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Abstract

Nonlinear plasmonics is a bridge linking the conventional nonlinear optical com-
ponents with the contemporary nanoptics. At optical frequencies, metals support
surface electromagnetic modes —surface plasmon-polaritons — that have the ability
to localize light far below the diffraction limit, down to sub-wavelength regions. This
unique property can be exploited to enhance inherently weak nonlinear light-matter
interactions. In this thesis, we present numerical study of second-harmonic genera-
tion (SHG) in distinct plasmonic structures. A part of this thesis comprises the study
of SHG in hybrid plasmonic nanopatch antennas. Exploiting the localized modes
(field enhancements) of the nanopatch system, we demonstrate that the nonlinearities
arising from spacer layer of the nanopatch system can be greatly enhanced. The
presented study enables an efficient and technologically competitive route to real-
ize nanophotonics devices like onchip frequency converter and optical bistability.
Plasmonic Waveguides provide an integrated platform to develop efficient nanoscale
ultrafast photonic devices. In this context, second part of the thesis presents a novel
semi-analytical method to study SHG from plasmonic and/or photonic waveguides
with nonlinearities of its constituents modeled using the “Hydrodynamic Theory of
free electrons”. Nonlocal optical effects, arising due to plasma gas nature of elec-
trons in the media like metal, significantly alter the optical response of the system,
especially, at the sizes much smaller than the incidence of radiation. Our proposed
method, thus, allows the studies in the presence of additional degrees of freedom
and their implications.
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Preface

Interaction of light with metallic nanostructures enables the coupling of free electrons
in metal with the incident electromagnetic (EM) excitations near its surface, formally
known as the surface plasmons. These so-called plasmonic resonances open the
opportunities to manipulate light confine light on the nanoscale. Whereas, their
excitation rely on the geometry of the structure, which may include extended metal
surfaces and the resonances associated the individual metallic nanoparticles.

Nonlinear optical effects are a crucial part in modern photonic applications, in-
cluding the control over the frequency spectrum of laser light, ultrashort pulses
generation, and optical signal processing. Inherently, optical nonlinearity is weaker
as nonlinear responses of a material are governed by the interacting photons in the
material. The nonlinear optical effects, which are proportional to the intensity of
electromagnetic field, can be strengthened in environments providing mechanisms
for field enhancement. The large electromagnetic fields arising from the plasmonic
excitations enable the weaker nonlinear processes, to be substantially enhanced.
Apart from providing the enhanced nonlinear effects with ultrafast response times,
plasmonic nanostructures allow nonlinear optical components to be scaled down to
the sizes at miniaturized scale.

There are several ways to achieve plasmonic-aided boosting of nonlinear optical
effects. For example, strong local fields in plasmonic systems had demonstrated the
surface-enhanced Raman scattering, for applications like single-molecule detection.
For nonlinear optics, this naturally transforms to higher effective nonlinearities of
the metal in plasmonic structure or the neighboring dielectric material. Likewise,
plasmonic excitations can be extremely sensitive to dielectric properties of the
metal and the surrounding medium. This is the basis for label-free plasmonic
sensors: a small change in the refractive index near the metal surface result in
significant modifications of the plasmonic resonance. Finally, plasmonic excitations
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respond on the timescale of femto-seconds, which allow ultrafast modulation and
processing of the optical signals. Nonlinear effects in plasmonics nonstructure could
therefore lead to several intriguing nanophotonic functionalities, and recent years
have saw the emergence of metal nanostructures designed to favor distinct nonlinear
processes.

The main component of the thesis is articulated around the first three chapters.
The first Chapter introduce the basics of linear plasmonics and its applications.
Foundation of nonlinear optics and nonlinear plasmonics are then reviewed. We
highlighted the main scientific concepts and technological achievements in the field
of nonlinear plasmonics and present advanced nonlinear plasmonic models and
systems. The aim of this chapter is to offer a background that allow the reader to
contextualize the main contributions in the following chapters.

The purpose of the second chapter is to show an interesting application of the
plasmonic system to boost the nonlinear optical effects. The studied plasmonic
system, hybrid plasmonic nanopatch antenna, which act as an amplifier to enhance
the nonlinearities at the “plasmonic hot-spot” of system for application of optical
second-harmonic generation. The quasi phase-matching like conditions from the
conventional nonlinear optics are achieved in the nanoscale system to optimize the
second-harmonic generation process. Such a study provide the possibility to enable
efficient on-chip frequency converters.

The third chapter of the thesis is devoted to the study of second-harmonic generation
in plasmonic waveguides. The pith of this chapter is the derivation and application
of a novel semi-analytical formulation to study second-harmonic generation in
plasmonic waveguide. The proposed formulation enables the study of the nonlinear
phenomenon in the presence of variety of nonlinear sources including the sources
arising from the nonlocal optical effects and electron spill-out.



Chapter 1

Plasmonics and Nonlinear Optics

Nanophotonics concerns the study of light-matter interactions at the nanometer
scale [1–3]. Recent years saw a great deal of interest in nanophotonics research
and its applications [4, 5], including the nonlinear optics at the nanoscale [1–5].
Plasmonics is a sub-field of nanophotonics, which primarily studies the nano-optical
phenomena at the interfaces and surfaces of nanostructured metals with dielectrics
and semiconductors [2–5]. This chapter presents an introduction to plasmonics and
its applications in nonlinear optics. We review linear plasmonics in section 1.1. We
then provide a brief introduction to nonlinear optics and nonlinear plasmonics in
section 1.2. Advanced plasmonics models and their nonlinear optical counterparts
are discussed section 1.3. We further introduce the numerical methods utilized in
this manuscript in section 1.4. The current discussion aims to set a pedagogical
foundation for the works presented in the subsequent chapters.

1.1 An overview of plasmonics

A fundamental limitation on optical confinement is posed by diffraction: light cannot
be confined to regions much smaller than one-half of its wavelength [6]. Plasmonics
overcome this limitation, and its implications are among the major driving forces
in nanophotonic-based research and technological advancements [4]. Plasmonic
systems owe their sub-diffraction characteristics to surface plasmons (SPs): the
collective excitation of free electrons at metallic surfaces and nanostructured par-
ticles. SPs were predicted by Richie [7] while studying energy loss of electrons
passing through thin metal films, and later observed by Powell and Swan [8]. These
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excitations take two distinct forms: a freely propagating electron density wave along
metal surfaces called the Surface Plasmon Polaritons (SPPs), and oscillations of
localized charges in metallic nanoparticles known as the Localized Surface Plasmons
(LSPs). Plasmonics is concerned with a rich set of exotic optical phenomena. In the
following, we review the main principles and highlight some applications.

1.1.1 Basics of Plasmonics

Most properties of surface plasmons can be described using a classical electrody-
namics approach based on Maxwell’s equations [2, 3]. The macroscopic Maxwell’s
equation set [2, 3, 9] reads as (in SI units):

∇×E =−∂B
∂ t

, (1.1a)

∇×H =
∂D
∂ t

+J, (1.1b)

∇ ·D = ρ, (1.1c)

∇ ·B = 0, (1.1d)

with E being the electric field, D the electric displacement field, the magnetic field B,
the magnetization field H, the charge density, and J being the electric current density.
All the quantities above are dependent on time (t) and space (r).

Commonly, the electric displacement field relates to the electric field by the electric
polarization density P defined as:

D = ε0E+P. (1.2)

Similarly, magnetization field and magnetic field are related by magnetic polarization
density M defined as:

B =
1
µ0

H+M, (1.3)

where in Eqs. (1.2-1.3) the ε0 and µ0 represent the permittivity and permeability of
free space, respectively. The electric (P) and magnetic (M) polarization densities
describe the material’s response to the EM fields. These quantities are defined in
terms of electric dipole moment dp and magnetic dipole moment dm per unit volume
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of the material [9], defined as:

P =
dp
dt

= ε0χE, (1.4a)

M =
dm
dt

= µ0χmH. (1.4b)

Both the polarization and magnetization are also dependent on the space and time.
In the right-hand side of Eq. (1.4) the terms are first-order series expansions of P
and M in terms of the electric (E) and magnetizing fields (H), respectively. We shall
show in section 1.2.1 that the nonlinear response of the materials can be incorporated
by adding higher-order terms to the polarization field. The Eqs. (1.2-1.3) together
with Eq. (1.4), can be rewritten as:

D = ε0εrE, (1.5a)

B = µ0µrH, (1.5b)

which are formally known as constitutive relations, with χ = εr −1 and χm = µr −1.
The quantities εr and µr are relative permittivity and permeability of materials,
defined as the ratios between the material’s permittivity and permeability to the
corresponding free space values. The material parameters combined with boundary
conditions [2, 3, 9]– the continuity of the components of the fields (electric and
magnetic) parallel to the interface between two different adjoining materials – en-
ables finding the closed-form solutions of Eq. (1.1) to specify EM response of a
system.

We will now discuss the two most basic plasmonic systems: the metal-dielectric or
metal-insulator (MI) half space and the metallic sphere. The purpose of presenting
these systems [2, 3] is to introduce basic terminologies in plasmonics and modes
of operations in distinct plasmonic systems. We will be considering non-magnetic
materials for the discussed problems, i.e., µr = 1 and M = 0 (so will be the case
throughout the manuscript). Moreover, the dielectric function of the metal is obtained
through the well-known Drude model [2, 3], defined as:

εmetal = 1−
ω2

p

ω2 + iγω
, (1.6)
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with ωp being the plasma frequency defined as ωp =
√

n0e2

meε0
, γ is the electron

collision rate, and ω is the angular frequency of the electromagnetic wave. In the
expression for ωp, the n0 electron density e is the charge of one electron, and me is
the mass of one electron. This model provides reliable results in the local response
approximation (LRA), i.e., when microscopic dynamics relating to the quantum
mechanical nature of the free electrons in the metal are neglected [10, 11].

Surface plasmon propagation at metal-Dielectric interface

Surface electromagnetic waves that travel on the interface between a metal and a
dielectric material are surface plasmons polariton (SPPs). These are charge oscilla-
tions at the metal surface, coupled to the propagating EM waves. Here, we discuss
the SPPs excited at the infinite metal-dielectric (MI) half-spaces (see Fig. 1.1).

Assuming time-harmonic fields, i.e., E(r, t) = E(r)e−iωt , and no external charges,
i.e. ρ = 0, combining Eqs. (1.1) with the constitutive relation Eqs. (1.5) we get the
usual following wave equation:

∇
2E(r)− ε(r)k2

0E(r) = 0, (1.7)

with k0 =
2π

λ
being the free space wavenumber of the EM wave having wavelength

λ , and ε(r) is the relative the permittivity of different materials in the EM system.

Fig. 1.1 An infinite metal dielectric half space.
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For the considered geometry in which interface traverses indefinitely in the xz-plane
(see Fig. 1.1), the solution to the Eq. (1.7) takes the form E(x,y,z) = E(x)eikzz. Upon
back substituting this form of solution to Eq. (1.7) yields:

∂E(x)
∂ z2 +(ε(r)k2

0 − k2
z )E(x) = 0 (1.8)

where kz is the propagation constant of the surface plasmon polaritons.

It can be shown [2, 3] that the propagation constant of the SPPs at the MI interface
with relative permittivity of the metal and dielectric denoted as ε1 and ε2, respectively
is the following:

kz =

√
ε1ε2

ε1 + ε2
. (1.9)

Note that both ε1 and ε2 can be frequency dependent. Now, we are ready to charac-
terize the surface plasmon polaritons at the MI interface:

• The surface plasmons polaritons (SPPs) are characterized by a broadband
dispersion relations (see Fig. 1.2).

Fig. 1.2 Dispersion relation of the SPP propagation along the MI interface for air: the
SPP (dash-dotted line) and light line (dotted line), and silica as dielectric: SPPs (solid
line) and the corresponding light line (dashed line). The horizontal (dot-dot-dashed) lines
represent the SPPs wavelengths in each of the case. In extracting these result, the permittivity
of the metal is described using the Eq. (1.6) with parameters ωp = 1.34× 1016 s−1 and
γ = 1.07×1014 s−1.
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• Propagation constant “kz” always remained on the right-hand side of the light
line as can be seen in Fig. 1.2. Such an increase in the wavevector parallel
to the surface of the metal determines an increase in the mode confinements
perpendicular to the interface (x-direction). Mathematically, this argument can

Fig. 1.3 Finite element simulation of surface plasmon propagation along metal-dielectric
(silica) half-spaces; the black-line (x−component of the field) shows decay of the field
transverse to prorogation’s direction of the mode, and red-line represent the intensity decay
of the SPP in the direction of propagation.

be backed by the fact that the field’s amplitude decay is proportional to e−|kx||x|

(see Fig. 1.3, the black line) with kx =
√

k2
z − εmetal(

ω

c )
2 [2, 3]. This property

shows the SPPs’ potential to concentrate light to the subwavelength volumes.

• The intensity of the field decays exponentially in the direction of propagation.
For the field with amplitude A, the decay of intensity of the field in the direction
of propagation is proportional to |A|2e−Im(kz)z (see the red line in Fig. 1.3)

• Propagation length of a SPP mode, which represent the energy attenuation of
the mode along the direction of propagation can be defined as L = 2Im(kz).

Although discussed for a simple configuration, the SPPs’ properties can be general-
ized for a variety of systems [12–14]. Optical configurations that support the SPPs
are known plasmonic waveguides. In section 1.1.3, we will present latest advances
in nanophotonics concerning plasmonic waveguides.
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Electromagnetic scattering from a metallic sphere

Collective oscillations of the electrons that propagate along metallic surface are
called SPPs. In optically small metal particles, the SPPs’ propagation is hindered
due to the spatial confinement, and the localized surface plasmon modes appear.
If dimensions of an object are much smaller than the wavelength of the incident
electromagnetic radiation, the EM problem can be accurately treated within the
quasi-static limits [2, 3, 9]. Under this limit, the phase of the harmonically oscillating
EM field is almost uniform over the particle volume (see Fig. 1.4(a)). So, one
can consider problem such that a particle is immersed in an electrostatic field. The
electric fields, in this scenario can be related to the scalar electric potential, denoted
by φ , [2, 3] as E =−∇φ .

Fig. 1.4 (a) Illustration of an object’s excitation with an electromagnetic field under quasi-
static limits and (b) the EM field incident on a sphere of diameter d.

Consider a homogeneous isotropic spherical nano-particle of diameter d placed in a
uniform static electric field having amplitude E0 such that E = E0ẑ. The surrounding
medium of the sphere is a nonabsorbing isotropic dielectric with permittivity ε2, and
the particle itself is described by a complex valued dielectric constant ε1 defined
using Eq. (1.6) (see Fig. 1.4(b)). The scalar electric potential for a sphere immersed
in an electrostatic field is the solution to Laplace’s equation such that ∇2φ = 0. The
relation for the electric potential in the surrounding of the sphere is the following
[2, 3]:

φ =−E0rcosθ +
p · r

4πε0ε1r3 , (1.10a)

p = 4πε0ε1a3
0

ε2 − ε1

ε2 + ε1
E. (1.10b)
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Fig. 1.5 EM scattering from a metallic nanosphere of 60 nm diameter (a) the absorption
efficiency and (b) electric field distribution; black lines show the scattered EM field from the
sphere.

In the above Eq. (1.10) the a0 =
d
2 is the radius of the spherical particle, and p is the

dipole moment which is proportional to the electric field inside the sphere. Using
the expression for p, one can define the polarizability of a sub-wavelength sphere of
radius a0 as [2, 3, 9]:

α = 4πa2
0

ε2 − ε1

ε2 + ε1
. (1.11)

From the Eq. (1.11) it can be deduced that the polarizability can undergo a resonant
enhancement, giving rise to localized surface plasmon resonances (LSPRs) [2, 3].
The characteristics LSPRs excitation in a nanosphere are the following:

• The excitation of LSPRs results in the enhancement of the absorption and
scattering cross-section of the sphere defined as:

Cabs = kIm[α] = 4πka4
0

[
ε2 − ε1

ε2 + ε1

]
, (1.12a)

Csca =
k4

6π
|α|2 = 8π

3
k4a6

0

[
ε2 − ε1

ε2 + ε1

]2

, (1.12b)

with k = 2π/λ . It can bee seen from the Eq. (1.12) that for smaller particles
(i.e., a0 << λ ) the absorption cross-section Cabs dominates, however, with
increasing particles’ sizes the scattering cross-section Csca becomes more
pronounced.
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• The resonant position (wavelength) is highly dependent on the material pa-
rameters of the nanoparticle system as well as the physical dimensions of the
scatter, as deduced form Eq. 1.11.

• LSPR has features such as confinement of light within a nanometer regions
around the sphere and a large electric field produced at the LSPR condition
(see Fig. 1.5(b)).

• LSPR excites for a narrow spectral range (see Fig. 1.5(a)). However, such a
resonant response has its own implications, to be introduced in section 1.1.2

The systems supporting LSPR are generally referred to as optical nanoanetnnas. In
the next section, we will discuss some of their interesting properties.

1.1.2 Nanoantennas

Localized surface plasmon resonance (LSPR) supported by noble metal nanoparticles
make them excellent absorbers and scatterers in the visible spectrum, ideal for a
variety of nanophotonic applications. Indeed, the large electric fields induced in the
proximity of the particle due to the excitation of LSPRs can significantly enhance
light-matter interactions [2, 15]. Nanoantennas offer opportunities for efficient
conversion of propagating free-space light into highly localized and confined optical
fields at the nanoscale, and the other way around [16]. Nanoantennas have shown
their potential in a range of optical applications, which we will briefly discuss in the
following paragraphs. For a broad overview on modeling and characterization of
such nanodevices, we refer the monograph by Agio and Alu [17].

The use of nanoantennas spans through a wide range of applications. It is possible
to use arrays of nanoantennas to achieve, for example, imaging, realized through
the spectrally well-designed LSPRs [18]. Plasmonic nanoantennas supporting Fano-
like resonances find their applications to enhance higher-order multipolar radiative
transitions. Optical counterparts to radio-frequency antennas have enabled the strong
directivity in the scattered angular intensity, as well as optical designs that offer the
possibility of forward/backward anisotropic scattering and wavelength-dependent
switching of directionality [19]. Similarly, distinct designs allow for the polarization
conversion and polarization-sensitivity or -insensitivity [20, 21]. Acoustic vibrations
can be optically excited in nanoparticles, used as nano-sources for hyper sound
generation [22].
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Nanoantennas are also used for surface-enhanced spectroscopy. The underlying phe-
nomenon in such a process exploits plasmonic field enhancements to boost signals
from few or even single molecules [19]. For biomedical applications, plasmonic
nanoparticles play a crucial role in the development of nano biosensors for specific
biomolecules or as biomarkers for local thermal treatment and drug delivery [23].
Optomechanical plasmonic resonators can utilize spectrally narrow resonances of-
fered by nanoantennas for tuning and sensing applications [24]. Lately, researchers
have explored the utility of a periodic array of the plasmonic antenna as an ideal
optical absorber [25]. Such a design have lead to the realization of designs like
selective emitters, sensors, and spatial light modulators [26–28].

1.1.3 Plasmonic waveguides

The subwavelength confinement associated with the SPPs and their propagation
along the guide offers opportunities for plasmonic waveguides (PWs) [13, 14, 29].
In this section, we will briefly discuss some applications of PWs. For a complete
review on the subject we refer the reader to Ref. 12 and Ref. 30.

With the ever-decreasing sizes and the ever-increasing processing capabilities of
modern electronic devices, the need for efficient and high-speed links to carry infor-
mation is ubiquitous. All-optical (silicon/dielectric-based) interconnects, capable of
handling high-speed communications, has been an attractive solution in that regard
[31]. However, due to their diffraction-limited operations, the miniaturization of
such optical components to the sizes of current electronic devices is not possible. On
the contrary, the integration of plasmonic components (waveguides/couplers) into
subwavelength systems for information processing/exchange has been emerged as
a viable solution [13, 14]. A collection of PW-based counterparts of conventional
digital/electronic elements has been conceived. These include devices like plasmonic
nanolasers/modulators, optical digital-gates, routers, photon-electric converters,
control switches, and devices such as Mach-Zehnder Interferometers (MZIs) [32].
Moreover, plasmonic waveguides demonstrate several quantum optical phenomena
like single-photon emission, the SPPs enabled coupling of two emitters for applica-
tions in controlling of superradiance of emitter-pairs, and qubit-qubit entanglement
generation [33, 34]. SPPs confinement at the metal surface has proven instrumental
for realizing the biosensors with improved sensing capabilities. PW-based biosensors
find their role in various medical applications such as the early-stage disease detec-
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tion and measurement of blood glucose and blood hemoglobin [35, 36]. Another
application of plasmonic waveguide is the near field scanning optical microscopy
(NSOM), which is an effective tool in investigation of nanoscale light-matter in-
teraction. Plasmonic NSOM probes are capable of confining high density of light
to sub-nanometer spots, useful in high-density data storage, molecular trapping,
nanolithography, and nano spectroscopy [37].

1.1.3.1 Modes orthogonality in optical waveguide

For distinct modes m and n of any arbitrary z-directed waveguide, the electromagnetic
fields takes the form:

E(m,n)(x,y,z) = Ẽ(m,n)(x,y)exp(iκ(m,n)z) (1.13a)

H(m,n)(x,y,z) = H̃(m,n)(x,y)exp(iκ(m,n)z) (1.13b)

with κ(m,n) being propagation constants of the modes m and n, respectively and
{Ẽ(m,n)(x,y),H̃(m,n)(x,y)} are the fields in the transverse direction. The orthogonality
between the modes of the waveguide states that, for m ̸= n [38, 39]:∫

S
(Ẽm × H̃∗

n) · ẑ dS = 0.. (1.14)

In Eq. (1.14) the quantities Ẽm ,H̃m are the transverse vector fields (throughout the
discussion in this section, the tilde vectors shall represent the fields transverse to the
direction of propagation), ∗ denote the conjugate operation, S is the cross-sectional
plane, and ẑ is the unit vector normal to it. Eq. (1.14) states that there is no power
exchanged between fields of different modes [38]. This power orthogonality property,
however, is valid for lossless waveguides [38–40]. The expression for the generalized
orthogonality between the waveguide modes [38–40] is:∫

S
(Ẽm × H̃n) · ẑ dS = 0. (1.15)

Note that this relation is still valid only for the waveguides composed of isotropic
material [38–40].
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Proof of the generalized orthogonality

The following proof of the Eq. (1.15) is based on the assumption that there is no
outward flux fields from the side walls of the waveguide. Maxwell’s curl equations
(i.e., Eq. (1.1a) and Eq. (1.1b)) for the time-harmonic fields the modes m and n result
in:

∇×Em =− jωµHm (1.16a)

∇×Hm = jωεEm +Jm (1.16b)

∇×En =− jωµHn (1.16c)

∇×Hn = jωεEn +Jn (1.16d)

Combining these equations and utilizing the vector identity ∇ · (A×B) = B · (∇×
B)−A · (∇×B) give:

∇ · (Em ×Hn −En ×Hm) = Jm ·En −Jn ·Em

which for a sourceless media, i.e., for the vanishing right-hand side of the above
expression results in:

∇ · (En ×Hm −Em ×Hn) = 0. (1.17)

Integrating both side of Eq. (1.17) over the volume bounded by two cross-sections at
z = z1 and z = z1 +dz (see Fig. 1.6) and making use of the Gauss’ theorem yields
[38–40]:∫

Ω

∇ · (En ×Hm −Em ×Hn)dV =
∫

A
(En ×Hm −Em ×Hn) · n̂ dA. (1.18)

Where A is the surface closing the chosen volume Ω. With our initial assumption
of fields’ flux through the side walls being zero, and making use of the Divergence
Theorem [38, 39], the Eq. (1.18) reduces to:(

∂

∂ z

)∫
S
(En ×Hm −Em ×Hn) · ẑ dS = 0. (1.19)

with integration taken over the cross-sectional area denoted by S (see Fig. 1.6). The
Eq. (1.19) is what known as the Lorentz Reciprocity Theorem [38–40] for media
with its characteristics invariant along the z−direction.
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Fig. 1.6 A differential length of an arbitrary shape (not necessarily a cylindrical) waveguide.

Substituting the forms of fields for modes m and n from Eq. (1.13) back in Eq. (1.19),
and employing the differential operator ∂

∂ z yields:

(κn +κm)
∫

S

(
Ẽn × H̃m − Ẽm × H̃n

)
· ẑ dS = 0. (1.20)

which shows that unless κn =−κm∫
S

(
Ẽn × H̃m − Ẽm × H̃n

)
· ẑ dS = 0 (1.21)

Now if one consider the mode m is left unchanged, while the mode n is taken to be
the a reflected modes, i.e., κn =−κn, then from Maxwell’s equation H̃n also flips its
sign if Ẽn is kept unchanged. Under this new scenario the Eq. (1.19) becomes:

(κn −κm)
∫

S

(
Ẽn × H̃m + Ẽm × H̃n

)
· ẑ dS = 0. (1.22)

which again shows that unless κn = κm∫
S

(
Ẽn × H̃m + Ẽm × H̃n

)
· ẑ dS = 0 (1.23)

Adding the Eq. (1.21) and Eq. (1.23), and considering that κn±κm, we obtain:∫
S

(
Ẽn × H̃m

)
· ẑ dS = 0 (1.24)

The Eq. (1.23) and Eq. (1.24) are the mode’s orthogonality relations, extensively
used in excitation and scattering problems of the waveguide. In rearranged forms,
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these equations can be written as:∫
S

(
Ẽn × H̃m + Ẽm × H̃n

)
· ẑ dS = 2Nnδ(n,m) (1.25a)∫

S

(
Ẽn × H̃m

)
· ẑ dS = Nnδ(n,m) (1.25b)

Nn = 2
∫

Ω

(
Ẽn × H̃n

)
· ẑ dS (1.25c)

and δ(n,m)= 1 only if the n=m; otherwise it is equal to zero [39]. Note that contrarily
to the orthogonality relation of Eq. (1.14), Nn does not represent the power carried
by the n-th mode.

Modal expansion of the fields in a waveguide

Once the orthogonality between distinct modes in a waveguide have been established,
we can expand an arbitrary field distribution over the guide’s cross-section in terms
of its modes. Consider the transverse electric field Et(0) over the cross-section z = 0
excites the waveguide. The expansion of the transverse field at any point along the
guide, in terms of the excited modes, is the sum defined as:

Et(z) = ∑
n

anẼnexp(iκnz) (1.26)

where the ans are the excitation coefficients of each mode [39]. If Et(0) is known,
the Eq. (1.26) can be written as:

Et(0) = ∑
n

anẼn

multiplying the above expression by H̃n and using the orthogonality relation from
Eq. (1.25b), the excitation coefficient an can be obtained as:

an =
1

Nn

∫
S
(Et(0)× H̃n) · ẑdS (1.27)

Likewise, the duality of the EM fields yields an alternative for obtaining the excitation
coefficients in terms of the magnetic fields as:

an =
1

Nn

∫
S
(Ẽn ×Ht(0)) · ẑdS (1.28)
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These relations are valid if the backward propagating modes are neglected.

On the contrary, backward propagating modes cannot be neglected, both the trans-
verse electric and magnetic fields at z = 0 are needed to determine the field expansion.
In this case, the transverse electric and magnetic fields in a waveguides expanded in
terms of the modal fields are:

Et(z) = ∑
n

anẼnexp(iκnz)+bnẼnexp(−iκnz), (1.29a)

Ht(z) = ∑
n

anH̃nexp(iκnz)−bnH̃nexp(−iκnz). (1.29b)

where, in the above expressions, the terms with multiplication factor exp(−iκnz)
are the reflected modes, present in the guide due to any type of discontinuities.
Substituting z= 0, multiplying the Eq. (1.29a) by H̃m and Eq. (1.29b) Ẽm, integrating
over the cross section, and using the orthogonality relationship Eq. (1.25b) yields:

∫
S
(Et(0)× H̃m) · ẑdS = (am +bm)Nm, (1.30a)∫

S
(Ẽm ×Ht(0)) · ẑdS = (am −bm)Nm. (1.30b)

Solving the Eq. (1.30) for the am and bm, we obtain:

am =
1

2Nm

∫
S
(Et(0)× H̃m + Ẽm ×Ht(0)) · ẑdS, (1.31a)

bm =
1

2Nm

∫
S
(Et(0)× H̃m − Ẽm ×Ht(0)) · ẑdS. (1.31b)

which is general expression for modal excitation by known aperture fields [39,
41].

These orthogonality properties will be used in chapter 3, where we will derive
a generalized formulation to calculate second-harmonic generation in plasmonic
waveguides.

1.2 Plasmonics for nonlinear optics

Nonlinear optics is a growing field, and nonlinear optical phenomena are at the
core of many emerging technologies from optical signal processing, to optical
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computers, ultrafast switches, ultra-short pulsed lasers, sensors, laser amplifiers,
and many others [42, 43]. Nevertheless, nonlinear optical systems rely on bulkier
components[42, 43], which hinder their integration with modern-day devices of
miniaturized scales [5, 14, 44]. Moreover, conventional nonlinear optical systems
require a high rate of power consumption to generate nonlinear effects of practical
significance [43]. On the other hand, plasmonic designs possess nanoscale footprints,
and the localized field enhancement associated with plasmonic modes could lead
in the context of nonlinear optics to lower power consumption [5, 44]. In this
section, we present plasmonic systems’ application for nonlinear optics. First, we
review the main principles of nonlinear optics, paying particular attention to the
second-harmonic generation process, and later discuss some applications in nonlinear
plasmonics.

1.2.1 Basics of nonlinear optics

Nonlinear optical phenomena arise when the electromagnetic response of a material
system is no longer proportional to the amplitude of applied EM fields. Typically,
these phenomena are only observable by employing laser light, which is sufficiently
intense to induce a nonlinear optical response in the material and generate the
corresponding effects. Following the discovery of laser by Maiman [45], seminal
works on nonlinear optics are the study of the second-harmonic generation process
by Franken et al., and Bloembergen and Pershan in 1960’s [46, 47]. Lasers have
physical characteristics of being monochromatic, coherent, and squeezing light to
areas as small as a few hundreds of square microns. As a result, it is possible to
obtain electrical fields associated with the propagating waves, comparable to those
inside atoms that can induce local modifications in the material composition to
induce the nonlinear responses [42].

Nonlinear polarization and electromagnetic formulation of nonlinear interac-
tions

In order to describe the meaning of optical nonlinearity, let us consider Eq. (1.4a),
i.e., how the polarization P of a material system depends upon the strength of the
electric field E. For the nonlinear optics, polarization can be generalized for a power
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series of the electric field intensity as follows:

P(t) = ε0

[
χ
(1)E(t)+χ

(2)E2(t)+χ
(3)E3(t) . . .

]
(1.32)

where χ(1) is equal to χ in Eq. (1.4a), i.e., the linear susceptibility, while χ(2)

and χ(3) are known as second- and third-order nonlinear optical susceptibilities,
respectively. Distinct physical processes arises due to a second- and third-order
polarization [42]. In general, quantities describing material properties (χ(s)) are
tensors [42]. For condensed matter χ(1) is of the order of unity, χ(2) is of the order
of 10−12 m/V and χ(3) is 10−21 m2/V2, such that the 12 and 21 orders of magnitude
of difference is with respect to linear susceptibility. It is, therefore, evident why
sufficiently intense electromagnetic radiations such as the lasers can only excite
the nonlinear effects. Note that in the writing of Eq. (1.32), the assumption is that
the response time of the mediums to an EM excitation is instantaneous, i.e., the
interaction time between the electric field oscillations and the bound electrons in the
atoms is very short.

From simple constraints on the symmetry of the material’s response to the external
electric field, it can be shown that the second-order nonlinear optical interactions of
the second-order can occur only in non-centrosymmetric materials 1. Consequently,
second-order susceptibility vanishes in liquids, gases, and amorphous solids, and
these materials cannot produce nonlinear second-order optical interactions. Nonlin-
earities of the third order, on the other hand, can arise both from centrosymmetric
means as well as non-centrosymmetric material systems [42].

At this point it is appropriate to ask how polarization contribute to the generation
of nonlinear optical effects. The reason is related to the fact that a time-varying
polarization field can act as a source of new components of the electromagnetic field.

1In a centrosymmetric crystal, change in the sign of the electric field also changes the sign of the
polarization. This implies that a relation between the polarization and electric fields as for which one
has:

−P(2) = χ
(2)(−E)(−E)

comparing the above equation with Eq. (1.32) we obtian:

P(2) =−P(2)

which is satisfied only if the P(2) = 0 and so, χ(2) = 0.
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To elaborate, consider the general form of the wave equation:

∇×∇×E+µ0
∂ 2

∂ t2 D = 0 (1.33)

which can be derived from Eqs. (1.1-1.2) after some vector algebraic manipulation
[42]. Taking in to account the Eq. (1.32), material’s electric displacement field can
be expanded as: D = ε0E+P(1)+PNL. The Eq. (1.33) can be rearranged then:

∇×∇×E+µ0
∂ 2

∂ t2 (ε0E+P(1)) =−µ0
∂ 2

∂ t2 PNL

In the above expression, the term ε0E+P(1) is proportional to linear electric induction
D(1), so the above expression can be rewritten as:

∇×∇×E+µ0
∂ 2

∂ t2 D(1) =−µ0
∂ 2

∂ t2 PNL (1.34)

We can interpret the Eq. (1.34) as inhomogeneous vector wave equation in which
the polarization PNL associated with the nonlinear response of the medium drives
the electric field. The governing physics can be interpreted on the following argu-
ments. The polarization induced is a consequence of separation of charges within
the material. The second-order time derivative of PNL is, thus, a measure of the
acceleration of the charges within the medium. This is a well-known fact in classi-
cal electromagnetism that accelerated charges generate electromagnetic radiations
[42].

Second-order nonlinear optical processes and second-harmonic genera-
tion

Let us consider a nonlinear material having the non-zero susceptibility of the second-
order, which contains an optical field consisting of two distinct frequency compo-
nents:

E(t) = E1(t)eiω1t +E2(t)eiω2t + c.c (1.35)

where c.c. represents the complex conjugate of the fields. Considering the Eq. (1.32),
the nonlinear polarization of the medium can be written as:

P(2)(t) = ε0χ
(2)E2(t)



1.2 Plasmonics for nonlinear optics 19

substituting the Eq. (1.35) in the above expression yields:

P(2)(t) =ε0χ
(2) [E1(t)eiω1t +E2(t)eiω2t + c.c

]2

=ε0χ
(2)(E2

1 e−2iω1t +E2
2 e−2iω2t +2E1E2e−i(ω1+ω2)t+

2E1E2e−i(ω1−ω2)t + c.c)+2ε0χ
(2)(E1E∗

1 +E2E∗
2).

From the expression above, we can observe that the nonlinear polarization of the
second-order is a series of contributions at different frequencies. According to the
Eq. (1.34), each of the contribution can lead to the generation of electromagnetic
radiation at the corresponding frequency. The complex amplitudes of different
components of the polarization at each frequency are given by:

P(2ω1) =ε0χ
(2)E2

1 (SHG)

P(2ω2) =ε0χ
(2)E2

2 (SHG)

P(ω1 +ω2) =2ε0χ
(2)E1E2 (SFG)

P(ω1 −ω2) =2ε0χ
(2)E1E∗

2 (DFG)

P(0) =2ε0χ
(2)(E1E∗

1 +E2E∗
2) (OR)

(1.36)

The polarization components in Eq. (1.36) are labeled with the name of the physical
processes to which they contribute: optical Second-Harmonic Generation (SHG), the
Sum-Frequency Generation (SFG), Difference-Frequency Generation (DFG), and
finally the optical rectification (OR). The polarization component that lead to the
optical rectification process does generate the electromagnetic radiation. In fact, its
second derivative is zero. However, in this process a static electric field is produced
through the nonlinear source. Finally, note that, according to the complex notation,
for each of the non-zero frequencies, there will be a corresponding contribution
to the same frequency changed in sign. However, it is not necessary to explicitly
indicate all these contributions as they are simply the complex conjugate of those in
the list above [42].

Form Eq. (1.36), we see that nonlinear polarization has four non-zero frequency
components. Nonetheless, no more than one of the frequency components will
be usually available with noticeable intensity in the radiation generated during the
nonlinear optical interactions. In the case of nonlinear optical crystals, we can link
this aspect to satisfying certain Phase-Matching conditions (to be introduced in
the next section). Operationally, the nonlinear crystal’s orientation and the input
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Fig. 1.7 (a) the schematic illustration and (b) the energy-level diagram of the SHG process.

radiation’s polarization determine the excited frequency component of the nonlinear
polarization [42]. For nanostructures, the excitation of the nonlinear polarization
depends on the spectral and spatial characteristics of the resonances supported by
the structure and its overlap with the orientation of the nonlinear crystal. We will
expand on this fact in chapter 2.

1.2.1.1 Second-Harmonic Generation

It is difficult to generate laser emissions in the short-wavelength part of the visible
and near-visible range of the EM spectrum. Nonlinear optical frequency mixing, on
the other hand, enables the generation of new short wavelengths from the existing
lasers. In the second-harmonic generation (SHG) process, an input frequency passes
through a nonlinear crystal to generate light twice the input frequency. The first
experimental demonstration of the SHG, at the optical frequencies, goes back to 1961
by Franken et al., [46]. The study revealed that focusing a ruby laser of wavelength
(λ = 694 nm) on a crystalline quartz plate generated optical radiations at twice the
input frequency (i.e., at λ = 347 nm).

Let us consider Fig. 1.7 for a schematic visualization of the SHG. Fig. 1.7(a)
illustrates the process: an illumination of frequency ω1 on a medium with a second-
order nonlinear response generates the radiation, which is twice the frequency of
the illumination. Fig. 1.7(b) describes the SHG process in terms of the photonic
interactions. It shows the annihilation of two photons of frequency ω1 resulted in
the creation of a photon at frequency 2ω1 during a quantum-mechanical process
[48]. Note that in Fig. 1.7(b), the solid line represents eigenstates of the atom with
a distinct energy value. In comparison, the dashed lines indicate those which are
known as the virtual energy levels. The energy of the virtual levels is equal to the
energy of the radiant fields [42].
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We now present analytical description of the SHG process in a nonlinear crystal [42].
For the time-harmonic fields, the Eq. (1.34) can be rewritten as:

∇×∇×E− εrk2
0E =−µ0ω

2PNL (1.37)

where we have considered D(1) = ε0εrE which is the linear polarization of the crystal
and k0 = ω

√
µ0ε0. Considering crystal’s second-order nonlinear response χ(2),

ω1 and ω2 = 2ω1 representing the fundamental (FF) and second-harmonic (SH)
frequencies, respectively; using the Eq. (1.36) then yields the nonlinear polarization
with the following frequency components:

PNL = ε0χ
(2)E2 =⇒

PNL
ω1

= 2ε0χ(2)E∗
ω1

Eω2

PNL
ω2

= ε0χ(2)E2
ω1

Utilizing the forms of the polarization defined above, the wave equation at each
frequency can be defined as:

∇
2Eω1 + k2

1Eω1 =−2µ0ω
2
1 χ

(2)E∗
ω1

Eω2 (1.38a)

∇
2Eω2 + k2

2Eω2 =−4µ0ω
2
1 χ

(2)E2
ω1

(1.38b)

where k1 = n(ω1)ω1
c , k2 = n(ω2)ω2

c . In the expression for k1/2, the n(ω1/2) =√
εr(ω1/2) is the refractive index of material at the fundamental and the SH fre-

quency, respectively.

For a one-dimensional problem (along z, for the system considered in Fig. 1.8), the
solution to the Eq. 1.38 in the form of plane waves Ẽ1(z) = A1e−ik1z at the ω1 and
Ẽ2(z) = A2e−ik2z at ω2 yield:

dA1

dz
=−i

µ0

k2
1

ω
2
1 χ

(2)A∗
1A2e−i∆kz (1.39a)

dA2

dz
=−i

2µ0

k2
2

ω
2
1 χ

(2)A2
1e−i∆kz (1.39b)

where ∆k = k2 − 2k1, and A1/2 are constants amplitudes of the plane waves. It is
wroth mentioning that derivation of the Eq. 1.39 is carried out under the slowly

varying envelope approximation, i.e.,
d2A1/2

dz2 << k1/2
dA

1/2
dz . Fig. 1.8(a) renders the

finite element simulation of SHG through a lossless and isotropic nonlinear crystal.
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Fig. 1.8 SHG through a nonlinear crystal: (a) Finite element simulation of the SHG process
and (b) the normalized second-harmonic intensity versus the propagation distance z and its
comparison.

Trends show that the amplitude for the SH builds up along the length of the crystal.
Fig. 1.8(b) provides a comparison of the calculated intensity with the analytical
solution of the Eq. (1.39). The reason for the FF field’s decay during propagation
along the crystal in (see Fig. 1.8) is that in our simulations, we have considered
that the input beam loses energy to the converted SH beam. In most experimental
conditions, however, the power lost by the input beam due to the conversion to the
SH frequency remained negligible, i.e., dA1/dz = 0 in Eq. (1.39). This assumption
is formally known as the undepleted pump approximation. Throughout the draft,
we will operate under this assumption. Note here that for the trends presented in
Fig. 1.8, we have considered the refractive indices of the material at the interaction
wavelengths in the SHG process are identical, i.e., nω1 = nω2 or ∆k = 0 in Eq. (1.39).
In most practical scenarios, this consideration is not valid due to the dispersive nature
of the matter, however. In the following we detail about the consequences of the
∆k ̸= 0 on the second-harmonic generation.

Phase-matching condition in SHG process

The Eq. 1.39 shows that the energy transfer between the FF field and the generated
SH can be maximized only if ∆k = 0 or k2 = 2k1. In the vector form:

k2 = 2k1 (1.40)

the above expression is known as the perfect phase-matching condition for the
SHG process. The physical interpretation of the phase-matching is that the linear



1.2 Plasmonics for nonlinear optics 23

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

SH
G 

int
en

sity

P r o p a g a t i o n  l e n g t h  z  

 ∆ k = 0
 ∆ k a
 ∆ k b

Fig. 1.9 Illustration of SHG intensity’s variation for different values of ∆k against the
propagation distance z.

momentum between the interacting fundamental and the generated harmonic fields
must remain conserved. As a direct consequence of the Eq. (1.40), the SHG
conversion efficiency increases proportionally to the propagation length squared, as
shown in the Fig. 1.8(b). The non-phase matched operation, i.e., ∆k ̸= 0, results in a
drastic decrease in the SHG conversion efficiency. Under this operation, the SHG
wave generated at point p1 along crystal length, propagating to another point p2, is
out of phase with the second-harmonic wave at the p2. The resultant interference
of the non-phase matched SHG is described by the factor L2sinc2(∆kL/2) in Eq.
(1.40), where L is the length along the crystal. Fig. 1.9 presents the normalized SHG
intensity for varying values of the ∆k, such that ∆kb > ∆ka. A trade-off between the
maximum generated intensity and the propagation length is apparent. One half of
the distance that divides the two neighboring peaks of SHG interference pattern is
called the coherence length, defined as [42]:

Lcoh =
2

∆k

The coherence length Lcoh stands for the maximum crystal length that is useful in
producing the second-harmonic power. Based on the mismatch between the effective



24 Plasmonics and Nonlinear Optics

Fig. 1.10 Schematic illustration of the phase-matching techniques: (a) the birefringent phase-
matching condition in a negative uniaxial crystal (ne < no) and (b) the quasi-phase-matching
using a periodically poled nonlinear material.

refractive indices of the crystal, which is typically of the order of 10−1 to 10−2 at
the interaction wavelengths of the SHG, the maximum coherence lengths are usually
a few wavelengths.

Phase-matching techniques

In the earlier section, we have emphasized that phase-matching is necessary for an
efficient SHG process. Various techniques have been adopted over the years to fulfill
the phase-matching conditions. One such technique is to use the natural birefringence
of uniaxial crystals [42]. This technique demonstrates propagation along the specific
direction θPM in a negative uniaxial crystal allows for ne(2ω) = no(ω), consequently
∆k = 0 (see Fig. 1.10(a)). Another method widely employed is quasi-phase-matching
(QPM). The chromatic dispersion means that after one coherence length Lcoh a phase
shift of π develops between the nonlinear polarization source and the generated
second-harmonic field. Resultant destructive interference between the polarization
and second-harmonic over propagation lengths larger than Lcoh is detrimental to the
SHG buildup until a 2π difference of phase. In QPM, a π phase shift is engineered
between nonlinear polarization and second-harmonic fields at each multiple of the
coherence length by inverting the sign of χ(2). This scenario then enables the
SHG efficiencies close to those obtained in phase-matched crystals. Fig. 1.10(b)



1.2 Plasmonics for nonlinear optics 25

presents the schematic illustration of the SHG intensity in the quasi-phase-matched
crystal. The oscillation of the polarization vector contributes to the interference-
free SHG propagation in the nonlinear crystal. The period length is double the
coherence length Φ = Lcoh +Lcoh (see Fig. 1.10(b)). In QPM, the modulation of the
nonlinearity is usually realized by the periodic domain inversion in the bulk crystals
or waveguides composed of ferroelectric materials [49, 50]. The process of periodic
domain inversion is known as poling, which can be of electric [49] or all-optical
[50] type. The additional periodic phase (APP) is another technique, which exploits
order/disorder alignment of the nonlinear coefficient to meet the phase-matching
condition in arbitrary nonlinear crystals [51].

1.2.2 Hybrid plasmonic systems for nonlinear optics

Plasmonics guarantees optical devices with miniaturized footprints, ultrafast operat-
ing speeds, and efficient power consumption compared to conventional electronics
systems. These devices connect the microscale dielectric photonic systems and
nanoscale electronics. Recent advancements in nanotechnology and optics have
led to various plasmonic designs for a number of nanophotonic applications [12–
25, 29–37, 52]. Among these designs, plasmonic nanoantenna enable an enhanced
and controllable light-matter interactions as well as efficient coupling between the
far-field radiation and the localized sources at the nanoscale [15–25, 52]. Likewise,
plasmonic waveguides empower an efficient transfer of the optical energy, let’s
say between two points of an optical circuits [12–14, 29–37]. We have already
established a brief introduction of several plasmonic designs and their extraordinary
applications within the linear operational schemes [12–25, 29–37, 52] in the section
1.1.2 and 1.1.3.

Over the past decades, a plethora of nanophotonic research has focused on developing
plasmonic designs for nonlinear optical processes with enhanced efficiencies. With
plasmonic field enhancements at the core of the designated nonlinear phenomena,
such designs enabled efficient integrated frequency converters, nanoscale single-
photon sources, and other nonlinear devices [53–55]. Nevertheless, high losses
associated with plasmonic materials (i.e., metals) still mitigate the benefits of the
field enhancements. Moreover, second-order optical parametric processes such as
SHG are inherently forbidden in centrosymmetric materials like metals by the electric
dipole emission selection rules [53–55]. A perspective to enhance the nonlinear
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interactions is the hybrid plasmonic configurations. Such systems utilize the highly
enhanced localized fields of plasmonic resonances to boost the nonlinearities arising
from the nonlinear material placed at the plasmonic “plasmonic-hotspots”. The
nonlinear matter coupled to plasmonic systems with the plasmonic resonances tuned
to boost the pumped fields in the region of nonlinearity has indeed constituted a novel
concept hybrid nonlinear plasmonics, with nanoantennas and plasmonic waveguides
at the core [56–59]. A variety of nanoantenna designs demonstrated the enhancement
of distinct nonlinear optical phenomena [49, 60–68]. Notably, the phase-matching
conditions in subwavelength sizes of nanoantenna-based optical devices. Likewise,
distinct hybrid plasmonic waveguides, which are the key building block of photonic
integrated circuits, show several nonlinear functionalities across several application
areas [59].

1.2.3 Second-order nonlinear response of metals

Although metals are centrosymmetric materials and the (local) dipole-allowed bulk
nonlinear polarization cancels in a centrosymmetric optical medium [42, 54], the
second-order nonlinearities in such media arise from the higher-order effects [53–55].
According to a widely employed model in the study of the SHG in centrosymmetric
media [54, 69], the nonlinear polarization consists of two components: the dipole
allowed surface nonlinear polarization P(2)

s (r) and the nonlocal bulk nonlinear polar-
ization P(2)

b (r).

Let us consider the metal Ωi immersed in a homogeneous medium Ωe, as illustrated
in Fig. 1.11. The free electrons are kept inside the metal domain by the ion lattice.
Nonlinear optical characteristics arise from two distinct regions of the metal: the
selvedge layer denoted by σ and the bulk domain denoted by Ωb (see Fig. 1.11(b)).

The surface nonlinear polarization P(2)
s (r) arises from the quantum interactions

between the electrons taking place in the domain δ , which can be written as:

P(2)
s (r) = ε0χ

(2)
s : E(ω,r)E(ω,r)δ (r− rs) (1.41)

where in the above expression rs define the selvedge region σ in the Fig. 1.11(b), χ
(2)
s

is the second order surface susceptibility tensor, and Dirac delta-function expresses
the surface like characteristic of the nonlinear polarization. Note here that the in
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Fig. 1.11 Metal domain embedded in a medium (a) and selvedge-bulk regions near the metal
domain boundary (b).

order to define the above expression the fields needed to be evaluated just inside
the metal domain and not exactly at the boundary of the metal. Depending on
the structural features of the metallic surface, which expect for chiral features,
possesses an isotropic mirror-symmetry plane perpendicular on to the interface. The
nonlinear susceptibility χ

(2)
s then possess only three components: χ

(2)
s,⊥⊥⊥, χ

(2)
s,⊥∥∥,

and χ
(2)
s,∥⊥∥ = χ

(2)
s,∥∥⊥, with ⊥ and ⊥ representing the directions normal and tangent to

surface [70, 71], respectively.

Likewise, the bulk nonlinear polarization P(2)
b (r) originates from the bulk domain

of the metal denoted as Ωb in the Fig. 1.11(b). This contribution is expressed as
[69]:

P(2)
b (r) = γ∇i[E(ω,r)E ·E(ω,r)]+δ

′[E(ω,r) ·∇]Ei(ω,r)

+β [∇ ·E(ω,r)]Ei(ω,r)+ζ Ei(ω,r)∇iEi(ω,r)
(1.42)

with γ , δ ′, β , and ζ being the material parameters. The origin of this nonlocal
nonlinear polarization is the electric quadrupoles and magnetic dipole source in the
bulk of the medium [72]. There has been a debate, however, on the influence of
each of these terms to nonlinear optical process. For example, in the case of noble
metals, the ratio between the δ ′ and γ is of the order of v/ω [70], with v being
the damping frequency of free electrons, and this ratio is very small at the optical
frequencies. So, practically the term proportional to δ ′ is neglected. Moreover, the
anisotropy parameter, ζ , in the case of noble metals has a negligible value, so one the
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corresponding term in Eq. (1.42) is also usually set to zero. Furthermore, the term
proportional to ∇ ·E(ω,r) is also usually neglected for spatially non-dispersive media.
Spatial dispersion contributions, however, cannot be ignored in plasmonic structures
where fields are confined to the subwavelength scales, and more advanced models,
to describe nonlinear responses of the metal, are required [53, 55, 73, 74].

1.3 Advanced plasmonics

After having studied some basic notions of plasmonics and nonlinear optics, this
section of the chapter presents the discussion of the theoretical model essential for
understanding the numerical analysis developed later in chapter 3, the Hydrodynamic
model. In the discussion of plasmonic systems in section 3.1, free-electron dynamics
in the metal are modeled with the classical Drude model [2, 3]. The general, descrip-
tion of the electric displacement field in terms of material’s response to the electric
field in the frequency domain are as follows:

D(k,ω) = ε0ε(k,ω)E(k,ω)

while in time domain the above expression can be written as:

D(r, t) = ε0

∫
∞

−∞

ε(r− r′, t − t ′)E(r′, t ′)dr′dt ′

This form of the dielectric function can be simplified in the limits of so-called
local spatial response as ε(k,ω) = ε(ω), which has been the basis for the Drude
model [2, 3]. Such a simplification is valid if the wavelength of electromagnetic
radiation is significantly larger than all the characteristic dimensions of the material).
This assumption, however, does not hold while incorporating the description of
the dynamics of the free carriers on the surface of the material. The context of
the applicability of the hydrodynamic model is, therefore, the same as that of the
classical models [2, 3]: the description of the optical properties of materials with a
high concentration of free charge carriers.
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1.3.1 Hydrodynamic model of free electrons

The hydrodynamic description of free electron comprised of set of semi-classical
equations as follows:

me

[
∂v
∂ t

+v ·∇+ γ

]
v =−e(E+v×H)−∇

δG[n]
δn

, (1.43a)

∂n
∂ t

+∇ · (nv) = 0. (1.43b)

Eqs. (1.43) are the Euler equation and the continuity equation for electron fluid,
respectively. Where, n(r, t) and v(r, t) are the hydrodynamic variables that represent
the density and velocity of the carriers, e and me are the charge and mass, γ is the
scattering rate of electrons, E and H are local electric and magnetic fields, and
and G[n] contains the total internal energy of the electronic system [73, 74]. The
hydrodynamic model was introduced in the 1950s with the predictions of surface
plasmons. In its complete formulation, i.e., Eqs. (1.43), the model allows reproducing
the susceptibility of metals along the entire frequency spectrum. The microscopic
scale interactions can be integrated with the electromagnetic model, which allows
the possibility of studying large-scale electromagnetic systems. This opportunity
does not exist in ab initio-based microscopic models [75], which, although providing
more quantitative results, require a great time and computational resources due
to the complexity of the calculations. Thus, limiting the applicability of such
microscopic approaches only to systems often smaller than those experimentally
realizable. The hydrodynamic model has been applied to describe a great variety
of optical phenomena at the nanometer scale involving materials with free carriers
[10, 11].

The Lorentz term (v×H) and the convective acceleration proportional to v ·∇v in Eq.
(1.43a) can be neglected within the limit of applying the hydrodynamic description
of free electrons to linear optical properties of metallic systems. As for the energy
functional G[n], here, we consider only the quantum pressure term (∇δ p

δn ), which can
be calculated in the context of the Thomas-Fermi theory of the ideal gas of fermions,
obtaining the following expression [10, 11]:

p = ξ n(r, t)5/3



30 Plasmonics and Nonlinear Optics

where ξ = (3π3)(2/3) ℏ
5me

. The term under consideration is also nonlinear, but it can
be linearized and inserted into the model for a complete description of the linear
properties of the systems under consideration. In particular, such hydrodynamic
model constitutes a non-local correction to the plasma gas model of free electrons,
allowing to adequately describe the dynamics of these carriers in nanostructures and
nanoparticles [76], where due to the extremely small size of the system the influence
of non-locality is no longer negligible. In these cases, the dielectric function becomes
[10, 11]:

ε(k,ω) = 1−
ω2

p

ω2 + iγω −β 2k2

with β =

√
(5/3)n2/3

0
me

. However, since the free carrier gas is a real source of optical
nonlinearities, the neglected terms will be introduced, later in this section, to describe
optical nonlinearities of media with free electrons.

The Eqs. (1.43) can be easily rewritten in terms of the polarization field P(r, t)
considering that ∂P

∂ t = J = −env, where J(r, t) is the current density. Using a
perturbative approach, it is possible to write n(r, t) = n0 +nind(r, t), where n0 and
nind = 1

e ∇ ·P are the equilibrium and the induced charge densities, respectively.
Since nind ≪ n0 we obtain, for time-harmonic fields, the equations set:

∇
2E+ k2

0E =−µ0ω
2P, (1.44a)

β
2
∇∇ ·P+(ω2 + iγω)P =−ε0ω

2
pE. (1.44b)

to be solved for the nonlocal response of plasmonic systems within the Thomas-
Fermi approximation [10, 11].

1.3.2 Nonlinear hydrodynamic theory

In order to describe nonlinear hydrodynamic description, specifically for the second-
harmonic generation process, a perturbative approach [77], leads to the following
equations, the first for the polarization in correspondence with the fundamental P1,
the other for the second-harmonic P2 field as:

β
2
∇∇ ·P1 +(ω2

1 + iγω1)P1 =−ε0ω
2
pE1, (1.45a)

β
2
∇∇ ·P2 +((2ω1)

2 +2iγω1)P2 =−ε0ω
2
pE2 +SNL

2 . (1.45b)
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in which

SNL
2 =

e
m

E1∇ ·P1 + i
ω1µ0e

m
P1 ×H1 −

ω2
1

n0e
[P1(∇ ·P1)+P1 ·∇P1]

+
1
3

β 2

n0e
∇(∇ ·P1)

2.

and ω1 if the frequency of the fundamental field. The presented equations are
valid in the hypothesis that the fundamental field is not modified by the harmonic
generated (undepleted pump approximation) [78]. These equations coupled with the
two wave equations of the form Eq. 1.56) (one for each frequency), allow to define
a complete set of equation for the computation of the material’s second-harmonic
generation response. In Eq. (1.45), the terms proportional β 2∇(∇ ·P) describe the
linear nonlocal response for the fundamental and second-harmonic field. The SNL

2

component of Eq. (1.45), on the other hand, includes the contributions that act as a
nonlinear source. Among those, the terms that contain the divergence of polarization,
(∇ ·P1), are purely surface contributions [79–82], i.e., that depend on the behavior
of charge carriers in a region very close to the metal-dielectric interface.

The presence of nonlocality (spatial derivatives) in the description of the polarization
field, i.e., Eq. (1.45) requires the specification of additional boundary conditions
to solve the electromagnetic boundary value problem. Within the Thomas-Fermi
hydrodynamic description, the continuity of the normal component of the polarization
vector, i.e., P−

n = P+
n at the metal surface must be imposed. This assumption is often

combined with a constant equilibrium density n0 in the metal, while being zero
outside [79, 80, 83–85, 55]. Here we remark that although the discussion above is
based on the Thomas-Fermi approximation to describe the nonlocal dynamics of the
material, one can readily add higher order corrections terms to define the generalized
energy functional G[n] in Eq. (1.43) [73, 86], and corresponding nonlinear terms
[74].

1.4 Numerical tools

The principal method used to carry out the numerical simulations presented in the
draft is the Finite Element Method (FEM). In this section, we present the employed
method, We further introduce the commercial software employed to carry out the
simulations and discuss the FEM implementation of the studied problems. Notably,
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here we only summarily describe the key components of the FEM modelling, and
urge the reader to specialized books for details on FEM [87–89].

1.4.1 Finite element method

Partial differential equations (PDEs) express many laws of physics [90]. Analytical
methods, however, provide solutions to only a handful of such problems. Instead, it
is possible discretize PDEs and obtain the corresponding numerical model equations.
Established numerical techniques can be employed to solve the numerical model
equations, whose results represent the approximate solutions of the original PDEs.
The finite element method (FEM) computes such approximations.

Modelling in the FEM is a two-step process:

• Reformulate PDEs in to the variational forms.

• The discretization of the variational forms numerical model equations, solved
using the appropriate numerical methods.

Following, we brief about each of the step and discuss the merits and bottlenecks of
numerical modeling in FEM.

Variational Formulation (the weak forms)

Intuitively, a PDE can be expressed as: Lu = f in Ω

u|∂Ω = 0
(1.46)

with L being the general differential operator, u the unknown function, f a known
function of u, and PDE is defined over a computational domain Ω with boundaries
∂Ω.

The recipe to obtain a variational form to a PDE is to multiply the equation by a
function known as the test function, and integrate the resulting equation over the
entire computational domain. For a “test function φ”, these steps reduces the general
PDE (Eq. (1.46)) to a symmetric bilinear form [87–89] such that:

a(u,φ) =
∫

Ω

Luφdr =
∫

Ω

f φdr (1.47)
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where in Eq. (1.47), the function φ and the unknown solution u belong to the
Hilbert space H. Hilbert space is an infinite-dimensional function space constituting
a collection of functions with certain nice properties. These functions allow for
mathematical operations the same way as ordinary vectors in a vector space. The
forms of Eq. (1.47) is known as the finite element variational formulation.

Discretization of the variational forms

The discretization of finite element variational forms suggests defining a finite-
dimensional subspace V̂h ⊂ H and find the approximate solution uh ∈ V̂h. The uh is
then expressed as a linear combination of a set of basis functions φi ∈ V̂h:

uh(r) = ∑
i

uiφi(r) (1.48)

Substituting Eq. (1.48) into Eq. (1.47), we can rewrite the following linear system to
find the unknown coefficients ui as:

∑
i

uia(φi,φ j)−
∫

Ω

f φ jdr = 0 f or j = 1, ....n (1.49)

with a(φi,φ j) =
∫

Ω
Lφiφ jdr and the unknowns ui are the coefficients in the approxi-

mation of the function u. The Eq. (1.49) constructs a system of equations having the
same dimension as V̂h. If there are n test functions used such that j goes from 1 to n,
a system of n number of equations is obtained according to Eq. (1.49). Here, it is
important to point out that the specifying a trial solution uh is the fundamental step
on which the quality of the finite element approximation depend, and completely
wrong guess may yield a poor FEM approximation.

In Eq. (1.48-1.49), φis are known as the shape functions, which interpolate the solu-
tion values at the nodes of finite element mesh. Appropriate choice of shape functions
is necessary to better approximate the obtained solutions. In the implementation
of FEM these are usually polynomials. Fig. 1.12(a) shows a typical finite element
mesh on a two-dimensional computational domain, formed by the union of triangular
elements. For this discretization, a suitable choice of shape function associated with
ith node of the mesh element (triangle) can be the linear piecewise function having
the value 1 on the node i and the value 0 on all the other nodes. In Fig. 1.12(b), we
present an illustration of approximating an unknown function u considering these
hat-like shape functions. Although for a 1D problem, Fig. 1.12(b) illustrates the
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Fig. 1.12 Components of the finite element method (a) two-dimensional finite element
meshing and (b) illustration of unknown function u (solid red line) approximated with uh
(dashed green line), which is a linear combination of linear basis functions (φi is represented
by the solid black lines). The coefficients are denoted by u0 through u5.

principle. The unknown u could represent, for instance, the non-uniform temperature
distribution along the rod extending in x−direction.

In this context, FEM provides a robust numerical approach for solving arbitrary PDEs
and integral equation-based boundary value problems. It is specifically suitable for
the treatment of multi-scale problems. For example, in the nanoplasmonic systems
[10, 91], it is necessary to resolve for solutions in the regions of sub-nanometers.
Whereas, simultaneously other regions may have effective wavelength of the order
of a micron or more. The finite element method’s adaptive meshing can efficiently
bridge these physical regimes. Another powerful application of such numerical
modeling is linking different problem domains by combining the equation systems
that govern them. A disadvantage of numerical modeling in FEM can be the need
for expensive computing power. Finite element solutions’ accuracy depends on
the number of finite elements that vary with the complexity of the domain and the
physics, and may leading to large a number of numerical degrees of freedom. Another
weak point of the finite element method modeling can be the implementation’s
complexity. Reliable and user-friendly FEM-based platforms are a need of the
hour, and one remarkably effective software platform is Comsol Multiphysics in
this regard. It is a FEM solver and simulation software for various physics and
engineering applications. This commercial software provides built-in user interfaces
to study various physics problems. Robustness of the package, however, reflects
from allowing the implementation of customized PDEs, and the coupling between
PDEs describing distinct physics.
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1.4.2 Numerical implementation

With in the context of FEM implementation of the linear and nonlinear optical
problems, we present the weak forms as follows. The Eq. (1.34) can be rewritten
as:

∇×∇×E+µ0
∂ 2

∂ t2 ε0E =−µ0
∂ 2

∂ t2 (P
(1)+PNL) (1.50)

From Eq. (1.47), one can define the differential operator L = ∇×∇×+µ0
∂ 2

∂ t2 ε0,

the unknown function u = Ẽ, the forcing function f =−µ0
∂ 2

∂ t2 (P(1)+PNL), the test
function φ = W, and Ω =⇒R3 is the domain with smooth boundaries ∂Ω. Then, the
variational forms to Eq. (1.50), for the time-harmonic fields, can be written as:∫

Ω

(
∇×∇×E−µ0ε0ω

2E
)
· ẼdV =

∫
Ω

µ0ω
2
(

P(1)+PNL
)
· ẼdV (1.51)

Taking into account the integration by parts:∫
Ω

(∇×U) ·WdV =
∫

Ω

U · (∇×W)dV −
∫

∂Ω

(U× n̂) ·WdS (1.52)

the Eq. (1.51) reduces to:∫
Ω

(∇×E) · (∇× Ẽ)−
[
µ0ε0ω

2E−µ0ω
2P(1)

]
· ẼdV =

∫
Ω

µ0ω
2 (PNL) · ẼdV

(1.53)

where in writing Eq. (1.53) the terms corresponding to the second integral in the right-
hand side of the Eq. (1.52) are considered as zero. The Eq. (1.53) requires that the
unknown function be continuously differentiable only once, unlike Eq. (1.51), which
has a “stronger” constraint, i.e., the function must be continuously differentiable
twice. For this reason, the equations having the forms similar to Eq. (1.53) are also
called the weak forms. COMSOL’s Electromagnetic Wave Module has a built-in
implementation of left-hand of this equation. Such implementation suffice to extract
the linear EM response of the system. Moreover, COMSOL allows the user to plugin
the forcing (nonlinear) term through weak contributions. The implementation of the
Eq. (1.53) is at the core of the results presented in the draft.
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The weak forms for the polarization equation, i.e., Eq. (1.44b) can be derived
as: ∫

Ω

β
2(∇ ·P) · P̃+

[
(ω2 + iγω)P+ ε0ω

2
pE

]
· P̃dV = 0 (1.54)

with P̃ being the test function. Using the vector identity:∫
Ω

∇(∇ ·U) ·WdV =−
∫

Ω

(∇ ·U)(∇ ·W)dV +
∫

∂Ω

(∇ ·U)W · n̂dS

the weak form for the eq. (1.54) is:∫
Ω

−β
2(∇ ·P)(∇ · P̃)+

[
(ω2 + iγω)P+ ε0ω

2
pE

]
· P̃dV = 0 (1.55)

The Eq. (1.55) can be implemented through a general interface provided in COMSOL
(known as the Weak Form PDE Module) for specifying and solving PDEs in the weak
form. Likewise, the weak form for the polarization equation Eq. (1.4.2), containing
second-harmonic nonlinear source, can be derived as:∫

Ω

β
2(∇ ·P)(∇ · P̃)+

[
(4ω

2 +2iγω)P+ ε0ω
2
pE

]
· P̃dV =

∫
Ω

SNL
2 · P̃dV

with nonlinear source term, SNL
2 , added as a weak contribution. The equations

defining the polarization vector can be coupled to the equation for the electric field
(Eq. (1.53)) to characterize nonlocal/nonlinear light-matter interaction.

Eigenvalue problem

In EM problems concerning waveguides, we look for the solutions to Maxwell’s
equations propagating along the guiding direction and confined in the guiding struc-
ture’s vicinity. Thus, we must specialize in the form of the electric field and seek
solutions of the form:

E(x,y,z) = Ẽ(x,y)eikzz (1.56)

where (x,y) are the transverse coordinates of the wavegudie and kz is the wavenumber
defined as:

kz = β + i
α

2
with β and α being the propagation and attenuation constants, respectively. The

Eq. (1.56) implicate that for a z− directed waveguide, an EM mode with shape
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Fig. 1.13 Schematic of a generic waveguide Ω with material characteristic P(1). The guide is
extended indefinitely along the z− axis.

Ẽ(x,y) in the direction transverse to the waveguide propagate along it with a propa-
gation constant β , and it’s intensity |Ẽ(x,y)|2 attenuates with a factor of 1/α during
propagation.

For a linear and local media with polarization P(1) the weak form to calculate the
fields is: ∫

Ω

(∇×E) · (∇× Ẽ)−
[
µ0ε0ω

2E−µ0ω
2P(1)

]
· ẼdV = 0. (1.57)

The test function Ẽ must have the form of solution similar to Eq. (1.56):

Ẽ = Ẽ(x,y)e−ikzz

The procedure of finding solutions’ dynamics in the propagation direction and field
shapes in Ẽ(x,y) in the transverse direction leads to an eigenvalue problem for
the Electric field E, with eigenvalue kz. Such implementations are carried with
the Mode-Analysis routine of Comsol, with finite element modelling carried out in
Electromagnetic Wave Module.

Summary

In summary, here we briefed about the principles of plasmonics, nonlinear optics,
and nonlinear plasmonics. We discussed the characteristics of distinct plasmonic
systems (the plasmonic antennas and waveguides) through simpler systems of each
configuration and reviewed their applications. From the perspective of nonlinear
optics and plasmonics, we provided an exhaustive literature review to establish
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the plasmonic systems’ applicability nonlinear nanophotonic applications. In the
following chapters, we will focus on the plasmonics-assisted enhancement of the
second-harmonic generation for distinct nanostructures. This chapter also encom-
passes mathematical tools that are basis of the theoretical models presented in the
later chapters.



Chapter 2

Hybrid Plasmonic Nanopatch
Antennas for Optimal SHG

Plasmonic enhancement of nonlinear optical processes confront severe limitations
arising from the strong dispersion of metal susceptibilities and small interaction
volumes that hamper desirable phase-matching-like conditions. Maximizing non-
linear interactions in nanoscale systems require simultaneous excitation of resonant
modes that spatially and constructively overlap at all wavelengths involved in the
process.

In this chapter of the manuscript, we present a hybrid rectangular patch antenna
design for optimal second harmonic generation (SHG) that is characterized by a non-
centrosymmetric dielectric/ferroelectric material at the plasmonic hot spot (see Fig.
2.1 for the schematic illustration of the proposed design). The optimization of the
rectangular patch allows for the independent tuning of various modes of resonances
that can be used to enhance the SHG process. We explore the angular dependence of
SHG in these hybrid structures and highlight conditions necessary for maximal SHG
efficiency. Furthermore, we propose a novel configuration with a periodically-poled
ferroelectric layer for orders-of-magnitude enhanced SHG at normal incidence. Such
a platform may enable the development of integrated nanoscale light sources and
on-chip frequency converters. The results discussed in this chapter comprises the
contents of the publications referenced as [92, 93]. As a first author to the works
[92, 93], student’s contribution comprised of setting up the numerical models and
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Fig. 2.1 Schematic illustration of SHG in hybrid plasmonic nanopatch antennas

obtain and organize all the presented data. Student also the contributed majorly in
the preparation of the manuscripts’ text.

2.1 Introduction

Optical functionalities achieved through the nonlinear interaction of light with matter
are cornerstones of many present-day technological innovations [94]. These include
control over the laser spectrum (optical frequency conversion), ultra-short pulse
generation, and all-optical signal processing [42]. Optical nonlinear susceptibilities
of natural materials are intrinsically low, and conventional nonlinear optical devices
rely on high laser intensities and long propagation distances in macroscopic crys-
tals in order to exhibit sizable nonlinear effects [42]. Such devices are often not
compatible with an integrated design, and consequently hinder the realization of
efficient nanoscale nonlinear optical components, which are essential for all-optical
signal processing in photonic integrated circuits. To this end, resonant excitation
(electromagnetic field enhancements) of nonlinear dielectric based nanoresonators
[95–99], plasmonic metamaterials [53–59], and hybrid metal-dielectric metamate-
rials/metasurfaces and waveguides [49, 60–68] have been proposed to improve the
efficiency of nonlinear optical processes in small volumes.

Among nonlinear optical processes, achieving efficient frequency conversion at
the nanoscale is particularly desirable for many applications in biosensing [100],
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photonic circuitry [101], and quantum optics [102]. The difficulty in realizing
efficient frequency conversion at the nanoscale arises from the fact that some of
the factors that contribute to the wave-mixing processes are often hard to satisfy
simultaneously. In particular, a nanosystem needs to fulfill three main requirements
[103, 104]:

• generate local field enhancement, through the excitation of resonant modes, at
all the wavelengths involved in the nonlinear process [103, 105, 106];

• the different modes at the frequencies of interest need to exhibit signifi-
cant spatial overlap in order to maximize their interaction in the nonlinear
volume[104, 68];

• nonlinear polarization currents need to constructively add up and efficiently
couple to the far-field [54].

A nanosystem that fulfills all the aforementioned properties and simultaneously
offers the possibility of realizing an experimentally viable design, may pave the way
towards the realization of the efficient nanoscale nonlinear devices.

For nonlinear optics, plasmonic structures can be used in two distinct configura-
tions:

• a pure nonlinear-plasmonic configuration, in which the intrinsic nonlinear
responses of the metals in the system are exploited [53–55];

• a hybrid plasmonic-dielectric configuration, where plasmonic enhancement is
used to enhance the nonlinear responses of optically active dielectric materials
[49, 56–68].

Although metals may posses large second- and third-order nonlinear susceptibilities,
their opaqueness makes the design of pure nonlinear-plasmonic configurations chal-
lenging. Moreover, second-order nonlinear processes require a break of symmetry
both at the microscopic level (i.e., at the metal surface) and at the macroscopic level
(structure asymmetry) to avoid near- and far-field cancellation. This condition is
difficult to achieve in some of the most efficient plasmonic systems, often character-
ized by locally symmetric gaps. This includes the case of two nanoparticles a few
nanometers apart (in a dimer configuration) that are known to demonstrate some of
the largest local field enhancements [107, 108].
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Plasmonic systems formed by metallic nanoparticles over a metallic film, such
as film-coupled nanosphere [49, 50] and nanopatch antennas [25] retain the char-
acteristics of a dimer configuration in terms of local field enhancements, while
simultaneously offering a better control over the thickness of gaps using modern
fabrication techniques such as layer-by-layer deposition [109, 10] and atomic layer
deposition (ALD) [110]. Compared to its film-coupled nanosphere counterpart, plas-
monic film-coupled nanopatch systems posses a richer mode structure. Film-coupled
nanopatch systems support gap-plasmon modes that are induced between the flat
face of the nanopatch antenna and the metallic film [111, 112]. The unique properties
of these modes include a wider range of tunability of resonances through careful
selection of various design parameters of the system (e.g., the size of the nanopatch
or the gap between the film and patch), and efficient far-field coupling due to the
magnetic-dipole-like emission pattern of the patch antenna system [113–116]. En-
compassing robust resonant response [111], efficient free-space coupling [114, 115],
and relative ease of fabrication and incorporation of optically active dielectric gap
materials, the nanopatch antenna system is an ideal candidate for developing efficient
on-chip nonlinear devices.

To increase the efficiency of the nonlinear processes involving plasmonic compo-
nents, often a single resonance is matched either with the fundamental wavelength
to enhance the pump intensities [117, 49] or with the generated harmonic wave-
length [118] to enhance the emission efficiency. This approach has been employed
to demonstrate enhanced third-order nonlinear optical processes in film-coupled
nanopatch antennas [65–67] and its two-dimensional counterpart, i.e., film-coupled
nanowires [119, 49], with plasmonic resonances tuned at the pump wavelengths.
Other nanoantenna designs have been proposed to realize doubly- or multi-resonant
designs for SHG, sum- and difference-frequency generation [103, 120]. Recently,
nanopatch antennas have been exploited to demonstrate enhanced SHG by coupling
of the gap-plasmon mode of the nanopatch system and epsilon-near-zero mode
of the spacer layer [112], and simultaneous control of third-harmonic generation,
sum-frequency generation, and four-wave mixing[60]. Doubly-resonant colloidal
nanoantennas have also been proposed to enhance SHG [121]. In this case, however,
the lack of independent control of the patch dimensions makes it very difficult to
doubly-match the system’s resonances, giving rise to poor spatial mode overlap and
incoherent SHG signals.
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In the following, we present a numerical investigation of mode-matched SHG from
plasmonic nanopatch antennas that overcome previous limitations. The proposed
system operates in the hybrid framework, with a thin dielectric spacing layer of a
non-centrosymmetric material acting as source of nonlinearity within a plasmonic
structure. First, characteristics of the linear response of the plasmonic system
and the modes taking part in mode-matched SHG are discussed. Linear resonant
characteristics of two optimized mode-matched configurations of distinct modal
interactions and their SHG efficiency spectra are then introduced and analyzed.
We show how the symmetry of the modes taking part in the nonlinear process
might lead to higher or lower SHG efficiency and associate this behaviour to the
maximization/minimization of the overlap integral, a key parameter in nonlinear
emission process. Finally, we present an ideal system that maximize SHG efficiency
through optimization of this integral.

2.2 Theory and Methods

The SHG process can be described in frequency domain, under undepleted pump
approximation, by the following set of equations [42]:

∇×∇×E1(r)− k2
1ε(r,ω)E1(r) = 0 (2.1a)

∇×∇×E2(r)− k2
2ε(r,2ω)E2(r) = 4µ0ω

2P(NL)(r) (2.1b)

where k1 = ω/c, k2 = 2ω/c, with ω being the fundamental field’s angular
frequency; ε(r,ω) is the dispersive permittivity representing the different materials
of the design, µ0 is the permeability of free space, and c is the speed of light in
vacuum. In the above system of equations, Eq. (2.1a) describes the electric field at the
fundamental frequency, E1, whereas the Eq. (2.1b) is an inhomogeneous vector wave
equation that is solved for the generated (second-harmonic) signal E2. The right-
hand side of Eq. (2.1b) represents the contributions from nonlinear sources in the
system. For simplicity we have considered a nonlinear polarization vector possessing
the z-component only. This is justified by the following reasons. First, the main
components of the electric field of the modes excited in the film-coupled nanopatch
system, as discussed in the main-text, are primarily polarized perpendicular to the
metallic surface (i.e., along the z-direction). Second, the dominant component of
the second-order susceptibility tensor exhibited by the nonlinear dielectric material
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filling the gap between the metallic nanopatch and the film is χ
(2)
zzz , whose orientation

can be controlled through the film growth [49, 122]. We defined then the nonlinear
polarization vector as P(NL) = (0,0, ε0χ

(2)
zzz E2

1,z), with χ
(2)
zzz = 6 pm/V. Note that

P(NL) ̸= 0 only in the thin film embedded in the gap between the metallic film and
the nanopatch.

Eq. (2.1a) and Eq. (2.1b) are numerically solved using finite-element based com-
mercial software COMSOL Multiphysics, within a customized frequency-dependent
implementation. Solving Eqs. (2.1) is a two step process [49]: first, we solve Eq.
(2.1a) under TM-polarized incidence for the fundamental field E1, in the subsequent
step, the second harmonic signal is extracted by solving Eq. (2.1b), with the nonlin-
ear polarization term, which is defined by utilizing the fields calculated in the first
step. Equations (2.1) are solved using periodic boundary conditions, to mimic the
electromagnetic response of an infinitely extended periodic array.

The nonlinear conversion efficiency, η , is defined as [49]:

η =
ISHG

IFF
(2.2)

where IFF is incident intensity at the fundamental wavelength ω and ISHG is the
intensity of generated signal measured in the far-field, along the specular direction
with respect to the incident excitation. The intensity of the incident fields considered
in the simulations is IFF ≃ 55 MW/cm2. To circumvent the possible issue of
numerical artifacts due to the field localization near the metal corners, we considered
rounded corner cube with a radius of curvature of 5 nm.

We perform numerical calculations, by incorporating in our simulations the dispersive
dielectric permittivity of gold [123], a complex dielectric constant n = 1.955+
0.0045i, and an effective second-order nonlinear optical coefficient χ(2) of 6 pm/V
for the HfO2-based ferroelectric material embedded in the gap (in the wavelength
range considered here (from 0.6 to 2.4 µm) the refractive index is almost a constant)
[49].

2.3 Linear Properties of the nanopatch system

As already stated, the nanopatch antenna system offers a variety of resonant modes
that can be used to enhance nonlinear interactions. The wavelengths associated to
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these modes can be tuned by acting on the geometrical parameters of the system. In
particular, we consider a periodic array whose unit-cell design consist of a rectangular
gold patch coupled to a gold substrate through a dielectric layer, as illustrated in Fig.
2.2(a). We consider a HfO2-based ferroelectric spacer that can be grown using mature
ALD processes with excellent CMOS (complementary metal-oxide-semiconductor)
compatibility and potential for on-chip integration [124, 122].

Fig. 2.2(b) (top) shows a typical spectrum of the patch antenna system for normal in-
cidence of TM-polarized plane wave. The system exhibits two resonances (indicated
as FP1 and FP3, as we will show later these resonances correspond to Fabry-Pérot
modes of the first- and third-order associated to the gap plasmons) that are ideal
candidates to achieve mode-matching for the SHG processes. In general, however,
due to the dispersion of metallic permittivities, it is very difficult for these resonances
to satisfy the energy conservation condition, i.e., ωFP3 = 2ωFP1. A rectangular patch,
however, allows to overcome this limitation. By acting on the dimensions of the
patch aligned along the x and y directions separately, it is in fact possible to tune
almost independently the two resonances. For example, by increasing the arm-length
a (see the dashed-curve in Fig. 2.2(b)), it is possible to largely shift the mode FP1,
while only slightly modifying the mode FP3.

For oblique illumination, a distinct resonance indicated by FP2 in Fig. 2.2(b) (bottom)
is excited. The tuning characteristics of this mode is similar to modes FP1 and FP3.
The spatial configuration however is different among all the excited modes, as can
be observed from the normalized electric field maps presented in Fig. 2.2(c−e).
The electric field distributions of the modes FP1 and FP3 (for normal and oblique
incidence), and FP2 (excited under oblique illumination) can be associated to Fabry-
Pérot modes of the first-, third-, and second-order, respectively. In what follows, we
will realize two optimized designs for SHG, with mode-matching achieved through
the interaction of the mode FP1 with either the mode FP2 or FP3.

It is worth mentioning that in general, all the geometrical parameters such as thick-
ness of the dielectric spacer, and the lattice constant of the unit-cell contribute to
tuning the resonance positions. Choice of these parameters allows also for controlling
the device operating spectral range.
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Fig. 2.2 Device layout and its linear electromagnetic response. (a) Schematic of the unit-cell
of film-coupled nanopatch system and illustration of its design parameters. (b) Simulated
linear reflectance spectra for different values of the patch width a (the dashed lines shows
the spectra obtained by 20% increase in a); (c-e) the normalized electric field distributions
(in the xz-plane) of the modes indicated as FP1, FP2, and FP3 in (b).
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2.4 Mode-matched second-Harmonic generation with
nanopatch system

In Fig. 2.3, we show the electromagnetic response of the mode-matched design
optimized for the interaction of modes FP1 and FP3. The design is optimized for
a nonlinear conversion of infrared incident to a visible light, as apparent from its
linear reflection spectra presented in Fig. 2.3 (the optimized design parameters are
detailed in the figure caption). The choice of these two modes is driven by three
main factors:

• these modes can be excited at the normal incidence;

• the energy matching condition can be realized while keeping reasonable values
of the geometrical parameters;

• there is a clear overlap between the two modes.

For these reason, one would expect this system to generate the largest SHG con-
version, but as we will show in the following that there is one more very important
factor that one needs to consider.

In order to numerically evaluate the efficiency of the system, we perform SHG
calculations assuming the undepleted pump approximation using a one-way-coupled
system of two equations (as detailed in the Methods section). The conversion
efficiency η (see Eq. (3) in the Methods section) is evaluated for a TM-incident
field carrying an intensity of IFF ≃ 55 MW/cm2, impinging at different angles
and wavelengths. The summary of SHG calculations for the optimized system
is shown in Fig. 2.3(b). The SHG efficiency map as a function of the incident
angle and wavelength is overlapped to the FP1 linear trajectory (blue curve) and
linear reflection contour map around the second-harmonic (SH) wavelength. The
system exhibits a modest conversion efficiency of the order of η ≃ 1.2×10−9 at the
normal incidence, where there is a perfect overlap of the modes FP1 and FP3 at the
fundamental and second-harmonic wavelengths, respectively (see Fig. 2.3(b)). For
oblique illuminations, however, a gradual increase in the conversion efficiency is
observed, with a maximum value reaching three orders of magnitude higher than
the efficiency recorded under the normal incidence, η ≃ 2.4×10−6, at an incidence
angle of around incidence 45◦. Note that this maximum in the conversion efficiency
does not seem to correspond to any particularly favorable spectral condition.
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Fig. 2.3 The mode-matched design optimized for the interaction of mode FP1 and mode FP3.
(a) The linear response: the reflectance spectra and normalized electric field distributions
(in the xz-plane) of modes at the interacting wavelengths; the insets show the electric field
distribution maps in the xz-plane; red and white arrows indicate the Ez and the E2

z components
respectively. (b-c) The nonlinear response of the system: (b) the SHG efficiency (heat-map),
linear reflection around the SHG wavelength (contour lines), and the FP1 trajectory (blue
curve) as a function of the incident angles and wavelengths and (c) the overlap integral
extracted following the blue trajectory in (b). The geometrical parameters are: a = 150 nm,
b = 80 nm, g = 11 nm, h = 60 nm, t = 60 nm, A = 250 nm, and B = 200 nm (refer to
schematic of the unit-cell in Fig. 2.2(a)).

In order to understand this behaviour it is useful to introduce the overlap integral
defined as [95]:

Γ =

∣∣∣∣∫
Ω

χ
(2) : E(ω)E(ω)E(2ω)∗ dΩ

∣∣∣∣ (2.3)

where χ(2) is the second-order nonlinear susceptibility tensor, while the E(ω) and
E(2ω) are the linear local fields at the fundamental and second-harmonic wave-
lengths, respectively. The integral is performed over the nonlinear volume Ω. The
overlap integral, Γ, represents the propensity of the energy to flow from the funda-
mental to the second-harmonic mode. From its definition, it is clear that in order to
maximize Γ in Eq. (2.3), local field enhancements at the wavelengths of interaction
and spatial overlap are not sufficient. The product of the fields in the integrand
needs to add up constructively, i.e., the modes must have the correct symmetry. It is
interesting to remark that for plane waves, Γ is maximized when the phase-matching
condition (k2ω = 2kω ), is satisfied.

In order to easily visualize how the fields interact, note that in the film-coupled
nanopatch systems, resonant local electric fields in the gap are predominantly polar-
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ized perpendicularly to the surface of the metal, i.e., E ≃ (0,0,Ez). In Fig. 2.3(a),
the normalized electric field distribution map of the mode excited at the fundamental
field (FF) wavelength, labeled as FF (FP1), reports its z-component, Ez(ω), with
white arrows, while red arrows refer to its squared values, E2

z (ω). Similarly, the red
arrows in the field distribution map of the mode excited at second-harmonic (SH)
wavelength, indicated as SH (FP3), correspond to its z-component, Ez(2ω). It is easy
to see how an anti-symmetric mode at the second-harmonic wavelength interacting
with the squared of an anti-symmetric mode at the fundamental wavelength (red
arrows in both the field distribution maps) will minimize Γ, instead of maximizing
it. This can be also observed in the overlap integral shown in Fig. 2.3(c), calculated
along the trajectory of FP1. The lowest magnitude of the overlap integral is observed
at the normal incidence, which leads to a smaller conversion efficiency despite the
field enhancements at the wavelengths of interaction. For oblique illumination,
however, a break in the symmetry results in the increase of the overlap integral, and
a gradual increase (peaking in the range of 40-50◦), as can be observed in the SHG
efficiency spectra in Fig. 2.3(b).

In order to avoid the cancellation effects due to the anti-symmetric nature of the
mode FP3, let us now consider the interaction of the mode FP1 with the mode FP2.
The symmetric nature of the mode FP2 should in fact ensure the maximum efficiency
conversion. The linear characteristics of the mode-matched design optimized for
such an interaction are shown in Fig. 2.4(a), for a TM-polarized excitation impinging
at θ = 40◦. This design is optimized to operate in the infrared regime. Fig. 2.4b
shows the SHG efficiency map as a function of the incident angle and wavelength.
The FP1 linear trajectory (blue curve) and linear reflection contour map around the
second-harmonic wavelength are layered on top. In this case, the lowest values of
SHG efficiency at the normal incidence are expected, since the FP2 mode cannot be
excited (see the contour levels in Fig. 2.4(b)). For oblique illumination, the system
exhibits a gradual increase in the SHG efficiency with a peak value of 5.5×10−6 at
θ ≃ 35◦. The peak SHG efficiency for this mode-matched design is increased 2-fold
in comparison with the peak efficiency of the previous design. For completeness we
also show in Fig. 2.4(c) the value of the overlap integral Γ along the FP1 trajectory
in Fig. 2.4(b). Similarly to the previous case, Γ follows qualitatively the SHG
efficiency trend. Note however that differences between peak angles could be due
to the out-coupling efficiency of the mode, which is not considered in the overlap
integral calculation.
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Fig. 2.4 The Mode-matched configuration optimized for the interaction of modes FP1 and
FP2. (a) The linear reflectance spectra at an incident angle of θ = 40◦ with the normalized
electric field distributions at the resonant wavelengths; the insets show the electric field
distribution maps in the xz-plane; red and white arrows indicate the Ez and the E2

z components
respectively. (b-c) The nonlinear response: (b) second-harmonic efficiency spectra (heat-map,
linear reflection around the SHG wavelength (contour lines), and the FP1 trajectory (blue
curve) as a function of the incident angles and wavelengths and (c) the overlap integral
extracted following the blue trajectory in (b). The geometrical parameters are the same as in
Fig. 2.3 with a = 211 nm and b = 170 nm.

2.5 Mode-matched nano-patch configuration for opti-
mal second-harmonic generation

Both configurations analyzed so far require to excite the patch antenna system at
an oblique incidence, to achieve maximum possible SHG efficiencies. Ideally, one
could remove this inconvenience by using a periodically-poled ferroelectric spacer,
such that half of the patch would lay over a −χ(2) material while the other half on a
+χ(2) material, as shown in the inset of Fig. 2.5(a).

In such a configuration, one would be able to optimize the overlap integral between
the FP1 and FP3 modes at normal incidence by breaking the symmetry through
the sign of χ(2). This is shown in Fig. 2.5(a), where Γ is calculated over the
FP1 trajectory shown in Fig. 2.3(b). This time the maximum magnitude of the
overlap integral is obtained at θ = 0◦ where quasi-phase-matching between the
modes involved is obtained. In Fig. 2.5(b), we show the SHG efficiency for a poled
patch antenna system at normal incidence for an interval of frequencies around the
modes FP1 and FP3 for the fundamental and harmonic wavelengths, respectively.
As expected, in this case, the conversion is much more efficient (η ≃ 2.0×10−6)
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Fig. 2.5 (a) The overlap integral along the FP1 trajectory in Fig. 2.3(b) for the poled system
depicted in the inset; (b) SHG efficiency spectra at normal incidence; the arrow indicates the
FP1 spectral position at λFP1 = 2λFP3 = 1366 nm.

than the previous case (see Fig. 2.3(b)) at normal incidence. Interestingly, however,
the overall maximum value of η remains very close to the maximum value in the
previous case.

Summary

In conclusion, we have presented a strategy to doubly mode-match plasmonic reso-
nances for efficient SHG using nanopatch antennas in the visible and near-infrared
regimes. We have numerically explored different configurations by providing opti-
mized designs for mode-matching different type of resonances. Our study has shown
that a doubly resonant structure with spatial mode overlap does not guaranteed
maximum efficiency. In fact, destructive interference of the generated fields may
lead to weak harmonic conversion. This can be overcome by exciting the system at a
non-zero angle of incidence. In general, a measure of propensity of two modes to
constructively interact can be obtained by calculating the overlap integral, Γ, defined
in Eq. (2.3). In all our calculations, Γ, describes very well the trend of the nonlinear
SHG efficiency. Finally, we have shown that efficient SHG at normal incidence can
be obtained using a periodically-poled ferroelectric spacer[124, 122], by correctly
aligning poling periodicity with the patch patterning. The obtained efficiencies
are comparable (for analogous input powers) to those obtained with dielectric Al-
GaAs nanoantennas [97], whose nonlinear susceptibility is two orders of magnitude
larger than the value considered in this article. This work show the great poten-
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tial and versatility of plasmonic nanopatach antennas for nonlinear nanophotonic
applications.



Chapter 3

SHG in plasmonic waveguides with
hydrodynamic nonlinearities

Plasmonic waveguides are an integrated platform to implement efficient nanoscale
ultrafast photonic devices exhibiting higher operating bandwidths. Although metals
display a rich variety of nonlocal optical effects and surface nonlinearities, the
study of plasmonic waveguides has been limited to considering conventional bulk
nonlinearities. Such analytical tools, however, does not allow to incorporate the
nonlocal optical effects on the studied phenomenon or the nonlinearities arising
from it. In this work, we present a method based on the numerical calculation
of the inhomogeneous solution that enables the study of nonlinear optical effects,
such as second-harmonic generation (SHG), in waveguides displaying nonlocal
response effects as well surface nonlinearities. We use the proposed method to
study the nonlinear response arising from the hydrodynamic description of free
electron in the metallic constituents of the waveguides, comparing local and nonlocal
approximations. As a more general application of our method we also consider
nonlinearities arising from the quantum hydrodynamic theory with electron spill-out.
Our results may find applicability in design and analysis of integrated photonic
platforms for nonlinear optics incorporating wide variety of nonlinear materials such
as heavily doped semiconductors for mid-infrared applications. The content of this
chapter are a part of the results discussed in the paper referenced as [125]. Being
the leading author of the work [125], student’s contribution comprised of setting the
numerical simulation models and obtain and organize the results data presented in
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the sections 3.3.1 and 3.3.2. Moreover, student participated as a major contributor to
overall preparation of the manuscript.

3.1 Introduction

Plasmonic systems provide the possibility of concentrating and manipulating light
below the diffraction limit and are at the core of a variety of optical applications
[4, 5], from improved chemical and biological sensing [24, 26–28], and efficient pho-
tovoltaic energy harvesting [25], to ultrafast photonic signal processing [13, 14, 29],
and nanolasing [32]. In the past decades, due to the ever-increasing demand for
data processing capabilities, researchers have focused a great effort into the develop-
ment of ultra-compact photonic elements, including plasmonic components, such as
waveguides and couplers, [13, 14], digital gates, routers, photon-electric converters,
and control switches [32]. Plasmonic waveguides have also been relevant with
regards to several quantum optical phenomena like single photon emission [33], en-
ergy transfer and superradiance of emitter pairs [126], and qubit-qubit entanglement
generation [34]. Plasmonic systems owe the demostration of these exotic optical
functionalities to surface plasmon-polariton (SPP) modes —the resonant collective
oscillations of free electrons (FEs) —appearing in materials with a high carrier con-
centration (i.e., metals and heavily doped semiconductors) and arising at the interface
with a dielectric because of the interaction with an external electromagnetic (EM)
excitation. Localization of light associated to SPPs modes is naturally promising for
the enhancement of intensity-dependent phenomena [53, 55, 58, 59].

Functionalities based on nonlinear optics are very attractive in terms of their femto-
second response times and terahertz bandwidths. However, sizeable nonlinear effects
demand both high field intensities and large interaction volumes, together with
configurations that offer efficient nonlinear conversions as well as materials with
large nonlinear susceptibilities [42, 43]. All these features could be in principle
provided by plasmonic systems, since metals possess some of the largest nonlinear
susceptibilities. Notably, however, interaction volumes in nanoantennas are quite
limited and nonlinear efficiencies remain overall very small [79, 80, 117]. On the
other hand, plasmonic waveguides can sustain sub-wavelength field localization for
the entire propagation length, thereby providing ideally larger volumes of interactions.
Indeed, hybrid dielectric-plasmonic waveguides have been reported with a variety of
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nonlinear applications (see for example a comprehensive review on latest advances
in nonlinear plasmonic waveguides [59]).

In this work, we present a method to study SHG in waveguides based on the nu-
merical calculation of the inhomogenous solution at the waveguide cross-section in
the presence of arbitrary nonlinear sources. Conventionally, coupling of the pump
field modes and SH modes is carried out through the evaluation of overlap integrals
[127, 128]. Most waveguide systems can in fact be easily studied by decoupling
the propagation and transverse problems [127, 128]. This separation is only pos-
sible when the electric field divergence, which is non-zero at the metal surface,
is negligible. As it will be shown in Sec. II, such approximation does not hold
when nonlinearities arise directly from the plasmonic material [129, 53, 55] and,
in particular, from the dynamics of non-equilibrium FEs [129, 53, 55]. Indeed, FE
nonlinearities in noble metals have been shown to strongly contribute to second-order
nonlinear processes in the visible/near-infrared (IR) [79, 80, 82], while experimen-
tal measurements in gold nanoparticle arrays have demonstrated SHG efficiencies
comparable to those in nonlinear crystals when normalized to the active volumes
[117].

The discussion in the chapter is arranged as follows. We first present the derived
method, labeled as the particular solution method (PSM) in section 3.2. We then
proceed towards setting up benchmark simulations for the applicability of our method
for nonlinearities described through the hydrodynamic model for free electrons in
section 3.3.1. Once the benchmark is setup we will employ the proposed method
to study second-harmonic generation in distinct waveguides with their nonlinear
hydrodynamic nonlinearities as well as nonlinearities arising from the quantum
hydrodynamic theory with electron spill-out.

3.2 Particular solution method to study SHG in a
waveguide

In order to describe nonlinear interactions within a waveguide divergences of the
fields are usually ignored. Further, considering the transitional invariant of the
waveguide and electromagnetic problem splits to finding solutions in the transverse
and longitudinal coordinates of waveguide. Moreover, the slowly varying envelope
approximation —the assumption that the envelope of a forward-travelling wave pulse
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varies slowly in time and space compared to a period or wavelength of —can be
considered. These are the ingredients which leads to the numerical recipe of the
overlap integral [127, 128], utilized extensively to study the harmonic generation in
the waveguides. On the contrary, consideration that divergence of the fields is zero,
does not hold for the case when spatial dispersion is considered and nonlinearities
that arise from the dynamics of non-equilibrium free electrons [53, 55]. Numerical
recipe of the proposed generalized formulation for the SHG in waveguide is the
following.

In order to study SHG, let us expand the fields into two time-harmonic contributions
as:

F(r, t) = ∑
j

F j(r)e−iω jt (3.1)

with F = E, H, or P and j = 1,2 for the fundamental and second-harmonic wave-
length. Considering the fields E1 and E2 at the interaction wavelengths in SHG
process, the wave equation to describe nonlinear interactions are:

∇
2E1 −

[
1−β

2 k2
1χ(ω1)

ω2
p

]
∇∇ ·E1 + εr(ω1)k2

1E1 = 0, (3.2a)

∇
2E2 −

[
1−β

2 k2
2χ(ω2)

ω2
p

]
∇∇ ·E2 + εr(ω2)k2

2E2 =−µ0ω
2
2 PNL

2 . (3.2b)

where k j is the free-space wavenumber and χ(ω j) = εr(ω j)−1 =− ω2
p

ω2+iγω j
at ω j,

for j = 1,2. In writing Eq. (3.2), it is noted that, we have assumed that a material
component of the the system (waveguide) is described within the Thoams-Fermi
hydrodynamic formulation discussed in section 1.3.2.

Since we are interested in waveguide solutions at this point. In order to derive the
fundamental field (FF) from Eq. (3.2a), let us assume, without loss of generality, that
the modes propagate along the z-direction. The solution is then of the form:

E1(r) = A1Ẽ1(x,y)eiκ1z (3.3)

with κ1 being the complex propagation constant of the waveguide’s mode at the
FF, A1 is the mode amplitude, and Ẽ1(x,y) is the mode profile at the waveguide
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cross-section. By writing ∇ = ∇⊥+ iκ1ẑ, Eq. (3.2a) can be solved either analytically,
in a few simple cases [83], or numerically, for an arbitrary waveguide cross-section
[85, 84], using an eigenmode solver to calculate mode profile and propagation
constant (see appendix A for details on the implementation in Comsol Multiphysics
[130]). The found mode can then be normalized assuming the input-power at the
z = 0 waveguide cross-section to be 1 W:

1
2

∫
Ω

Re
[
Ẽ1 × H̃∗

1
]
· ẑdS = 1W, (3.4)

where Ω is the cross-sectional plane. Therefore, within these assumptions, the
second-order nonlinear source in Eq. (3.2b) can be rewritten as:

PNL
2 (r) =A2

1
χ(ω2)

ω2
p

e2iκ1z
{

e
me

Ẽ1(∇⊥+ iκ1ẑ) · P̃1

+ i
ω1µ0e

me
P̃1 × H̃1

−
ω2

1
n0e

[
P̃1

[
(∇⊥+ iκ1ẑ) · P̃1

]
+ P̃1 · (∇⊥+ iκ1ẑ)P̃1

]
+

1
3

β 2

n0e
(∇⊥+ iκ1ẑ)

[
(∇⊥+ iκ1ẑ) · P̃1

]2
}
,

(3.5)

where the mode is normalized in such a way that A2
1 is the pump input power. For

the SHG, let us now consider Eq. (3.2b). In nonlinear optics, the divergence term is
generally neglected and a solution of Eq. (3.2b) can be easily obtained in the slowly
varying envelope approximation, through the definition of overlap integrals evaluated
in the waveguide cross-section [127, 128]. In the case of metal nonlinearities, and in
particular of hydrodynamic nonlinearities, neglecting the divergence will strongly
affect the results, since the larger nonlinear contributions arise at the metal surface,
where the divergence is non-zero. On the other hand, fully solving Eq. (3.2b) in a
three-dimensional numerical set-up is challenging, due to the large scale mismatch
between the surface effects and the overall mode propagation.

The general solution of the partial differential equation (3.2b) is given by the sum
of the solution of the homogeneous equation (i.e., assuming P2,NL(r) = 0) and a
particular solution of the inhomogeneous equation, i.e., E2(r) = Eh(r) +Ep(r).
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Eh(r) = ∑m amẼm(x,y)eiκmz with Ẽm being the modes supported by the waveguide
at ω2, and am are amplitude coefficients to be determined. The modes Ẽm can be
easily found through an eigenmode solver. As usual, we assume that the modes are
normalized to carry the same input power, i.e.,

1
2

∫
Ω

Ẽm × H̃∗
m · ẑdS = 1W, (3.6)

Because the system is not lossless, the modes need to satisfy the orthogonality
relation described in section 1.1.3:

∫
Ω

(
Ẽm × H̃n

)
· ẑdS = Nmδnm, (3.7)

with

Nm =
∫

Ω

(
Ẽm × H̃m

)
· ẑdS. (3.8)

The particular solution can be sought of the form Ep(r) = Ẽp(x,y)ei2κ1z where κ1

is the known FF’s propagation constant. The Eq. (3.2b) then can be solved in the
waveguide cross-section by transforming the nabla operator as ∇ = ∇⊥+ 2iκ1ẑ.
Once Ep(r) is known we can determine the coefficients am by imposing the total
power flow to be zero at the waveguide input, z = 0:

WSHG(z = 0) =
1
2

∫
Ω

Re [E2 ×H∗
2] · ẑdS = 0. (3.9)

In order to do so, it is useful to project the field Ep on the waveguide modes at z = 0,
i.e., find the coefficients bm such that Ep(z = 0) = ∑m bmẼm. These coefficients can
be found as [41, 39] (see section 1.1.3 for the detailed derivation):

bm =
1

2Nm

∫
Ω

(
Ẽp × H̃m + Ẽm × H̃p

)
· ẑdS. (3.10)

The condition of Eq. (3.9) then becomes:

∑
m,n

[
(ama∗n +amb∗n +bma∗n +bmb∗n)

×
∫

Ω

(
Ẽm × H̃∗

n
)
· ẑdS

]
= 0,

(3.11)
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If the number of modes and losses are small such that ∑m ̸=n
∫

Ω

(
Ẽm × H̃∗

n
)
· ẑdS ≪

∑m
∫

Ω

(
Ẽm × H̃∗

m
)
· ẑdS, Eq. (3.11) can be simplified as:

∑
m

[(
|am|2 +amb∗m +bma∗m + |bm|2

)
×
∫

Ω

(
Ẽm × H̃∗

m
)
· ẑdS

]
≃ 0,

(3.12)

Since the quantity in the integral is nonzero it must be:

∑
m

(
|am|2 +amb∗m +bma∗m + |bm|2

)
= 0. (3.13)

Eq. (3.13) can be satisfied by choosing am =−bm. The SH field then can be written
as:

E2(r) = ∑
m

bmẼm(x,y)
(
ei2κ1z − eiκmz) , (3.14)

and the SHG power as a function of the propagation distance z is given by:

WSHG(z) = ∑
m
|bm|2|ei2κ1z − eiκmz|2. (3.15)

Equation (3.15) constitutes the main result of this section. The SHG power along the
waveguide can be obtained through the mode propagation constants, κ1 and κm, at the
FF and SH wavelengths, respectively. Note that if only one mode is supported by the
waveguide at ω2, i.e. b1 = b, then |b|2 = 1

2
∫

Ω
Re

[
Ẽp × H̃∗

p
]
· ẑdS. In the following,

we will refer to this method as the particular solution method (PSM).

3.3 SHG in plasmonic waveguides with hydrodynamic
nonlinearties

In this section, we present some application examples of SHG in waveguides with
hydrodynamic nonlinearities. In order to validate our method, we first consider a
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simple metal-insulator-metal (MIM) waveguide. Because of the translation symme-
tries of the system, in fact, it is possible to easily perform full-wave calculations
without having to rely on a three-dimensional implementation of the hydrodynamic
equations [82]. Subsequently, we apply the PSM to a typical waveguide design
without any translation symmetry in the transverse plane. Finally, we demonstrate
the validity of the PSM for a system in which electron spill-out effects are taken into
account through a more sophisticated model.

3.3.1 Second-harmonic generation in metal-insulator-metal
waveguides (setting up a benchmark)

Different types of metal-dielectric waveguides have been presented theoretically
and demonstrated experimentally (see, e.g., Ref. [2]). Here, we study a symmetric
configuration, i.e., a thin dielectric layer of size g sandwiched between two gold
surfaces (with the metal extending indefinitely on both sides of the dielectric),
as shown in Fig. 3.1(a). We consider the following parameters for gold: n0 =

5.7× 1022 cm−3, γ = 1.07× 1014 s−1, and β = 1.27× 106 ms−1 [80], while the
dielectric layer has a relative permittivity εd = 5.56. The wavelengths considered
for parametric interaction are λFF = 1550 nm and λSH = 775 nm at the FF and SH,
respectively. The MIM waveguide supports symmetric gap-plasmon modes at both
FF and SH wavelengths, denoted as TM1@λFF/SH, and an anti-symmetric SPP at
SH, indicated as TM2@λSH (see Fig. 3.1). We render the magnetic field profiles
and real part of the effective indices of the modes in Fig. 3.1(b) and Fig. 3.1(c),
respectively. As shown in the latter figure, their dispersive behavior holds for a wide
range of gap sizes.

An efficient energy transfer from the mode at the FF to that at the SH can be obtained
if a gap size is chosen that guarantees a phase-matching (PM) condition [128]. In
our case, as it can be seen in Fig. 3.1(c), the PM occurs between the symmetric
mode TM1@λFF at FF and the higher-order anti-symmetric modes TM2@λSH at
the SH wavelength for a gap size of g ≈ 327 nm. For the validation of our method
we consider two situations: i) the just mentioned phase-matched case, and ii) a
non-phase-matched, with g = 270 nm. We assume that the whole FF energy is in the
TM1@λFF mode, while the SHG can couple to both TM1@λSH and TM2@λSH. In
Fig. 3.2 we show the magnetic field profile of the particular solution (PS) obtained
by considering the nonlinear polarization in Eq. (3.5), as well as the modes available
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Fig. 3.1 The MIM waveguide: (a) schematic of the geometry, (b) magnetic field profiles, and
(c) real part of the effective refractive indices as a function of the gap size of the supported
modes.

at the SH. It is easy to guess from the plot that most of the SHG energy will be
coupled to TM2@λSH, due to the modes’ symmetries. Indeed, this is confirmed
by the evaluation of the coefficients |bm|2 associated to the modes, which differ by
several orders in magnitude (see Table 3.1). By using Eq. (3.15) we can calculate

Table 3.1 Coefficients |bm|2 and energy flux Wp of the particular solution for the MIM
waveguide.

g (nm) |bTM1|2 |bTM2 |2 Wp (W)

327 7.6×10−22 0.25 0.25

270 2.9×10−24 2.2×10−3 2.2×10−3

the SHG power along the waveguide, reported in Fig. 3.3 for the two studied cases,
considering an input power of 1 MW/m. As expected, in the phase-matched case we
observe the SH signal building up until the losses in both the FF and the SH modes
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Fig. 3.2 Magnetic field transverse component, Hy, of the particular solution and modes at the
SH wavelength for the MIM waveguide.

start affecting the conversion process. The SHG peak is obtained at approximately
10 µm. Conversely, in the non-phase-matched case, the SHG is limited first by
the short coherence length, and then by the metal losses. However, in both cases
we obtained perfect agreement with full-wave calculations [80, 79], performed by
solving directly Eq. (3.2) in the x-z plane (see Fig. 3.3). These results shall lay a
foundation for the applicability of the PSM to characterize the SHG in a variety of
waveguides with hydrodynamic nonlinearities, as will be shown in the following
subsections.

3.3.2 Non-planar waveguide with hydrodynamic nonlineari-
ties

Non-planar waveguides, characterized by an index profile n that is a function of
both transverse coordinates,are the most used in device applications There are many
examples of this kind of structures, differentiated by the distinctive features of their
index profiles [14, 32]. Here, we consider a non-planar waveguide whose cross-
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Fig. 3.3 SHG intensity as function of the of the propagation distance: (a) the phase-matched
and (b) non phase-matched case for the MIM waveguide. Wavenumbers of the interacting
TM1@λFF and TM2@λSH modes are: κFF = 1.02×107 +3.64×104i, κSH = 2.05×107 +
1.34×105i in (a) and κFF = 1.03×107+4.19×104i, κSH = 1.99×107+1.49×105i in (b).

section is shown in the inset of Fig. 3.4(a), together with its dispersion characteristics.
The structure consists of a ridge made of high-index dielectric material (Si) grown
over a rectangular nanowire metallic core (which will act as a nonlinear medium)
surrounded by a low-index dielectric material placed on top of a SiO2 substrate. The
index contrast of the waveguide’s constituents enforces the electromagnetic energy
to be confined in the core-region of the ridge, which can be exploited to enhance
nonlinearities present in that region while reducing losses associated to a typical
plasmonic waveguide.

The waveguide is designed to support the FF mode at λ1 = 1300 nm, while generating
at λ2 = 650 nm. We present the modal structure of the waveguide in Fig. 3.4. The
variation of the mode effective indices as a function of the height h of the metallic
core is reported in Fig. 3.4, while the norm of the electric field of the supported
modes is shown in Fig. 3.4. We observe that a lower-order hybrid mode of the
non-planar waveguide appears at both the FF and SH wavelength (see the trends
EH00@λFF/SH in Fig. 3.4). Whereas, the modal dispersion of the guided modes
dictates that the higher-order hybrid modes indicated as EH10/01@λSH are excited
only at the SH wavelength. The PM condition occurs between the EH00@λFF and
EH01@λSH for h=89.5 nm, for fixed geometrical parameters (see the inset of Fig.
3.4).
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Fig. 3.4 Non-planar waveguide: (a) Tuning of the effective refractive indices as a function
of the height of the metallic core, h, and (b-d) electric field profiles of modes supported by
the structure at distinct wavelengths; the inset in (a) shows a schematic of the non-planar
waveguide; dimensions are in nanometers. The dielectric constants used are: εSi = 12.25,
εSiO2 = 2.0 and εl = 3.422 for the low-index dielectric. The dashed-line plots represent
the dispersion characteristics of the interacting modes corresponding to the local response
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Let us consider a pump input power of 1 W and start quantifying the contribution
of each of the mode at the SH interaction wavelength to the SHG. Based on the
calculated |bm|2 of each of the mode at SH wavelength, we conclude that both the
modes EH00@λSH and EH01@λSH can contribute to the SHG (see Table 3.2).

The single mode contributions and the total SHG power as a function of the propa-
gation distance are reported in Fig. 3.5(a). Interestingly, the phase-matched mode
(blue line) contributes almost negligibly to the overall SHG energy, which couple
mostly into the non-phase-matched mode (green line). This counterintuitive result is
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Fig. 3.5 Evolution of SHG intensity along the non-planar waveguide, (red line) total and
individual SH modes’ contributions (green line) EH00 and (blue line) EH01: (a) original
system and (b) the case of reduced losses. The wavenumbers of the mode involved are:
κFF = 1.30×107 +2.38×105i, κEH00 = 3.53×107 +5.34×105i and κEH01 = 2.60×107 +
3.84×105i.

Table 3.2 Coefficients |bm|2 and energy flux Wp of the particular solution for the non-planar
waveguide under TF approximations.

γ (s−1) |bEH00|2 |bEH10|2 |bEH01|2 Wp (W)

1.07×1014 1.1×10−8 1.5×10−20 1.4×10−8 1.5×10−7

1.07×1013 1.1×10−8 1.5×10−20 1.4×10−5 1.4×10−5

due to the interplay between the waveguide losses and the SHG build-up speed. To
understand this mechanism, let us artificially reduce the metal losses in the waveg-
uide by one order in magnitude. SHG along the waveguide length for such case is
shown in Fig. 3.5(b). We observe that, although at small propagation distances, the
non phase-matched EH00@λSH carries more SHG energy than the phase-matched
mode, it diminishes quickly, whereas the contribution from the phase-matched mode
slowly builds up, peaking at a distance of around 25 µm. We partially retrieve
then the results for the ideal case without losses in which the SHG in the phase-
matched mode increases until saturation of the pump. This example shows that,
in general, the optimal device length is not determined by the coherence length of
the phase-matched mode but it requires evaluating the contributions of all relevant
modes. This is particularly relevant with hydrodynamic nonlinearities since most
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of the surface contributions drive strong evanescent fields that can easily couple to
non-phase-matched modes.

Although, we have so far considered nonlocal effects (under the TF approximation),
the PSM can also be applied to the case in which the nonlinear response is due
to purely surface currents. Under the well-known local response approximations
(LRA) [2] it possible to define purely surface nonlinear susceptibilities [80, 81]
(see section 3.5) on top of the bulk contributions, such as the Lorentz term and
part of the convective term [80, 81]. Note that even within the LRA, the presence
of effective magnetic currents generate sharp variations of the electric field at the
metal surface, requiring a very fine mesh to avoid numerical artifacts. This makes it
computationally demanding to numerically calculate SHG in a conventional three-
dimensional full-wave set up. In Fig. 3.4(a), we provide the dispersion relation of
the system under LRA (dashed lines). Interestingly, we observe almost no difference
between the SHG intensities obtained in the presence of a hydrodynamic pressure
and in the LRA (see Fig. 3.5). As we will show in next section, this is due to the
fact that nonlocal optical effects are more pronounced at structure sizes below 20 nm
[73, 85, 84]. In the current waveguide, the wire has a much larger size, and its SHG
is virtually unaltered by the presence of nonlocal effects.

3.3.3 Plasmonic waveguide with the electron spill-out

In this section, we demonstrate the generality of the PSM by incorporating electron
spill-out at the metal surfaces. While defining the nonlocal response of a material
with free electrons in section 1.3, while writing Eq. (1.44b), we assumed a specific
approximation for the energy functional G[n] = TTF[n], i.e., the Thomas-Fermi
approximation with the hard-wall boundary conditions (i.e., no electron spill-out).
In the following, we express the functional in a more general form: G[n] = TTF[n]+
TvW[n,∇n]+EXC[n], where TvW is the von Weizsäcker correction to the TF kinetic
energy and EXC is the exchange-correlation energy functional. The ∇n-dependent
correction in the kinetic energy functional allows to take into account the electron
spill-out (spatial variation of charge density) at the metal interface. This approach is
generally known as quantum hydrodynamic theory (QHT).
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Fig. 3.6 (a) Schematic of the strip waveguide embedded in a dielectric medium with εd = 5.56.
The sharp corners are rounded off with a radius of curvature of 1.5 nm. (b) The equilibrium
charge density n0(r) normalized by the charge density in the bulk, nb and (c) the density
profile near the metal-dielectric interface along the white line shown in (b). (d) Real part of
neff as a function of the guide width w, considering h = 5 nm.

Eq. (3.2b) can be then be generalized to:

−∇×∇×E j −
χ(ω j)k2

j

e
∇

(
δG[n]

δn

)
j

+ εr(ω j)k2
0E j =−µ0ω

2
j P j,NL

(3.16)

where j = 1,2 and P1,NL = 0 (undepleted pump approximation). The nonlinear
polarization P2,NL must be enriched with nonlinear terms associated to the space
dependent density as well as to the more complex expression of G[n]. Detailed
expressions for the linear functionals and P2,NL can be found in Ref. [74].

In order to show an example of the proposed formulation with electron spill-out
within the framework of QHT, we study SHG in a metal strip waveguide of width
w and height h immersed in a dielectric medium with a dielectric constant εd , as
depicted in Fig. 3.6(a). We compute the space-dependent equilibrium electron
density n0(r) self-consistently using the zero-th order QHT equation (see Ref. [73]
for more details). The color map and line plot of n0, showing the electron spill-
out from the metal-dielectric interface, are presented in Fig. 3.6(b) and 3.6(c),
respectively. Considering a fixed waveguide height h = 5 nm, this configuration
supports the hybrid mode EH00@λFF at a pump wavelength λFF = 1550 nm and two
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Fig. 3.7 Electric field profile (Ey–component) of the (a) fundamental mode EH00@λFF,
(b) first mode EH00@λSH, (c) the second mode EH01@λSH at the SH wavelength, and
(d) the particular solution (PS). (e) SHG intensity as a function of propagation distance
along with the individual contribution of the each mode. The propagation constant of the
EH00@λFF is κFF = 4.62×107 +2.88×107i whereas those of EH00@λSH and EH01@λSH
are κEH00 = 1.6×108 +8.7×106i and κEH01 = 9.23×107 +2.44×107i, respectively.

hybrid modes EH00@λSH and EH01@λSH at the SH wavelength λSH = 775 nm. The
real part of the effective indices of these modes as a function of waveguide width w
are plotted in 3.6 (d).

The PM between the symmetric mode EH00@λFF and the anti-symmetric mode
EH01@λSH occurs for the waveguide width w = 21.85 nm. The associated mode
profiles (Ey –component) at the FF and SH are depicted in 3.7(a-c) and the field
profile of the particular solution (PS) is shown in Fig. 3.7(d). To explore the
contributions from each mode at the SH to the generated signal, it can be noted that
nonlinear source field, i.e. the particular solution, see Fig. 3.7(d), overlaps well with
the symmetric mode EH00@λSH and, therefore, major contribution to the generated
power comes from this mode, as shown in Fig. 3.7(e). indeed, we can observe that
there is no overlap between the nonlinear source (PS) and the EH01@λSH mode due
to its anti-symmetric nature, resulting in virtually zero contribution to the SHG from
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this mode. From this example, we can appreciate how important is to have access to
the exact SHG along the waveguide. In fact, a traditional optimization technique, i.e.
the PM technique, might not always provide the most efficient design.

Finally, we show a comparison between the aforementioned approaches in order to
show the impact of the nonlocality and quantum spill-out on the mode indices on
the SHG power. In particular, we consider the metal strip waveguide with the same
material and geometrical parameters as considered in Fig. 3.6. The effective mode
indices computed within the conventional approach, which neglects the electron
pressure and spill-out, i.e., the LRA, and TFHT, which only neglects spill-out effects,
are compared against the QHT, as shown in Fig. 3.8(a). The dispersion curves show
that the hybrid modes at the SH wavelength are considerably influenced by the
nonlocal and spill-out effects. The calculated SHG intensity along the waveguide is
plotted in Fig. 3.8(b) under different approximations. It can be seen that while TFHT
overestimates the SHG intensity as compared to the LRA, the QHT due to electron
spill-out predicts much lower intensity. From this example, we can appreciate how
important is to have access to arbitrarily precise models to evaluate exact SHG along
waveguides. In fact, a traditional optimization technique, i.e. the PM technique,
might not always provide the most efficient design.

3.4 Summary

We have derived and employed a method to study SHG originating from FE hydro-
dynamic nonlinearities in plasmonic waveguides. Our technique enables calculation
of SHG arising from arbitrary sources and distinguishes itself from conventional
approaches, which often neglect electron pressure effects and other quantum hy-
drodynamic corrections to surface nonlinear contributions. Indeed, such elements
play a pivotal role in nonlinear interactions, as shown in [80, 74]. Moreover, the
numerical nature of the PSM allows to easily calculate the response of purely surface
nonlinear sources providing a valuable and flexible tool for nonlinear guided optics,
even when not considering nonlocal or spill-out effects. In particular, our formalism
can be applied to explore FE nonlinearities in mid-IR plasmonic waveguides made of
heavily doped semiconductors [131], which have emerged as promising high-quality
and tunable plasmonic materials in this range of wavelengths, with many potential
applications in IR detection, sensing, optoelectronics and light harvesting [132].
Indeed, although FE optical nonlinearities have mostly been observed in metals,
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analogous effects may also occur in heavily doped semiconductors and, when cou-
pled with plasmonic enhancement, these nonlinearities could be up to two orders of
magnitude larger than conventional semiconductor nonlinearities [131].

3.5 Second-order surface susceptibilities

Centrosymmetric media like noble metals and amorphous solids does not allow bulk
second-order nonlinear processes [42]. However, the center of inversion can be
broken at the material’s surface, giving rise to the second-order nonlinear contribu-
tions. The two nonzero surface susceptibilities, following the Ref. [80] are defined
as:

χ
(2)
⊥⊥⊥ =− ε0

4n0e
3ω1 + iγ
2ω1 + iγ

, (3.17)

χ
(2)
∥⊥∥ =− ε0

2n0e
χ

2
1 . (3.18)

where in Eqs. (3.18-3.18) n0 is the equilibrium charge density, −e is the electron
charge, ε0 is the permittivity of free space, and ε1 is the relative permittivity of the
centrosymmetric materials at fundamental frequency ω1. The two surface nonlinear
polarization components, then, can be expressed as:

P⊥ = ε0χ
(2)
⊥⊥⊥E2

⊥, (3.19)

P∥ = ε0χ
(2)
∥⊥∥E∥E⊥. (3.20)

These polarization components can be linked to the two surface currents: the electric
surface current Je and the magnetic surface current Jm defined as [? ? ]:

Je =
∂P∥
∂ t

, (3.21)

Jm =
1

ε0ε(ω2)
n×∇∥P⊥. (3.22)

where Je and Jm are parallel to the surface.

3.6 Simulation configurations

Here, we present the finite element method (FEM) based implementation of the
results presented in this chapter. Commercial software Comsol Multiphysics [130]
has been employed for this numerical study. Outlined are two distinct schemes: (1)
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implementation of the PSM presented in section 3.2 and (2) the full-wave simulation
of nonlinear propagation through a waveguide.

3.6.1 Implementation of the particular solution method de-
scribed in section 3.2

Our proposed theoretical model, as discussed above in section 3.2, is based on
finding the guided-modes at the cross-sectional plane of the waveguide, having the
forms:

F(r) = F̃(x,y)eiκz (3.23)

where F(r) is a general representation of all fields: electric- E, magnetic- H, and
polarization-field P. In Eq. (3.23), the quantity F̃(x,y) is the shape of the mode at the
waveguide’s cross-section, and κ is the complex wavenumber of the corresponding
mode along the direction of the guide (z-direction) defined as:

κ = β + i
α

2
(3.24)

with β and α being the propagation and attenuation constant of the mode, respec-
tively.

The Comsol Multiphysics’ implementation to find F(r) is based on solving the linear
coupled equation set, the Eq. (3.2) of section 3.2 with (S2,NL = 0 in Eq. 3.2a). The
FEM modelling of these equations is carried out in “Electromagnetic Wave” module
for the field’s equation, Eq. (1.56), while the polarization equation, Eq. (1.44b), is
modeled through the “Weak Form PDE” module. These modules are coupled within
a Mode Analysis study at the wavelengths of interactions in the SHG process, and
we extract shape of the supported guided-modes, i.e., F̃(x,y), and their effective
refractive indices. The calculated mode indices, denoted as neff, are then used to
define the propagation constants, i.e., Eq. 3.24, of each mode as: κ = kneff where k
is the free-space wavenumber.

After obtaining the guided-modes forms, i.e., F(r), one can scale the modes to a
predefined input-power at the waveguide by evaluating the Eq. (3.4) and Eq. (3.6)
(see section 3.2) for the FF and SH modes, respectively. Meanwhile, the found
wavenumbers of the modes, “κ”, help writing the specific form of the nabla operator,
∇ = ∇⊥+ iκ ẑ used in defining the nonlinear polarization source vector S2,NL(r).
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This nonlinear polarization source field is then used to obtain the particular solution,
Ep(r), at the SH wavelength by solving the equation set:

∇×∇×Ep − k2
2Ep = µ0ω

2
2 Pp (3.25a)

−en0

me
∇

(
δG[n]

δn

)
2
−
(
ω

2
2 + iγω2

)
Pp =

ε0ω
2
pEp +S2,NL

(3.25b)

In calculating particular solution, the “Electromagnetic Wave” module in Comsol is
employed to model Eq. (3.25a); and the module is fed a propagation constant 2κ1,
defined using the wavenumber of input (FF) mode κ1. Likewise, the polarization
equation, Eq. (3.25b), is modeled using “Weak Form PDE” module. The modules
are then coupled in a Frequency Domain study and particular solution is obtained,
which is utilized to calculate each |bm|2 (Eq. (3.10)). Finally, the calculated |bm|2

are used to implement Eq. (3.15) of the main-text to observe the evolution of the
SHG along the guide’s direction; simultaneously, one can also split the contribution
of each distinct mode, at the SH, to the generated signal.

3.6.2 Full-wave simulation

In this section, we present a generalized method to study EM wave propagation
in a waveguide by employing full wave simulations. Full wave simulations are
electromagnetic problems that describe the propagation of predefined excitations,
generally along a cross-sectional volume. The EM wave propagation in a waveguide
is somewhat linked to the electromagnetic problem solved at the cross-sectional
plane, i.e., finding the excitations (modes) F(r) = F̃(x,y)eiκz. In the subsection
(3.6.1), we have described this procedure.

Once the modal field shapes and the corresponding dispersion characteristics
(wavenumbers) are known, the next step is to utilize these modes as an excita-
tion to the waveguide and solve an EM wave propagation problem in the cross-
sectional volume of the waveguide. We define excitation to the waveguide by using
User de f ined Ports provided in Comsol’s “Electromagnetic Wave” module. The
Port’s mode settings are specified by the wavenumber and corresponding modal
fields from the problem solved at the cross-sectional plane of the waveguide; with
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“generalized nonlocal extrusion coupling operator” of Comsol mapping modal fields
on the ports. The EM wave propagation is then characterized by solving the coupled
equation set:

∇×∇×E j − k2
j E j = µ0ω

2
j P j (3.26a)

−en0

me
∇

(
δG[n]

δn

)
j
−
(
ω

2
j + iγω j

)
P j =

ε0ω
2
pE j +S j,NL

(3.26b)

The Eqs. (3.26) are solved by employing Frequency Domain study of “Electromag-
netic Wave” module coupled to “Weak Form PDE” module, for j = 1 at the FF and
j = 2 for the SH field, with S1,NL = 0 since we operate under the undepleted pump
framework. Finally, intensity of the modes, at both the FF and SH (generated) field
can be evaluated along the waveguide by employing General Projection operator
provided in Comsol.



Chapter 4

Conclusions and Outlook

In this thesis, I presented a theoretical study and the numerical implementation of
the SHG in distinct plasmonic nanostructures, with particular focus on plasmonic
enhancement of the underlying nonlinear phenomena.

The Chapter 1 of the manuscript provides an overview of plasmonics, the principles
of nonlinear optics and application of plasmonics for nonlinear optics. In particular,
I discuss the hybrid nonlinear plasmonic systems, which are the core of the results
parented in one of the part of the draft. I discuss the basics of the numerical method,
the FEM, utilized to for the presented studies. I provide details on the numerical
implementation of the studied problems using a commercial software COMSOL
Multiphysics, including their governing FEM weakforms. The key information in
this chapter also comprised of the discussion on the mode-orthogonality theorem in
optical waveguide and the modal expansion of a field, the core to our novel “partic-
ular solution method (PSM)” used to study SHG in optical waveguides composed
of arbitrary nonlinear sources. Further, the advanced plasmonic topics and their
significance has been introduced. The main point of this chapter was to provide an
overview of the basic concepts and techniques used for state of the art numerical
studies presented in this thesis.

In Chapter 2, I presented the numerical implementation of the SHG in hybrid-
plasmonic nanopatch antennas. I studied two mode-matched configurations of the
distinct modal characteristics and operating regimes. For both the studied configura-
tions, angular dependence of the SHG is studied. In each of the configuration the
optimal SHG efficiency is observed at the oblique angles. I explored the origin of
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optimal second-harmonic signal. The origin of the optimal SHG in each system is
linked to the overlap integral.

Note that the although higher SHG efficiencies in each of the mode-matched config-
urations, their optimal excitation conditions (oblique illuminations) are not favorable
experimentally. Moreover, one of the optimized mode-matched SHG configurations,
although presenting the highest efficiency, was obtained for design parameters dif-
ficult to be fabricated. In that regard, the second part of this chapter is focused on
obtaining a mode-matched design, that enables optimal SHG at the normal illumina-
tions and allow for an experimentally realizable design. We realize such a system, by
loading the spacer layer in the nanopatch antenna with a periodically poled materials
HfO2 [49]. The physical origin of the to obtain such optimal efficiency in such a sys-
tem is explored, which is linked with the periodic modulation of the of nonlinearities
that enables quasi phase-matching like conditions [42] to meet, although the system
is still has miniaturized scale footprints.

The significance and outlook of the work presented in chapter 2 are that, first the
study shows the versatility of the nano-patch system as a controllable platform for
nano-optical applications. Second the work discusses the strategy to extract optimal
nonlinear efficiencies in nanoplasmonic systems. Future works on nonlinear nano-
optics may benefit from the strategy while designing systems exhibiting optimal
nonlinearities.

In Chapter 3, I presented a novel semi-analytical formulation of to study SHG in
plasmonic waveguides in the presence of variety of nonlinear sources, including non-
linearities that arise from the nonlocal effects based on the hydrodynamic of motion
of free electrons. I employed the proposed formulation in variety of waveguides for
the SHG, including plasmonic waveguide with electron spill-out. I also compared
the SHGs obtained in the presence of distinct free electron nonlinear sources, which
also included the surface hydrodynamic nonlinear sources. It’s the robustness of
our formulation that all the such distinct type nonlinearities can be readily incor-
porated to study the designated phenomenon. All the studies are carried out with
computational rigor which is much less than what such studies would incur under
the conventional full-wave simulations. The validity of the proposed formulation
through the full-wave FEM simulations is also a part of the works presented in this
chapter.
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Plasmonic waveguides are a key building block of optical circuits for nanoscale
signal processing. Nonlinear optical functionalities are at the core of the devices
demonstrating ultrafast optical functionalities and wider bandwidths. To this end the
work presented in chapter 3 provide a useful numerical tool to study the nonlinear
optical effects in plasmonic waveguides incorporating variety of nonlinear sources.
A natural direction for the future development of the work in this chapter 3 would
be the study of the nonlinear optical phenomenon arising from the materials with
heavily doped semiconductors. Such studies may enables optical applications in
the newly explored mid-infrared range op EM spectrum for sensing and energy
harvesting applications.
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