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1. Introduction

Mathematical models describing thermal effects in continuum mechanics have found large application in
engineering problems where heat conduction phenomena play a decisive role [13]. Typically, these models
have been based on the classical Fourier law and, thus, on parabolic partial differential equations. On
the other hand, the infinite speed of propagation associated to this choice has induced the community to
overcome this approximation and consider the use of hyperbolic PDEs in order to obtain a more adequate
description of heat conduction [21]. Indeed, some experiments since 1960’s showed that a thermal disturbance
could travel as a wave and thermal pulse propagation has been experimentally observed under certain
conditions [10,15]. Appropriate mathematical theories have been widely developed in the context of the
so-called second sound phenomenon and thermo-elasticity with finite wave speeds [14]. At the same time,
models that include the interplay between thermal and elastic effects are fundamental in order to describe
phenomena at different time and length scales in laminated materials. In particular, the study of temperature
and displacement fields are fundamental to predict important phenomena such as delamination [22], a topic
of large interest in the field of recycling processes of multilayered materials. The analysis of adhesion—
decohesion, capillarity and wetting phenomena which have attracted a large interest because of their
applications [1,12,16-20], is challenging since the evolution problem has to take into account both thermal
and elastic effects.

In order to approach the problem of non-linear wave propagation in the context of thermo-elasticity
for layered systems and to study the occurrence of singular phenomena like delamination, we consider a
system of coupled PDEs describing the evolution of temperature and displacement in a string attached to
a rigid substrate. The adhesive layer that mediates the interaction of the material with the substrate is
represented through a general energetic source which is assumed to be smooth with a given growth during
a first process modeled by hyperbolic heat propagation while it produces singularities in a second process,
when the relaxation time tends to zero and the heat propagation becomes parabolic. In particular, the non-
linear term models a discontinuous softening behavior of the adhesive material which can experience rupture
phenomena if the displacement of the string is larger than a certain critical threshold (with the adhesive
stress jumping to zero). Since the breaking of the material manifests itself at a macroscopic scale, we have
chosen to analyze the two processes, the first one affecting the small scales and the second one affecting the
large scale, in two different stages ruled by the relaxation time and the smoothness of the adhesive potential.
In [6,7] authors have considered the same model for the glue layer in the context of elastodynamics while
in [4,5] the model has been extended to flexural beams. The same type of adhesive potential has been used
to model the phenomenon of temperature-induced melting with an associated phase transition in [11], and
in [2] or in [9] to analyze the interaction between focal adhesions and extracellular matrix.

The paper is organized as follows. In Section 2 we expose the evolution problem in the framework of
second sound theory of heat propagation under suitable regularity assumptions on the nonlinear source term
representing the adhesive interaction. Section 3 is devoted to the proof of the main theorem stating well-
posedness and stability for the previous problem. In Section 4 we study the asymptotics of the previous initial
boundary value problem when the heat propagation becomes of parabolic type and the adhesive interaction
becomes singular. Eventually, in Section 5 we address the problem of long time behavior of solutions proving
that for bounded ones weak convergence to stationary states is achieved.

2. Thermoelastic evolution with adhesion interaction

Let us consider a one dimensional material body, i.e. a string, whose rest configuration at the initial time

t = 0 coincides with the interval [0, L] at a reference (absolute) temperature ©y. The quantities we are
interested in are the displacement field u and the absolute temperature 6:

u,6:[0,00) x [0, L] — R. (2.1)

2



G.M. Coclite, G. Dewvillanova, G. Florio et al. Nonlinear Analysis 232 (2023) 113265

0 L u(.,x)
. I

Fig. 1. Thermoelastic one-dimensional body interacting through and adhesive layer (in gray) with a rigid substrate.

We assume the material to be linear thermoelastic and the string to interact with an underlying rigid
support through an infinitesimal layer of adhesive material characterized by an internal energy ¥, (u) where
the parameter 7 > 0 just emphasizes the relation between this constitutive assumption and the relaxation
time affecting the hyperbolic heat propagation. This approach to thermal propagation was introduced by C.
Cattaneo in 1949 in [3] and leads to the following equation relating the heat flux ¢ and the temperature 6
trough the relaxation time 7:

q(t + 7,2) = —k0,0(t, x),

where k is the thermal coefficient. The Cattaneo model is suitable for low temperatures and since the physical
model addressed here is inspired by a technological problem related to cryogenic delamination [8], in the
following we focus on the mathematical aspects related to this issue.

The interaction potential ¥, satisfies the following conditions

v (-,-) >0, v, € C*(R?*) N W2 (R?). (2.2)

To underline the dependence of the variables on the relaxation time 7 we will denote the displacement
and the absolute temperature fields respectively as u, and .. Then we consider the longitudinal motion of
a one-dimensional thermoelastic body, interacting with the rigid support through a tangential (shear) force
experienced in a layer made of adhesive material (see Fig. 1).

Since we consider small relaxation times, the governing equations ruled by the linearized Cattaneo model
consist in the following system of coupled equations [13,14]:

{paftuT = K02, ur + 0,0, — V. (ur,0,), t>0,0<z<L, 2.3)

Ch(14+70) 00, = K4 02,0, + (1 +70) (B GdZu- +Q), t>0,0<z<L,
where p > 0 denotes the mass density, K. is the stiffness coefficient of the string, —f3 is the coupling thermal
coefficient (proportional to the coefficient of thermal expansion through the Lamé coefficients), Cy, is the heat
capacity of the material, K is the heat conduction coefficient, @y is the reference (absolute) temperature,
7 is the relaxation time, @ is the heat source, while the source term ¥’ (u) represents the adhesion force
experienced through the glue layer. Egs. (2.3) are obtained in the context of isotropic linear thermoelasticity.

Since there are no external forces applied at the boundary of the string, we will consider the following
initial and boundary conditions for the displacement function u, = u, (¢, x):

Opur(t,0) = Opu.(t, L) =0, t >0,
ur (0, z) = up - (z), 0<z<L, (2.4)
O (0,2) = up (), 0<xz<L,
where
ug,r € HQ(O, 1)7 uyr € Hl(O, 1).

The initial and boundary conditions for the temperature 6, are given as follows

{QT(O, x) = 0y, (2), O<z<L, (2.5)

ataT(va) = 91,T(x)a 0<z <L,
3
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with
0o, € H3(0,L), 61, € L*0,L).

In principle it is possible to choose two different sets of boundary conditions. In particular, Neumann
boundary conditions

020-(t,0) = 8,0.(t,L) =0, t>0, (2.6)

represent the situation in which the extremes of the string are thermally isolated. On the other hand,
Dirichlet boundary conditions

0.(t,0) = 0-(t, L) = 0%, t>0, (2.7)

represent the situation in which the extremes of the string are kept at the fixed temperature 6X. We are
interested in the latter one.
To improve the readability of the paper we set

p:Ke:Ch:Kd:Lil, 0*:07 ﬂ@():g

T

Moreover, we shall denote by ¢ and C' any constant independent on the data of the problem.
After these positions (2.3), (2.4), (2.5), (2.6) and (2.7) become

2, = 02 ur + 00, — V' (ur,0,), t>0,0<z<1,

(1+70;) 040 = 02,0, + g(1 +70) O?u, + (1 +70,)Q, t>0,0<z<1,

Opur(t,0) = dpur(t,1) = 0,(¢,0) = 0,(¢,1) = 0, t>0, (2.8)
ur(0,2) = uo (), Our(0,z) = u1 (), 0<x<1,

0,(0,2) = by (), 0:0-(0,2) = b1 . (), O<z<l,

where we assume

B,geR,  T>0, v () > v, € C*(R?*) N W2 (R?), Q € C?%([0,00) x R), (2.9)
uo, € H*(0,1), uy, € HY(0, ), 0o, € Hy(0,1), 6y, € L*0,1). (2.10)

We use the following definition of weak solution for problem (2.8).

Definition 2.1. Let u,, 0, : [0,00) x [0,1] — R be functions. We say that (u,, 6;) is a solution of the
initial boundary value problem (2.8) if

(D.1) u, € H*((0,T) x (0,1)), 8, € HX((0,T) x (0,1)), for every T > 0;

(D.2) the initial and boundary conditions are satisfied almost everywhere;

(D.3) the first equation is satisfied almost everywhere in (0, 00) x (0, 1);

(D.4) for every test function ¢ € C*°(R x (0,1)) with compact support the following identity holds

/ / (1= 70y)0pp + 0,02, + g0, ur (1 — 70) 0 + (1 + 70,)Qyp) dtdx
(2.11)

—|—/ (Bo.+(2)(1 — 70)(0, ) + 761 - (x)p(0, ) — gTOpu1 - (x)(0,z)) dz = 0.

0

We prove the following existence and stability result.
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Theorem 2.1. Assume (2.9). For every ug r, u1,r, 60,7, 01+ satisfying (2.10), the initial boundary value
problem (2.8) admits a unique solution in the sense of Definition 2.1. Moreover, if (ur, 0;) and (u;, 0;) are the
solutions of (2.8) obtained in correspondence of the initial data ug -, v1,7, 00,7, 01, and Uo r, U1,7, 00,7, 01,7

and the source terms @ and Q respectively, then the following stability estimate

2

+ H(atQ - at@)(sv )’

2
d 2.12
can)® 0

Mw<mw@+OAQW*%WQ—®@»

L2(0,1)

holds for every t > 0, where C' > 0 is a constant and
1
40 = [ (= @) 4+ @ e =T + @ (= @) + (08 (e~ 7))
0
N2 A\ 2 o\ 2
+ (0% (e =)+ (0= 07) + (0 (0= 07)) "+ (2 (6, - 67)) > dx.

3. Proof of Theorem 2.1

(2.13)

This section is devoted to the proof of Theorem 2.1.
Let {UO,T,TL}HEN7 {Ul,T,n}neNv {HO,T,R}HGN7 {el,T,n}TLGN C COO([Oy 1])7 {w'r,n}neN C OOO(R) be sequences of
smooth approximations of ug -, u1,+, 0o, 01,-, and ¥, respectively such that
U0, rn — Ug,r I HZ(O, 1), wirpn—u, in H'(0,1),
00.rm — 0or in H'(0,1), 6orn — 0o, in L*(0,1),
Uen — Vs W;n — W4 W;’n — W;’ uniformly in R,

||u0,7,n||H2(071) S 07 ||u1,T,TL||H1(O71) S C» n e Na

(3.1)
”007"'7"”H1(0,1) < C, ||01,T,7L||L2(071) < Ca nc N,
0< W, |V, <C,  neN,
a:cUO,T,n(O) = aacUO,T,n(l) = Ul,r,n(o) = ul,r,n(l) =0, n €N,
90,7’,”(0) = 90,7’,7’7,(1) = 61,T,7’L(0) = 91,7’,77,(1) =0, ne N7
where C' > 0 denotes some constant independent on n.
Let (wrp, 0- ) be the unique classical solution of the initial boundary value problem
O3 Ur = 02 Uy + SO0 — ﬂ_’n(uﬂn), t>0,0<z<1,
(14 70:)040+ . = 02,0, 0 + g(1 + 70:) 02, ur n + (1 + 70:)Q, t>0,0<z<1,
8wur,n(t7 O) = 8xu77n(t7 1) = er,n(t70) = er,n(ta 1) =0, t >0, (32)
Urn(0,2) = uo,rn (), Otir n(0,2) = ug rpn(x), 0<x<1,
0:n(0,2) = 0 7 n(x), 0t0:n(0,2) = 01+ n(2), O<z<l,

The well-posedness of (3.2) is guaranteed for short time by the Cauchy—Kovalevskaja Theorem [24]. The
solutions are indeed global in time thanks to the following a priori estimates.

Lemma 3.1 (Energy Estimate). Let T > 0 be given. For every 0 <t < T, the following inequality holds

t t
En(t) + Ay (t) + DyePrt / e Prs A, (s)ds + ePnt / e PrsB, (s)ds
0 0 (3.3)

ePnt 1
< ePrtg, (0) + C,,———— 4+ ePnt4,,(0),

D,
5
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where

gn(t):/o ((8tur,n) + 72(02Ur )% 4 (Dptir.n)? + 7202 Urn)?

2
02, + k7%(0107.0)* + KT(020+)2
+K: Tn KT ( t ,2) KT( , ) + WTJL(UTJL) (t,fﬂ)dl‘,
1 a Tn2+ aa: TTL2+ 02
An(t) :T/ <( e - P o) ) ()

) =ke / / ((o 9Tn + U, o (urp))(s, x)dsdz,
1 . T 1
Cn =E,(0)e” +27e” || LT/;’nHLOO(R) / |u1,7.n|dz + §eT/ / (14 70,)Q)*(s, z)dsdz,
0 o Jo

D, =max {72 01,2y 1} m= D
g
In particular, the sequences

{atu‘r,n}neNa {8Iu7',n}n€N7 {8152tuT,n}n€Na {8752wu7',n}n6N7
{HT,n}nel\h {6t97',n}n€N7 {8$97',n}n6N

are bounded in L>(0,T; L?(0,1)), and the sequence
{8$97',7L}7L€N

is bounded in L*((0,T) x (0,1)).

Proof. Consider the quantities

Un = (1 + Tat)’LLTJ“ Qn = (1 —+ Tat)07-7n, H = (]. -+ Tat)Q,

(3.2) gives
OfUn = 02, Un + B0, On, — (1 +70,) VL, (tUr,n), t>0,0<z<1,
0,6y, = 02,0, + g0}U, + H, t>0,0<z<1,
0:Upn(t,0) = 0,U,(t,1) = 6,(t,0) = 6,(t,1) =0, t >0, (3.4)
Un(0,2) = ug rpn(z) + TU1 1+ 0 (T), 0<z<l,
6,(0,2) = g 7 n(x) + 701,70 (x), 0<z<l.

Multiplying the first equation in (3.4) by 0;U,, the second one by k6, and integrating over (0,1) we get

d (1 (0Un)? + (0:Un)* —‘r/i@?%d

1
_ / (O Un03U, — 02, UndsUp + £6,0,6,) dz
0 1 1 1
:5/ axé)natUndx—/ (1+T(’9t)W;7n(uT’n)5tUndx+/<;/ 02,0, .,0,dx
0 0 0

1 1
+ kg / 8t2xUn6nd:c+n/ HO,dx
5 /o 0

1 1 (a 0 ) 1
=— / (1+70) V., (Ur )0 Updx — Ii/ (020r.0)*dx — m’— A da + /{/ H6,dx
0 Y 0 7 dt 2 0

6
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1 1 1
- / W;n(uﬂn)ﬁtuﬂndx — 7'/ W;n(uﬂn)@iuﬂndw - 7'/ Ll'/;',n(uﬂn)(ﬁtuﬂn)de
0 0 0

1 1 d 1 (8‘197— n)2 1
B / U (Urn) Ot 1 Oy — H/ (0207.0)2dx — KT— / 2D dx + m/ HO,dx
o 7 7 ’ 0 ’ dt Jo 2 0

1 1 1
=— 4 Ve (U n)da — Ti v (uT n)Oudr — 72 / v (Ur ) Opur nO2U pda
i J, " dt ’ ’ ’
! (On 97 n)
—/{/(89597,1 dx—fw—/ d -I-Ii/ HO,dx
0
d [t 2 " 2
<——= Uy (Urp)d 7— n(Urn)Otr ndx — Wm(um)atuf nOiUr ndx
dt O ’ 0 ’ ? ) ’
1
- /-s/ (04072 dx — KT— (8 Orn)* ————dx + — / H%dz + = / O2dx,
O ’ dt 2
that is
1 2 2 2 2 1
dt 0 2 ’ ’ 0 ’
d [t
< - Ta y777n(ur,n)atur,ndx (35)

1 1
— 72/ O () Oty DXy i + E/ H?%dx + E/ O2dzx.
o ’ ’ 2 Jo 2 Jo
Introducing the energy

1 2 2 9 )
En(t):/o ((&Un) + (82Un) J;ﬁ@ner(amGT,n)

+ Wf,n(uf,n)) dx

from (3.5) we gain

1

El(t )—l—m/ (0207 1)? dsc<—T— n(Ur ) Optir pd
0 (3.6)

1

o /0 )OOt + 5 [ 2o+ B, (1)

Therefore the Gronwall Lemma gives

Jr/{e// *(0207.0)% (s, v)dsdz

<E,(0)e! —7e / e_sj ( / (w;n(uT,n)atum)(s,x)dx> ds (3.7)

o s
— 72 / / (W) (Ur ) Oy, w0 e n)(s, J:)dsdm+ / / “SH?(s,x)dsdx.

Since

e (/ 1(w;n(uf,n)atumxs,x)da:) () 1<av;m<uT,n>atum><s,x)dx)

0
1
+ 673/ (¥, (trn)Otir ) (5, 2)de,
0

(3.7) becomes

—|—H€// 897n )= (s, x)dsdx
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1
<E,(0)e" — T/ (9], (tr )0ty ) (t, ) d (3.8)
+ Te / ( Tn(uTn)BtuTn) (0, x)dx — Te / / UL (Urn)Ostir ) (s, v)dsdz
— 72 / / (vl L( (Ur ) Oy Oty 1) (8, x)dsdw—l— / / e *H?(s,x)dsdx,

and using the initial data

—|—f<¢e// e (040, )2 (s, x)dsdx

<E,(0)e" — T% WTn(uTn)(t x)dx (3.9)

1
+ 7e / (@], (uo,7.n)u1,rn)(x)de — Te / / Vs 0 (Urn) (s, z)dsdx
— 72 / / (@), (trn)Our, nOf s ) (5, 7)dsdr + fe / / “SH?(s,x)dsdx.

Moreover, since

/1 (0:Un)? + (0.Un)? + 6602 4 k7 (0007.0)?
0

dzx
2

/1 (Optir )? + 2704tr O tr i + T2 (O3 Ur )2 + (Ontir n)? + 2700r O s 1y + T2 (02, Ur )2
0 2
LV k02, + 2670, 00107 + KT%(0407.0)° + KT(0207.1)2
+ / ’ .
0
/1 (Ortr ) + T2(02ur )% + (Optirn)? + T2 (0 ur n)* + HGEJL + k72(0¢07,0)? + KT(020: 1)
2
0

dx

dx

dx

d [* (atu'r,n)2 + (81'“7,71) + KGZ n
+ Ta 5 dx,

(3.8) becomes
/1 (atu'r,n) +7 (attuT n) + (aqu,n) (82 U, n)
O 2
k02, + 72040+ )% + KT (0207 1)?
+ , 2

d [* ((atu'r,n)2 + (axu‘r,n)z + fi972-,n

+ W‘r,n(“r,n)) (t,x)dx

+ 7

7 5 +2 ![/Tyn(uﬂn)> (t,z)dx

t o1
+ /-iet/ / e *((0207.0)* + Ve (tr.n)) (s, 2)dsdz
o Jo
1
<E,(0)e! + 2ret / (0 (uor )t ron) () (3.10)
— 7% / / (W) (Ur ) Optir O ) (5, x)dsdx—i—fe / / S H?(s,x)dsdx

<E,(0)e" + 27¢! / (@] (w0, n) Ut 7 ) ()da

2 w//
H TnHLOO / / *(Ouur (s ,x))*dsdx
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+ —e / / (2 ur (s, ))> dsder / / e *H?(s,x)dsdz.

Then for 0 <t < T, (3.10) gives
Eq(t) + AL(t) + Bu(t) < C + D,y /Ot £4(s)ds
Using again the Gronwall Lemma and integrating by parts we get (3.3). O
Lemma 3.2 (L? Estimate). The sequence {tur.n nen is bounded in L>(0,T; L?(0,1)), for every T > 0.

Proof. Since

1 1 t 2
/ uin(tw)dx:/ (uomn(x)—l-/ 8Su77n(s,x)ds> dx
o 0 0
1 1 t 2
2/ UG (T d:ﬂ+2/ (/ |85u7.7n(s,x)ds> dx
o 0 0

6.7 (2)
1 , t el ,
2/0 uoyT,n(x)dx—i—%/O /0 (Ostrn(s,x))*dsdx
6.7 (2)

1 1
2/ g 7 (2)da + 267 sup/ (Ostr,n(s,2))?dz,
0 $>0.J0

IN

IA

IN

the claim follows from Lemma 3.1. O
Lemma 3.3 (L Estimate). The sequence {urn}nen is bounded in L>=((0,T) x (0,1)), for every T > 0.

Proof. Fix 0 < t < T and 0 < = < 1. Lemmas 3.1 and 3.2 imply that {u;,}nen is bounded in
L*(0,T; H'(0,1)). Since H'(0,1) C L>(0,1) we have
rnlt )] < [ty Ml poego 1) < €Mtrn(ts Moy < € ltmmll oo ouzsari .10

for some constant ¢ > 0. Therefore

[wrnll oo 0,7y 0 0,1)) < €Ntrnll oo 0,11 0,1)) -

that gives the claim. O
Lemma 3.4 (H? Estimate). The sequence {02, tur n}nen is bounded in L°°(0,T; L*(0,1)), for every T > 0.

Proof. Since by (3.2)
82 uT n — ttuT n /88./1:97',774 + lp‘;’n(u’r,n)7

the claim follows by using Lemmas 3.1 and 3.2. O

Proof of Theorem 2.1. Thanks to Lemmas 3.1, 3.2, 3.4 and [23, Theorem 5] there exist two functions u,
and 6, satisfying (D.1) and (D.2) of Definition 2.1 such that, passing to a subsequence,
Urn — u, weakly in H((0,T) x (0,1)), for each T > 0,
Urp — wr uniformly in (0,7") x (0,1), for each T > 0,
Orn — 0, weakly in H*((0,T) x (0,1)), for each T > 0,
020 — 0,0, weakly in L*((0,T) x (0,1)), for each T' > 0.
9
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We have to verify that (u,, 0;) is a weak solution of (2.8) in the sense of Definition 2.1. To this aim we
fix a test function with compact support ¢ € C*°(R x (0,1)). The following identity holds

[e%e} 1
/ / (977,1(1 —10)0p + HT,naiwgo + gafxuﬂn(l —710)p+ (1+ rat)ng) dtdzx (3.12)
o Jo

+/0 (90,7',71(33)(1 = 70)p(0, @) + 701,70 (2) (0, 2) — gTu,l,-r,n(x)(P(Qx)) dr = 0.

Using (3.1) and (3.11), sending n — oo in (3.12) we get (2.11).
We continue by proving the stability estimate (2.12). Define

V= U; — Uy, w=0,—0. (3.13)

Thanks to (2.8), (v, w) solve the problem

02v = 02,0 + BO,w — (W'(uﬂ@,r) - w'(a:,el)) : t>0,0<a<1,
(1+78,) dyw = 02, w + g(1 + 70,) O2v + (1 + 7y) (Q - @) . 1>0,0<z <1,
8,0(t,0) = dyu(t, 1) = w(t,0) = w(t, 1) = 0, t>0, (3.14)
v(0,z) = up - (z) — wo(x), Opv(0,2) = uy - (z) — U1, (), 0<a<l,
w(0,2) = bo.+(x) — o, (), Qw(0,2) = 01 () — 61 (), 0<z<l,.
Arguing as in Lemma 3.1 we can prove
% 01 ((00)? + (850)% + (920)? + (92,0)% + w? + (Ow)? + (Opw)?) dr

sC/; ((wuﬁe» v 0) 4 (o) (- @))2) dx
Sc/ol <v2 +w? + (Q—@)Q + (@Q—&@f) dz.

Adding fol v 0yv dz to both sides we get

d 1
dt Jo

<2/1 v@tvdx—i—c/l <v2 +w? + (Q — @)2 + (8@ —8t@)2> dx
0 0
gc/01 (v2 + (O)? + w? + (Q _ @)2 + (atQ - at@)Q) de.

Therefore, using (2.13) and (3.13),

(v* + (010)* + (020)* + (97,0)* + (07,0)* + w* + (w)? + (Dpw)?) da

Alt) = /o (02 + (00)? 4 (0,v)% + (020)? + (02,0)? + w? + (Qpw)? + (8xw)2) dx

we have

%A(t) < cA(t) + c/ol ((Q - @)2 + (atQ . atc?j)2> dz.

Using the Gronwall Lemma we gain

A(t) < A(O)ed + C/t ectt=e) (H(Q - é)(s’ )‘ : 2L2(0,1)) ds,

0

+ H(atQ - 3té)(57 )‘

L2(0,1)

that is (2.12). Then, the uniqueness of the solutions trivially follows. [

10
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4. Singular limit: Breakable adhesion and parabolic propagation

In our intuition the occurrence of an instantaneous phenomenon like delamination could be well captured
in a model with infinite speed of heat propagation, hence 7 = 0. Hence in this section we study the asymptotic
limit of a family of differential problems obtained by relaxing the regularity properties of the adhesion
potential in relation to the relaxation time affecting the hyperbolic heat propagation. More precisely, we
assume that ¥, — ¥ locally uniformly on R as 7 — 0, where a prototypical example is given by

2 f < q*
ww) =M iful <, (4.1)
p(u*)?, if |u| > u*,

where u* denotes the threshold beyond which the glue cannot sustain further stress and p is a (positive)
constitutive parameter.
Then we consider the family of differential problems depending on the parameter 7 > 0:

Oy = 02 ur + 00, — VL (uy), t>0,0<2<1,
(1 + T@t)atQT = a,%wt% + g(l + T@t)afqu + (1 + Tat)Q, t>0,0<x <1,
Oz (t,0) = Opur(t,1) = 0,(¢,0) = 0,.(t,1) =0, t >0, (4.2)
ur(0,2) = uo (), Our(0,z) = uy (), 0<z<l,
0,:(0,2) = b (), 0:0,(0,2) = b1 . (), O<z<l,
where
for every 7 > 0, V-, ug -, U1,r, 0o 7, 01, satisfy (2.9) and (2.10), respectively; (4.3)
V. — ¥ uniformly on every compact of R as 7 — 0; (4.4)
ugr — up a.e. in (0,1) and in H'(0,1) as 7 — 0; (4.5)
uy, — uy and 0y, — 6p a.e. in (0,1) and in L?(0,1) as 7 — 0. (4.6)

The study of the convergence of this family of problems will lead us to single out a limit problem character-
ized by parabolic heat propagation. More precisely we have to face with the following hyperbolic—parabolic

system:
Oiu = 0%, u+ B0,0 — V' (u), t>0,0<z<1,
00 = 02,0 + 902, u+ Q, t>0,0<z<1,
Bpu(t,0) = dyu(t,1) = 0(t,0) = 0(t,1) =0, >0, (4.7)
u(0,x) = uo(x), Ou(0,z) = ui(x), 0<z<l,
0(0,z) = Oo(x), 0<x<l,

where we assume that (see Figure 2)

B,geR, ¥()=0, ¥eCTR\{l,-1}), ¥ e€L*R), (4.8)
ug € HY(0,1), w1 € L?(0,1), 6y € L?(0,1),

In this case we use the following definition of solution (u, #) to problem (4.7).

Definition 4.1. Let u, 6 : [0,00) x [0,1] — R be functions. We say that (u, ) is a solution of the initial
boundary value problem (4.7) if

(D.1) ue H*((0,T) x (0,1)), 0 € L*(0,T; H}(0,1)), for every T > 0;

11
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Fig. 2. Potential ¥(u) in Eq. (4.1) with p = 1.

(D.2) the initial and boundary conditions are satisfied almost everywhere;
(D.3) for every test function ¢ € C°°(R?) with compact support the following identity holds

o] 1
/ / (udpp + Opudup — BOLOP + hyp) dtdx
o Jo

X X (4.10)
— / up (z)p(0, z)dx + / uo ()0 p(0, z)dx = 0,
0 0
for some h,, € O (u), where W (u) is the subdifferential of ¥ at u;
(D.4) for every test function ¢ € C*°(R x (0, 1)) with compact support the following identity holds
00 1 1
/ / (00sp — 0,000 — gOud,p + Qi) didx + / 0o(x)p(0,2)dx = 0. (4.11)
o Jo 0

To exploit the precise convergence result as 7 — 0 we prove the following statement (see Fig. 2).

Theorem 4.1. Let us assume that (4.8), (4.9), (4.3), (4.4), (4.5), (4.6) hold. For every T > 0, let (u,, 6,)
be a solution of (4.2) in the sense of Definition 2.1. Assume also that

T ooy <C, 7>0, (4.12)

for some constants C' > 0. Then there exist a sequence {7, }nen C (0,00), 7, = 0, and a solution (u, 0) of
the initial boundary value problem (4.7) in the sense of Definition 4.1 such that

Uy, = u and 0., — 0 a.e. in (0,00) x (0,1),

Up, — u and 0., — 0 in LP((0,T) x (0,1)) for every T > 0 and 1 < p < oo,

L (4.13)
Uy, — u weakly in H ((0,T) x (0,1)) for every T > 0,
0., — 0 weakly in L*(0,T; H}(0,1)) for every T > 0,
as n — oo. In addition, if
Bg>0, Q=0, (4.14)
then (u, 0) satisfies the following energy dissipation inequality
1 t 1
B+ o / / (0,0)2dsdz < E(0), (4.15)
0o Jo

for every t, where

(0w @2 | )
E(“‘/o< 20 +29|+2I6I>d’

12
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Yud (Opup)? 63 W(uo))
E(0) = 2 =2 4 0 dz.
(©) / ( 2 Tl T o2E )

Proof. Arguing as in Lemmas 3.1, 3.2, 3.3 we have

4 {atuT}T>O7 {6tu7}7'>0a {a’EuT}T>O7 {TatztuT}T>07 {TathuT}T>07 {97'}7'>07 {Tat07}7'>07 {\/FameT}T>O are
bounded in L*>(0,T; L*(R)), for every T > 0;

e {0:0;}.~0 is bounded in L?((0,T) x R), for every T > 0;

o {u;}r>0 is bounded in L>(0,T;L?(0,1)), for every T > 0;

o {ur}r>0 is bounded in L>°((0,T) x (0,1)), for every T > 0.

Thanks to [23, Theorem 5] there exist three functions u, ¢ and h, € L*((0,T) x (0,1)), hy, € 0¥ (u),
satisfying (D.1) and (D.2) of Definition 4.1 such that, passing to a subsequence,
ur, —u weakly in H*((0,T) x (0,1)), for each T > 0,
ur — u  strongly in LP((0,T) x (0,1)), foreach T >0, 1 < p < o0,
0, — 0 weakly in L?*(0,T; H3(0,1)), for each T > 0, (4.16)
040, — 0,0 weakly in L((0,T) x (0,1)), for each T >0,
V! (u;) — h, weakly in LP((0,T") x (0,1)), for each T >0 and 1 < p < cc.

We have to verify that (u, ) is a weak solution of (4.7) in the sense of Definition 4.1. To this aim let
¢ € C*(R?) be a test function with compact support. By (4.2), for every 7 we have

o) 1
/ / (ur 0 + OpurOpip — BOLO 0 + VL (ur) @) dtdax
o Jo (4.17)

1 1
- / u1,7(2)p(0,z)dr + / uo,+(2)0pp(0, z)dz = 0.
0 0

By virtue of (4.4), (4.5), (4.6), (4.12), (4.16) sending 7 — 0 in (4.17) we get (4.10). Moreover, for every test
function ¢ € C*°(R x (0,1)) with compact support the following identity holds

/ / (1 —70,)0p0 + 0,020 + gO2u (1 — 70 ) + (1 + 79 Q) dtdx
(4.18)

+ / (Bo.+(2) (1 — 78,)(0, ) + 701, () (0, 2) — grie) . (x)(0, z)) dx = 0.

Using (4.4), (4.5), (4.6), (4.12), (4.16) sending 7 — 0 in (4.18) we get (4.11). Eventually, (4.15) follows from
(3.3) and (4.16). O

5. Long time behavior

There are several interesting questions concerning the long time behavior of the dynamics ruled by (4.7).
In particular, one is interested in characterizing the limit states of the system since it is not clear a priori if
the cohesion—decohesion evolution collapses in a single stationary state as t — co. Such (equilibrium) states
consist of a constant value for the displacement a € (—oo, —1] U {0} U [1, 00) and 0 for the temperature.

The present section is devoted to prove the following result.

Theorem 5.1 (Long Time Behavior). Assume (4.14). Let (u, 0) be a weak solution of (4.7) satisfying (4.15)
and {tn tnen C (0,00) such that t, — co. If

u, § € L®((0,00) x (0,1)), (5.1)

13
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then there exist a subsequence {tnk}keN and a constant a € R such that

a € (—oo,—1]U{0} U1, 00),
u(ty,, ) —a weakly in H'(0,1) as k — oo,
O(tn, ") =0 weakly in L*(0,1) as k — oc. (5.4)

Proof. Let (u, ) be a weak solution of (4.7) satisfying (4.15) and (5.1).
STEP 1. We begin by deducing the effective asymptotic problem.
Consider the functions

ug(t,x) = u(ot,z), 60,(t ) =0(ct,x), oc>0,t>0,z€][0,1].

(g, 0,) is a weak solution of the following initial boundary value problem

g
tu = 0% ug + 0,0, — V' (uy,), t>0,0<z<1,
875 g _ a2 2
=0;,0, + 8u0, t>0,0<zx<1,
7 (5.5)
Oz (t,0) = axug(t, 1) =6,(¢t,0) =0,(t,1) =0, t>0,
g (0, 2) = ug(x), drus(0,z) = ouq(z), 0<x<l,
0,(0,z) = Oy(z), O<z<l,
in the sense of Definition 4.1, namely for every test function ¢ € C°°(R?) with compact support
s / (=25 + dutouip ~ 80481+ e )
— / ul7($)<p((),x)al$:(),
o 9 (5.6)

00 1 0 2
/ / <08t80 — 0,050, + gugatxgo) dtdx
0 0 g g

! 0o(2)p(0, z) " guo(2)dpp(0,2)

g

where h, € 0¥ (u), that is the subdifferential of ¥ at u,. In addition (u,, 0,) may dissipate energy, i.e. for
almost every t > 0:

1 2 2 2
(Oruy) (Oruq) 070 V(uy ) 6,) 27gd
/o <w|02 o Tag T oy |g/ / (9:0)"dsdz

1 U% + (@Cuo)? 9% W(U()))
< ——— t o+ dzx.
/0 ( 2(B| 2lgl 2/

Thanks to (4.8), (5.1), and (5.7),

(5.7)

{t}o>0 is bounded in L>(0,00; H'(0, 1)
{65} o>0 is bounded in L>(0, 00; L*(0, 1))
{hs}o>0 is bounded in L*°((0,00) x (0,1)),

),

9

so there exist three functions U € L*(0,00; H?(0,1)), © € L*(0,00; L*(0,1)), H € L*>((0,00) x (0,1))
such that, passing to a subsequence,

Uy 2 U weakly-x in L5 ((0,00) x (0,1)) as 0 — o0,

14
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b, = O weakly-x in LS. ((0,00) x (0,1)) as o — o0,
he = H  weakly-x in L{2,((0,00) x (0,1)) as 0 — co.

Using (5.7)
{04t )0} 650, {Uo Yos0, {05 o0 are bounded in L°°(0, 00; L(0, 1)),

therefore as 0 — oo in (5.6) we get

o) 1
/ / (0,UDrp — 0, Op + Hp) dtdx = 0,
o Jo

/ / 0, OO0, pdtdx = 0.
o Jo
Since U = U(x), © = O(z), H = H(z), the effective asymptotic problem is
02U+ 0,60 =H, O<o<l,
2 — 1
0,0 =0, 0<z<l, (5.9)
0,U(0) =0,U(1) =0,
6(0)=06(1)=0.

STEP 2. We exploit more subtle characterizations of the limit functions U and H. To this aim we fix a
sequence {t, tnen C (0,00) such that ¢, — co and study the convergence of the sequence

{(u(tm ')7 e(tm '))}HGN‘
Since we have the dissipation inequality (5.7) and assumption (5.1), we gain
{u(tn, ) }nen is bounded in H'(0,1),

{0(tp, ) }nen is bounded in L*(0,1),
{hy(tn, ) }nen is bounded in L*°(0, 1).

Therefore there exist three functions u., € H1(0,1), 05 € L?(0,1), hoo € L>(0,1) such that passing to a
subsequence

w(tn, ) = Uso weakly in H'(0,1) as n — oo,
U(tn, ) = Uoo a.e. in (0,1) as n — oo,
> (5.10)
O(tn, ) = 0 weakly in L*(0,1) as n — oo,
B (tny ) = hoo weakly-x in L>°(0,1) as n — oo.

Due to the result in STEP 1, we know that the functions u., 0~ and ho must satisfy the effective problem

8%11‘00‘{’56:6900 :hoo, O<ax<l,
2 0. = 1
OzUoo(0) = Opus(1) =0,
00 (0) = 0(1) = 0.
Moreover, by (5.10) we have also that
hoo € 0P (Uso). (5.12)

By multiplying the second equation in (5.11) by 6., integrating over (0,1), we get

1
/ (0,000)2dz = 0,
0
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S0
0,05 = 0.

Thanks to the boundary conditions
foo =0, (5.13)

that proves (5.4). By multiplying the first equation in (5.11) by us and by integrating over (0,1), and
recalling (5.12) and (5.13), we get

1 1
/ (Opting)dr = —/ hoolisodx < 0,
0 0

0
Oplise = 0.
Therefore, we can conclude that (5.3) holds. Using (5.3) in (5.11) we have also that
hoo =0,

hence, due to (5.12), (5.2) occurs. [
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