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Abstract: In this paper, a machine learning (ML) approach to estimate blood pressure (BP) using
photoplethysmography (PPG) is presented. The final aim of this paper was to develop ML methods
for estimating blood pressure (BP) in a non-invasive way that is suitable in a telemedicine health-
care monitoring context. The training of regression models useful for estimating systolic blood
pressure (SBP) and diastolic blood pressure (DBP) was conducted using new extracted features from
PPG signals processed using the Maximal Overlap Discrete Wavelet Transform (MODWT). As a
matter of fact, the interest was on the use of the most significant features obtained by the Minimum
Redundancy Maximum Relevance (MRMR) selection algorithm to train eXtreme Gradient Boost
(XGBoost) and Neural Network (NN) models. This aim was satisfactorily achieved by also comparing
it with works in the literature; in fact, it was found that XGBoost models are more accurate than NN
models in both systolic and diastolic blood pressure measurements, obtaining a Root Mean Square
Error (RMSE) for SBP and DBP, respectively, of 5.67 mmHg and 3.95 mmHg. For SBP measurement,
this result is an improvement compared to that reported in the literature. Furthermore, the trained
XGBoost regression model fulfills the requirements of the Association for the Advancement of Medical
Instrumentation (AAMI) as well as grade A of the British Hypertension Society (BHS) standard.

Keywords: blood pressure (BP); digital health; machine learning (ML); physiological monitoring

1. Introduction

Hypertension is a health condition in which blood pressure (BP) at rest is higher than
the physiological standards for a long time. It is one of the most common diseases; in
fact, it affects about 20% of the adult population, representing one of the major clinical
problems, and it is associated with chronic diseases and an increase in mortality and
morbidity. BP is related to the force that blood exerts against the walls of blood vessels due
to the pumping action carried out by the heart and its value depends on various factors.
Moreover, BP is one of the so-called vital signs, also including respiratory rate, heart rate
(HR), oxygen saturation (SpO2), and body temperature, which require adequate monitoring
on the general population.

For this reason, there is the spread of the development of practical and reliable
telemedicine solutions [1–4] to guarantee monitoring at home and at hospital with the aim
of ensuring early identification and prevention of cardiovascular diseases, hypertension,
and other related diseases. As concerns BP measurement, traditional cuff-based devices
have several disadvantages because they are not always accurate, they need appropriate
calibration, and they do not allow continuous monitoring since performing a measurement
requires about one minute or more. On the contrary, there is a strong tendency today to
monitor health at home by using wearable, affordable, and small devices that are simple to
use, non-invasive, and even wireless to obtain measurements continuously [5–7]. Hence,
researchers are investigating ways to perform cuff-less and non-invasive BP measurements.
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As a matter of fact, the monitoring of the health of individuals is also made possible by the
spread of artificial intelligence in healthcare [8–10].

Nowadays, a measurement technique that is spreading for real-time monitoring of
vital signs is photoplethysmography (PPG) [11–14]. Indeed, PPG is a simple, low-cost, and
non-invasive optical measurement method that, in addition to the estimation of HR, SpO2,
and respiration rate, provides important health information regarding atherosclerosis and
arterial stiffness. It is a type of plethysmography (PG) that exploits optical properties
unlike other types of PG, such as those based on capacitive, inductive, and piezoelectric
properties [15,16].

Recently, the use of PPG to also estimate BP values has become an active area of
research. However, quite often, studies have focused on the simultaneous use of both
electrocardiogram (ECG) and PPG signals or on the use of multi-site PPG acquisition [17,18]
which introduces system complexity and the need for synchronization between those
signals [19]. In fact, PPG for the estimation of BP presents criticalities and limitations, such
as the development of multi-photodetectors, noise elimination, the event detection, the
need of individual calibration, and calibration drift. A useful algorithm that can be used to
overcome motion artifacts’ problems is the adaptive neuro fuzzy inference system (ANFIS)
that allows improvements in the signal to be obtained [20]. Moreover, this algorithm has
proved to be versatile for other fields of application [21].

As a matter of fact, the single-site PPG signal approach has great potential even though
it has some criticalities and limitations. Its deployment has also increased thanks to the
encouraging results obtained by exploiting machine learning (ML) algorithms trained on
purposely selected PPG signal features [22–28].

In a previous work carried out by the authors [29], PPG signals were analyzed to select
the most significant features for BP estimation by using several selection algorithms, i.e.,
RReliefF [30,31], Correlation-based Feature Selection (CFS), and Minimum Redundancy
Maximum Relevance (MRMR) [32,33]. That methodology has led to the justification of the
application of the Maximal Overlap Discrete Wavelet Transform (MODWT) to enhance the
single-site PPG signal and to the selection of new proposed features [29]. Following this
line of research, in this paper, our focus is on the actual development of ML techniques
to find the best algorithm to measure BP, showing the usefulness of the already analyzed
features and, in particular, those selected by means of MRMR, including those obtained
after the enhancement with MODWT. The novelty of the research is in the use of new
extracted features from PPG signals, whose significance was evaluated by using several
criteria, and in the use of ML algorithms.

For this purpose, eXtreme Gradient Boost (XGBoost) models with Bayesian opti-
mization and Neural Network (NN) models were trained for regression using significant
features selected with the MRMR algorithm. A comparison of results between XGBoost
and NN models was presented and the improvements with respect to the literature, by
using XGBoost models and the proposed features, are shown.

The paper is structured as follows: in Section 2, the description of the dataset used
to train ML models is provided; in Section 3, the ML approach for both XGBoost and NN
models is presented; in Section 4, the results obtained using the best model are reported
and compared with the literature, focusing on standard medical protocols for performance
assessment; and finally, there are the conclusions.

2. Dataset

In this work, the MIMIC-III Waveform Database [34–36] was used to obtain the dataset
for training and validation following the same processing reported in detail in [29]. The
MIMIC-III Waveform Database is a large and open access database where protected health
information has been deidentified. It includes waveform records of digitized signals
acquired at 125 Hz, such as arterial blood pressure (ABP) measured invasively, PPG,
ECG, and respiration for neonatal and adult patients admitted to intensive care units and
monitored with iMDsoft MetaVision ICU or Intellivue MP-70 monitors. Among these
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acquired data, ABP and PPG signals have proved useful for our work. Many processing
steps, shown in Figure 1, were performed such as alignment between ABP and PPG signals,
pre-processing of PPG signals with denoising, Z-score standardization, baseline correction,
quality, similarity tests, and ABP and PPG pulses segmentation and labeling.
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Figure 1. Workflow of the processing steps.

After the processing briefly described above, the features presented in [29] were
calculated on the PPG signal. Many features were extracted in the time and frequency
domain, others were related to the amplitude of the characteristic points (max slope point,
systolic peak, dicrotic notch, inflection point, and diastolic peak), times and durations
of characteristic points, areas, non-linear functions (logarithm of positions of dicrotic
notch and inflection point), statistics (mean, STD, skewness, percentiles) and first and
second derivatives. In this way, a dataset has been created containing, for each PPG
pulse, 195 features and the target values of systolic blood pressure (SBP) and diastolic blood
pressure (DBP) measured on the ABP signal. Then, the dataset was reduced to SBP in the range
80 mmHg to 180 mmHg and DBP in the range 60 mmHg to 110 mmHg to facilitate comparisons
of the literature because similar distributions are used in other works [22,23,26,27,37–40].
Indeed, SBP under 80 mmHg and DBP under 60 mmHg correspond to a severe hypotension
condition while SBP over 180 mmHg and DBP over 110 mmHg correspond to a severe
hypertension condition and, in these cases, there were few observations in the initial dataset.

At the end of the processing, performed in MATLAB R2022a, the dataset contained
9.1 × 106 observations of PPG pulses from 1080 patients. The distribution of systolic and
diastolic blood pressure values of the dataset processed in this work are shown in Figure 2.
The described dataset was used to train and validate ML models developed in Python
language, as discussed in the following sections. The dataset used to train and validate ML
models included 9 × 106 observations; of these, the 90% constituted the training set and
the 10% constituted the validation set. Instead, the test set included 100,000 observations.
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Figure 2. (a) Systolic and (b) diastolic blood pressure occurrences in 2 mmHg bins. Only the
observations with 80 mmHg ≤ SBP ≤ 180 mmHg and 60 mmHg ≤ DBP ≤ 110 mmHg were considered
since outside these ranges there were few observations and, also, DBP less than 60 mmHg corresponds
to a severe hypertension condition.

3. Machine Learning Models

ML offers powerful techniques to identify and evaluate cardiovascular risk and health
conditions. In this paper, it has been exploited to train supervised regression models able
to measure BP starting from features extracted from the PPG signal. For training purposes,
each observation of the dataset is provided with systolic and diastolic labels obtained from
the corresponding ABP signal, which serves as ground truth, as reported in [29].

In this paper, an XGBoost model was trained because of advantages such as execution
speed and model performance, which have turned out to be suitable for our goal, while
an NN model was trained to carry out a comparison of the results and it was chosen
because it is an approach common to several researchers [27,28,37,41] and is characterized
by higher training speed. Moreover, XGBoost models were used in the literature for a
variety of purposes, such as wearable running monitoring [42], but recently also for PPG
signal processing to estimate blood glucose levels [43], blood pressure (by using multisite
PPG acquisition and Pulse Transit Time features) [44], and vascular aging [45].

XGBoost is an efficient open-source implementation of the gradient boosting algorithm
and is also available in Python using the Scikit-learn library utilized in this work. Overall,
gradient boosting refers to a class of ensemble ML algorithms that can be used both
for classification and regression; ensembles, as a matter of fact, are based on decision
tree models. In fact, trees are added to the ensemble to correct prediction errors made
previously and these models are fitted using a differentiable loss function and a gradient
descent optimization algorithm in order to minimize the loss gradient; moreover, this
algorithm provides hyperparameters that can be tuned, such as the number of trees or
estimators, the learning rate, the row and column sampling rate, the maximum tree depth,
the minimum tree weight, and the regularization terms alpha and lambda. Indeed, XGBoost
adds a regularization term in the objective function to make the model less vulnerable
to overfitting.

Moreover, in this work, Bayesian hyper-parameter optimization [46] was used to
tune the hyper-parameters of the XGBoost model in the chosen search space. Bayesian
optimization allows the optimization of a proxy function rather than the true objective
function and the search balances the exploration against exploitation, so at the beginning, it
randomly explores to build the surrogate function with the objective of minimizing the cost
function at a global level. In this work, the Bayesian Optimization implementation offered
by the Python library Scikit-optimize was used. The Root Mean Square Error (RMSE)
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evaluation metric was defined using a Scikit-learn function to allow the conversion of
optimization into a minimization problem as required by Scikit-optimize.

The Bayesian optimization was set providing the basic regressor, the search space, the
evaluation metric, the cross-validation strategy (chosen to be 7-fold), the max number of
trials, and the optimizer parameters for which the Gaussian Process (GP) was used. Then,
the best hyper-parameters were obtained and used to instantiate the XGBoost model to be
trained using the 10-fold cross-validation.

In the next paragraphs, there will be a focus on the XGBoost and NN models that
were trained.

3.1. XGBoost Models

For both SBP and DBP, the entire dataset was used. The training and cross-validation
were made using 9 × 106 observations (out of 9.1 × 106 observations). In total, 20 features
for SBP and 25 features for DBP were used and selected in order of highest MRMR score
among the 195 features listed in [29], which include those derived from the MODWT
enhanced PPG signal. The number of features used to train the models has been chosen
using the RReliefF algorithm for systolic and diastolic cases. In fact, using the RReliefF
algorithm, the 20 features for SBP and the 25 features for DBP have an importance score
greater than 0.001. We have considered lower scores as not significant because lower
values are related to uncorrelated features to the output. That reduction in the number of
features was operated to decrease the complexity of models and training; as a matter of
fact, removing the noisy features helps with memory and computational cost but also helps
avoid overfitting. Moreover, a normalization of columns into the range [0, 1] was carried
out before the training.

Then, the first step consisted of finding of the best hyper-parameters in a specified
search space for the Bayesian optimization using the selected features for both SBP and
DBP measurements.

The search spaces and the best hyper-parameter values for SBP and DBP measurements
are, respectively, shown in Tables 1 and 2.

Table 1. Search spaces and best values of hyper-parameters for SBP.

Hyper-Parameter Range Best

Learning rate [0.01, 1.0] 0.226

Maximum tree depth [2, 15] 15

Subsample [0.1, 1.0] 0.894

Subsample ratio of columns by tree [0.1, 1.0] 1.0

Lambda [1 × 10−10, 200] 120.0

Alpha [1 × 10−10, 200] 1 × 10−10

Estimators [50, 5100] 5000

Table 2. Search spaces and best values of hyper-parameters for DBP.

Hyper-Parameter Range Best

Learning rate [0.01, 1.0] 0.136

Maximum tree depth [2, 20] 15

Subsample [0.1, 1.0] 0.894

Subsample ratio of columns by tree [0.1, 1.0] 1.0

Lambda [1 × 10−9, 200] 120.0

Alpha [1 × 10−10, 200] 1 × 10−10

Estimators [50, 6000] 5200
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An explanation of XGBoost hyper-parameters is reported below. The learning rate
is the step size shrinkage used for the update to make the model more robust and to
prevent overfitting by shrinking the feature weights; it is chosen in the range [0, 1] with
typical values in [0.01, 0.2]. The maximum depth of a tree is used to control over-fitting as
higher depth will make the model more complex and more likely to overfit; the value 0
is only accepted in a loss-guided growing policy while large values bring an aggressive
consumption of memory. Any positive value is admissible, with typical values in [3, 10]; in
this work, trial and error was used to modify the upper bound of the range to obtain better
results. The subsample is, instead, the fraction of observations to be randomly sampled
for each tree and is useful to prevent overfitting; in fact, lower values make the algorithm
more conservative while too small values might lead to under-fitting. For this reason,
the range is [0, 1] and typical values are in [0.5, 1]. The subsample ratio of columns by
tree is the subsample ratio of columns when constructing each tree; this parameter has a
range of [0, 1] and the default value of 1. Lambda is the L2 regularization term on weights
and the increase in this value makes the model more conservative while Alpha is the L1
regularization term on weights and it is used in case of very high dimensionality so that
the algorithm runs faster when implemented. Finally, estimators are the number of trees in
an XGBoost model.

For the three last hyper-parameters, a trial and error method was used to define
the range.

3.2. NN Models

In Python, TensorFlow 2.9.1 was used to define a sequential model with an input layer
of size n, nine hidden layers, and an output layer. For all the layers, the activation function
chosen was the Rectified Linear Unit (ReLU). The number of hidden layers and of neurons
has been set making several trials. The NN model is shown in Figure 3. For SBP estimation,
n = 20 while for DBP estimation, n = 25.
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Moreover, several optimizers were tested such as Adadelta, Adagrad, Adam, Adamax,
Nadam, RMSprop, and SGD but the best result for both SBP and DBP estimations was
obtained using the Nesterov-accelerated Adaptive Moment Estimation (Nadam) algorithm.

The fit was made using a batch size of 4096, 150 epochs, and a validation split of 0.2.
The NN architecture was chosen after trials and errors, by adding hidden layers since

there was not an improvement in the results. The ReLU activation function was chosen
because it is suitable for the normalized inputs and this function has allowed better results
to be obtained. The batch size needs to fit the memory requirements of the GPU and the
architecture of the CPU since too low values did not perform well while too high values
were not allowed considering the memory requirements. Hence, the maximum possible
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batch size was set. The number of epochs was chosen in the range [50, 200] but beyond the
150 epochs there were not improvements.

4. Results and Discussion

In this section, the performance of ML algorithms will be shown. The two models,
XGBoost and NN, were trained using the features selected by the MRMR algorithm and
these features also include the new ones obtained on MODWT enhanced PPG pulses as
reported in [29]. As pointed out in that previous work, it has been found that by using the
MODWT, the PPG signal is enhanced, with an improvement in the identification of the
characteristic points and making it more similar to the ABP signal.

The criteria used to evaluate the performance of ML models for estimating BP are the
RMSE, Mean Absolute Error (MAE), correlation coefficient (R), and Mean Error (ME).

The results were then compared with other methods reported in the literature as well
as with BP measurements standard guidelines focused on the classification of hypertension
states. The predicted BP values from the regression model and the true values were used to
verify the correct classification into the seven classes defined by the guideline considering
the range of values of SBP and DBP. The classification results are evaluated by means of a
confusion matrix.

4.1. Training and Test of XGBoost and NN Models

In this paragraph, the results obtained after training and validation are reported. In
Table 3, XGBoost and NN results are reported considering the RMSE and MAE.

Table 3. Validation results for SBP and DBP estimations.

Model RMSE (mmHg) MAE (mmHg)

XGBoost
SBP 5.60 3.11

DBP 3.92 2.09

NN
SBP 7.80 5.00

DBP 5.56 3.53

After validation, a test was made for both models using a set of 100,000 new observa-
tions (out of the entire dataset of 9.1 × 106 observations) not included in the training set.
The results were reported in Table 4 in which performance parameters are reported for SBP,
DBP, and Mean Arterial BP (MAP).

Table 4. Test results using XGBoost and NN models.

Model RMSE
(mmHg)

MAE
(mmHg) R ME

(mmHg)

XGBoost

SBP 5.67 3.12 0.95 0.020

DBP 3.95 2.11 0.91 −0.001

MAP 3.24 2.01 0.93 0.006

NN

SBP 7.81 5.00 0.90 −0.420

DBP 5.60 3.55 0.81 −0.250

MAP 4.56 3.12 0.85 −0.310

In addition to SBP and DBP, MAP was considered because it is linked to the total
peripheral resistance and to cardiac output and is associated with HR [47,48]. MAP is a
popular BP parameter, and it is defined as the average pressure of the artery of a subject
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during one cardiac cycle (1). It is considered as a better indicator of perfusion to vital
organs when compared with SBP [49].

MAP =
SBP + 2·DBP

3
, (1)

The results reported in Tables 3 and 4 show that the use of XGBoost models rather
than NN allows better results for both systolic and diastolic pressure measurement to
be obtained.

Moreover, the results for XGBoost models obtained in the final test phase, shown in
Table 4, are similar and confirm the ones obtained during the training and cross-validation
phase, shown in Table 3.

Error probability densities of SBP, DBP, and MAP estimations are shown in Figure 4,
where it is possible to notice that errors obtained using the XGBoost model have a narrower
and more concentrated distribution around zero than the distribution obtained using the
NN model. From regression plots reported in Figure 5, it is possible to notice that best
predictions are obtained by using XGBoost models; in fact, R is in the three cases higher
than those obtained using NN models.
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During the training phase, it was noticed that the training time for NN was smaller
than the training time for the XGBoost models. The inference time was significantly reduced
for XGBoost models so considering this aspect, it is possible to use the trained model for
real time predictions useful for continuous monitoring.

Considering the computational complexity of current implementations for features
extraction and ML models, onboard processing on a wearable device is not viable. So, a
cloud-based solution would be required. The future aim is to streamline feature extraction
by including only those selected in the present study and simplify models to permit
onboard processing, reducing the computational complexity and assessing the minimal
hardware requirements.
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4.2. Comparison with Other Methods

A comparison of results with the literature is difficult due to the different evaluation
criteria and the different datasets. In this paper, the type of the algorithms and the use of
features have been used as the criteria to select and identify other works in the literature
to make a comparison. In this context, the criterion is the training of ML algorithms with
features extracted from the PPG signal, namely, the research’s methodology.

In Table 5, the performance of other methods is shown.

Table 5. Comparison with other works.

Work Method Data Size Performance
Evaluation SBP DBP

Kachuee et al. [37]
Support vector machine

(SVM)
MIMIC II (1000 subjects)

RMSE / /

MAE 12.38 6.34

R / /

ME / /

Kim et al. [50] ANN
180 recordings,

45 subjects

RMSE / /

MAE 4.53 /

R / /

ME / /

Cattivelli et al.
[51]

Proprietary algorithm MIMIC database
(34 recordings, 25 subjects)

RMSE 8.37 5.92

MAE / /

R / /

ME / /

Zhang et al. [52] SVM
7000 samples

from 32 patients

RMSE / /

MAE 11.64 7.62

R / /

ME / /

Zadi et al. [53]
Autoregressive
moving average
(ARMA) models

15 subjects

RMSE 6.49 4.33

MAE / /

R / /

ME / /

Chowdhury et al. [24]
Gaussian process
regression (GPR)

222 recordings,
126 subjects

RMSE 6.74 3.59

MAE 3.02 1.74

R 0.95 0.96

ME / /

Hasanzadeh et al. [26] AdaBoost
MIMIC II

942 subjects

RMSE / /

MAE 8.22 4.17

R 0.78 0.72

ME 0.09 0.23

Kachuee et al. [38] AdaBoost 1000 subjects

RMSE / /

MAE 8.21 4.31

R / /

ME / /
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Table 5. Cont.

Work Method Data Size Performance
Evaluation SBP DBP

Wang et al. [54] ANN
58,795 PPG

samples

RMSE / /

MAE 4.02 2.27

R / /

ME / /

Kurylyak et al. [28] ANN 15,000 PPG heartbeats

RMSE / /

MAE 3.80 2.21

R / /

ME / /

Fleischhauer et al. [55] XGBoost
MIMIC, Queensland, PPG

BP (273 subjects and
259,986 single beats)

RMSE / /

MAE 6.366 /

R 0.874 /

ME / /

Liu et al.
[56] SVR

MIMIC II
910 good PPG
pules cycles

RMSE / /

MAE 8.54 4.34

R / /

ME / /

Zhang et al.
[57]

Gradient Boosting
Regressor (GBR)

MIMIC II
2842 samples from 12,000

data points

RMSE / /

MAE 4.33 2.54

R / /

ME / /

Proposed method XGBoost
MIMIC III

9.1 × 106 PPG pulses
from 1080 subjects

RMSE 5.67 3.95

MAE 3.12 2.11

R 0.95 0.91

ME 0.01 0.02

The comparison with other works has shown that our models, based on the use of
XGBoost, the MRMR selection algorithm, and features obtained on MODWT, enhanced
PPG pulses, obtained small estimation errors for both systolic and diastolic blood pressure
measurements [29]. In fact, XGBoost is derivative-free so it might have some advantage
when the fitting problem has a lot of degrees of freedom. Moreover, the use of MODWT
enhancement has allowed characteristic points of PPG pulses such as the diastolic point to
be emphasized; these two aspects can be decisive in obtaining such results. As a matter of
fact, for SBP measurement, the proposed method has allowed a smaller RMSE compared
to the other works reported in the Table 5 to be obtained. Obviously, as mentioned at the
beginning of this section, a comparison of results is difficult; in fact, as reported in Table 5,
different datasets were used as well as different ML algorithms. For example, it should be
noted that Chowdhury et al. [24] obtained a smaller RMSE for DBP, which may depend
on the different dataset used and on the use of demographic features that are a powerful
means to predict BP values because gender, age, and height are related to the shape of
the PPG pulses and to the arterial stiffness. Considering Zhang et al. [57], they use a GBR
algorithm obtaining slightly worse results than those reported in this paper as well as in
Fleischhauer et al. [55] using XGBoost; as a matter of fact, in this paper, the best results are
obtained implementing the Bayesian optimization for our XGBoost models and a different
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selection of features also obtained after the MODWT enhancement. This seems to be a
better solution also compared with other ML algorithms as reported in Table 5.

4.3. Compliance to Standards and Classification Guidelines

The correct estimation of BP is critical for the detection of states of hypertension and
health status and hence, accuracy requirements for BP measurement devices and methods
have been standardized.

In this paper, the protocols proposed by the Association for the Advancement of
Medical Instrumentation (AAMI) [58,59] and by the British Hypertension Society (BHS) [60]
were considered to make a comparison with results reported in this paper as also made
in [23–26,61–63].

Since the best results in this paper were obtained using the XGBoost models rather
than using the NN models, the following comparisons regard only the XGBoost models.

As shown in Tables 6–9, the proposed method is compliant to AAMI and BHS grade
A standards. The dataset included 1080 patients and a total of 9.1 × 106 observations of
PPG pulses.

Table 6. Comparison of results for the validation set with AAMI standard.

ME
(mmHg)

STD
(mmHg)

Results

SBP 0.009 5.60

DBP 0.019 3.92

MAP 0.0157 3.21

AAMI
SBP

≤5 ≤8
DBP

Table 7. Comparison of results for the test set with AAMI standard.

ME
(mmHg)

STD
(mmHg)

Results

SBP 0.020 5.67

DBP −0.001 3.95

MAP 0.006 3.24

AAMI
SBP

≤5 ≤8
DBP

Table 8. Comparison of results for the validation set with BHS standard.

Cumulative Error Percentage

≤5 mmHg ≤10 mmHg ≤15 mmHg

Results

SBP 80.85% 93.00% 96.84%

DBP 89.56% 96.86% 98.74%

MAP 90.89% 98.18% 99.49%

BHS

Grade A 60% 85% 95%

Grade B 50% 75% 90%

Grade C 40% 65% 85%



Sensors 2023, 23, 8342 13 of 19

Table 9. Comparison of results for the test set with BHS standard.

Cumulative Error Percentage

≤5 mmHg ≤10 mmHg ≤15 mmHg

Results

SBP 80.96% 92.91% 96.73%

DBP 89.48% 96.87% 98.68%

MAP 90.84% 98.07% 99.44%

BHS

Grade A 60% 85% 95%

Grade B 50% 75% 90%

Grade C 40% 65% 85%

As is possible to notice in Tables 6 and 7, our results fulfill AAMI standard require-
ments; indeed, according to this protocol, the mean and the STD of the errors for both
SBP and DBP estimations should not be more than 5 mmHg and 8 mmHg, respectively.
Requirements of the BHS standard are also satisfied since the absolute error of more than
60% of the data is less than 5 mmHg, hence the method is considered as Grade A.

Moreover, as established in [26], another guideline was used to evaluate our regression
models; for this purpose, the guideline [64] provided by the European Society of Hyperten-
sion (ESH) and the European Society of Cardiology (ESC) was considered. This guideline
is focused on the state of hypertension and, in fact, categorizes it into seven classes:

• Optimal: if SBP < 120 mmHg and DBP < 80 mmHg;
• Normal: if 120 mmHg ≤ SBP ≤ 129 mmHg and/or 80 mmHg ≤ DBP ≤ 84 mmHg;
• High Normal: if 130 mmHg ≤ SBP ≤ 139 mmHg and/or 85 mmHg ≤ DBP ≤

89 mmHg;
• Grade 1 Hypertension: if 140 mmHg < SBP ≤ 159 mmHg and/or 90 mmHg ≤ DBP ≤

99 mmHg;
• Grade 2 Hypertension: if 160 mmHg ≤ SBP ≤ 179 mmHg and/or 100 mmHg ≤ DBP

≤ 109 mmHg;
• Grade 3 Hypertension: if SBP ≥ 180 mmHg and/or DBP ≥ 110 mmHg;
• Isolated Systolic Hypertension: if SBP ≥ 140 mmHg and DBP < 90 mmHg.

Since hypertension is a state of health of interest to be identified, we also used
ESH/ESC guidelines to evaluate our regression models with a classification of the predicted
values into seven classes. The BP ground truth and the BP predicted by the XGBoost model
were labeled according to the previously described classification to evaluate the consis-
tency between the classified predicted values and the classified true values in the different
states of hypertension. The results are shown in Figure 6 and in Table 10. In the table, the
accuracy, sensitivity, specificity, and F1-score are provided. There are two classes with a low
sensitivity that are “Grade 3 Hypertension” and “Isolated Systolic Hypertension”. The low
sensitivity is due to the few training cases in the dataset. Indeed, “Grade 3 Hypertension”
is a critical condition while “Isolated Systolic Hypertension” has low frequency in young
and middle-aged subjects.

As is possible to see in Table 10, the average of accuracy, sensitivity, specificity, and
F1-score are, respectively, 90.3%, 76.9%, 93.5%, and 77.0%.
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Table 10. Results of BP level classification according to ESH/ESC guidelines.

Class Accuracy Sensitivity Specificity F1-Score Actual Class
Members

Grade 1
Hypertension 91.9% 75.8% 95.6% 77.9% 18.9%

Grade 2
Hypertension 97.7% 66.0% 99.3% 73.6% 4.9%

Grade 3
Hypertension 99.8% 25.6% 99.9% 28.6% 0.1%

High Normal 87.5% 73.3% 91.4% 71.4% 21.3%

Isolated Systolic
Hypertension 97.9% 29.3% 98.9% 28.9% 1.4%

Normal 86.0% 72.8% 89.8% 70.1% 22.5%

Optimal 93.1% 87.5% 95.6% 88.6% 30.8%

Average 90.3% 76.9% 93.5% 77.0%

4.4. Bland–Altman Analysis

Finally, to test the validity of the prediction of the XGBoost models for SBP, DBP, and
MAP, a Bland–Altman analysis was performed which was used to determine the limits
of agreement (LOA) between two different measurements in clinical practice [65,66]. The
mean and STD of the differences between two measurements are used for statistical limits.
The mean bias (mean of the differences) and its LOA are provided by the Bland–Altman
plot that is shown in Figure 7.
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The black line represents the mean of differences (BIAS) while the red lines represent
the upper and lower limits (BIAS ± 1.96 × STD) of the LOA [67]. The LOA for errors of
SBP is [−11.09, 11.13] mmHg and the percentage of points outside the LOA is 5.91%; the
LOA for errors of DBP is [−7.75, 7.75] mmHg with a percentage of 5.08% points outside
while for MAP the LOA for errors is [6.35, 6.36] mmHg with a percentage of 5.73% points
outside. So, considering these results, it is possible to confirm the good accuracy of the
proposed model.

5. Conclusions

The possibility of measuring BP by using PPG signals is advantageous for the monitor-
ing of this vital sign since it avoids the use of cumbersome cuff-based devices, and it allows
continuous monitoring. However, PPG for the estimation of BP has several criticalities
and limitations, such as noise elimination, individual calibration, and calibration drift, that
must be overcome.

In our previous work [29], the focus was on the extraction of new features from PPG
signals, including those obtained after the enhancement with MODWT, whose signifi-
cance was evaluated by using several criteria, such as MRMR. In this paper, the features
selected by the MRMR algorithm were used to train ML models to estimate BP, giving
improved results.
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Among the ML models, the XGBoost model with Bayesian optimization proved to
be suitable for estimating purposes, giving better results than an NN model trained on
the same data; as a matter of fact, the XGBoost model combined with the use of novel
features allowed an improvement for systolic blood pressure measurement with respect to
the literature.

In addition, the SBP and DBP estimators proved to fulfill the requirements of the
AAMI and BHS grade A standards, but also, good classification results were obtained
according to the ESH/ESC guideline.

Considering these results, future work will focus on the realization of a portable
measurement device to acquire PPG signals and implement the proposed BP estimator
permitting onboard processing by reducing the computational complexity and assessing
the minimal hardware requirements.
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