjunction of

the two expressions is unsatisfiable due to the following clashes of disjoint

classes occurring as fillers of the same properties: (i) LowAllyUnitsAttacked

and AllAllyUnitsAttacked ; (ii) UnitsParityOrAdvantage and UnitsDisadvan-

tage and (iii) LowEnemyUnitsAttacking and AllEnemyUnitsAttacking. The

relation is thus recognized as an attack. Concept Contraction is invoked

to highlight two OWL class expressions corresponding to the conflicting re-

quirements G and the compatible version K of the argument A w.r.t. the

annotation of UN.

G := hasAllyUnitsAttacked only (LowAllyUnitsAttacked and

(not HighAllyUnitsAttacked)) and hasUnitsNumerosity only

(UnitsParityOrAdvantage and (not UnitsDisadvantage)) and

hasEnemyUnitsAttacking only (LowEnemyUnitsAttacking and

(not HighEnemyUnitsAttacking))

K := AttackStrategy and (hasAllyArmor only (MAllyArmor and MHAllyArmor))
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and (hasAllyHitPoints only HAllyHitPoints) and (hasEnemyArmor only

LEnemyArmor) and (hasEnemyHitPoints only (MEnemyHitPoints and

MLEnemyHitPoints)) and (hasEnemyShields only LEnemyShields) and

(hasAllyUnitsAttacked some owl:Thing) and (hasUnitsNumerosity some

owl:Thing) and (hasAllyArmor some owl:Thing) and (hasAllyHitPoints some

owl:Thing) and (hasEnemyArmor some owl:Thing) and (hasEnemyHitPoints

some owl:Thing) and (hasEnemyShields some owl:Thing) and

(hasEnemyUnitsAttacking some owl:Thing)

The attack weight is computed according to Equation 4.2. The first term

of the formula expresses the strength of conflict between the arguments:

−pc(A,UN )
||A|| = − ||G||

||A|| = −0.127. The remaining three terms in Equation 4.2,

reported with a positive sign, mitigate the attack. Concept Bonus is used

twice to define the additional information BB provided by a resource respect

to the request. Obtained expressions are reported as follows:

Bonus(K,UN) := AllyPlayer and (hasAllyUnitsAttacked only

AllAllyUnitsAttacked and HighAllyUnitsAttacked) and (hasUnitsNumerosity only

UnitsDisadvantage) and (hasEnemyUnitsAttacking only (AllEnemyUnitsAttacking

and HighEnemyUnitsAttacking))

BB := Bonus(Bonus(K,UN),UN) := (hasAllyUnitsAttacked some owl:Thing) and

(hasUnitsNumerosity some owl:Thing) and (hasEnemyUnitsAttacking some owl:Thing)

In particular, the second term quantifies the common elements between the

two arguments: ||BB||
||A|| = 0.064. The third term of the formula reflects the

information defined in the attacked argument A but missing in the attacking

node UN. It is obtained as the Hypothesis (H) expression computed by the

Concept Abduction inference service between K and UN :

H := AttackStrategy and (hasAllyArmor only (MAllyArmor and MHAllyArmor))

and (hasAllyHitPoints only HAllyHitPoints) and (hasEnemyArmor only

LEnemyArmor) and (hasEnemyHitPoints only (MEnemyHitPoints and

MLEnemyHitPoints)) and (hasEnemyShields only LEnemyShields) and

(hasAllyArmor some owl:Thing) and (hasAllyHitPoints some owl:Thing) and
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(hasEnemyArmor some owl:Thing) and (hasEnemyHitPoints some owl:Thing)

and (hasEnemyShields some owl:Thing)

The related weight can be expressed as: pa(K,UN )
||A|| = ||H||

||A|| = 0.702. Finally,

the information B provided by the attacking argument UN in addition to

the description of the attacked node A is determined as:

B := Bonus(A,UN) := AllyPlayer and (hasAllyUnitsAttacked only

(AllAllyUnitsAttacked and HighAllyUnitsAttacked)) and (hasUnitsNumerosity only

UnitsDisadvantage) and (hasEnemyUnitsAttacking only (AllEnemyUnitsAttacking

and HighEnemyUnitsAttacking))

This term corresponds to ||B||
||A||·||UN|| = 0.013. The weighted algebraic sum

of the above terms is −0.28, corresponding to the value associated to the

attack edge from UN to A in the BWAF G1 depicted in Figure 4.5. In

the proposed framework, concept expressions G, BB, H, and B represent the

knowledge-based annotations providing the formal explanation of the BWAF

and making the obtained results more human- and machine-understandable.

Table 4.1: Acceptability Ranking on G1

Step i s(UN) s(A) s(D) s(TC) s(HC)

0 0 0 0 0 0

1 0.467 -0.277

2 0.538 -0.704

final 0 0.668 -0.784 0 0

All the edges in graph G1 are evaluated following the same approach.

Then, the proposed ranking semantics is executed. Table 4.1 shows the

acceptability scores for each argument; shaded cells indicate the final val-

ues obtained by means of the convertRanking function described in Section

4.2.2. After the initialization step (i = 0) performed for all arguments, no

subsequent iteration is needed for s(UN), s(TC) and s(HC), as they are free

arguments. Instead, the processing goes on for A and D. Let us focus on

argument A; for i = 1, paths ending in A are ⟨UN, A⟩, ⟨TC,A⟩, ⟨HC,A⟩ and
⟨D,A⟩. The first, second and third path belong to Pf

1 (A), whereas the last
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one is in Pc
1(A). The sp values of the four paths (as arranged in Equation 4.5)

contribute to s1(A) = 0.467. In the subsequent iteration (i = 2), the paths

ending in A are ⟨UN, D,A⟩, ⟨TC,D,A⟩ and ⟨HC,D,A⟩, which contribute

to s2(A) = 0.538. The algorithm for calculating the acceptability score of

A ends at i = 2 because the only path of length 3 ⟨D,A,D,A⟩ violates the
admissibility constraint of no repeated sub-path. The final values in Table

4.1 are obtained by appyling the convertRanking function in Equation 4.6.

The execution of the proposed ranking semantics for G1 produces the follow-

ing results:

s(A) = 0.668 > s(UN) = s(TC) = s(HC) = 0.0 > s(D) = −0.784.

A

NAHA LHA

UN EPHC

−0.16

−0.19 −0.16

−0.19

−0.16

−0.16

−0.38

−0.42

0.89 0.89 0.92

0.820.83

0.75

Figure 4.6: G2: BWAF of the second deductive argumentative stage

The Assault argument wins the argumentative dispute: in the current

state of the game an offensive strategy is to be preferred. This enables

the second argumentation stage, based on the BWAF graph G2 in Figure

4.6, aiming to identify the most proper battle strategy in the Assault fam-

ily. The three strategies Healthiest Assault (HA), Nearest Assault (NA) and

Least Healthy Assault (LHA) are all supported by the generic Assault node

and have mutual attack relations, since only one can be selected. In addi-

tion, HA is attacked by UN, which recommends this strategy only when the

number of allied units is greater than enemy ones. Furthermore, the node

Enemy Position (EP), characterized by equal distance of all enemy units to
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Table 4.2: Acceptability Ranking on G2

Step i s(A) s(NA) s(HA) s(LHA)
s(UN)
s(EP)
s(HC)

0 0 0 0 0 0
1 0.730 0.754 1.277
2 0.400 0.490 1.074
3 0.442 0.528 1.103

final 0 0.580 0.659 0.929 0

allied ones and a scattered formation, attacks the node NA, which requires

some enemy units at close range and a compact formation. Conversely, all

three strategies are supported by HC, as they are suitable in case the al-

lied player has high HP and armor levels. Semantic matchmaking, however,

yields slightly different support strengths for the three strategies (0.83, 0.82

and 0.75 respectively), implying they are not completely equivalent from the

HC viewpoint.

Table 4.2 summarizes the ranking iteration for arguments in G2. The final

outcome is:

s(LHA) = 0.929 > s(HA) = 0.659 > s(NA) = 0.580 > s(A) = s(UN) = s(EP) =

s(HC) = 0.0.

All the above strategies have a score > 0 and are judged as acceptable in

the particular battle situation, but the proposed ranking semantics allows to

arrange the strategy arguments w.r.t. effectiveness in a given game context.

Selecting the Least Healthy Assault among the available Assault strategies

appears consistent with a qualitative evaluation of the scenario, as it allows

Player 1 to quickly eliminate the least healthy opponent units and recover

from the numerosity disadvantage.

4.4 Experiments

An experimental campaign has been carried out to evaluate the proposed

framework in terms of: (i) efficiency of the strategic decision-making agent

integrated in SC2, with performance metrics collected during the execution of
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the case study scenario; (ii) performance of the ranking semantics algorithm

on large-scale graphs, with tests on different random bipolar weighted graph

configurations; (iii) feasibility of argumentation graph pruning w.r.t. both

result stability and performance improvement. All tests have been run on a

desktop PC equipped with Intel Core i7-4790 CPU (3.6 GHz), 16 GB RAM,

and Windows 10 (64 bit) operating system.

Strategic agent efficiency

The first performance evaluation of the propagation-based ranking semantics

has been carried out on the G1 and G2 graphs reported in Figure 4.5 and 4.6.

Table 4.3 includes main graph characteristics (i.e., number of vertexes and

edges) and obtained results. All performance results are the average of five

cold runs. Columns T1 and T2 represent the average turnaround time to

construct an interpretable BWAF –as described in Section 4.2.1– and exe-

cute the propagation-based ranking semantics (Algorithm 1), respectively.

The last column indicates the number of iterations required by Algorithm

1 to compute the acceptability of all arguments. By summing all four time

values in Table 4.3, one can notice how a complete strategy evaluation round,

comprising the two hierarchical stages with graphs like in Section 4.3, would

take ≈ 11 ms on average, which allows for fast strategy update against dy-

namic context conditions in an RTS game: as a reference, SC2 updates the

simulation 16 or 22.4 times per second, depending on the game speed set-

ting [136], which corresponds to periods of 62.5 or 44.6 ms, respectively, for

the agent’s event loop. The processing time of the proposed solution appears

appropriate and compatible with the strict SC2 time constraints. The short

duration of processing tasks has not allowed a reliable memory consumption

measurement, but it is possible to notice that the performance metrics of an

agent usually vary by 1 or 2 orders of magnitude if the execution takes place

on a mobile or embedded device w.r.t. a PC [113]. Consequently, the ob-

tained results indicate as the proposed argumentation framework appears to

be feasible also in pervasive scenarios exploiting resource-constrained devices.
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Table 4.3: Performance results on G1 and G2

Vertexes Edges T1 (ms) T2 (ms) Iterations
G1 5 8 2.421 0.946 2
G2 7 14 2.347 5.127 3

Ranking semantics performance

In order to provide a more complete performance analysis of the devised

ranking semantics, the Boost Graph Library (BGL)2 has been used in the

second test session to build random bipolar weighted graphs, where edge

weights have a uniform distribution probability in [−1, 0[∩]0, 1]. BGL is

a standardized generic interface for composing and browsing graphs that

exposes their structure while concealing implementation information.

Small (S), Medium (M), and Large (L) scale configurations have been

generated to measure turnaround time and memory consumption peak, both

sensitive metrics in pervasive computing contexts. The provided configura-

tions depend on three parameters:

• number of nodes in the graph: 10, 50, and 100, respectively for S, M

and L;

• number of weighted edges: 15 and 30 for S, 200 and 700 for M, 400 and

1500 for L;

• ⟨Att %, Sup %⟩ pairs of percentages of mutual attack and mutual

support relations in the graph for S, M, L: ⟨0%, 0%⟩, ⟨20%, 0%⟩, ⟨40%,

0%⟩, ⟨0%, 20%⟩, ⟨0%, 40%⟩, ⟨20%, 20%⟩.

Each graph configuration test has been run five consecutive times, and

the results are the average of the last four runs. The following measurements

have been gathered: (i) memory usage peak; (ii) processing time to rank the

graph arguments; (iii) iterations required to find a solution. The graphs of

every configuration are generated randomly, by setting up the aforementioned

parameters only.

2Boost Graph Library v1.80.0: https://www.boost.org/doc/libs/1_80_0/libs/

graph/doc/index.html
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Table 4.4: Argumentative graph performance results

Vertexes Edges
Mutual
attack

Mutual
support

Memory
(MB)

Time
(s)

Iterations

10 15 0% 0% N.A. 0.007 5
10 15 20% 0% N.A. 0.005 5.4
10 15 40% 0% N.A. 0.007 6
10 15 0% 20% N.A. 0.007 6
10 15 0% 40% N.A. 0.007 6
10 15 20% 20% N.A. 0.009 6
10 30 0% 0% N.A. 0.033 3.8
10 30 20% 0% N.A. 0.023 5
10 30 40% 0% N.A. 0.033 5
10 30 0% 20% N.A. 0.040 5.8
10 30 0% 40% N.A. 0.039 6
10 30 20% 20% N.A. 0.030 6

50 200 0% 0% 1.6 3.105 6
50 200 20% 0% 2.4 3.459 6
50 200 40% 0% 1.4 3.091 6.6
50 200 0% 20% 1.4 2.353 7
50 200 0% 40% 1.8 3.232 7
50 200 20% 20% 1.2 1.843 7
50 700 0% 0% 26.8 39.988 3
50 700 20% 0% 27.2 42.323 3
50 700 40% 0% 18.6 40.414 3
50 700 0% 20% 13.4 39.716 3
50 700 0% 40% 13.0 40.060 3
50 700 20% 20% 5.4 39.674 3

100 400 0% 0% 3.8 10.401 6
100 400 20% 0% 5.0 15.337 6
100 400 40% 0% 2.8 8.967 6
100 400 0% 20% 3.6 13.600 6
100 400 0% 40% 3.6 10.262 7
100 400 20% 20% 3.2 12.258 7
100 1500 0% 0% 71.0 217.355 3
100 1500 20% 0% 69.6 212.544 3
100 1500 40% 0% 64.0 208.791 3
100 1500 0% 20% 69.6 214.520 3
100 1500 0% 40% 37.0 208.801 3
100 1500 20% 20% 33.0 196.778 3
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Experimental results are reported in Table 4.4: short execution time has

not allowed to evaluate the memory consumption in Small configurations.

Especially in the M and L configurations, required computational resources

seem strongly dependent on the number of edges, if the number of vertexes in

a graph remains the same. For example, with 50 vertexes, the configuration

with 700 edges has taken about half the iterations but 1 order of magnitude

higher memory and time than the configuration with 200 relations. Further-

more, as the ⟨Att%, Sup%⟩ pair increases with the same number of nodes

and arcs in a graph, the execution time remains almost the same and the

use of memory is reduced. In all configurations, of the six hypothesized mu-

tual attack and support couples, the pair (20%, 20%) has the lowest memory

usage. This happens because multiple paths quickly satisfy the constraints

of Algorithm 1 and it is not necessary to keep them in memory for subse-

quent iterations. In any case, both medium and large scale configurations

appear as unsuitable for real-time applications like SC2 or pervasive com-

puting contexts. These findings limit the amount of knowledge fragments

each agent is capable of managing, calling for distributed computation of the

argumentative graph.

Table 4.5: Bipolar weighted graph configurations

Configuration Vertexes Edges Mutual Relation
A 100 500 0
B 100 500 20%
C 100 500 40%

Table 4.6: Performance on complete graphs

Configuration
Time [s] Memory Usage [MB]
µ σ µ σ

A 152.91 251.14 147.94 309.51
B 127.10 213.55 132.20 277.75
C 70.59 125.28 43.82 101.34
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Graph pruning

An optimization to reduce computations for Algorithm 1 could consist in

pruning all edges having a weight whose absolute value is lower than a thresh-

old Θ from an original argumentation graph G, obtaining a simplified graph

G ′. Intuitively, edges labeled with smaller absolute values represent argu-

ment relations with lower relevance and impact for a particular argumenta-

tion problem. However, since the removal of an edge can change paths ending

in graph nodes, the overall ranking semantics outcomes for G ′ could end up

as being significantly different w.r.t. G. In order to investigate the impact of

graph pruning on result stability and computational performance (processing

time and memory usage peak), tests have been conducted on pruned graphs

(PGs) for increasing values of Θ.

Three graph configurations have been used in this experimental campaign.

As reported in Table 4.5, the configurations depend on three parameters:

(i) number of nodes in the graph; (ii) number of weighted edges; and (iii)

percentage of mutual (attack and/or support, chosen randomly) relations,

i.e., direct cycles in the graph. The last parameter has been considered

in order to evaluate how much the presence of cycles in a BWAF graph

can affect the performance of the proposed ranking algorithm. For each

configuration, 50 different graphs have been randomly created and tested.

Mean µ and standard deviation σ of the following measurements have been

gathered: (i) processing time required to rank the graph arguments; (ii)

memory usage peak. Also in this case, all tests have been executed five

consecutive times and results reported in Table 4.6 correspond to the average

of the last four runs. Differences in mutual relations percentage have a clear

impact: configuration C with 40% of mutual relations requires less memory

and time than configurations A and B. This evidence shows the peculiarity

of the proposed algorithm to quickly identify and manage cycles in order to

prevent the computation of long and possibly trivial chains of arguments, in

full compliance with the fading principle.

Afterwards, for each configuration, starting from an initial graph G1 with

N = 100 vertexes, the pruning activity has taken place by setting three dif-

ferent values for the threshold (Θ), obtaining PGs as follows: G2, for Θ =
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Table 4.7: Performance metrics for total ranking

Config. Comp.
Levenshtein Dist. Levenshtein Sim. Avg. score diff.

µ σ µ σ µ σ
A R1-R2 55.880 8.019 0.441 0.080 0.009 0.005
A R1-R3 74.940 5.438 0.251 0.054 0.020 0.011
A R1-R4 83.100 3.754 0.169 0.038 0.031 0.015
B R1-R2 54.740 8.024 0.453 0.080 0.008 0.005
B R1-R3 75.000 5.215 0.250 0.052 0.019 0.011
B R1-R4 83.680 3.813 0.163 0.038 0.031 0.016
C R1-R2 55.520 6.044 0.445 0.060 0.007 0.004
C R1-R3 74.020 4.705 0.260 0.047 0.017 0.008
C R1-R4 82.720 2.940 0.173 0.029 0.027 0.010

0.1; G3, for Θ = 0.2; G4, for Θ = 0.3. The pruning procedure removes

all edges with a weight, in absolute value, lower than the reference thresh-

old, unless the removal of an edge would generate one of the following two

anomalies: (i) transition of a node status from connected-born to free-born

(see Section 4.2.2), as this would automatically set its acceptability score to

0, significantly altering results; (ii) disconnection of a node from the graph.

In what follows, R1, R2, R3, R4 represent the different rankings calculated

on the graphs G1, G2, G3, G4, respectively. The pairs R1-R2, R1-R3, R1-R4

are compared to identify possible savings of computational resources as well

as changes in the ranking due to the pruning procedures. Ranking outputs

have been encoded into strings built on an alphabet of N symbols. The

following metrics have been adopted, where A and B are strings obtained

from two rankings under comparison:

• Levenshtein Distance DL(A,B): minimum number of changes (dele-

tions, replacements or insertions) to transform string A into string B;

• Levenshtein Similarity, SL(A,B) = 1− DL(A,B)
||A|| ;

• Average score difference: average of the numerical difference in absolute

value of the score for each argument in the two compared rankings.

Table 4.7 shows the mean and standard deviation values for 50 runs for

each configuration A, B, C, where a starting graph G1 is randomly generated

and then pruned. The three above-mentioned metrics have been computed
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Table 4.8: Performance metrics for the first 5 nodes of the ranking

Config. Comp.
Levenshtein Dist. Levenshtein Sim. Avg. score diff.
µ σ µ σ µ σ

A R1-R2 2.260 1.572 0.548 0.314 0.009 0.011
A R1-R3 3.120 1.409 0.376 0.282 0.020 0.018
A R1-R4 3.680 1.085 0.264 0.217 0.033 0.028
B R1-R2 1.920 1.495 0.616 0.299 0.008 0.007
B R1-R3 3.140 1.400 0.372 0.280 0.021 0.024
B R1-R4 3.780 1.285 0.244 0.257 0.033 0.032
C R1-R2 2.540 1.459 0.492 0.292 0.007 0.009
C R1-R3 3.420 1.401 0.316 0.280 0.014 0.014
C R1-R4 3.880 1.143 0.224 0.229 0.022 0.019

Table 4.9: Performance metrics for the last 5 nodes of the ranking

Config. Comp.
Levenshtein Dist. Levenshtein Sim. Avg. score diff.
µ σ µ σ µ σ

A R1-R2 2.300 1.500 0.540 0.300 0.008 0.008
A R1-R3 3.140 1.510 0.372 0.302 0.017 0.013
A R1-R4 3.540 1.117 0.292 0.223 0.031 0.025
B R1-R2 2.600 1.549 0.480 0.310 0.011 0.014
B R1-R3 3.380 1.215 0.324 0.243 0.023 0.021
B R1-R4 3.920 1.197 0.216 0.239 0.036 0.028
C R1-R2 2.420 1.511 0.516 0.302 0.005 0.005
C R1-R3 3.580 1.511 0.516 0.302 0.014 0.011
C R1-R4 4.100 1.082 0.180 0.216 0.022 0.013
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Table 4.10: First and last node comparison

Config. Comparison
% Same

First Node
% Same

Last Node

A R1-R2 74% 68%
A R1-R3 56% 60%
A R1-R4 46% 52%
B R1-R2 82% 68%
B R1-R3 58% 54%
B R1-R4 40% 40%
C R1-R2 70% 74%
C R1-R3 50% 42%
C R1-R4 40% 30%

by comparing the ranking of the original graph w.r.t. the one calculated on

G2, G3, and G4. Results show a similar trend in the three configurations

where the Levenshtein distance increases with increasing threshold value. At

the same time, the difference between final scores associated with the same

argument is rather small, suggesting the feasibility of pruning.

In pervasive computing agents, decision support algorithms are strongly

conditioned by constraints related to time, memory and accuracy. In many

cases, top-k query results are what applications are interested in [76] [128].

A careful examination of the most (respectively, least) acceptable arguments

in a scenario can be a convenient strategy to meet the typical constraints

of pervasive computing. Therefore, the proposed performance metrics have

also been evaluated w.r.t. the top and bottom five nodes of the ranking in

each configuration. Table 4.8 and 4.9 present the results obtained for the

first and last five nodes. On average, 2.26 changes are required to transform

the top five nodes of the ranking R1 into the corresponding top five of R2.

Also in this case, results of the three configurations show a common trend,

essentially similar to the evaluation of the entire graph, with a slight growth

of the Levenshtein distance for higher values of Θ.

In addition, Table 4.10 shows the percentage of times the first and last

node are the same in the rankings comparing 50 random configurations for

each type (A, B, C). For an increasing number of cycles in the graph, result
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stability decreases, but in all R1-R3 comparisons (i.e., with pruning about

20% of edges, since weight distribution probability is uniform), the first and

last node persist in at least half of the total number of executions.

In order to provide a more complete picture, further analysis has been

performed on the ranking of all the nodes. First, after dividing the rankings

of 100 nodes sorted in descending order with respect to the associated accept-

ability score into four equal parts (of 25 nodes each), results are reported on

the number of nodes of the first quartile Q1 (and then, second Q2, third Q3

and fourth Q4) of the first ranking which are found respectively in the first,

second, third and fourth quartiles of the second ranking. This evaluation

is repeated for each combination (R1-R2, R1-R3, R1-R4) of ranking pairs

in the three graph pruning levels. Table 4.11 shows the average values in

percentage with respect to the 50 randomly generated graphs for each con-

figuration. For example, looking at the first row, in the comparison R1-R2

of configuration A, considering the first quartile of R1, on average 91.28%

of arguments persist in Q1 of R2, 8.56% move to Q2, only 0.16% to Q3 and

no argument in Q1 of R1 has been found in Q4 of R2. Ideally, the higher

are the average percentages of Q1-to-Q1, Q2-to-Q2, Q3-to-Q3 and Q4-to-Q4,

the lower the impact of pruning is in the ranking results.

Figure 4.7 summarizes the results by means of three histograms showing

the distribution of nodes shifting from each quartile of the first ranking to the

four quartiles of the second, for each combination of the three configurations.

The results appear quite satisfactory. For each quartile of R1, the average

number of shifts to the adjacent quartile drops by an order of magnitude; fur-

thermore, there is no significant difference between the three configurations

A, B, C. It can further be noted the mean values of Q2-to-Q2 and Q3-to-Q3

(orange and gray bars in Figure 4.7) are generally lower than Q1-to-Q1 and

Q4-to-Q4 (blue and yellow bars). For the aforementioned considerations, the

higher stability of the top and bottom quartiles is an evidence in favor of

exploiting pruning on resource-constrained devices.

For each graph pair under comparison, a further test has evaluated the

number of nodes which shift 0, 1, 2, 3, 4, and 5 positions (either up or down)

in the second ranking w.r.t. the first one. Table 4.12 reports the mean and

standard deviation values w.r.t. the 50 randomly generated graphs for each
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Table 4.11: Quartile shifts in argument rankings due to pruning

Conf. Combination From To Q1 To Q2 To Q3 To Q4
A R1-R2 Q1 91,28% 8,56% 0,16% 0
A R1-R3 Q1 87,12% 12,48% 0,32% 0,08%
A R1-R4 Q1 82,32% 16,64% 0,96% 0,08%
A R1-R2 Q2 8,32% 81,92% 9,6% 0,16%
A R1-R3 Q2 12,32% 72,64% 14,64% 0,24%
A R1-R4 Q2 16,4% 62,72% 19,52% 1,36%
A R1-R2 Q3 0,4% 9,36% 83,2% 7,04%
A R1-R3 Q3 0,56% 14,64% 71,76% 13,04%
A R1-R4 Q3 1,28% 19,36% 62,08% 17,28%
A R1-R2 Q4 0 0,16% 7,04% 92,8%
A R1-R3 Q4 0 0,24% 13,28% 86,48%
A R1-R4 Q4 0 1,28% 17,44% 81,28%

B R1-R2 Q1 91,68% 8,32% 0 0
B R1-R3 Q1 86,8% 12,88% 0,32% 0
B R1-R4 Q1 81,52% 17,44% 1,04% 0
B R1-R2 Q2 8,08% 82,24% 9,6% 0,08%
B R1-R3 Q2 12,56% 69,76% 17,04% 0,64%
B R1-R4 Q2 17,12% 61,2% 20,16% 1,52%
B R1-R2 Q3 0 4,08% 89,44% 6,48%
B R1-R3 Q3 0,32% 8,4% 79,04% 12,24%
B R1-R4 Q3 0,72% 12,48% 71,04% 15,76%
B R1-R2 Q4 0,08% 0,08% 7,44% 92,4%
B R1-R3 Q4 0,08% 0,4% 12% 87,52%
B R1-R4 Q4 0,16% 1,28% 16,56% 82%

C R1-R2 Q1 91,92% 8% 0,08% 0
C R1-R3 Q1 87,04% 12,8% 0,16% 0
C R1-R4 Q1 82,16% 16,8% 0,96% 0,08%
C R1-R2 Q2 8,08% 82,08% 9,84% 0
C R1-R3 Q2 12,56% 70,56% 16,48% 0,4%
C R1-R4 Q2 16,56% 61,52% 20,4% 1,52%
C R1-R2 Q3 0 9,92% 83,44% 6,64%
C R1-R3 Q3 0,4% 16,4% 71,36% 11,84%
C R1-R4 Q3 1,2% 20,4% 61,12% 17,28%
C R1-R2 Q4 0 0 6,64% 93,36%
C R1-R3 Q4 0 0,24% 12% 87,76%
C R1-R4 Q4 0,08% 1,28% 17,52% 81,12%
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(c) Configuration C

Figure 4.7: Argument quartile change in acceptability rankings due to graph
pruning
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Table 4.12: Argument position shifts due to pruning

Config. Comp.
0 positions 1 positions 2 positions 3 positions 4 positions 5 positions
µ σ µ σ µ σ µ σ µ σ µ σ

A R1-R2 17.90 4.16 24.18 5.36 15.42 4.27 9.76 2.92 7.08 2.81 5.02 2.42
A R1-R3 10.54 3.22 16.18 5.09 12.34 3.61 10.38 3.25 8.44 2.68 5.58 1.98
A R1-R4 7.04 2.96 12.12 3.30 9.92 3.58 8.50 2.66 7.34 2.60 6.28 2.25
B R1-R2 18.08 4.25 24.34 4.98 15.0 3.31 9.48 2.67 7.18 2.27 4.44 2.51
B R1-R3 10.64 3.42 15.18 3.91 13.10 3.36 9.42 2.99 7.74 2.76 5.88 2.39
B R1-R4 7.72 2.91 11.42 3.58 10.12 3.60 8.38 3.41 6.60 2.62 6.36 2.74
C R1-R2 18.96 5.01 23.98 5.01 16.24 4.17 9.78 3.22 6.40 2.93 5.06 2.22
C R1-R3 10.24 3.82 15.82 4.14 13.0 3.83 10.08 2.96 7.80 2.57 6.52 2.39
C R1-R4 7.50 2.39 11.42 3.93 10.16 3.21 8.64 3.29 6.80 2.34 6.46 2.48

Table 4.13: Impact of graph pruning on processing time and memory usage
peak

Conf. Graph
Average #
of edges

Execution Time [s] Memory Usage [MB]
µ Gain µ Gain

A G1 500 152.91 n.a. 147.94 n.a.
A G2 450 129.19 15.5% 155.64 -5.2%
A G3 402 115.82 24.3% 138.90 6.1%
A G4 353 78.30 48.8% 90.42 38.9%
B G1 500 127.10 n.a. 132.20 n.a.
B G2 450 102.09 19.7% 114.02 13.8%
B G3 400 79.82 37.2% 95.54 27.7%
B G4 350 56.33 55.7% 67.20 49.2%
C G1 500 70.46 n.a. 43.82 n.a.
C G2 450 81.48 -15.6% 89.38 -104%
C G3 400 52.75 25.1% 59.12 -34.9%
C G4 352 35.01 50.3% 37.50 14.4%

configuration. The three histograms of Figure 4.8 show the average number

of nodes that move by a fixed number of positions in the two comparative

rankings. For all comparisons (R1-R2, R1-R3, R1-R4) and configurations

(A, B, C), the relative majority of arguments shifted by just 1 position; this

could be deemed as an encouraging result.

Finally, Table 4.13 reports the mean values µ of ranking semantics pro-

cessing time and memory usage peak for 50 runs of each pruning threshold

in each configuration. In all configurations, the first row (G1) reports the

same values presented in Table 4.6. They are compared to those in the next

three rows, and the gain is shown. As expected, in these tests pruning with

Θ = 0.1 (resp. 0.2, 0.3) has removed about 10% (resp. 20%, 30%) of edges,

since edge weights are random with uniform distribution in the admissible
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Figure 4.8: Argument position shifts in acceptability rankings due to graph
pruning
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interval. The corresponding decrease in execution time is larger, reaching

about 50% for Θ = 0.3. Memory peak improvement is more unstable, and

particularly graphs G2 for configuration C have execution time and memory

consumption which are higher than the unpruned G1.

Overall, the pruning of the BWAF graph edges characterized by weight

in absolute value below a certain threshold can be considered as a simple and

useful strategy to achieve a trade-off between computational savings in the

execution of the ranking with the proposed semantics and limited alteration

of the ranking outcomes.
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Chapter 5

Conclusions and perspectives

This thesis has analyzed the main critical issues that persist in the Edge

Computing paradigm and limit its full potential. The work has proposed

innovative tools and effective methodologies to address them.

A novel Cloud-Edge Intelligence distributed framework has been intro-

duced, mainly targeted at IoT-based Cyber-Physical Systems. It employs a

microservice architecture and adheres to the Osmotic Computing paradigm

to enable opportunistic resource exploitation through the dynamic, flexible

deployment of service modules to a variety of devices at the network’s edge

and/or in the cloud. Modularity is further reinforced by the clear encap-

sulation of logical components with well defined roles and responsibilities.

This allows for a direct mapping with open source software components and

COTS devices, increasing feasibility and lowering development costs and time

to market. In the proposed approach, model training and prediction tasks

can be performed in edge or cloud nodes, but also through cloud-edge collab-

oration. While cloud devices regularly train larger and more accurate models,

delivering them back to the edge, less sophisticated models are trained and

utilized at the edge for early response, bandwidth usage reduction and data

privacy protection. Experiments on a public domain industrial dataset us-

ing a complete prototype platform implementation have been carried out to

support the key claims.

Possible improvements include: (i) KRR-based orchestration to dynam-

ically discover the optimal deployment configuration via context-aware se-
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mantic matchmaking between ontology-based annotations of microservices

and dynamic device descriptions; (ii) exploration of more sophisticated IoT-

focused AI algorithms, by enhancing machine learning with semantic tech-

nologies [109] and computational argumentation; (iii) integration of the plat-

form prototype with real sensors and actuators in a manufacturing setting

or additional challenging IoT-based CPS scenarios, such as (tele)-healthcare,

environmental monitoring and urban air mobility.

In order to cater to these challenging scenarios, the thesis has presented

a novel structured argumentation framework leveraging Semantic Web lan-

guages and Description Logics reasoning. The proposal is based on Bipolar

Weighted AF, where arguments are modeled as DL concept expressions and

their pairwise relations are automatically evaluated by means of a seman-

tic matchmaking process exploiting non-standard, non-monotonic inference

services. The explanation capabilities of the adopted inferences facilitates in-

terpretability of results. Argument acceptability is evaluated by means of a

novel propagation-based gradual ranking semantics, which supports cycles in

the argumentation graph, satisfies the fading property and complies with ten

of the eleven group properties in [18] for well-defined gradual argumentation

semantics.

While general-purpose, the proposal aims to be feasible even for pervasive

computing agents running on resource-constrained devices. For this reason,

convergence and stopping conditions have been integrated in the ranking se-

mantics evaluation algorithm, while the Tiny-ME optimized reasoning engine

for mobile and embedded platforms has been leveraged for semantic match-

making. Moreover, a simplification of the argumentation graph via pruning

has been proposed and assessed in experimental evaluations as a possible

parametric trade-off between accuracy of ranking semantics outcomes and

computational resource usage. A validation of the approach has been carried

out by means of a prototypical implementation integrated with the StarCraft

II real-time strategy game engine for autonomous decision-making in tacti-

cal agents, as RTS game environments simulate many of the challenges of

complex and dynamic real-world contexts.

The proposal could be improved in several directions. In the current ver-

sion, the ranking semantics algorithm is executed in a centralized way, after
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building the argumentative graph; ideally, a network of cooperating agents

should be able to solve the problem in a coordinated and collaborative way,

in order to make larger graphs manageable. Moreover, approaches to avoid a

recalculation from scratch of the ranking semantics upon each graph change

should be investigated, since information is highly volatile in pervasive con-

texts. Future work will also aim to attach semantic explanations of relations

to the argumentation graph to further improve the interpretability of the

framework. Additional research investigations could be conducted to opti-

mize the proposed approach into a predictive AI framework that goes beyond

the classic black-box ML approaches and allows enhanced transparency and

reliability of the final outcomes, fully exploiting the peculiarities of argu-

mentation for eXplainable AI (XAI) [42]. Finally, experimental campaign in

networks of mobile and embedded devices will be required to evaluate the

efficiency and effectiveness of the proposal in challenging environments.
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[57] Alejandro J. Garćıa and Guillermo R. Simari. Defeasible logic pro-

gramming: An argumentative approach. Theory and Practice of Logic

Programming, 4(1-2):95–138, 2004.
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