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Witnessing quantum steering by means of the Fisher information
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Capturing specific kinds of quantum correlation is of paramount importance for quantum networking. Dif-
ferent routes can be taken to achieve this task, highlighting different aspects of such quantum correlations.
Following the recent theoretical results by Yadin, Fadel, and Gessner [Nat. Commun. 12, 2410 (2021)], we
demonstrate experimentally how steering manifests in the metrological abilities of a bipartite state. Our results
confirm the relevance of this approach, and compare the outcome with already employed alternatives.
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I. INTRODUCTION

Understanding the potential of processing information by
means of quantum systems is bringing about an intense tech-
nological effort. This is referred to as the second quantum
revolution [1], to distinguish it from the first one that devel-
oped the new theory in the early 20th century. The current
technology-oriented approach bears conceptual implications
as well: Under the new light, quantum properties are consid-
ered not only for their physical meaning, but also for their
implications in information processing tasks.

This technology-oriented mindset has allowed us to rec-
ognize the existence of different categories of quantum
correlations, distinguished according to their operational
meaning [2]. When observing a bipartite system, one may ask
different questions: whether measurement outcomes could be
reproduced by means of local realistic models, leading to the
concept of quantum nonlocality [3]; whether correlations can
be explained only in terms of local quantum states (steering)
[4]; and whether there exists a procedure to generate the state
locally (entanglement) [5]. These correlations, in turn, provide
the means for quantum communications at different levels of
security and trust among the nodes [6–8], within the paradigm
adopted for this categorization [9].

Steering captures in rigorous terms the effect underlying
the Einstein-Podolsky-Rosen (EPR) paradox [10], as origi-
nally highlighted by Schrödinger [11], and then formalized
by Wiseman et al. [12]. Two partners, Alice and Bob, share
a bipartite state, however, Bob doubts that Alice can steer
his local state better than what she could by local hidden
states. There exist criteria for assessing the unsuitability of
such models [13–16], many of which have been tested in
experiments [17–27]. In particular, Reid’s criterion states
that steering can be revealed by the inappropriateness of
Heisenberg’s relations for the variances of Bob’s observables,
conditioned on his communication with Alice [28]. Based on
this approach, Yadin, Fadel, and Gessner (YFG) [29] have
established a connection between the presence of steering,

as captured by Reid’s criterion, and the metrological power
of Bob’s conditional states. In this work, we present an ex-
perimental demonstration of use of the YFG criterion for the
measurement of steering on two-photon states produced by
nonclassical interference. Our results show that albeit closely
related to Reid’s criterion, for our class of states the YFG
approach delivers a quantitative assessment of the amount
of steering at the cost of increased resources being required.
These results reinforce the employment of metrological fig-
ures beyond problems strictly related to sensing.

II. RESULTS

The concept of steering can be illustrated as follows
(Fig. 1). Alice and Bob have access to a bipartite state, and
Alice claims that, by performing a measurement of K =∑

k k|k〉〈k| and collecting the outcome k, she is able to steer
the state of Bob’s system, and guess the outcome h of a mea-
surement of his observable H = ∑

h h|h〉〈h|. Bob, instead, is
convinced this is not the case, and Alice merely mimics this
process by means of a classical probability distribution for k,
and the outcomes are determined by Born’s rule applied to a
local hidden state σ B

k (λ), whose probability p(λ) is set by a
classical variable λ. The joint statistics of k and h is described
by means of the assemblage A(k, K ) = p(k|K )ρB

k|K , which
links Alice’s result k for the measurement of K , and Bob’s
conditioned state ρB

k|K ; the joint probability is then written as
p(k, h|K, H ) = 〈h|A(k, K )|h〉. The local-hidden-state setting
writes A(k, K ) = ∑

λ p(λ)p(k|X, λ)σ B
k (λ). Thus, the proper-

ties of the allowed assemblages are curtailed, specifically for
what concerns the strength of their correlations, in analogy
with what occurs with local hidden variables.

Steering is connected with the emergence of the EPR para-
dox [10], as recognized in Ref. [12], in that the knowledge of
Alice’s value k allows us to make predictions on Bob’s results
beyond what would be allowed by Heisenberg’s relation—a
fact on which also Popper called to attention [30,31]. A way
of quantifying these observations in a quantum state considers
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FIG. 1. Conceptual scheme. (a) Alice and Bob share a bipartite
state. Alice claims she can steer Bob’s state by performing a mea-
surement of K with outcome k. Bob, receiving Alice’s outcome and
measuring his own, can check whether Alice is indeed steering his
state or is pretending to do so by employing local hidden states. Bob
can choose two different strategies: either (b) performing the required
measurements for implementing Reid’s criterion or (c) measuring the
Fisher information of his states, conditioned by Alice’s outcome.

the average deviation of the actual value h with respect to ȟ(k),
the one predicted based on k:

�2Hest =
∑

a,h

p(k, h|K, H )(ȟ(k) − h)2. (1)

When two incompatible measurements are carried out, a local
uncertainty limit holds for nonsteerable states [28,32]

�2Hest�
2H ′

est � 1
4 |〈[H, H ′]〉|2, (2)

where the average of the commutator is calculated on Bob’s
unconditioned reduced state ρB. Reid’s criterion states that the
violation of such an inequality may serve as a witness for an
EPR paradox.

Inequalities in the form (2) are also found in quantum
metrology when considering the estimation of the parameter θ

in the transformation e−iθH . The variance Var(θ ) on the value
of the parameter is limited by the Fisher information F (θ )
associated with the quantum state, the chosen measurement,
and the number n of repetitions of the experiment according
to the Cramér-Rao bound Var(θ ) � 1/[nF (θ )]. The quantum
Fisher information FQ(θ ), which is a function of the quantum
state only, limits all possible Fisher information from above
FQ(θ ) � F (θ ), which can be saturated for a particular mea-
surement. The resulting inequality Var(θ ) � 1/[nFQ(θ )] is
known as the quantum Cramér-Rao bound [33–39]. For pure
states, FQ(θ ) = 4�2H , thus we can write the Cramér-Rao
bound in a form reminiscent of Heisenberg’s relation [40,41]

Var(θ )�2H � 1

4n
, (3)

which also applies for generic mixed states [38]. Combining
results (2) and (3), YFG have succeeded in establishing a

FIG. 2. Experimental setup. Photon pairs are generated via spon-
taneous parametric downconversion with a continuous wave 405-nm
pump through a 3-mm type-I beta barium borate (BBO) crystal. The
photons are then spectrally filtered (full width at half maximum
of 7.5 nm) and sent through single-mode fibers to the partially
polarizing beam splitter (PPBS): The input polarizations are con-
trolled through two half-wave plates (blue), and take into account
the necessary prebias to compensate for the different transmission
probabilities of the partially polarizing beam splitter. Alice and Bob’s
measurements of the Pauli operators are then conventionally per-
formed by means of a quarter-wave plate (orange), half-wave plate,
and a polarizing beam splitter. For the measurement of the Fisher
information, a further rotation is implemented on Bob’s side by a
half-wave plate (green).

link between the EPR paradox and the metrological power of
a state [29]. They consider Bob’s conditioned states ρB

k|K to
compute the optimized conditional variance

�2Hopt = min
K

∑

k

p(k|K )�2Hk|K , (4)

and the quantum conditional Fisher information

Fopt = max
K

∑

k

p(k|K )FQ,k|K , (5)

where Bk|K is the value of the quantity B calculated on the state
ρB

k|K . For any state admitting a decomposition in assemblages
A(k, K ), there holds the limit

Fopt � 4 �2Hopt. (6)

A violation of such an inequality flags the inappropriateness
of local-hidden-state models, hence the presence of an EPR
paradox. This can be put in direct connection to (2) and (3)
by means of the Cramér-Rao bound, and of the property that
�2Hopt � �2Hest.

We tested these ideas in the experiment illustrated in Fig. 2.
Bipartite states with a variable degree of steering are pro-
duced as follows. Two photons are prepared in the states
|D̃〉 = cos(π/3)|H〉 + sin(π/3)|V 〉, and |α〉 = cos(2α)|H〉 +
sin(2α)|V 〉—the kets |H〉 and |V 〉 denote a photon with hori-
zontal and vertical polarization, respectively. These arrive on a
partially polarizing beam splitter (PPBS), with transmittivities
TH = 1, TV = 1/3, on which nonclassical interference occurs.
By postselecting events when the two photons emerge from
different arms, a quantum correlated state is produced [42].
The contributions in the final states are also modulated by the
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different transmittivities, and these have to be accounted for
in the first preparation step: This implies that maximal cor-
relation is expected for 2α = π/3. The two photons are then
distributed to two measurement stations, Alice and Bob, for
the analysis: A conventional sequence of a quarter-wave plate
and a half-wave plate followed by a polarizer implement the
measurement of one of the Pauli operators X , Y , or Z . These
correspond to discrimination of diagonal (D)/antidiagonal (A)
polarizations for X , right-circular (R)/left circular (L) for Y ,
and H/V for Z .

We detect the presence of steering in Alice and
Bob’s shared state. The first method we adopt, based on
Refs. [12,13], considers a bound on correlations established
for a nonsteerable state. For our class of states, this takes the
form

〈S〉 = 1√
3
|〈XAZB〉 + 〈ZAXB〉 + 〈YAYB〉| � 1. (7)

Alice’s measurement of ZA thus prepares Bob’s photon in the
XB basis, and similarly for the other two cases. While we have
adopted a fully quantum notation for a direct connection to the
measured quantities, in Bob’s point of view, the expectation
values are calculated as average correlations between Alice’s
classical input and his own quantum observable. The corre-
sponding results are pictured in Fig. 3, where 〈S〉 is reported
as a function of the angle α. For low values of α the existing
correlations do not allow us to confidently assess the presence
of steering, while for higher values, this is present, despite
the nonidealities of the experiment, foremost the reduced two-
photon interference visibility.

Consider the observables H = YB and H ′ = XB: Alice
should implement a measurement of YA and ZA, respectively,
in order to obtain the best predictions of Bob’s outcomes.
By this choice, the expressions of the variances in (1) for YB

and XB can be recast as �2Yest = 1 − 〈YAYB〉, and �2Xest =
1 − 〈ZAXB〉. According to Reid’s criterion (2), their product is
bounded in nonsteerable states by 〈ZB〉, obtained by tracing
out Alice’s photon. The corresponding experimental results
are reported in Fig. 3(b), and demonstrate a violation of the
inequality for all states—except for the first point, for which
this is expected. We remark, however, that the amount of vio-
lation is not proportional to the level of steering, as it appears
evident from the comparison of the two panels in Fig. 3. We
consider these results as the set standard for a comparison with
the metrological study.

If Bob is convinced of the absence of steering in the dis-
tributed state, he would conclude the variance �2Yest sets the
achievable precision in an experiment aiming at estimating
the parameter θ with the evolution eiθYB . For instance, upon
observing �2Yest = 0, Bob would infer that the local-hidden-
state collection he is receiving is equivalent to an incoherent
mixture of eigenstates of YB, i.e., |R〉 and |L〉. However, Alice
has the capability of steering Bob’s state to |H〉 and |V 〉:
Contrary to his expectation, Bob could benefit from these
coherent superpositions of |R〉 and |L〉 for phase estimation.

In our experiment, we have implemented the operation
eiθYB by means of a half-wave plate, set at an angle θ/2,
and recorded detection probabilities p(H |D), p(V |D) and
p(H |A), p(V |A) in the ZB basis for Bob, conditioned by a
measurement of XA, i.e., of the D or A polarizations on Alice’s

(a)

(b)

FIG. 3. Steering witness. (a) Assessment of the presence of steer-
ing by means of Eq. (7), showing 〈S〉 as a function of the angle
α. The experimental results (red dots) are shown together with the
ideal case (dashed red). The orange area indicates values of 〈S〉 � 1.
(b) Test of the steering using Reid’s criterion (2). The product of the
conditional variances (blue) is well below the nonsteerable measured
bound (red), for every α. The points correspond to the measured
values, while the dashed lines are predictions for the ideal state. In
both panels, the errors are evaluated by propagation of the Poisson
statistics of the registered counts.

side. In order to obtain an expression for the Fisher informa-
tion, we have fitted the detection probabilities by the function
p(θ ) = [1 + v cos(θ + θ0)]/2, with v and θ0 fit parameters,
based on a data set in which θ has been varied from 0 to
48◦ in steps of 4◦. The fit curve allows us to calculate the
conditional Fisher information FD by means of its definition
FD = [∂θ p(H |D)]2/p(V |D) + [∂θ p(V |D)]2/p(V |D), and sim-
ilarly for FA; typical results are reported in Fig. 4(a). This
procedure is compatible with the assumption made upfront
that Bob does not question the validity of quantum mechanics
for the description of his apparatus—this is implicit in the
choice of the fitting function.

The maximal values of FD and FA are used to compute a
lower bound for the quantum Fisher information (5); if the
state is not steerable, this is expected to have 4�2Yest as the
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(a)

(b)

FIG. 4. Fisher information. (a) Conditional Fisher information
(FD solid blue, FA dashed yellow) as a function of θ for α = 0.42 rad.
This is derived from the expression for the detection probability p(θ )
obtained by a fit of the data. (b) Measured variance (red) and quantum
Fisher information (blue) as a function of α: The points correspond
to the measured values, while the dashed lines are predictions for the
ideal state. The errors are evaluated through a Monte Carlo routine
with 100 runs.

upper limit. The violation of this condition is reported in
Fig. 4(b): The solid red points indicate the measured variance,
while the open blue points indicate the Fisher information and
sit well above the nonsteerable limit in the whole range of α.

III. DISCUSSION

Our results indicate the YFG and Reid’s criterion offer
consistent information on the presence of steering. Differently
from the latter, YFG also provides a quantitative indication
on the level of steering in the class of states we have tested;
nevertheless it is unclear whether these properties hold in the
general case [29]. This information is also captured by the
steering witness 〈S〉, but this is attained only when exceed-
ing a minimum level of steering. Pursuing the YFG route is
demanding in terms of resources: Obtaining an estimation of
the Fisher information requires performing several measure-
ments, and this compares unfavorably to the more economical
method of Fig. 3(a). On the other hand, the closer inspection
of Bob’s state reveals an EPR paradox for a wider range of
values of α. The method preserves its conceptual importance,
but appears less appealing for technological purposes, such
as verification of steering in networks, especially when aim-
ing at loophole-free arrangements. On the other hand, for
many-particle atomic systems, a measurement of the Fisher
information represent a convenient alternative [43], and the
method may find concrete applications.
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