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ABSTRACT 

 

The Duffing oscillator represents an important model to describe mathematically the nonlinear 

behavior of several phenomena occurring in physics and engineering. In this paper, analytical and 

numerical solutions to the nonlinear cubic Duffing equation governing the time behaviour of an 

electrical signal are found as a function of the magnitude and of the sign of the nonlinear parameter, 

of the damping parameter and for different values of the forcing term. A stability analysis of the 

Duffing equation in the absence of the forcing term is also performed as a function of the sign and 

magnitude of the nonlinear parameter. A fitting procedure of the Duffing solution to the current 

signal flowing in different distribution lines allows us to determine the degree of nonlinearity of the 

electrical signal suggesting a potential way to quantify the nonlinear behaviour of current electrical 

signals.  
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1. Introduction 

The dynamics of nonlinear systems continues to be one of the main issues in the field of 

engineering [1-6]. On the other hand, a large deal of work has been devoted to the study of 

nonlinearity of physical systems. In the last decades, the study of nonlinear dynamics has also been 

one of the topics in several fields of physics especially of condensed matter physics. A large deal of 

work was done in the field of nonlinear optics, nonlinear hydrodynamics and nonlinear magnetism 

by looking for exact and numerical solutions of nonlinear differential equations expressed in the 

form of nonlinear Schroedinger equations describing a plethora of physical systems [7-8]. 

   Great attention has also been given in solid state physics to model atomic interactions by means of 

anharmonic potentials taking into account the nonlinear interactions occurring in real crystals. This 

has allowed to describe the dynamics of phonons, quantized excitations around atoms, in simple 

crystals in terms of anharmonic interactions and to study the surface anharmonicity of simple metals 

[9]. 

     Among the several models employed in the calculations, the one based on the Duffing oscillator 

described by the Duffing equation is undoubtedly one of the most famous and successful [10-12]. 

This equation dates back, for instance, to applications in mechanics, theory of sound and, more 

generally, in acoustic and has allowed to describe quantitatively the nonlinear effects typical of real 

dynamical systems.  

    Since the introduction of the Duffing equation, there has been a lot of work done on this 

equation. The most important efforts were made to develop analytical and numerical solution 

methods. Recently, some mathematical methods to solve the Duffing equation have been proposed. 

In particular, the solution of the cubic-quintic Duffing oscillator including also a strong fifth-power 

nonlinear term based on the use of trial Jacobi elliptic functions and for both damped and undamped 

cases [13-14] has been found for an application to a large variety of real systems. For instance, the 

solution of the Duffing oscillator has been found for reproducing free vibrations of a restrained 

uniform beam with intermediate lamped mass and the nonlinear dynamics of slender elastic. In 
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addition, also a) a formalism based on the Laplace decomposition algorithm; b) a procedure 

consisting of a variational iteration method able to numerically solve the full non-homogeneous 

cubic Duffing equation; c) a method based on the Newton-harmonic balancing approach to 

determine numerical solutions to nonlinear cubic-quintic Duffing oscillators; d) a procedure 

showing that the second-order nonlinear damping oscillator can be reduced to an equation of the 

normal Abel form; e) an approach based on the modified differential transform method and on the 

fourth-order Runge-Kutta numerical solution to solve non-linear Duffing equation and f) a method 

based on the exact solutions of a generalized autonomous Duffing-type equation were developed 

[15-20]. Some of the above mentioned methods were employed to investigate the dynamical 

behaviour of a large variety of physical systems that are described by the various forms of the 

homogeneous Duffing equation.  

    Indeed, this equation exhibits an enormous range of well-known behaviours in nonlinear 

dynamical systems and it is widely used. Since the 1970s, it has been largely used in the field of 

applied mathematics, especially for the study of chaos in systems governed by a nonlinear 

behaviour [21-25]. Actually, it can be considered one of the simplest equations that describes the 

chaotic behaviour of a system and gives insights into the dynamical parameters involved.  

    Recently, an important electrical engineering application of the Duffing oscillator was also 

proposed consisting of an islanding detection method in Distributed Generation (DG) systems [26].  

The term islanding refers to a condition according to which a distributed generator continues to 

supply power to local loads after it is separated from the rest of the system. This was done to 

investigate the transformation of the Duffing oscillator from chaotic state to great periodic one and 

the performance of the suggested method was confirmed by simulations. Moreover, in the same 

field a study for detecting and for estimating weak signals by means of the Duffing oscillator has 

been performed [27]. 

    However, to the best of our knowledge, there are not yet direct mathematical applications of the 

Duffing oscillator in the field of electrical engineering with special emphasis to the analysis of the 
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behaviour of electrical signals according to the solution to the full and non-homogeneous Duffing 

equation.  

    Therefore, the aim of this paper is to show that the cubic Duffing equation describes the time 

behaviour of an electrical signal. This analysis is supported by a theoretical framework based on the 

analytical and numerical solution to the homogeneous and non-homogeneous cubic Duffing 

equation. In particular, the homogeneous cubic Duffing equation is solved analytically under the 

assumption of negligible damping and the numerical solution is found and discussed in detail both 

in the homogeneous and non-homogeneous case. Several cases are generally described as a function 

of the dynamical parameters like the damping term, the forcing term and the nonlinear parameter. 

     By considering the current flowing in the distribution lines (DLs) of a smart grid (SG) as the 

processed electrical signal, the deviation of the measured current intensity i(t) from a linear 

behaviour is also discussed via a fitting procedure of the cubic Duffing numerical solution to the 

measured data. According to this fitting procedure the value of the nonlinear parameter associated 

to the cubic term is determined for the different distribution lines. Indeed, it has been found that, for 

reproducing the time behaviour of the measured i(t), the inclusion of the quadratic and quintic terms 

in the Duffing equation leads to negligible changes of the calculated electrical signal time behaviour 

confirming that the main term governing the dynamics is the cubic term. 

 

2. Theoretical Framework 

 

 

     In this section, we present the theoretical framework by studying the time dependence of an 

electrical signal. In the specific case it is represented by the current i(t) flowing in a power grid. In 

order to do that, we solve the Duffing equation for studying the dynamical properties of mechanical 

and electrical systems. The Duffing equation describes the dynamics of a system in the anharmonic 

regime. This means that, according to it, the deviation from a purely linear regime by means of a 

nonlinear term weighted by a nonlinear parameter is taken into account. The non-linearity is 
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responsible for the anharmonic behaviour of the system up to the third order that is another way of 

expressing the deviation from periodicity typical of harmonic and ideal electrical systems. 

     Moreover, also a forcing term is included and is characterized by an amplitude and an angular 

frequency. The analysis is done by choosing the nonlinear parameter either as positive or negative 

reproducing the case either of a hard or of a soft “spring”. The effect of the forcing term on the form 

of the electrical signal is also investigated. 

 

2.1. Duffing equation: analytical solution for an undamped and unforced system  

 

    In this subsection, we discuss an analytical solution to the Duffing equation. To introduce it, we 

recall the equation governing the dynamics of a series RLC circuit involving the current. It is well 

known from the circuit theory that in a series RLC circuit the current i(t) is a solution of a second-

order non-homogeneous ordinary differential equation expressed in the form [28]                                                                                                                                                           

                                           

( ) ( )
( )

( )2
2
02

1
2                                          (1)

d i t di t d v t
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dt L dtdt
 + + =

 

where 
2

R

L
 =  (R is the resistance and L is the inductance) is the neper or attenuation angular 

frequency, 
( )

0 1
2

1

LC
 =  is the resonance frequency (C is the capacitance) and v(t) = V0 sin (t) is the 

time varying voltage generator with V0 the maximum value of the voltage and  the angular 

frequency of the forcing term. Straightforwardly, the well-known analytical solution to Eq.(1) can 

be expressed as the sum of a combination of either real or complex exponential functions 

(depending on the ratio between the attenuation and the resonance frequency) and of a particular 

solution of the complete equation.           

    In real systems, there is a deviation towards a non-linear behaviour, so that Eq.(1) does not 

describe the real trend of the current flowing in the RLC circuit. Starting from the well-known 

Eq.(1) and by including the cubic nonlinear term, it is possible to write the corresponding Duffing 

equation. For the sake of simplicity, we express all the terms appearing in Eq.(1) in dimensionless 
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units where the dimensional current i(t) is replaced by a generic variable y() with  the 

dimensionless time. The dimensionless nonlinear second-order ordinary Duffing equation can be 

written in the form:                                                                                            

                                           ( ) ( ) ( ) ( ) ( )3 cos                                    (2)y y y y       + + + =  

where the symbol “” denotes the time derivative with respect to . Here, 
max

i
y

I
=  is dimensionless 

with maxI  the maximum current intensity, 
t

T
 =  with T the period, 

0

R
CL R
L




= =  is the dimensionless 

damping coefficient , 
0





= ,  is the non-linear parameter governing the non-linear behaviour 

(cubic term), 
0

2
max 0

1 1V

L I





=  is the maximum value of the amplitude of the forcing term in 

dimensionless units. For  > 0 the dynamics is equivalent to that of a “hard spring”, while for  < 0 

we deal with a “soft spring” dynamics.  

   We now give an exact analytical solution to Eq.(2) in the absence of damping ( = 0) and in the 

unforced case ( = 0). This condition, although not usual, corresponds to power systems where the 

damping effects can be considered negligible and to the free regime of the generators when, for 

example, a temporary breakdown of the electrical line takes place. The analytical solution is found 

as a function of the nonlinear parameter. In this special case, the solution to Eq.(2) takes the form: 
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where the subscripts  denote the two solutions (one positive and one negative), j is the imaginary 

unit and the constant B on the second member is 
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parameter expressed by a real number, ( ) ( )y y − +=− and y1 and y2 are integration constants. The 
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symbol “sn” stands for Jacobian elliptic function sn (j u| m) defined in the complex plane where in 

the present case ( ) ( )
1 2

1 2 2

1 2

2
1 1 2

2
u y y 

  
=  − + + +  

  
. In Eq.(3) the elliptic function sn (j u| m) is a 

doubly periodic meromorphic function with real quarter-period K = u(φ= /2) and imaginary 

quarter-period ( ), 21jK j u m  = =  where m1 = 1-m is the complementary parameter still expressed 

by a real number. In Eq.(3) all terms depend on  and u is a function of both the integration 

constants  y1 and y2. 

     By using Jacobi’s imaginary transformation according to which sn (j u| m) = j sc (u| m1), Eq.(3) 

can be rewritten in the final form in terms of the elliptic function sc(u| m1), viz:          
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and the angle φ=am (u, m) = am (u) is called the Jacobi amplitude of the argument u, where the 

script “am” stands for the abbreviation of amplitude and such that sn(u)=sin(φ). The solution 

expressed by Eqs.(3) and (4) for  →0 tends to the well-known one of the harmonic oscillator in 

terms of transcendental circular functions. A numerical discussion of the above mentioned solution 

as a function of the nonlinear parameter  is performed in Sect. 2.2. The numerical solution to the 

complete Duffing equation as a function of the nonlinear parameter and of the forcing term is 

discussed in Sect. 2.3. 
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2.2.  Dependence on the nonlinear parameter of the analytical solution for =0 and =0  

 

      In this subsection, a numerical study of the effect of non-linearity on the analytical solution to 

the Duffing equation expressed in Eq.(2) is performed. This is accomplished by studying the 

dependence of the y()  on the parameter . The exact solution to the Duffing equation ( ( )y 
+  in 

Eq.(4)) is shown in Fig.1 as a function of . In the numerical calculation we have taken y1 = 1 and y2 

= 1 which determine the initial values. From a numerical check, it was found that the shape of the 

solution does not essentially depend on the values of the integration constants but the number of 

oscillations varies by changing the values of  y1 and y2. The effect of the increase of the nonlinear 

parameter is a reduction of the amplitude and at the same time an increase of the oscillation 

frequency resulting in a narrowing of the wave. In this case, the deformation of the wave profile is 

not so accentuated. Therefore, the general effect of non-linearity is to modulate the amplitude and 

frequency behaviour. Moreover, the oscillation is highly nonlinear especially for large values of  as 

indicated by the deformed wave-profile with pointed crests and troughs especially in panels Fig.1(e-

f).     
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Fig. 1. Analytical solution to the Duffing equation as a function of time for different values of the 

nonlinear parameter and for  = 0 and  = 0. (a):  = 0.1. (b):  = 1. (c):  = 2. (d):  = 10. (e):  = 

100. (f):  = 1000.   

 

2.3.  Numerical solution to the Duffing equation: dependence on the nonlinear parameter and 

forcing term 

      

In this subsection, we discuss the time behaviour of y() by solving numerically the Duffing 

equation. The numerical integration of the nonlinear differential equation (Eq.(2)) has been 

performed by using a Mathematica routine that determines the function y() as an interpolating 

function object for given values of  providing approximated values of y over the range of  values 

considered. The solution is found iteratively starting from a particular value of  also outside the 

range considered (in the present case it was chosen  = 0) which expresses the initial conditions y(0) 

and ( )0y  and taking a sequence of steps which eventually cover the whole range of  . First, we 
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consider the Duffing equation solution by setting  = 0 in Eq.(2), namely in the absence of the 

forcing term that would correspond to the condition of free generators. In all the following 

calculations on the solution to the Duffing equation the damping coefficient is fixed at  = 0.5 that 

corresponds to a realistic value within the under-damped regime 0 ≤ < 2. Other choices in the same 

range would lead to qualitatively similar results. 

The trend of the time-domain signal y() is displayed in Fig.2 for different values of the nonlinear 

parameter. The general effect is a reduction of the signal amplitude with increasing . In addition, 

there is a frequency modulation especially for large values of  also connected to the raising of 

nonlinear effects. This is shown by the narrowing of the signal profile in correspondence of crests 

and troughs. However, this modulation effect is accentuated with respect to the one found when  = 

0 (see Fig.1). This means that the damping reinforces the frequency modulation mainly due to the 

nonlinear term.  
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Fig. 2. Solution to the Duffing equation at fixed damping coefficient  = 0.5 and with no forcing 

term ( = 0) for different values of the nonlinear parameter. (a):  = 1. (b):  = 10. (c):  = 100.  

 

 

    Interestingly, the Duffing equation numerical solution including also the effect of the sinusoidal 

forcing term gives further insights for understanding the real behaviour of an electrical signal. The 

results of this analysis are shown in Fig.3. In Fig.3(a-c) for a forcing coefficient =1 and for a 

forcing angular frequency 1 =  it is evident a deviation from a purely periodical behaviour with 

increasing , which in turn gives rise to the nonlinear behaviour. The amplitude modulation mainly 

due to the damping effect is almost entirely masked by the effect of the forcing, while the frequency 

modulation is evident especially for  = 100 for the first instants of time. Fig.3(d-f) show the 
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corresponding results obtained for  = 10. Interestingly, at larger forcing the frequency modulation 

is less accentuated even at   = 100. Again, nonlinearity effects are present and can be traced into 

the doubling of the crests and troughs. Indeed, at fixed   the increase of  by one order of 

magnitude (see Fig.3(e)) induces a reduction of the amplitude.  

      Fig.4 illustrates the numerical results for the electrical signal by varying the angular frequency 

of the forcing term for fixed =1 and for two different values of the forcing term,   = 1 (Fig.4(a-c)) 

and  = 10 (Fig.4(d-f)). The effect of increasing   is equivalent to that of a damping. Indeed, it is 

evident the amplitude modulation passing from 1 =  to 10 = . 

                  

Fig. 3. Solution to the Duffing equation at fixed damping coefficient  = 0.5 for different values of 

the forcing term and of the nonlinear parameter. (a):  = 1,  =1. (b):  = 10,  =1. (c):  = 100,  

=1. (d):  = 1,  =10. (e):  = 10,  =10. (f):  = 100,  =10. In all case the angular frequency of the 

forcing term is 1 = . 
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Fig. 4. Solution to the Duffing equation at fixed damping coefficient  = 0.5, fixed  positive 

nonlinear parameter  = 1, two different values of the forcing term   as a function of the forcing 

frequency  . (a): 1 =  and forcing term  = 1. (b): 2 =  and forcing term  = 1. (c): 10 =  and 

forcing term  = 1. (d): 1 =  and forcing term  = 10. (e): 2 =  and forcing term  = 10. (f): 

10 = and forcing term  = 10. 

 

On the other hand, the frequency modulation, especially evident for 2 = , is masked by the 

amplitude modulation at larger angular frequencies ( 10 = ), namely the amplitude modulation 

strongly prevails. A larger amplitude of the forcing term ( = 10) produces strong changes in the 

electrical signal especially by determining a strong frequency modulation that was less evident for 

=1. The same attenuation effect that plays the role of a damping is present for 10 = . To 

summarize, the main effect is a change of the shape of the electrical signal, but no consistent 
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modifications are present in terms of modulation. 

     To complete the analysis it has been also numerically studied the effect of a negative nonlinear 

parameter on the time behaviour of an electrical signal. The negative value of  describes an active 

nonlinear component. The results of this analysis are shown in Fig.5 for fixed amplitude and 

angular frequency of the forcing term  = 1 and 1 = , respectively.         

                             

                
 

Fig. 5. Solution to the Duffing equation at fixed damping coefficient  = 0.5 and  =1 as a function 

of the negative nonlinear parameter. (a):  = -0.1. (b):  = -0.4. (c):  = -0.5. (d):  = -0.6. 

 

    There is a drastic change of the signal profile with increasing the negative value of the nonlinear 

parameter. At  = -0.1 the electrical signal is still almost periodic and the profile is very similar to 

that of a harmonic wave, but at  = -0.5 there is a change towards a completely different profile 

corresponding to that of a localized wave in the form of a hyperbolic transcendental function. At  = 

-0.6 the wave amplitude becomes infinite at periodic instant of times. This quick variation in the 

range [-0.6 ÷ -0.4] and especially the divergence for  = -0.6 is due to the cubic power of the 

nonlinear term. Finally, we have found that the inclusion of either an additional quadratic term in 
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the Duffing equation (Eq.(2)) proportional to  y() | y() | or of a quintic term proportional to y5() 

does not essentially change the above described results in terms of non-linear behaviour, which are 

mainly affected by the cubic term. 

3.  Stability Diagram And Fixed Points 

 

     In this section, we discuss the stability of the Duffing equation in the absence of a forcing term 

as a function of the parameter  in order to investigate the effect of the non-linearity on the stability 

diagram and on the fixed points. In principle, the fixed points should be studied by starting from the 

complete equation in the presence of the forcing term on the second member of Eq.(2). However, a 

simple argument allows us to exclude this case from the stability discussion. Indeed, when the 

forcing is taken into account, strictly speaking there would not be any fixed points due to their time 

dependence related to the forcing term. The stability analysis is performed for  >0. The stability 

diagram is studied by discussing also the fixed points for the negative sign in the linear term of 

Eq.(2) for  = 0. This would correspond to the rather unusual case of a negative capacitance [29].  

     In its general form, Eq.(2) written for  = 0 can be expressed as the following system of first-

order differential equations (by omitting, for the sake of simplicity, the time dependence):                                                           

                                           
( )

3

                                                                       6
x y y x

y x

  = − −


=  

where the minus (plus) sign of the first term on the right member of the first equation is related to 

the positive (negative) sign of the linear term. The fixed points of Eq.(6) are found from 

( ) ( ) 0y t x t= = , so that:                                                                                                                                                    

                                                       ( )3                                                                       7x y y= −  

For the positive sign of the linear term, the solution to Eq.(7) yields F1 = ,0
j



 
 
 

, F2 = (0,0) and F3 = 

,0
j



 
− 
 

. Apart from the trivial fixed point in the origin of the stability diagram, there are no fixed 
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points in the real domain and this would correspond to an absence of fixed periods of the 

oscillation.  

     We now analyze the stability diagram in the case of the negative sign in the linear term. The 

solution to Eq.(7) gives the three fixed points in the stability diagram: F1 = 
1

,0


 
− 
 

, F2 = (0,0) and 

F3 = 
1

,0


 
+ 
 

. The fixed points are independent of the magnitude of the value of , lie on the x-axis 

and would merge asymptotically towards the origin for strong nonlinearity condition, that is for 

large values of . The analysis of the stability of F1, F2 and F3 can be performed by differentiating 

Eq.(6) and considering the positive sign. We get two second-order differential equations, which can 

be written in matrix form as:                                                   

                                                  
( )

21 3
                                                      8

1 0

x xy

y y

     − −
=     
       

The solution of the eigenvalue problem leads to:                                                           
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2

  
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 






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For any value of γ ≥ 0 there is always a real and positive root 
F2 0+  . Hence, the fixed point F2 is 

always unstable and, as expected, its stability condition is not a function of .  By contrast, the 

stability condition of F1 and F3 fixed points strictly depends on the value of .  Let’s discuss first the 

nature and the sign of the F ,F1 3 eigenvalues for γ >0. It turns out that F ,F1 3 are real and negative for 0 

<  < 3 and for 
1 2

12 4




− 
  
 

. Instead, they are complex for 0 <  < 3 and for  
1 2

12 4
0






− 
   

 
 with 

Re[ F ,F1 3 ] < 0. Hence, for 0 <  < 3, F1 and F3 are asymptotically stable. On the other hand, for  = 0, 

the two points are linearly stable if 0 <  < 3 as the eigenvalues reduce to the following simple 

expressions:                                                                                                             
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                                             ( )

F2

1 2
F ,F1 3

1
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 .                                                                       10












=

− 
=  

 
 

For  > 3 F1 and F3 are stable choosing the negative sign and unstable choosing the positive sign.  

We now study the dependence of the phase diagram and of the fixed points on the nonlinear 

parameter  and on the damping coefficient . In this analysis, the numerical integration of Eq.(2) 

was performed according to the interpolating function object for the solution y() as done in 

previous numerical calculations. First, we study the case with the positive linear term in Eq.(2). The 

phase diagram does not exhibit stable fixed points having real values so that in this case there are 

not fixed period of the oscillation apart from the trivial fixed point in the origin. In the phase 

diagram there is a continuous winding of the lines for small values of the damping parameter ( 

=0.1) giving rise to an elliptical shape as shown in Fig.6. For larger damping ( =0.5) the shape 

changes from a closed elliptical to an open spiral independently of the value of .                 

          

Fig. 6. Stability diagram with fixed point F2 on the x-axis obtained from Eq.(2) with the positive 

sign in the linear term. (a):  =0.1 and  = 0.1. (b):  =0.5 and  = 0.1. (c):  =0.1 and  = 0.5. (d):  

=0.5 and  = 0.5.  
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      We now study the case with the negative linear term in Eq.(2). Even if this is a not a typical case 

in power systems it is instructive to discuss the dependence of the fixed points on the nonlinear 

parameter. For the values of the nonlinear parameter that ensure stability (0 <  < 3) there is no 

continuous winding due to the presence of fixed periods of the oscillation as displayed in Fig.7. 

Fixed periods of the oscillation represented by the point F1 and F3 are symmetric with respect to the 

y axis, lie on the x axis and approach the origin with increasing . In particular, for   = 0.1 F1 = (-

3.16, 0) and F3 = (3.16,0), for  = 0.5 F1 = (-1.41, 0) and F3 = (1.41, 0) as shown in Fig.7. For all the 

values of  there is always a trivial fixed point F2 = (0,0). Note that the coordinates of the fixed 

points are independent of the values of the damping parameter. The corresponding eigenvalues are 

real for F2, viz. 
F2+  = 0.95 and 

F2− = -1.05 for every  and for  = 0.1 and 
F2+  = 0.81 and 

F2− = -

1.31 for  = 0.5. Instead, as expected they are complex for F1 and F3, viz. F ,F1 3 = -0.05   j 5.38 for  

= 0.1 and 
F ,F1 3 = -0.25   j 2.22 for  = 0.5. With no damping ( =0) the two eigenvalues become 

purely imaginary, namely 
F ,F1 3 =  j 5.39 for  = 0.1 and F ,F1 3 =  j 2.24 for  = 0.5.  

   The strongly deformed shape indicates non-linearity that is more evident in Fig.7(c) and (d). 

Interestingly, the lines become more stretched for  = 0.5. Instead, for  = 0.1 the shape is less 

deformed and this is an indication of the approach to the linear regime. At a fixed value of   there 

is also an effect of the damping parameter on the lines topology. With increasing   the winding of 

the lines reduces and the lines tend to assume the shape of open spirals around the two symmetric 

fixed points F1 and F3. This effect is more accentuated at  = 0.5. With increasing the nonlinear 

parameter at fixed damping coefficient there are not qualitative changes of the lines topology. In the 

absence of damping the lines topology is very similar to that of Fig.7(a) and (b).  
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Fig. 7. Stability diagram with fixed points F1, F2 and F3 on the x-axis obtained from Eq.(2) with the 

negative sign in the linear term. (a):  =0.1 and  = 0.1. (b):  =0.5 and  = 0.1. (c):  =0.1 and  = 

0.5. (d):  =0.5 and  = 0.5. 

 

    In the next section a comparison between the numerical results obtained according to the 

proposed model and the behaviour of the measured i(t) for different distribution lines is presented. 

This is done by assuming that i(t) flowing in the distribution lines is a solution to the Duffing 

equation (cfr. Eq.(2)).   

4.  Results and discussion 

 

     In this section, the system under test is described in detail, and the behaviour of the measured 

current flowing in the circuit as a function of time is compared to the theoretical solution of the 

Duffing equation for several lines. 
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4.1. Description of the system under test 

The system under test is a part of a SG constituted by several passive and active lines feeding both 

residential and commercial users. In particular, three lines were investigated, one active and two 

passive, having important load variations during the day and the week. The three-phase line L1 is 

passive with a peak power of about 100 kW. The three-phase line L2 is passive, it has a very low 

amount of PhotoVoltaic (PV) power (1 grid-connected PV plant, 6 kWp) and it has a peak absorbed 

power of 50 kW. The three-phase line L3 is an active line with a great amount of PV power (over 

100 kWp) and with a maximum peak of about 80 kW of absorbed power. Fig. 8 shows the L3 line, 

the other two lines are similar. For every line investigated, we consider the current i(t) flowing in a 

phase of the DL. Current measurements range between the end of September 2013 and the end of 

June 2014 for a total of 278 days, a period corresponding approximately to 9 months and covering 

three different seasons. In particular, the line L1 has a great amount of residential users, the line L2 

has a prevalence of commercial users, and the line L3 has several residential users fed also with 

grid-connected PV plants.  
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Fig. 8. Line L3 of the system under study: bj,k is the length of the k-th branch of the j-th ramification, 

dj,k = bj,k+dj,k-1 is the distance of the branch (j,k) from the line start. 3150+95 stands for a tri-polar 

cable with section 150mm2 and neutral conductor of 95 mm2. 

 

 

4.2.    Measured current: time behaviour 

    The time behaviour of the current i(t) in the whole sampling period for the three most 

representative lines L1, L2 and L3 described in the previous subsection and for the a phase is shown 

in Fig.9 (a-c). The corresponding i(t) for the central week of the sampling period are displayed in 

Fig.9(d-f). The deviation from a purely periodical behaviour is mainly related to the non-linearity 

effect as can be seen clearly in the temporal windows of one week where the profile of i(t) is 

deformed with pointed crests and troughs.         

                                  

Fig. 9. Measured current vs. time. (a): i(t) for the sampling period of the L1 line. (b): as in (a), but 

for the L2 line. (c): as in (a), but for the L3 line. (d): i(t) for a representative week of the L1 line. (e): 
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as in (d), but for the L2 line. (f): as in (d), but for the L3 line. 

 

     Moreover, additional features of the current are: (a) the frequency and amplitude modulation; (b) 

the small damping effect with increasing t. Even though the signal is not purely periodic, it is 

possible to extract an approximate period T corresponding more or less to one day. Note that the i(t) 

trend in the other weeks of the sampling period is very similar to the ones shown in Fig.9(d-f). 

Moreover, the time behaviour of the measured i(t) for the other phases resembles the one displayed  

in Fig. 9.  

     A comparison between the measured current expressed in dimensionless units (normalized to the 

maximum intensity Imax) and the numerical solution to the Duffing equation (Eq.(2)) is shown in 

Fig.10 for the lines L1, L2 and L3 during a one-week temporal window. The initial conditions y(0) 

and ( )0y  for the solution to Eq.(2) are different for the three lines due to the different values 

assumed by the current and by its first derivative at t = 0.  Also for the fitting procedure the 

numerical integration of Eq.(2) was performed by determining the function y() via the interpolating 

function depending on the different initial conditions for the three lines. In the calculations the 

following representative values were used: R = 5 , L = 16 mH, C = 1 F, V0 = 220 V and  = 314 

rad/s. The following dimensionless parameters appearing in Eq.(2) were found: 
C

R
L

 =  = 0.04 and 

0

2
max max0

1 1 0.07 AV

L I I





= =

, where the maximum intensity Imax depends on the line analyzed. In 

particular, in the temporal window considered it is Imax = 120  A for L1, Imax = 88  A for L2 and Imax 

= 100  A for L3.   

     The fitting procedure was performed by varying the value of the nonlinear parameter , which 

turned out be positive for every line studied. Hence, the associated behaviour of the measured 

current as a function of time is equivalent to that of a “hard spring” if compared to a mechanical 

system. The fitting procedure was also very sensitive to the initial conditions: y(0) = - 0.95 and 
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( )0 1y =  for L1, y(0) = - 0.70 and ( )0 1y =  for L2, and y(0) = -0.80 and ( )0 1y =  for L3. From the 

fitting procedure, by applying a least-square analysis it was found:  = 55  1 for line L1,  = 110  

1 for line L2 and  = 80  1 for line L3 (Fig.10(a-c), respectively).  

     The comparison between the measured and the numerical current intensities is good especially 

regarding the amplitude and the periodicity of the signal. Nevertheless, the calculated current does 

not completely reproduce the double-peak profile typical of the measured signal. This discrepancy 

is not surprising. Indeed, it can be attributed to other effects that are not included in the present 

model based on the solution to the cubic Duffing equation. We have also found that this 

discrepancy is not due to the effect of additional quadratic or quintic terms or to the variation of 

other parameters governing the Duffing equation. 

    The time behaviour of the current of the L2 line having a prevalence of commercial users has the 

largest deviation from the linearity, which in turn leads to a deviation from a purely periodical 

trend. However, to a lesser extent, non-linear effects characterize also the current of the lines L1 and 

L3.      

     In order to have a further confirmation about the main role played by the non-linearity parameter 

 in determining the time behaviour of the i(t) signal, also the damping coefficient  = 0.04 fixed by 

the typical parameters of the circuit was varied in the realistic range 0.03  0.05.  This was done in 

addition to the variation of   by assuming small variations of R, L and C. It has been found that the 

effect of  on the trend of the current intensity is negligible for the considered range of values 

confirming the above listed values of  for the three lines. This analysis confirms that the main 

influence on the time behaviour of the current intensity is given by non-linear effects for every line 

considered. 
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Fig. 10. Thick line: Current vs. time calculated according to Eq.(2). Thin line: measured current. 

(a): L1 line. (b): L2 line. (c): L3 line. The value of the fitted non-linear parameter is indicated. 

 

5.  Conclusion 

 

   In summary, in this paper it has been studied the time behaviour of an electrical signal by 

solving the cubic Duffing equation both analytically and numerically. The analysis has been carried 

out for different values of the nonlinear, damping and forcing parameters. An exact analytical 

solution has been obtained for the special case of free generators and negligible damping, expressed 

in terms of a Jacobian elliptic function.  

   In addition, a stability analysis of the cubic Duffing equation has been carried out for different 

values of the nonlinear parameters and the fixed points have been determined for both positive and 
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negative value of the linear parameter. The value of the nonlinear parameter has been accurately 

fitted by comparing the theoretical solution to the Duffing equation with the measured current data 

of DLs belonging to a SG. From the fitting procedure, it was found that the behaviour of the current 

is nonlinear and equivalent to the one of a “hard spring” as should be expected for an electrical 

signal flowing in DLs. In particular, the DL having a large number of commercial users exhibits the 

greatest deviation from the linearity. However, nonlinear effects are present also in the other DLs 

having a predominance of residential users. 

    Finally, as resulting from our fitting procedure applied to a real electrical signal, the developed 

model based on the Duffing oscillator permits to describe the behaviour of a real distribution line 

depending from the typology of the connected users (either commercial or residential). In fact, the 

nonlinear parameters of the Duffing oscillator can be used as indicators of the nonlinearity degree 

of the electrical signal. This information is particularly important for the distribution system 

operator during the management of the electrical grid. 
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Figure captions 

 

Fig. 1. Analytical solution to the DDE as a function of time for different values of the nonlinear 

parameter and for  = 0 and  = 0. (a):  = 0.1. (b):  = 1. (c):  = 2. (d):  = 10. (e):  = 100. (f):  = 

1000.   

 

Fig. 2. Solution to the DDE at fixed damping coefficient  = 0.5 and with no forcing term ( = 0) 

for different values of the nonlinear parameter. (a):  = 1. (b):  = 10. (c):  = 100. 

 

Fig. 3. Solution to the DDE at fixed damping coefficient  = 0.5 for different values of the forcing 

term and of the nonlinear parameter. (a):  = 1,  =1. (b):  = 10,  =1. (c):  = 100,  =1. (d):  = 1, 

 =10. (e):  = 10,  =10. (f):  = 100,  =10. In all case the angular frequency of the forcing term 

is 1 = . 

 

Fig. 4. Solution to the DDE at fixed damping coefficient  = 0.5, fixed positive nonlinear parameter 

 = 1, two different values of the forcing term   as a function of the forcing frequency  . (a): 

1 =  and forcing term  = 1. (b): 2 =  and forcing term  = 1. (c): 10 =  and forcing term  = 1. 

(d): 1 =  and forcing term  = 10. (e): 2 =  and forcing term  = 10. (f): 10 = and forcing term  

= 10. 
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Fig. 5. Solution to the DDE at fixed damping coefficient  = 0.5 and  =1 as a function of the 

negative nonlinear parameter. (a):  = -0.1. (b):  = -0.4. (c):  = -0.5. (d):  = -0.6. 

 

Fig. 6. Stability diagram with fixed point F2 on the x-axis from Eq.(2) with the positive sign in the 

linear term. (a):  =0.1 and  = 0.1. (b):  =0.5 and  = 0.1. (c):  =0.1 and  = 0.5. (d):  =0.5 and  

= 0.5.  

 

Fig. 7. Stability diagram with fixed points F1, F2 and F3 on the x-axis from Eq.(2) with the negative 

sign in the linear term. (a):  =0.1 and  = 0.1. (b):  =0.5 and  = 0.1. (c):  =0.1 and  = 0.5. (d):  

=0.5 and  = 0.5. 

 

Fig.8. Line L3 of the system under study: bj,k is the length of the k-th branch of the j-th ramification, 

dj,k = bj,k+dj,k-1 is the distance of the branch (j,k) from the line start. 3x150+95 stands for a tri-polar 

cable with section 150mm2 and neutral conductor of 95 mm2. 

 

Fig. 9. Measured current vs. time. (a): i(t) for the sampling period of the L1 line. (b): as in (a), but 

for the L2 line. (c): as in (a), but for the L3 line. (d): i(t) for a representative week of the L1 line. (e): 

as in (d), but for the L2 line. (f): as in (d), but for the L3 line. 

 

Fig. 10. Thick line: Current vs. time calculated according to Eq.(2). Thin line: measured current. 

(a): L1 line. (b): L2 line. (c): L3 line. The value of the fitted non-linear parameter is indicated. 


