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Efficient and Sustainable Reconfiguration
of Distribution Networks via
Metaheuristic Optimization

Ahmed M. Helmi, Raffaele Carli, Member, IEEE,
Mariagrazia Dotoli, Senior Member, IEEE, and Haitham S. Ramadan, Member, IEEE

Abstract—Improving the efficiency and sustainability of distri-
bution networks (DNs) is nowadays a challenging objective both
for large networks and microgrids connected to the main grid.
In this context, a crucial role is played by the so-called network
reconfiguration problem, which aims at determining the optimal
DN topology. This process is enabled by properly changing the
close/open status of all available branch switches to form an
admissible graph connecting network buses. The reconfiguration
problem is typically modelled as an NP-hard combinatorial
problem with a complex search space due to current and voltage
constraints. Even though several metaheuristic algorithms have
been used to obtain –without guarantees– the global optimal
solution, searching for near–optimal solutions in reasonable time
is still a research challenge for the DN reconfiguration problem.
Facing this issue, this paper proposes a novel effective opti-
mization framework for the reconfiguration problem of modern
DNs. The objective of reconfiguration is minimizing the overall
power losses while ensuring an enhanced DN voltage profile. A
multiple-step resolution procedure is then presented, where the
recent Harris Hawks optimization (HHO) algorithm constitutes
the core part. This optimizer is here intelligently accompanied
by appropriate pre-processing (i.e., search space preparation and
initial feasible population generation) and post-processing (i.e.,
solution refinement) phases aimed at improving the search for
near–optimal configurations. The effectiveness of the method
is validated through numerical experiments on the IEEE 33–
bus, the IEEE 85–bus systems, and an artificial 295–bus system
under distributed generation and load variation. Finally, the
performance of the proposed HHO-based approach is compared
with two related metaheuristic techniques, namely the particle
swarm optimization algorithm and the Cuckoo search algorithm.
Results show that HHO outperforms the other two optimizers in
terms of minimized power losses, enhanced voltage profile and
running time.

Note to Practitioners—This paper is motivated by the emerging
need for effective network reconfiguration approaches in modern
power distribution systems, including microgrids. The proposed
metaheuristic optimization strategy allows the decision maker
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(i.e., the distribution system operator) to determine in reasonable
time the optimal network topology, minimizing the overall power
losses and considering the system operational requirements. The
proposed optimization framework is generic and flexible, as it
can be applied to different architectures both of large DNs and
microgrids, considering various types of system objectives and
technical constraints. The presented strategy can be implemented
in any decision support system or engineering software for power
grids, providing decision makers with an effective Information
and Communication Technology tool for the optimal planning of
the energy efficiency and environmental sustainability of DNs.

Index Terms—Distribution Network Reconfiguration, Micro-
grids, Power Losses Reduction, Voltage Profile Improvement,
Metaheuristic Optimization, Harris Hawks Optimization Algo-
rithm.

NOMENCLATURE

Acronyms

CSA Cuckoo search algorithm
DN distribution network
HHO Harris hawks optimization
PSO particle swarm optimization
SS sectionalized switch
TS tie switch

Set and Indices

N set of indices related to the nodes (buses) of the DN
E set of indices related to the branches (lines) of the

DN
G graph representing the DN
S set of indices related to the switch-equipped branches
Si set of indices related to the switch-equipped branches

connected to bus i
T set of indices related to the branches with TS
j index of branches with TS
i, k indices of buses
L set of network loops

Parameters

Nbr number of switch-equipped branches
Nbus number of buses
Ngen number of generator nodes including the slack bus
Nts number of tie-switches
gik, bik conductance and reactance of the line between buses

i and k
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Vmin,
Vmax

voltage magnitude permissible limits

Imax current magnitude maximum allowable limit
Npop size of initial population

Decision Variables

σj status of the switch related to branch j
P loss overall power loss in the DN
P loss
j power loss at branch j of the DN
Pi, Qi real and reactive power at bus i
Vi, θi voltage magnitude and angle at bus i
Ij current magnitude in line j
X

(t)
i network reconfiguration related to solution i and

iteration step t
c
(t)
i power loss of the network reconfiguration related to

solution i and iteration step t
X∗ optimal network reconfiguration as computed by the

HHO algorithm
c∗ power loss of the optimal network reconfiguration
X̃∗ optimal network reconfiguration as estimated by the

refinement phase
c̃∗ power loss of the refined optimal network reconfig-

uration

I. INTRODUCTION

ELECTRICAL power Distribution Networks (DNs) are
responsible for delivering power energy to many inter-

connected nodes. Consequently, improving the efficiency and
sustainability of DNs is nowadays a challenging objective both
for large networks and microgrids connected to the main grid
[1], [2]. Differently from transmission networks, that are often
based on a meshed structure, the topology of DNs is typically
radial to reduce the short-circuit current. Nevertheless, DNs
usually contain several branches connecting two nodes, or
simply switches, making the resulting topology complex [3].
Throughout the DN, switches can be either normally–closed
sectionalized switches (SSs) or normally–open tie–switches
(TSs). By changing the close/open status of these switches,
the so-called DN reconfiguration is performed, thus attaining
different objectives, particularly power supply recovery and
fault isolation [4]. Recently, obtaining automatically the most
efficient DN reconfiguration through optimization tools has
been considered among the due tasks for both reducing the
network’s real active power losses [5] and improving its volt-
age profile [6], as well as efficiently exploiting generators [7],
optimally coordinating the distributed resources [8], satisfying
load balancing [9] and congestion requirements [10], and in
general improving the distribution system sustainability [11].

Fast expansions –either random or planned for– and com-
plex structures of electrical power grids highlight the impor-
tance of different techno–economic objectives of DNs, such
as: reliability of power supply [12], robustness of microgrid
operations [13], grid security and resilience [14], and sus-
tainable energy access [15]. Moreover, enhancing network
structures in presence of distributed generation (DG) and
distributed storage (DS) is gaining a particular interest for
modern DNs, which more increasingly employ renewable

sources and energy storage systems [16]. For the sake of
achieving the optimal operation conditions, the selection of
the optimal network configuration thus plays a crucial role.

Reconfiguration is a complex combinatorial problem, since
multiple switches are involved with a number of configurations
that exponentially grows as the system complexity and size
increase [17]. As a consequence, the need for effective reso-
lution methods for the DN reconfiguration problem is evident
in the related literature. Even though several metaheuristic
algorithms have been used to obtain –without guarantees– the
global optimal solution, searching for near–optimal solutions
in reasonable time is still a research challenge for the DN
reconfiguration problem.

Facing this issue, this paper proposes a novel effective
optimization framework for the reconfiguration problem of
modern DNs. The objective of reconfiguration is minimiz-
ing the overall power losses, while ensuring an enhanced
DN voltage profile. The DN graph is assumed to contain
some loops –one for each deployed TS– which represent
the search space of the optimization problem. The TSs are
considered initially open and may be closed in accordance
with the evolution of the reconfiguration process. A multiple-
step reconfiguration resolution procedure is here presented,
where the recent Harris Hawks optimization (HHO) algorithm
constitutes the core part. This optimizer is here intelligently
accompanied by appropriate pre-processing (i.e., search space
preparation and initial feasible population generation) and
post-processing (i.e., solution refinement) phases, aimed at
improving the search for near–optimal configurations. The
effectiveness of the method is validated through numerical
experiments on the IEEE 33–bus and IEEE 85–bus systems
– which are widely used by researchers as benchmarks for
evaluating the performance of control solutions proposed in
the power systems field – and an artificial 295-bus system
under distributed generation and load variation. Finally, the
performance of the proposed HHO-based approach is com-
pared with two related well-known metaheuristic techniques,
namely the particle swarm optimization (PSO) algorithm and
the Cuckoo search algorithm (CSA) proposed in [18] and [19],
respectively. Results show that HHO outperforms the other
two optimizers in terms of minimized power losses, enhanced
voltage profile and running time. More specifically, for the
IEEE 33–bus, all the different optimizers successfully reached
the near-optimal solution in all independent runs. For the larger
IEEE 85–bus system and 295–bus system, HHO provides the
highest performance in terms of minimized power losses and
enhanced voltage profile, with the highest success rate and the
lowest running time.

The rest of this paper is organized as follows: Section II
sheds light on the state of the art related to the DN reconfig-
uration and positions the contribution of the paper. In Section
III, the problem formulation is pointed out in terms of decision
variables, objectives, and constraints. Moreover, Section IV is
focused on the definition of the proposed resolution technique,
describing in detail the algorithms to achieve the optimal
DN reconfiguration. The results of numerical experiments are
shown and discussed in Section V, including the performance
comparison of the proposed optimization framework with
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related methods. The conclusions and the future research
directions are summarized in Section VI.

II. RELATED WORKS AND PAPER CONTRIBUTIONS

Nowadays, research on the DN reconfiguration problem is
attracting a notable consideration due to the growing advances
in modern power generation, distribution technologies, and
microgrids. Since the pioneering studies in the related litera-
ture [20], [21], the paradigm of tackling the reconfiguration
problem is focused on closing initial TSs, identifying the
meshes in the resulting graph, and opening a unique switch in
each identified loop. Hence, the DN reconfiguration problem
is framed into the NP-combinatorial optimization [17].

The the related literature in applied resolution techniques
to solve this problem can be categorized into three classes:
heuristic, metaheuristic, and artificial intelligence (AI) tech-
niques. Heuristic methods like [20] and [21] have in common
the disandvantage they might be trapped at local minima [5]
and converge too early during the earch process, in particular
in large-scale systems [18]. Conversely, AI techniques such as
artificial neural networks [22] typically require extensive train-
ing examples in order to achieve reasonable success. To cope
with these drawbacks, optimal DN reconfiguration studies
recently rely on applying metaheuristic algorithms [23], [24].
On the one hand, single–solution based metaheuristic (also
known as local search) approaches such as simulated annealing
[25] and tabu search [6] find satisfying solutions by iteratively
making small changes to the incumbent solution. On the
other hand, different population–based metaheuristic methods
such as firefly algorithm [5], cuckoo search [18], particle
swam optimization [19], water cycle algorithm [26], genetic
algorithms [27], fireworks algorithm [28], shuffled frog leaping
algorithm [29], discrete artificial bee colony [30], harmonic
search [31], ant colony [32], and hybrid big bang-big crunch
algorithm [33] find good solutions by iteratively selecting and
then combining existing solutions from a set, usually called the
population. Nevertheless, reaching the global optimal solution
is not yet guaranteed when metaheuristics approaches are
employed. Consequently, obtaining near–optimal solutions in
a reasonable time is still among the real research challenges.

Independently from the employed resolution techniques,
the optimal DN reconfiguration problem commonly aims at
minimizing power losses without violating the defined con-
straints [5], [18]–[33]. Some works focus on the optimization
of further criteria related to the planning of power grids, e.g.,
maximizing the energy saving in presence of renewable energy
sources [7], improving the loadability limit (i.e., the crititcal
load that produces the voltage instability) of the DNs [34],
reducing the voltage volatility induced by the deployed re-
newable energy sources [35], improving the reliability [36] and
resilience of DNs [37] of the DNs, maximizing the network
security [38]. The DN reconfiguration problem is also devoted
to increasing the DS and DG penetration through the optimal
placement and sizing of distributed generation (DG) [39] or
distributed storage (DS) [40] and both of them [41]. Finally, in
the area of power grid planning, the reconfiguration problem is
subordinate to strategic decisions concerning the DN retrofit

and maintenance. For instance, Raposo et al. [42] propose
an optimization procedure based on genetic algorithms for
the optimal placement of metering units in DNs with the
final aim of accurately estimating the state of the grid under
different configurations. Buhari et al. [43] introduce a method
for selecting the most convenient DN configuration taking the
cost-optimal replacement of cables into account.

From the review of the above mentioned works it follows
that the majority of studies on DN reconfiguration focuses
on planning purposes. Nevertheless, the optimal DN recon-
figuration is often coupled with different problems addressed
by the optimal operation of modern power systems, which
typically include the penetration of renewable energy sources
and the integration of energy storage solutions [44]. Several
recent studies address the DN reconfiguration problem while
evaluating the benefits resulting from the most convenient
use and management of DG and DS. For instance, Iraji et
al. [45] propose a PSO tool to define the optimal switch
set topology for reconfigurable photovoltaic systems under
both normal and abnormal conditions. Similarly, Li et al. [46]
address the optimal operations of DNs in the presence of wind
power by coordinating network reconfiguration. Conversely,
Nick et al. [47] present an optimal control strategy for the
management of the energy storage systems deployed in the
network under different seasonal optimal configurations. The
combined optimal management of both DG and DS in the
reconfiguration problem is addressed in [48]. In addition, the
optimal control of loads in the DNs can bring benefits to
the network if well integrated in the reconfiguration process.
For instance, Yang et al. [49] propose the comprehensive
network reconfiguration and optimization of DNs using the
coordination of flexible loads and TSs. Similarly, Andebili
and Firuzabad [50] propose an adaptive approach for DN
reconfiguration and charging management of plug–in electric
vehicles. Shen et al. [51] propose a comprehensive scheme
for day–ahead congestion management of DNs with high
penetration of distributed energy resources. Liu et al. [52]
show how the reconfiguration problem enhances the voltage
regulation in unbalanced DNs. Mishra et al. [53] propose
a restorative mechanism that automatically reconfigures the
network taking the load priority into account.

Despite the rich state of the art on the optimal DN recon-
figuration, very few research studies pay attention to crucial
algorithmic aspects of the optimization problem. First, finding
and extracting the main loops in the DN graph, when initial
TSs are closed, in an efficient manner is mandatory in large–
scale systems to reduce the effort in continuously preparing
the search space. Second, repairing infeasible solutions, that
is preparatory to obtaining adequate solutions, adds further
complexity to the problem. Conversely, avoiding infeasible
solutions should be preferred in the optimization in order to
improve the effectiveness in reaching near–optimal solutions
and reduce the execution time. Third, starting the optimiza-
tion process on any random group of solutions, without
preliminarily checking the constraints feasibility, may result
in lower performance in terms of running time. Lastly, the
problem constraints have to be properly addressed, since they
significantly impact the solution research by bringing plenty
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of local minima in the search space. To the best of the authors’
knowledge, none of the cited works fully addresses all these
mentioned issues simultaneously.

Differently from the above, this paper proposes a general
optimization framework to effectively solve the DN config-
uration problem in a comprehensive and efficient fashion.
In particular, a four-step procedure is presented, where the
recent HHO algorithm – that constitutes the core part of
the optimization framework – is intelligently accompanied
by two pre-processing and a post-processing phases aimed at
improving the search for near–optimal configurations. Upon
the preparation of the used optimizer, and to enhance its effec-
tiveness, the authors consider ignoring infeasible solutions in
the initialization process and providing an efficient refinement
procedure at the end of procedure. Thus, the search strategy
is modified in order to overcome undesired local minima.

The contribution of this paper is thus fourfold and it is
summarized as follows:

(i) employing the recent HHO algorithm with its four
inherent searching strategies during the core part of the DN
reconfiguration process. Differently from the state of the art,
switching between these strategies during the update step
minimizes the risks of reaching unacceptable local minima
solutions;

(ii) implementing an efficient and different–scale–
applicable robust metaheuristic offline algorithm for finding
and extracting main loops in the DN graph. Differently from
the existing works, the problem search space is prepared with
minimal involvement of users;

(iii) proposing an appropriate generation of the initial pop-
ulation including feasible solutions only. This expedient allows
to alleviate the amount of searching directions addressed by
the core optimization process;

(iv) implementing an intelligent refinement procedure, that
is adequate for the problem search space, to overcome the
undesired time–consuming process of repairing infeasible so-
lutions during optimization.

Finally, we highlight that the majority of the research works
on DN reconfiguration validate the presented methods on test
networks with a maximum of 136 buses [44]. For the sake of
comprehensively testing the proposed HHO-based approach,
we compare it with two other related metaheuristic techniques,
namely the CSA and the PSO, both on the IEEE 33–bus, the
IEEE 85–bus systems, and a large artificial 295-bus system
equipped with distributed generation. The comparison analysis
evaluates the perfomance of each optimizer in terms of min-
imized power losses, enhanced voltage profile and consumed
running time.

III. DISTRIBUTION NETWORK RECONFIGURATION

A. System model

DNs are composed by several interconnected buses. Each
bus can be connected to several components, such as loads or
renewable energy sources. Moreover, DNs are connected to the
transmission network through a slack bus, from which power
is injected into the distribution grid. In this work we focus
on single-phase DNs only. This assumption is not limiting,

Figure 1. Example of a simplified DN with indication of the sectionalized–
switches (solid line), tie–switches (dashed lines), and possible loops.

since multi-phase unbalanced networks can be converted into
single-phase circuit models, so that methods for single-phase
networks can be applied to the equivalent models of multi-
phase unbalanced networks [54], [55].

Let a generic DN be schematized by a number of Nbr
switch–equipped branches connecting a number of Nbus buses,
as shown in the example of Fig. 1 where Nbus=9 and Nbr=11.
Initially, typically most of the switches are in the close status
(SSs) (e.g., the branches in solid lines in Fig. 1), whilst the
remaining ones are in the open status (TSs) (e.g., the branches
in dashed lines in Fig. 1). Subsequently, each branch status can
change according to the the desired topology through switches.
Let us assume that the number of TSs and SSs in the DN
is Nts ∈ N+ and (Nbr −Nts) ∈ N+, respectively (Nts=3 in
Fig. 1).

Given the information about buses and branches, an undi-
rected graph associated to the DN can be constructed. Let
G = (N , E) denote the corresponding DN graph, where N
is the set of nodes (i.e., buses) with cardinality |N | = Nbus,
whilst E ∈ N ×N is the set of pairs of distinct nodes called
edges. Specifically, node i = 1 identifies the slack bus. For
the sake of keeping the notation light, instead of using the
edge set E , the graph is characterized by the set of Nbr
node pairs corresponding to the switch–equipped branches.
Let S := {1, . . . , Nbr} uniquely denote the set of indices
related to the DN branches. Considering that the DN branches
include both initially–closed switches and initially–open ones,
then the corresponding graph G presents a meshed structure.
Specifically, it contains a number of loops equal to the number
of TSs, i.e., Nts (e.g., three loops exist in the network of Fig. 1
whereas threes TSs are defined).

The DN reconfiguration process consists in sweeping all the
possible network topology by changing the status of some/all
switches while aiming at achieving a specific objective. Note
that a radial structure is usually preferred in DNs for reaching
adequate operating conditions. In particular, the radial struc-
ture is maintained only if the network graph induced by the
branches with closed switches is connected and contains no
meshes. Thus, for any possible configuration, the following
equality has to be verified:

Nbr −Nts = Nbus − 1. (1)

Let σj ∈ {0, 1} denote the status of the switch related to
each branch j ∈ S: σj = 0 means that the switch is open (i.e.,
it is a TS), viceversa σj = 1 means that the switch is closed
(i.e., it is a SS). Any possible configuration of the given DN
can be straightforwardly defined introducing the following set
of branches that identify the position of TSs in the network:

T := {j ∈ S | σj = 0} (2)
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Hence, a possible configuration extracts a tree from graph G by
merely defining the set T ⊂ S whose cardinality is |T | = Nts.

B. Problem formulation
The DN reconfiguration problem consists in selecting the

optimal combination of open/closed switches in order to
optimize a given criterion. In this work, the main objective
is minimizing the total active power losses and consequently
improving the level of minimum voltages that may occur at
buses. The overall power losses in the DN are expressed as:

P loss =

Nbr∑
j=1

σjP
loss
j (3)

where P loss
j denotes the power loss at branch j when the

corresponding switch is closed. Assuming that branch j ∈ S
connects the buses i, k ∈ N , P loss

j is then computed as [56]:

P loss
j = gj(V

2
i + V 2

k − 2ViVk cos(θi−θk)), ∀j ∈ S (4)

where gj is the line conductance of branch j, whilst Vi and
θi denote respectively the voltage magnitude and angle at
bus i ∈ N . Note that Vi and θi can be determined solving
the so-called power flow equations. Power flow is the well-
known technique used to obtain the steady-state condition of
electric power systems [57]. The power flow equations consist
in balancing the real (Pi) and reactive (Qi) power at each bus
i ∈ N :

Pi =
∑
j∈Si

σjPj , ∀i ∈ N (5)

Qi =
∑
j∈Si

σjQj , ∀i ∈ N (6)

where Si ∈ S represents the subset of branches connected to
bus i and Pj and Qj are defined as:

Pj=gikV
2
i −ViVk(gik cos(θi−θk)+bik sin(θi−θk), ∀j ∈ S (7)

Qj=−bikV 2
i −ViVk(gik sin(θi−θk)− bik cos(θi−θk), ∀j ∈ S.

(8)
In (7)-(8) parameters gik and bik coincide with the line
conductance (gj) and reactance (bj) if buses i and k are
connected by the branch j; instead, they are zero valued
(gik = bik = 0) if buses i and k are not connected. Equations
(5)-(6) allow to determine Vi and θi for each load bus and θi
for each generator bus –except the slack bus– assuming that
the value of the voltage magnitude and angle at the slack bus
are known, the real active power and the voltage magnitude
at each of the remaining (Ngen − 1) generator buses, and the
real and reactive power at each of the (Nbus − Ngen) load
buses. Hence, the line current magnitude Ij in each branch j
is computed as follows:

Ij =
√

(Irealj )2 + (I imag
j )2,

Irealj = gj(Vi cos θi − Vk cos θk)

−bj(Vi sin θi − Vk sin θk), (9)

I imag
j = gj(Vi sin θi − Vk sin θk)

+bj(Vi cos θi − Vk cos θk), ∀j ∈ S.

In addition to the power flow equations (5)-(6), the follow-
ing constraints are considered in our optimal reconfiguration
problem as in [4], [16]:

1) The magnitude voltage at any bus i should be within the
predefined permissible limits Vmin and Vmax in order
to maintain the delivered power quality:

Vmin ≤ Vi ≤ Vmax, ∀i ∈ N \ {1}. (10)

2) The current flow in any branch j should not exceed the
maximum allowable limit Imax:

σjIj ≤ Imax, ∀j ∈ S. (11)

3) The number of open switches chosen among the DNs
branches has to be set equal to Nts (i.e., number of
TSs); equivalently, the number of closed switches has
to be equal to the number of SSs:

Nbr∑
j=1

σj = Nbr −Nts. (12)

Note that (12) does not guarantee the radial structure
of the DN. To ensure such a condition, an appropriate
search space preparation is preliminarily executed before
solving the optimization problem (as described in the
following section).

We remark that, since the main focus of the addressed
reconfiguration problem lies in minimizing the power losses
of the DN, in this work we assume that the power profiles
of load and generator buses are scheduled: this means that
all the loads are inflexible and all the generation units are non
dispatchable (i.e., their power profile cannot be externally con-
trolled by operators). Hence, no load and generator operational
constraints (such as load dynamics or generator output power
limit and ramping up/down bounding) are considered. As for
the generators, however, this is not a restrictive assumption,
since modern DNs typically employ renewable DG such as
wind and solar systems.

Summing up, the optimal DN reconfiguration problem is
formulated as follows:

min
{T ⊂S | |T |=Nts}

P loss

s.t. (5)− (6), (10)− (12). (13)

Finally, note that the DN reconfiguration problem (13) is a
non-linear mixed integer programming (MINLP) problem that
consists in determining the (2Nbus−Ngen− 1) real variables
related to the power flow and the Nts integer variables related
to the choice of the TS-equipped branches, under the (2Nbus−
Ngen−1) power flow equations in (5)-(6), the (2Nbus+Nbr)
inequalities in (10) and (11) and the equality constraint in (12),
in addition to the Nts integrality conditions in (2).

IV. THE PROPOSED APPROACH BASED ON
METAHEURISTIC OPTIMIZATION

We now propose a novel optimal network reconfiguration
framework based on the four–step optimization procedure
depicted in Fig. 2. The first step – described in detail in
Algorithm 1 – consists in the search space preparation aimed
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refined best solution: ෨𝑋∗

population size: 𝑁𝑝𝑜𝑝

Step 4: Solution refinement

power flow

network parameters

network graph: 𝒢
network buses: 𝒩, 𝑁𝑏𝑢𝑠

distributed generators: 𝑁𝑔𝑒𝑛
network branches: 𝒮, 𝑁𝑏𝑟

network TSs: 𝑁𝑡𝑠

Step 3: Metaheuristic optimization

best solution: 𝑋∗
corresponding cost: 𝑐∗

Step 2: Initial feasible population generation

Step 1: Search space preparation

network loops: ℒ 

maximum iterations: 𝑇
initial population: 𝑋1

(0)
, … , 𝑋𝑁𝑝𝑜𝑝

(0)

corresponding cost: 𝑐1
(0)
, … , 𝑐𝑁𝑝𝑜𝑝

(0)

Figure 2. Scheme of the proposed optimal DN reconfiguration framework.

at extracting the loops from the induced network graph. The
second step – described in detail in Algorithm 2 – is focused
on the generation of the feasible initial population to be
used in the metaheuristic optimization. As third step, the
metaheuristic optimization is performed based on the recent
four–stage HHO approach. The pseudo–code of the HHO
procedure is illustrated in Algorithm 3. The fourth step aims
at overcoming eventual local minima: hence, the solution
obtained by the HHO optimizer is submitted to a refinement
phase, as described in Algorithm 4.

A. Search Space Preparation

From an operational point of view, the radial feature of the
DN has to be maintained through the reconfiguration process
[18]–[22]. Both these features are available in the initial
configuration thanks to the presence of Nts open switches
(i.e., TSs) and (Nbr −Nts) closed switches (i.e., SSs) among
the DN branches. As previously mentioned, closing all the
available TSs in the DN transform the network graph from a
tree to a meshed graph G with a number of loops equal to the
number of TSs (i.e., Nts). A feasible alternative configuration
to the initial one can be thus achieved by straightforwardly
opening one switch per each loop of G, so that the radiality and
connectivity properties are both ensured. As a consequence,
the set of loops in G form the problem search space.

The definition of the loops extraction procedure is reported
in Algorithm 1 and is summarized in the sequel using the
simplified DN depicted in Fig. 1 as an example.

As a precondition, all the TSs (i.e., (2,3), (4,5), and (6,8)
in DN of Fig. 1) are supposed to get the close status; hence,
the corresponding branches are part of the induced graph G.

As a first step (Algorithm 1, line 2), the dangling nodes
(i.e., 1 and 9 in DN of Fig. 1) and the corresponding edges
are removed from G. Note that at least one dangling node
exists in real DNs: this coincides with the slack bus (i.e., bus
1 in the DN of Fig. 1) and its corresponding branch cannot
be set as a TS. After removing the dangling nodes, the set of
existing BCs of G contain all meshes.

The second step (Algorithm 1, line 3) consists in determin-
ing the set B of biconnected components (BCs) of G (i.e., {2,
3, 6, 7, 4} and {6, 7, 8} in the graph of Fig. 1). For instance,
the depth–first search technique can be used to compute the
BCs of G. Note that a biconnected component is a maximal
biconnected subgraph, i.e., a subgraph that is not properly
contained in a larger biconnected subgraph (i.e., if and only
if any node is deleted, the subgraph remains connected).

In the third step (Algorithm 1, line 4), the existing maximal
BC β (i.e., {2, 3, 6, 8, 7, 4} of the graph in Fig. 1) – that
coincides to the graph exterior loop – is extracted from the set
of BCs.

As a fourth step (Algorithm 1, lines 8-12) all the inner
loops (i.e., {2, 3, 5, 4} and {6, 7, 8} of the graph in Fig. 1)
are extracted in accordance with an iterative procedure, while
ensuring all branches of G are reported at least in one loop.

As final step (Algorithm 1, line 14), all the branches dupli-
cated in the extracted loops (i.e., {3, 5, 4, 7, 6}, {2, 3, 5, 4} and
{6, 7, 8} of the graph in Fig. 1) are removed. This ensures that
any branch in the final extracted loops can be TS only once. As
a result, Algorithm 1 is a good-fit with the DN reconfiguration
problem, since opening only a switch per loop successfully
transforms the DN graph into a mesh–free spanning tree. In
light of this observation, the definition of a DN configuration
is coded as a vector X := (X(1), . . . , X(k), . . . , X(Nts))
with Nts integers. The k-th element of X identifies the branch
belonging to loop k, which has to be set as a TS. A unique
switch status modification is indeed allowed per each loop.

B. Initial Feasible Population Generation
High rates of reaching these infeasible solutions negatively

impact both the execution time and solution quality. To avoid
such an issue, an initial population of feasible solutions is
generated to effectively determine the optimal reconfiguration
in a time–saving fashion. Specifically, the procedure devoted
to generate such a population of solutions is reported in
Algorithm 2 and is summarized in the sequel.

Algorithm 2 is based on an iterative mechanism that is
repeated until Npop feasible solutions are identified (Algo-
rithm 2, lines 2 and 10). Preliminarily, the population counter
is initialized (Algorithm 2, line 1). The idea of the search
mechanism basically relies on randomly opening one switch
in each of the extracted loops (Algorithm 2, line 3). Then, the
feasibility of the obtained corresponding network configuration
is assessed by solving the power flow equations (Algorithm 2,
line 4). If the network configuration is unfeasible or the power
flow equations solver diverges, the corresponding candidate
solution is discarded. Otherwise, the corresponding candidate
solution is added to the initial population, the corresponding
performance is stored, and the population counter is increased
(Algorithm 2, lines 5-9).
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Algorithm 1 Search Space Preparation
Inputs: G

1: k ← 1
2: G ← remove dangling nodes in G
3: B ← find biconnected components in G
4: β ← maximal component in B
5: set all branches in G as unmarked
6: while at least one branch in G is unmarked do
7: j ← select an unmarked branch from β
8: Ĝ ← G \ {j}
9: π ← shortest–path between vertices of j in Ĝ

10: Lk ← {j, π}
11: mark j and all branches in π
12: k ← k + 1
13: end while
14: remove any duplicated branches in the elements of L
Outputs: L

Algorithm 2 Initial Feasible Population Generation
Parameters: Npop
Inputs: L

1: k ← 1
2: while k ≤ Npop do
3: X ← randomly open one switch per element of L
4: c ← P loss(X) . power flow resolution
5: if c <∞ then
6: X

(0)
k ← X

7: c
(0)
k ← c

8: k ← k + 1
9: end if

10: end while
Outputs: {X(0)

1 , . . . , X
(0)
Npop
}, (c

(0)
1 , . . . , c

(0)
Npop

)

We remark that the above described procedure identifies the
initial feasible population by randomly selecting admissible
solutions. This random selection does not induce any conver-
gence issue as argued in the following. A candidate solution
may have infinite losses (i.e., it is not admissible) either in
the case of a disconnected DN graph or of a cyclic graph.
Assuming that Algorithm 1 will terminate correctly, then the
obtained loops contain all switches of the DN graph (both SSs
and TSs) except for those that do not belong to some loop,
like feeder bus and leaf buses (i.e., with degree 1). As a first
consequence, disconnecting 1-degree buses is not possible.
In addition, the set of reported loops are free of duplicated
switches; hence, opening one switch is possible only in one
loop. Since the number of TSs exactly equals to number of
loops, then no cycle will exist DN graph after opening all the
selected TSs.

Finally, it has to be noticed that the problem search space
preparation, addressed by Algorithm 1, reduces significantly
the generation rate of infeasible solutions by maintaining the
radial structure of DNs, thus resulting in speeding up both
Algorithm 2 and the subsequent optimization step.

C. Harris Hawks Optimization Algorithm

HHO is a recent population–based nature–inspired meta-
heuristic algorithm proposed in [58], which mimicks the
hunting–behaviour of Harris-type hawks. These birds are
cooperative predators that successfully perform harmonized
foraging activities. During the hunting process, hawks coop-
eratively modify their attack–strategy considering the current
position of the prey (e.g., a rabbit). A proper switching
between different searching scenarios is taken into account
to successfully hunt the prey. Similarly, the HHO algorithm
aims at attaining the best solution in the search space while
avoiding premature convergence to unsatisfactory points. This
is the main advantage of this algorithm compared with other
state-of-the art metaheuristic techniques [58]. In particular,
the population of candidate solutions –representing the hawks
positions– is updated throughout the algorithm processing until
the best solution (i.e, the near optimum of the optimization
problem) –representing the rabbit position– is achieved.

The HHO procedure is reported in Algorithm 3 and is
summarized in the sequel. The algorithm is based on an
iterative procedure: throughout this description the iteration
step counter t is enclosed in the superscript of variables, whilst
the maximum number of algorithm iterations is denoted as T .
Preliminarly, the best solution is selected between the initial
population (Algorithm 3, line 1). The iteration step counter is
initialized (Algorithm 3, line 2) and the hunting mechanism
is repeated until the termination criterion in satisfied (Algo-
rithm 3, lines 3 and 29).

The HHO problem search space is mainly explored by
each hawk (Algorithm 3, line 7) via two phases: exploration
(Algorithm 3, lines 8-9) and exploitation (Algorithm 3, lines
10-25) [58]. The escaping energy of the rabbit, denoted by
E

(t)
i , is the control parameter used by hawk i to transfer from

exploration to exploitation at iteration t. E(t)
i is computed as

follows (Algorithm 3, line 6):

E
(t)
i = (2r

(t)
1,i − 1)E

(t)
0 (14)

where r(t)1,i is a time-varying random coefficient in the range
(0, 1) and E(t)

0 is a diminishing stepsize (Algorithm 3, line 4):

E
(t)
0 = 2

(
1− t

T

)
. (15)

Note that (15) physically models the fact that the energy of
a prey decreases considerably during the escape. The term
(2r

(t)
1,i − 1) in (14) takes values in (−1, 1): the range (0, 1)

and (−1, 0) means that the rabbit is physically strengthening
and flagging, respectively, at iteration t.

During the exploration phase, hawks monitor the search
space and are stationed in some locations in accordance with
two perching strategies: (i) positions in the middle between
the rabbit and other group members and (ii) random locations
inside the group course of action [58]. Consequently, the can-
didate solution i is updated depending on the event probability
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Algorithm 3 HHO algorithm
Parameters: T
Inputs: {X(0)

1 , . . . , X
(0)
Npop
}, (c

(0)
1 , . . . , c

(0)
Npop

)

1: j = argmini∈{1,...,Npop} c
(0)
i , X∗ = X

(0)
j

2: t← 0
3: while t < T do
4: update E(t)

0 using (15) . diminishing stepsize
5: for each i := 1 to Npop do
6: update E(t)

i using (14) . escaping energy
7: if |E(t)

i | ≥ 1 then . exploration
8: update X(t+1)

i using (16)
9: else . exploitation

10: r
(t)
i ← rand(0, 1)

11: if r(t)i ≥ 0.5 then . no rapid dives
12: if |E(t)

i | ≥ 0.5 then . soft besiege
13: update X(t+1)

i using (18)
14: else . hard besiege
15: update X(t+1)

i using (21)
16: end if
17: else . rapid dives
18: if |E(t)

i | ≥ 0.5 then . soft besiege
19: update X(t+1)

i using (26)
20: else . hard besiege
21: update X(t+1)

i using (27)
22: end if
23: end if
24: end if
25: c

(t+1)
i ← P loss([X

(t+1)
i ]) . power flow resolution

26: end for
27: j = argmini∈{1,...,Npop} c

(t+1)
i , X∗ = [X

(t+1)
j ]

28: t← t+ 1
29: end while
Outputs: X∗

q
(t)
i (randomly generated in (0, 1)) as follows (Algorithm 3,

line 8):

X
(t+1)
i =

X∗ − X̄
(t)
i − r

(t)
2,i(L+ r

(t)
3,i(U − L)), q

(t)
i < 0.5

X
(t)

ρ
(t)
i

− r(t)4,i

∣∣∣∣X(t)

ρ
(t)
i

− 2r
(t)
5,iX

(t)
i

∣∣∣∣ , q
(t)
i ≥ 0.5

(16)
where time-varying coefficients r

(t)
2,i , r

(t)
3,i , r

(t)
4,i , and r

(t)
5,i are

randomly generated in (0, 1), L and U are respectively the
lower and upper bounds of solutions, X(t)

ρ
(t)
i

is a randomly

selected hawk in the current population (i.e., ρ(t)i is the random
integer in the range [1, Npop] selected by the hawk i at iteration
t), and X̄(t)

i is the average position of the current population
estimated by the hawk i at iteration t:

X̄
(t)
i =

Npop∑
j=1

X
(t)
i . (17)

As the search process proceeds, the escaping energy of the
rabbit decreases. Thus, the exploitation phase of the hawks
starts [58]. In this stage, four different intelligent strategies are

considered for attacking the prey: soft or hard besiege, either
without or with progressive rapid dives. The decision depends
on the escaping energy level E(t)

i and the event probability
r
(t)
i randomly generated in (0, 1) (Algorithm 3, line 10).

For r(t)i ≥ 0.5 and |E(t)
i | ≥ 0.5, each hawk i performs a

soft besiege (Algorithm 3, lines 12-13). Since the prey still has
enough energy for escaping by random misleading movements,
the hawk softly encircles the rabbit with a surprise pounce–
action. In this strategy, the candidate solution i is updated as
follows:

X
(t+1)
i = ∆X

(t)
i − E

(t)
i

∣∣∣J (t)
i X∗ −X(t)

i

∣∣∣ (18)

where ∆X
(t)
i is the difference between the rabbit position and

the current location of hawk i at iteration t:

∆X
(t)
i = X∗ −X(t)

i (19)

and J
(t)
i represents the strength of rabbit random movement

throughout the escaping trial from hawk i at iteration t:

J
(t)
i = 2(1− r(t)5,i) (20)

where r
(t)
5,i is a time-varying coefficient randomly chosen in

(0, 1).
For r(t)i ≥ 0.5 and |E(t)

i | < 0.5, each hawk i performs a
hard besiege (Algorithm 3, lines 14-16). Since the prey is too
exhausted with inadequate escaping energy, the hawks hardly
encircles the rabbit through a surprise pounce, thus performing
a hard besiege. In this strategy, the candidate solution i is
updated by:

X
(t+1)
i = X∗ − E(t)

i

∣∣∣∆X(t)
i

∣∣∣ . (21)

For r
(t)
i < 0.5 and |E(t)

i | ≥ 0.5, each hawk i uses
the soft besiege progressive rapid dives (Algorithm 3, lines
17-19). Since it is assumed that the rabbit tries escaping
by using random movements, the hawks progressively select
the best possible dive towards the prey comparing different
movements, as actually found in real behavior. As a first
option, each hawk i probes a smooth approach towards the
rabbit:

Y
(t)
i = X∗ − E(t)

i

∣∣∣J (t)
i X∗ −X(t)

i

∣∣∣ . (22)

As a second option, assuming that the rabbit reacts imple-
menting a deceptive motion, each hawk i probes an abrupt
and rapid dive towards the rabbit:

Ŷ
(t)
i = Y

(t)
i + δ

(t)
i . (23)

In (23) the term δ
(t)
i models the real zigzag of the pray [59]

as follows:
δ
(t)
i = s

(t)
i ◦ LF

(t)
i (24)

where ◦ denotes the entry-wise product, s
(t)
i is a N -

dimensional time-varying vector of random coefficients in
(0, 1), and LF

(t)
i is a N -dimensional vector of levy flight

coefficients. Note that LF
(t)
i is computed as follows [59]:

LF
(t)
i =

ψ u
(t)
i∣∣∣v(t)i ∣∣∣ 1β , ψ =

(
Γ(1 + β) sin(πβ2 )

Γ( 1+β
2 )β 2(

β−1
2 )

) 1
β

(25)
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where u(t)i is a N -dimensional time-varying vector of random
coefficients in (0, 1), v(t)i is a time-varying random coefficients
in (0, 1), Γ(·) is the gamma function, and β is a default
constant set to 1.5. The final strategy is thus selected as the
best performing between the previous movement X(t)

i and the
current options (22) and (23):

X
(t+1)
i =


Y

(t)
i , if Ploss([Y

(t)
i ]) < Ploss(X

(t)
i )

Ŷ
(t)
i , if Ploss([Y

(t)
i ]) ≥ Ploss(X(t)

i ) ∧
Ploss([Ŷ

(t)
i ]) < Ploss(X

(t)
i )

X
(t)
i , elsewhere

(26)

For r(t)i < 0.5 and |E(t)
i | < 0.5, each hawk i uses the

hard besiege progressive rapid dives (Algorithm 3, lines 20-
24). Similarly to the standard hard besiege, hawks aim at
decreasing the distance between their average location and
the rabbit location. In this strategy, the rule for updating the
candidate solution i is the following:

X
(t+1)
i =


Z

(t)
i , if Ploss([Z

(t)
i ]) < Ploss(X

(t)
i )

Ẑ
(t)
i , if Ploss([Z

(t)
i ]) ≥ Ploss(X(t)

i ) ∧
Ploss([Ẑ

(t)
i ]) < Ploss(X

(t)
i )

X
(t)
i , elsewhere

(27)

where Z(t)
i and Ẑ

(t)
i respectively denote the smooth and the

abrupt movements, determined as follows:

Z
(t)
i = X∗ − E(t)

i

∣∣∣J (t)
i X∗ − X̄(t)

i

∣∣∣ (28)

Ẑ
(t)
i = Z

(t)
i + δ

(t)
i (29)

using the average position of hawks X̄(t)
i computed in (17),

the rabbit strength determined in (20), and the time-varying
coefficient δ(t)i defined in (24).

At the end of each iteration, the cost of each solution in the
updated population is calculated, the new best solution is iden-
tified, and the iteration counter is incremented (Algorithm 3,
lines 25-28). Note that metaheuristic optimizers are originally
employed for defining real–valued solutions in continuous
optimization problems. However, the DN reconfiguration so-
lution requires integer values (i.e., the identifiers of TSs in the
DN constructed graph). To this aim, a rounding procedure is
used to obtain the adequately coded configuration before eval-
uating the corresponding performance (i.e., the overall power
losses of the corresponding DN configuration) through the
power flow equations resolution (Algorithm 3, lines 25). Since
the loops extracted by Algorithm 1 are free of duplications,
the candidate solutions obtained by the rounding procedure
are mesh–free, thus preserving the required radial structure of
the given network. Infeasible solutions may only result from
divergences of the Newton–Raphson method employed by the
power flow solver.

D. Solution Refinement

After the optimizer achieves the best solution, a final refine-
ment trial is performed. The execution of such a refinement
allows verifying whether the achieved solution actually is a

Algorithm 4 Solution Refinement
Inputs: X∗, Nts, L

1: X̃∗ ← X∗, c̃∗ ← c∗
2: for k := 1 to Nts do
3: X ← X̃∗
4: λ← Lk
5: for j := 1 to |λ| do
6: X(k)← λ(j)
7: c← P loss(X) . power flow resolution
8: if c < c̃∗ then
9: X̃∗ ← X , c̃∗ ← c

10: end if
11: end for
12: end for
Outputs: X̃∗

near–optimal solution that outperforms any other DN config-
uration. This local search is performed by the fast and greedy
procedure described in in Algorithm 4.

The basic idea of Algorithm 4 is to replace some of the
opened switches in the obtained solution with many others to
obtain the minimum level of the overall power losses. To this
aim, Algorithm 4 mainly evaluates the contribution that the
open status of each switch in each extracted DN loop sep-
arately could provide in obtaining the optimal configuration,
while fixing the status of all other switches. Two nested itera-
tion loops are thus employed: the outer for loop (Algorithm 4,
line 2) scans all the elements in the set L of DN Loops,
whilst the inner for loop (Algorithm 4, line 5) analyzes all the
branches in a single loop. In each iteration the analyzed switch
is set to open status, while all the remaining switches in the
same loop are kept in the close status: a new DN configuration
is thus obtained (Algorithm 4, line 6). The feasibility and
the performance of this new DN configuration are evaluated
(Algorithm 4, line 7) by solving the power flow equations.
If the results outperform the current solution, the latter is
replaced by the new DN configuration (Algorithm 4, line 9).
Note that each DN branch is considered just once during the
execution of the entire refinement procedure, implying that
the total number of power flow solver callings (Algorithm 4,
line 7) is always less than the number Nbr of DN branches.

V. NUMERICAL EXPERIMENTS RESULTS AND ANALYSIS

A. Simulations Setup

The proposed optimal network reconfiguration framework
is validated through numerical experiments based on: (i) the
IEEE 33–bus system, (ii) the IEEE 85–bus system, and (iii)
an artificial 295–bus system equipped with DG.

The IEEE 33–bus system is a small-scale distribution system
with 33 buses, where 5 TSs are added to the 32 distribution
lines (each equipped with a SS) for a total of 37 branches as
shown in Fig. 3.a. This DN shows 5 loops if all the switches
take the close status. The line parameters and locations of the
initial TSs related to the 33–bus system are inferred from [4],
[5] and they are listed in Table I.
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(a) IEEE 33–bus system

(b) IEEE 85–bus system

(c) 295–bus system with distributed generation

Figure 3. Initial configuration of the analyzed DNs with indication of the sectionalized–switches (solid line), tie–switches (dashed lines), and possible loops.

The IEEE 85–bus system [61] is a DN with 85 buses,
which are connected through 92 branches (84 distribution lines
equipped with SSs and 8 TSs) as shown in Fig. 3.b. By closing
all the switches, 8 loops appear in the graph of this network.
The initial TS parameters are presented in Table II: resistance
(rj) and reactance (xj) data are selected on a similar basis to
those for the 119–bus system addressed by [6]. In particular,
the average ratio between rj and xj is approximately set to
2.28.

The 295–bus system is an artificial large DN composed by

Table I
LINE PARAMETERS FOR THE TS-EQUIPPED BRANCHES IN THE INITIAL

CONFIGURATION OF THE IEEE 33-BUS SYSTEM.

branch connected buses resistance reactance
j (i, k) rj [Ω] xj [Ω]

33 (21, 8) 1.248 1.248
34 ( 9, 15) 1.248 1.248
35 (12, 22) 1.248 1.248
36 (18, 33) 0.312 0.312
37 (25, 29) 0.312 0.312
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Table II
LINE PARAMETERS FOR THE TS-EQUIPPED BRANCHES IN THE INITIAL

CONFIGURATION OF THE IEEE 85-BUS SYSTEM.

branch connected buses resistance reactance
j (i, k) rj [Ω] xj [Ω]

85 (16, 22) 0.53 0.29
86 (17, 84) 0.35 0.12
87 (15, 66) 0.5 0.25
88 (51, 67) 0.49 0.17
89 (54, 71) 0.39 0.14
90 ( 5, 78) 0.65 0.23
91 (42, 47) 0.68 0.25
92 (43, 23) 0.46 0.16

the three DNs proposed in [60], [61], and [62], representing
the sub–system A, B, and C shown in Fig. 3.c, respectively.
Sub–system A is equipped with a diesel generator with a 10
MW capacity, and it has 141 buses, 140 distribution lines
with SSs, and 15 TSs, for a total of 155 branches. Sub–
system B is the IEEE–85 bus considered in case (ii). This
sub–system is equipped with a wind turbine (denoted as WT )
with a capacity of 12 MW, whose generation level varies
between 0.68 and 1 following the daily profile in [64] shown
on an hourly basis in Fig. 4.a. Sub–system C has 69 buses,
68 distribution lines equipped with SSs, and 5 TSs, for a
total of 73 branches. This sub–system is equipped with a
micro-turbine (denoted as MT1) with a capacity of 11.6 MW,
whose generation starts after in the second part of the day and
reaches its peak value in the late evening [65], as reported in
the hourly-based profile profile of Fig. 4.b. The whole 295–
bus system is obtained by connecting the generator of sub–
systems B and C respectively to bus 68 and 109 of sub–
system A via two ad-hoc TSs (shown in heavy dashed red
lines in Fig. 3.c). We assume that these two TSs, which can be
used to drive the sub–systems in islanded mode of operation,
are forced to be in the closed status (i.e., they do not appear
in any loop of the 295–bus system graph), leaving the 295–
bus system equipped with distributed generation throughout
the reconfiguration process. Summing up, the 295–bus system
contains 322 distribution lines in total, where 294 branches
are initially equipped with SSs and 28 with TSs. This DN
shows 28 loops if all the switches take the close status.
All the line parameters and the initial locations of TSs are
presented in Table III. In particular, the line parameters of
sub–system B are those considered in case (ii), whilst the
line parameters of sub–system C are inferred from [62]. As
for sub–system A, the DN proposed in [60] is modified by
randomly replacing 15 distribution lines with TS-equipped
branches: the corresponding values of rj and xj are multiplied
by a factor equal to 20. Conversely, the line parameters of
the remaining branches (i.e., the lines equipped with SSs)
are obtained multiplying the values reported in [60] by a
factor equal to 100. Furthermore, for the sake of highlighting
the DN reconfiguration features in presence of distributed
generation, three additional micro-turbines (denoted as MT2)
are connected to the buses 87, 194, and 287, as indicated by
the orange icons in Fig. 3.c. In particular, MT2 has a capacity
of 5.8 MW and a generation level varying between 0.25 and
0.5 p.u. as shown in Fig. 4.b. Finally, a time-varying demand

Table III
LINE PARAMETERS FOR THE TS-EQUIPPED BRANCHES IN THE INITIAL

CONFIGURATION OF THE 295-BUS SYSTEM.

sub–system branch connected buses resistance reactance
j (i, k) rj [Ω] xj [Ω]

14
1–

bu
s

141 (53,62) 0.0280 0.0198
142 (34,96) 0.0651 0.0471
143 (2,37) 0.0265 0.0352
144 (13,74) 0.0570 0.0404
145 (22,87) 0.1222 0.0866
146 (130,140) 0.1946 0.0476
147 (59,82) 0.1231 0.0871
148 (52,68) 0.1347 0.0953
149 (130,134) 0.1552 0.1098
150 (105,118) 0.0487 0.0345
151 (100,108) 0.0878 0.0639
152 (95,106) 0.0446 0.0315
153 (95,130) 0.0118 0.0084
154 (31,87) 0.0751 0.0532
155 (27,130) 0.1505 0.0367

85
–b

us

85 (16,22) 0.53 0.29
86 (17,84) 0.35 0.12
87 (15,66) 0.5 0.25
88 (51,67) 0.49 0.17
89 (54,71) 0.39 0.14
90 (5,78) 0.65 0.23
91 (42,47) 0.68 0.25
92 (43,23) 0.46 0.16

69
–b

us

69 (27,69) 0.599 0.253
70 (46,52) 0.3855 0.1274
71 (15,50) 0.2628 0.1869
72 (35,27) 0.3215 0.1619
73 (65,67) 0.5235 0.1757

is considered in the 295–bus system. In all the load buses both
the active and reactive power are assumed to follow the load
variation profile l(h) shown on a hourly basis in Fig. 4.d, with
h ∈ [1, 24]. The active power at load bus i at the h-th time slot
is determined as Pi(h) = P̄i(1 + l(h)), where P̄i is the daily
averaged active power load at load bus i shown in Fig. 4.c.
The daily reactive power profile at load buses is determined
similarly.

For all the above described DNs, a comparison of the
results achieved by the proposed optimization procedure using
three different optimizers is performed in accordance with
the evaluation metrics described in the sequel. In particular,
the HHO defined in Algorithm 3 is compared with the well-
known CSA and the PSO algorithm proposed in [18] and [19],
respectively. For the PSO implementation, in this work the
cost function and PSO settings are defined according to [19].
Conversely, for the CSA implementation, the typical values
for the search parameters are chosen: namely, the discovery
rate is set to 0.25, the distribution factor is equal to 2/3 and
the step size is 0.01.

For all the three described optimizers, the inputs are
obtained through the execution of the preliminary phases
(namely, the search space preparation and the population ini-
tialization). The final result of each optimizer is subsequently
processed by the last phase, i.e., the solution refinement. Given
the stochastic nature of these optimizers, an accurate assess-
ment of their behaviour requires the analysis of several runs.
Consequently, the obtained values of the total power losses
and the minimum voltage are calculated in terms of average
and standard deviation. In addition, to ensure a fair–qualitative
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(b) Micro-turbine generation
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(c) Active and reactive loads
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(d) Load variation
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Figure 4. Generators and loads setup for the 295–system.

and quantitative evaluation, the population size, the maximum
number of iterations, and the number of runs (considering
same initial population in every run) are respectively set to
30, 100, and 20 for each optimizer.

Aside from the total power losses and the minimum voltage,
the following further evaluation indices are considered in the
comparison analysis: 1) Reduction ratio for the losses P loss,r

after reconfiguration with respect to the losses P loss,i related
to the initial configuration, defined as 1 − P loss,r/P loss,i; 2)
Success rate in obtaining the best–solutions, which is defined
as the ratio between the number of runs where the best solution
is found and the total number of runs; 3) Running time incurred
on average by the whole optimization procedure and by the
individual optimizer over the given runs.

Finally, it is to be noticed that the proposed optimization
procedure including the three analyzed optimizers is imple-
mented in Matlab R2019, while all the simulations are run
on a desktop PC with a 2.60 GHz CPU and 8 GB RAM. As
for the resolution of the power flow equations, the Matpower
package [63] is used under the Matlab environment.

B. Results Analysis and Discussion

33–bus system. For the initial configuration the total
amount of real power losses is equal to 208.46 kW whilst
the minimum voltage is 0.9107 p.u. (achieved at bus 18).

Solving the reconfiguration problem for such a relatively
simple system with a limited number of switches, the differ-
ent optimizers PSO, CSA and HHO achieve almost similar
performance. In particular, it is evident from Table IV that
the use of the refinement step does not provide significant
improvement to any of the three optmizers. From Table IV,
after the refinement step, the best solution is attained with
the set of TSs equal to {7, 9, 14, 32, 37}: the corresponding
optimal value of power losses and minimum voltage is 138.93

Table IV
SIMULATION RESULTS FOR THE IEEE 33–BUS SCENARIO.

PSO CSA HHO
Av. Std. Av. Std. Av. Std.

Optimizer
Losses (kW) 139.29 0.37 138.96 0.16 139 0.22
Reduction (%) 33.18 0.18 33.34 0.07 33.32 0.11
Min. Volt (p.u.) 0.9423 0 0.9423 0 0.9423 0

Refinement
Losses (kW) 138.93 0 138.93 0 138.93 0
Reduction (%) 33.35 0 33.35 0 33.35 0
Min. Volt (p.u.) 0.9423 0 0.9423 0 0.9423 0

Best Solution

Losses (kW) 138.93
Reduction (%) 33.35
Min. Volt (p.u.) 0.9423
TS branches 7, 9, 14, 32, 37
TS buses (7,8), (9,10), (14,15), (32,33), (25,29)

Success Rate (%) 100 100 100

Time (s)

Initialization 0.3
Optimizer 9.5 20 17
Refinement 1.8
Total 11.6 22.1 19.1

Init. Config.
Losses (kW) 208.46
Min. Volt (p.u.) 0.9107

MINLP Losses (kW) 136.57
results Time 647.0
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Figure 5. Average voltage profiles (a) and convergence curves (b) for the
IEEE 33–bus system.

kW and 0.9423, respectively. Note that the success rate is
100% for all optimizers. The voltage profile achieved in Fig.
5.a shows that the behaviour of all three optimizers is very
similar on average. As for the running time, the initialization
(i.e., phases 1 and 2) and the solution refinement (i.e., phase 4)
are executed in 0.3 s and 1.8 s, respectively. The average single
full–run of PSO, CSA, and HHO lasts about 11.6 s, 22.1 s,
and 19.1 s, respectively. The HHO thus outperforms the other
optimizers in convergence speed, as also shown From Fig. 5.b.
From the results in Table IV, it is apparent that, although the
PSO is faster and the CSA has a lower standard deviation,
the HHO algorithm is the best optimizer considering both
rapidity and standard deviation in addition to the success rate.
Nevertheless, in such a relative–small scale DN, the superiority
of the HHO remains unclear compared to other optimizers.

Finally, we remark that solving the IEEE 33–bus system
reconfiguration problem by a MINLP solver (e.g., the branch
and bound technique proposed in [66]) leads to the same
results obtained by our approach in terms of power losses
but at the cost of a higher computational burden. As shown in
the last two rows of Table IV, the optimality gap for the HHO
is 1.8% while the execution time required branch and bound
technique is around 34 times higher, as reported in [66].

85–bus system. For the initial configuration the total
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Table V
SIMULATION RESULTS FOR THE IEEE 85–BUS SCENARIO.

PSO CSA HHO
Av. Std. Av. Std. Av. Std.

Optimizer
Losses(kW) 214.53 6.11 196.29 2.46 193.87 2.95
Reduction (%) 32.14 1.93 37.91 0.78 38.67 0.93
Min. Volt (p.u.) 0.8885 0.0106 0.9116 0.0049 0.9109 0.0038

Refinement
Losses(kW) 196.48 6.64 191.71 1.75 190.77 0.68
Reduction (%) 37.85 2.1 39.36 0.55 39.65 0.22
Min. Volt (p.u.) 0.9075 0.0125 0.9149 0.0029 0.9152 0.0026

Best Solution

Losses(kW) 190.56
Reduction (%) 39.72
Min. Volt (p.u.) 0.9165
TS branches 9, 11, 19, 31, 44, 53, 64, 88
TS buses (9,10), (11,12), (19,20), (31,32), (44,45), (53,54), (64,65), (51,67)

Success Rate (%) 5 45 75

Time (s)

Initialization 16
Optimizer 35 49 40
Refinement 7.5
Total 58.5 72.5 63.5

Init. Config.
Losses(kW) 316.14
Min. Volt (p.u.) 0.8713
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Figure 6. Average voltage profiles (a) and convergence curves (b) for the
IEEE 85–bus system.

amount of real power losses is 316.14 kW, whilst the value of
the minimum voltage is 0.8713 p.u. (achieved at bus 54).

From the results collected in Table V, it is evident that
the HHO reports on average the best results among the three
optimizers over the given runs before applying the solution
refinement. The average value of losses is 193.87 kW with
standard deviation of 2.95 kW. Thus, the reduction ratio of
losses is 38.67% (standard deviation 0.93%). Moreover, the
minimum voltage gets 0.9109 p.u. with standard deviation
0.0038. In second place, the CSA achieves a slightly lower
performance. In comparison with both HHO and CSA, the
worst results are obtained by the PSO. Figure 6.a reports the
average solution for all the optimizers from the perspective
of the bus voltage profile, showing that the HHO approach
clearly provides better improvements than the PSO and CSA
in all the buses. After applying the refinement procedure,
further enhancements are reached for the PSO results, which
get closer to those of the CSA. However, the HHO results
keep the first ranking with a reduction ratio equal to 39.65%
and a minimum voltage of 0.9152 p.u. Despite the very close
results attained by the HHO and CSA techniques, the better
robustness and reliability of the HHO approach over CSA are
apparent, as demonstrated by its smaller standard deviation
value and higher success rate. The standard deviation values
are 0.68 kW and 0.0026 p.u. for losses and minimum voltage
respectively. The near–optimal results of 190.56 kW losses
and 0.9165 minimum voltage, corresponding to the set of TSs

Table VI
SIMULATION RESULTS OF THE LOAD VARIATION ANALYSIS FOR THE

IEEE 85–BUS SYSTEM.

Scenario Init. Config. → Reconfig.

Losses (kW)

1.
18

×
P,

Q

462.77 → 277.28
Loss Red. (%) 40
MinV (p.u.) 0.8439 → 0.9008

Solution (TS)
Bus 9 ,10 ,19 ,31 ,43 ,48 ,64 ,70

Line (9,10) ,(10,11) ,(19,20) ,(31,32),
(34,44) ,(48,49) ,(64,65) ,(70,71)

Losses (kW)

0.
8
×

P,
Q

192.27 → 120.9
Loss Red. (%) 37.12
MinV (p.u.) 0.89983 → 0.93491

Solution (TS)
Bus 10 ,19 ,31 ,43 ,48 ,65 ,70 ,77

Line (10,11) ,(19,20) ,(31,32) ,(34,44),
(48,49) ,(65,66) ,(70,71) ,(10,78)
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Figure 7. Voltage profile over nodes in the IEEE 85–bus system, for different
load variation scenarios.

{9, 11, 19, 31, 44, 53, 64, 88}, are obtained in 15 out of 20
(i.e., 75%) independent runs. The success rates for the CSA
and PSO are 45% and 5%, respectively. As for the running
time, the initialization and the solution refinement procedures
last 16 s and 7.5 s, respectively. The execution of the PSO,
HHO and CSA optimizer requires 58.5 s, 63.5 s, and 72.5
s, respectively. Similarly to the IEEE 33–bus scenario, from
Fig. 6.b it is evident that the HHO outperforms the other
optimizers in terms of convergence speed.

Finally, for the sake of assessing the behavior of the pro-
posed method under active and reactive power load variations,
we report the analysis of the DN reconfiguration under load
mitigation/elevation. In particular, we consider two scenarios
of load variation within the addressed DN. In the first scenario,
80% of active and reactive power loads are applied to the
85–bus system. In the second scenario, both active and reac-
tive power are increased by 18% over their nominal values.
Table VI presents the results of the HHO approach, where
losses are reduced by more than 37%, and minimum voltage
magnitude is above 0.9 p.u. in both scenarios. Figure 7 shows
the voltage profile for different load scenarios, before and
after applying the proposed approach. From these results, it
is evident that the HHO approach is successful in achieving
reasonable solutions under under load variations; hence, the
robustness is ensured for critical situations like load elevation.

295–bus system. First, for the sake of assessing the results
of the HHO approch under a generation and load time-
varying scenario, the DN reconfiguration problem is solved
through the proposed method on an hourly basis using the
daily production and demand profiles shown in Fig. 4. As a
reference for the entire simulation period, the initial configura-
tion corresponding to the TSs indicated in Table VII is used:



14

(a) power losses reduction

0 4 8 12 16 20 24

Time slot (hour)

0.25

0.3

0.35

0.4

0.45

0.5

0.55

L
o

s
s
e
s
 r

e
d

u
c
ti

o
n

 r
a
ti

o
 (

%
)

(b) daily average voltage profile
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Figure 8. Results of the generation and load variation analysis for the 295–bus
system.
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Figure 9. Initial (a) and optimally reconfigured (b) daily voltage profile (p.u.)
for the 295–bus system under generation and load variation.

in such a configuration the overall power losses is equal to
2988.5 kW in average along 24 hours, with minimum voltage
magnitude equal to 0.9292 p.u. in average along 24 hours.
Figure 8.a reports the reduction ratio of the losses (ranging
from 28% up to 51.5%) over the analyzed time slots in the
whole 295–bus system, showing the notable effectiveness of
the proposed HHO approach in minimizing the power losses in
large DNs in presence of distributed generation. Initial power
losses ranges from 1249.5 kW at 1h (lowest load demand)
to 4555.6 kW at 22h (close to peak load). However, losses
are successfully reduced to 766 kW at 1h and 2455.6 kW at
22h. In addition, Fig. 8.b emphasizes the enhanced voltage
profile at each bus averaged along 24 hours after applying
the proposed HHO approach. In the initial configuration the
minimum voltage magnitude occurs at bus 217 with value of
0.913 p.u. at the time slot h =20 (load demand peak), whilst in
the reconfigured system the bus 186 has in average the lowest
voltage magnitude equal to 0.9307 p.u. at the time slot h = 21.
The detailed daily voltage profile is presented in Fig. 9 for the
best reconfiguration found by the proposed HHO approach.

Subsequently, to compare the performance obtained by the
HHO approach on the 295–bus system with those achieved by
the PSO and CSA techniques, a detailed analysis related to a
given instant, namely the time slot h = 20, is reported in the
sequel. As shown in Table VII, the HHO algorithm achieves
a reconfiguration solution with losses equal to 2310.4 kW on
average, with a reduction ratio equal 48.2%. Conversely, the
CSA and PSO algorithms lead to worse results, since their
reduction ratios are equal to 35.3% and 34%, respectively. The
standard deviation for all three optimizers is relatively large
compared to the 33-bus and 85-bus system scenarios. This
proves the notable search complexity of the 295–bus system.

Table VII
SIMULATION RESULTS FOR THE 295–BUS SYSTEM AT TIME SLOT h = 20.

PSO CSA HHO
Av. Std. Av. Std. Av. Std.

Optimizer
Losses(kW) 2888.6 445 2951.9 299 2310.4 136
Reduction (%) 35.3 10 34 7 48.2 3
Min. Volt (p.u.) 0.9237 0.006 0.9130 0 0.9305 0.0075

Refinement
Losses(kW) 2588.6 413 2900.7 351 2184.6 137.8
Reduction (%) 42 9.2 35 7.8 51.1 3
Min. Volt (p.u.) 0.9292 0.0048 0.9150 0.0061 0.9318 0.0069

Best Solution

Losses(kW) 1950.2
Reduction (%) 56.34
Min. Volt (p.u.) 0.9360

TS branches 13, 15, 26, 34, 38, 59, 61, 101, 107, 120, 124, 141, 151, 152, 161,
172, 187, 189, 194, 206, 237, 251, 259, 271, 287, 299, 302, 309

TS buses

(11,12), (13,14), (24,25), (2,33), (6,37), (57,58), (55,60), (99,100),
(104,106),(118,119),(122,123),(30,140),(150,151),(151,152),(160,161),

(171,172), (186,187),(176,189),(193,194),(205,206),(237,238),
(251,252),(259,260),(271,272),(287,288),(22,87), (52,68),(27,130)

Success Rate (%) 0 0 40

Time (sec)

Initialization 160
Optimizer 83.1 139 89.6
Refinement 19
Total 262.1 318 268.6

Init. Config.
Losses(kW) 4467.5
Min. Volt (p.u.) 0.9130

We remark that, before applying the refinement procedure,
the HHO approach is successful in achieving the minimum
voltage equal to 0.9305 p.u., which is higher than the value of
0.9237 p.u. and 0.9130 p.u. achieved respectively by the CSA
and PSO methods. Figure 10.a reports the average solution
for all the optimizers from the perspective of the bus voltage
profile, showing that the HHO approach clearly provides better
improvements than the PSO and CSA in all the buses. In
addition, from Table VII it is evident that the use of the
refinement step provides significant improvement to all three
optimizers, proving that the crucial importance of the proposed
refinement procedure in large and distributed DNs. The refined
solution achieved by the HHO approach is characterized by
power losses equal to 2184.6 kW (i.e., the reduction ratio is
51.1%), with a standard deviation of 137.8 kW, and minimum
voltage equal to 0.9318 p.u.. Even though the refinement
procedure enhances the solutions obtained by the PSO and
CSA algorithms, the achieved results are lower than those
obtained by HHO: as for PSO the power losses reduction ratio
is 42.0%, with a standard deviation of 413 kWh, and minimum
voltage is 0.9292 p.u., whilst the losses reduction ratio, the
standard deviation, and the minimum voltage achieved by the
CSA algorithm are respectively equal to 35.0%, 351 kWh,
and 0.9150 p.u.. Moreover, we remark that, differently from
the PSO and CSA, the HHO approach is able to find solutions
close to the best solution (the locations of TSs branches in the
best solution are reported in Table VII), whose corresponding
power losses and minimum voltage are respectively equal
to 1950.2 kW and of 0.9360 p.u.. This property is ensured
by the considerably high success rate of the HHO algorithm
which is equal to 40%; in contrast, neither the CSA nor PSO
algorithms are able to find the best solution in at least one
run (i.e., the success rate is 0). As for the running time, the
initialization and the solution refinement procedures last 160
s and 19 s, respectively. The execution of the PSO, CSA, and
HHO optimizer takes 83.1 s, 139 s, and 89.6 s, respectively.
Similarly to the previous scenarios, from Fig. 10.b it is evident
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that the HHO outperforms the other optimizers in terms of
convergence speed.

Finally, Fig. 11 summarizes the performance of the optimiz-
ers for the 295–bus scenario: it is clear that the HHO provides
the best compromise for all the discussed evaluation metrics
(the lowest losses, the highest success rate, an acceptable
execution time) with respect to the other two tested techniques.
Summing up, the results achieved by the refined HHO are
promising under different settings, especially for large-scale
DNs.

VI. CONCLUSIONS AND PERSPECTIVES

This study addresses the problem of distribution networks
(DNs) reconfiguration, which is vital to enhance the qual-
ity of power distribution systems. A multiple-step resolution
procedure is proposed, where the Harris Hawks optimization
(HHO) algorithm constitutes the core part, accompanied by
appropriate pre- and post-processing phases aimed at improv-
ing the search for near-optimal configurations. The comparison
with two related metaheuristic techniques shows that the HHO
approach can be conveniently used for large–scale problems
in acceptable execution time. However, forthcoming researches
will address the reconfiguration problem in harder scenarios
as well as in presence of uncertain generation and/or load
variations, line outage and contingencies.

This study is not without limitations, which still need
to be investigated in future works. In particular, the main
limitation of the proposed framework relies on the use a
mono-objective function. Due to techno-economic reasons, the
resolution of the reconfiguration problem may be preferably
performed under multiple objectives. Therefore, future work
will mainly be devoted to defining a multi-objective approach
to simultaneously address related problems, such as the op-
timal placement/sizing of distributed generators and storage
systems, the congestion management, the improvement of
network reliability and resilience, as well as the optimal energy
scheduling of controllable loads and dispatchable generators
connected to the addressed DN.

Moreover, the power grids addressed by the proposed model
are single-phase. Since DNs are notoriously multi-phase and
unbalanced, future research will be focused on extending
the reconfiguration problem resolution taking the multi-phase
unbalanced power flow into account. Finally, one may observe
that results and implications are derived from a static scenario
in an offline setting. Actually, this limitation is only appar-
ent, since the proposed approach converges in a reasonable
execution time and thus it can be easily incorporated in a
receding horizon mechanism for real-time reconfiguration of
the distribution grid. This aspect will be the subject of future
research.
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