Repository Istituzionale dei Prodotti della Ricerca del Politecnico di Bari

Non-linear maximum rank distance codes

This is a post print of the following article
Original Citation:
Non-linear maximum rank distance codes / Cossidente, Antonio; Marino, Giuseppe; Pavese, Francesco. - In: DESIGNS, CODES AND CRYPTOGRAPHY. - ISSN 0925-1022. - 79:3(2016), pp. 597-609. [10.1007/s10623-015-0108-0]

Availability:
This version is available at http://hdl.handle.net/11589/81348 since: 2022-06-22
Published version
DOI:10.1007/s10623-015-0108-0

Terms of use:
(Article begins on next page)

Non-linear maximum rank distance codes

Antonio Cossidente
Dipartimento di Matematica Informatica ed Economia
Università della Basilicata
Contrada Macchia Romana
I-85100 Potenza
Italy
antonio.cossidente@unibas.it
Giuseppe Marino
Dipartimento di Matematica e Fisica
Seconda Università di Napoli
Viale Lincoln, 5
I-81100 Caserta
Italy
giuseppe.marino@unina2.it
Francesco Pavese
Dipartimento di Matematica Informatica ed Economia
Università della Basilicata
Contrada Macchia Romana
I-85100 Potenza
Italy
francesco.pavese@unibas.it

Proposed Running Head: Non-linear Maximum Rank Distance Codes

Corresponding Author:
Francesco Pavese
Dipartimento di Matematica Informatica ed Economia
Università della Basilicata
Contrada Macchia Romana
I-85100 Potenza
Italy
francesco.pavese@unibas.it

Abstract

By exploring some geometry of Segre varieties and Veronese varieties, new families of non linear maximum rank distance codes and optimal constant rank codes are provided.

KEYWORDS: Segre variety, Veronese variety, Maximum rank distance code, Constant rank distance code, Subspace codes, Singer cyclic group. AMS MSC: 94B60; 51E20

1 Introduction

Subspace codes and maximum rank-distance codes (MRD) can be used to correct errors and erasures in networks with linear network coding. Network coding is a novel and efficient approach to transmitting data across a communication network. Both types of codes have been extensively studied in the last years. Subspace codes were introduced by Koetter and Kschischang in the inspiring article [22] to correct errors and erasures in networks with a randomized protocol where the topology is unknown (the non-coherent case). The codewords of a subspace code are vector subspaces of a fixed ambient vector space; thus the codes are collections of such subspaces and the natural measure of distance is defined by $d(A, B)=\operatorname{dim}(A)+\operatorname{dim}(B)-2 \operatorname{dim}(A \cap B)$. An important subclass of subspace codes is represented by the constantdimension codes (CDCs). CDCs have several interesting properties and in particular the decoding procedure is simplified, as a fixed number of linearly independent packets are required to perform the decoding.

Rank distance codes were introduced by Delsarte [8] and rediscovered in [14] and independently in [27] and are suitable for error correction in the case where the network topology and the underlying network code are known (the coherent case). A rank-distance code can be viewed as a set of matrices over a finite field where the distance between two codewords, referred to as the rank distance, is the rank of their difference. Gabidulin codes are a well-known class of algebraic rank-metric codes that meet the Singleton bound on the minimum rank-distance of a code.

A matrix can be lifted into a subspace of fixed dimension and hence a rank-distance code can be lifted into a CDC: a lifted maximum rank distance (LMRD) code is a subspace code obtained from an MRD code $\mathcal{A} \subseteq \mathcal{M}_{m \times n}(q)$ by the so-called lifting construction of [30], which associates to every matrix $\mathbf{A} \in \mathcal{M}_{m \times n}(q)$ the subspace $U=\left\langle\left(\mathbf{I}_{m} \mid \mathbf{A}\right)\right\rangle$ of $\operatorname{GF}(q)^{m+n}$.

Since the injection and the subspace distances between two lifted matrices are related to their rank distance, the minimum distances of the lifting of
a rank-distance code are related to that of the original rank-distance code. Thus error control in random linear network coding using CDCs can be turned into a rank metric problem. A recent survey on problems related to subspace coding can be found in [12], to which we also refer for more background on this topic. All these connections and ideas led to many new interesting problems in coding theory and in Galois geometries.

1.1 Preliminaries

The set $\mathcal{M}_{m \times n}(q)$ of $m \times n$ matrices over the finite field $\mathrm{GF}(q)$ forms a metric space with respect to the rank distance defined by $d_{r}(A, B)=\mathrm{rk}(A-B)$. The maximum size of a code of minimum distance $d, 1 \leq d \leq \min \{m, n\}$, in $\left(\mathcal{M}_{m \times n}(q), d_{r}\right)$ is $q^{n(m-d+1)}$ for $m \leq n$ and $q^{m(n-d+1)}$ for $m \geq n$. A code $\mathcal{A} \subset \mathcal{M}_{m \times n}(q)$ attaining this bound is said to be a q-ary (m, n, k) maximum rank distance code (MRD), where $k=m-d+1$ for $m \leq n$ and $k=n-d+1$ for $m \geq n$. A rank distance code \mathcal{A} is called $\mathrm{GF}(q)$-linear if \mathcal{A} is a subspace of $\mathcal{M}_{m \times n}(q)$ considered as a vector space. We can always assume that $m \leq n$. The GF (q)-linear Gabidulin codes can be seen as the analogs of Reed-Solomon codes for rank metric and are defined as follows. Consider the vector space $V=\operatorname{End}\left(\operatorname{GF}\left(q^{n}\right), \operatorname{GF}(q)\right)$ of all $\operatorname{GF}(q)$-linear operators of the field $\operatorname{GF}\left(q^{n}\right)$. Then V is also a vector space over the field $\operatorname{GF}\left(q^{n}\right)$ of dimension n and the vectors of V are uniquely represented as linearized polynomials of the form $x \mapsto a_{0} x+a_{1} x^{q}+a_{2} x^{q^{2}}+\cdots+a_{n-1} x^{q^{n-1}}$ with coefficients $a_{i} \in \mathrm{GF}\left(q^{n}\right)$ and q-degree less than n. The (n, n, k) Gabidulin code \mathcal{G} consists of all such polynomials of q-degree less than k.

In terms of matrices, a codeword c in \mathcal{G}, can be represented by a vector $c=\left(c_{1}, \ldots c_{n}\right)$, where $c_{i} \in \operatorname{GF}\left(q^{n}\right)$. Let $g_{i} \in \operatorname{GF}\left(q^{n}\right), 1 \leq i \leq n$, be linearly independent over $\operatorname{GF}(q)$. The generator matrix of a Gabidulin code is given by

$$
\left(\begin{array}{cccc}
g_{1} & g_{2} & \ldots & g_{n} \\
g_{1}^{q} & g_{2}^{q} & \ldots & g_{n}^{q} \\
g_{1}^{q^{2}} & g_{2}^{q^{2}} & \ldots & g_{n}^{q^{2}} \\
\vdots & \vdots & \vdots & \vdots \\
g_{1}^{q^{k}} & g_{2}^{q^{k}} & \ldots & g_{n}^{q^{k}}
\end{array}\right)
$$

This matrix representation gives rise to an isomorphism between $\left(V, d_{r}\right)$ and $\left(\mathcal{M}_{n \times n}(q), d_{r}\right)$ of metric spaces and the choice of the basis does not matter. Rectangular (m, n, k) Gabidulin codes (where $m<n$) are obtained
by restricting the linear maps in \mathcal{G} to an m-dimensional $\mathrm{GF}(q)$-subspace W of $\operatorname{GF}\left(q^{n}\right)$.

A second family of MRD codes, referred to as generalized Gabidulin codes was introduced in [17]. These codes have a similar generator matrix to that of Gabidulin codes:

$$
\left(\begin{array}{cccc}
g_{1} & g_{2} & \ldots & g_{n} \\
g_{1}^{q^{a}} & g_{2}^{q^{a}} & \ldots & g_{n}^{q^{a}} \\
g_{1}^{q^{2 a}} & g_{2}^{q^{2 a}} & \ldots & g_{n}^{q^{2 a}} \\
\vdots & \vdots & \vdots & \vdots \\
g_{1}^{q^{k a}} & g_{2}^{q^{k a}} & \ldots & g_{n}^{q^{k a}}
\end{array}\right)
$$

where a is an integer such that $(n, a)=1$.
A third family of MRD codes consists of cartesian products of a MRD code with length $n=m,[16]$. See also [32].

On the other hand, known non-linear rank distance codes are coset codes and one can construct examples of such codes for small lengths. As far as we know no infinite non-linear families of maximum rank distance codes are known. In this paper we are mainly interested into non-linear maximum rank distance codes of $\left(\mathcal{M}_{n \times n}(q), d_{r}\right), n=2,3$ and $d=2$. Our approach is based on the geometry of the Segre variety of $\operatorname{PG}\left(n^{2}-1, q\right), n=2,3$.

The Segre map may be defined as the map

$$
\sigma: \mathrm{PG}(n-1, q) \times \mathrm{PG}(n-1, q) \rightarrow \mathrm{PG}\left(n^{2}-1, q\right)
$$

taking a pair of points $x=\left(x_{1}, \ldots x_{n}\right), y=\left(y_{1}, \ldots y_{n}\right)$ of $\operatorname{PG}(n-1, q)$ to their product $\left(x_{1} y_{1}, x_{1} y_{2}, \ldots x_{n} y_{n}\right)$ (the $x_{i} y_{j}$ are taken in lexicographical order). The image of the Segre map is an algebraic variety called the Segre variety and denoted by $\mathcal{S}_{n-1, n-1}$.

When $n=2$ the Segre variety $\mathcal{S}_{1,1}$ of $\operatorname{PG}(3, q)$ is the non-degenerate hyperbolic quadric $\mathcal{Q}^{+}(3, q)$. This quadric is given as the zero locus of the quadratic polynomial given by the determinant of the matrix

$$
\left(\begin{array}{ll}
x_{1} y_{1} & x_{1} y_{2} \\
x_{2} y_{1} & x_{2} y_{2}
\end{array}\right)
$$

In the case $n=3$, the Segre variety $\mathcal{S}_{2,2}$ of $\operatorname{PG}(8, q)$ is defined to be the zero locus of all quadratic polynomials given by the determinants of the 2×2 matrices of the matrix

$$
\left(\begin{array}{lll}
x_{1} y_{1} & x_{1} y_{2} & x_{1} y_{3} \\
x_{2} y_{1} & x_{2} y_{2} & x_{2} y_{3} \\
x_{3} y_{1} & x_{3} y_{2} & x_{3} y_{3}
\end{array}\right)
$$

In other terms, in the projective space $\operatorname{PG}\left(\mathcal{M}_{n \times n}(q)\right)$, if $n=2$, the Segre variety $\mathcal{S}_{1,1}$ of $\mathrm{PG}(3, q)$ is represented by all 2×2 matrices of rank 1 and if $n=3$, the Segre variety $\mathcal{S}_{2,2}$ of $\mathrm{PG}(8, q)$ is represented by all 3×3 matrices of rank 1 .

The set of matrices of $\mathcal{M}_{3 \times 3}(q)$ of rank at most two gives rise to the so called secant variety $\Omega\left(\mathcal{S}_{2,2}\right)$ of $\mathcal{S}_{2,2}$.

We introduce the following definition.
Definition 1.1. An exterior set with respect to a Segre variety $\mathcal{S}_{n-1, n-1}$ of $\operatorname{PG}\left(n^{2}-1, q\right)$ is a set \mathcal{E} of points of $\operatorname{PG}\left(n^{2}-1, q\right) \backslash \mathcal{S}_{n-1, n-1}$ of size $q^{n^{2}-n}-1 / q-1$ such that the line joining any two points of \mathcal{E} is disjoint from $\mathcal{S}_{n-1, n-1}$.

This definition justifies the following proposition whose proof is immediate.

Proposition 1.2. An exterior set with respect to $\mathcal{S}_{n-1, n-1}$ gives rise to an $(n, n, n-1)$ maximum rank distance code closed under $\mathrm{GF}(q)$-multiplication, and viceversa.

Corollary 1.3. An $(n, n, n-1) \mathrm{GF}(q)$-linear Gabidulin code \mathcal{G} is a certain subspace X of $\mathrm{PG}\left(n^{2}-1, q\right)$ of dimension $n^{2}-n-1$ which is an exterior set with respect to $\mathcal{S}_{n-1, n-1}$.

Note that from [7] the maximum dimension of a subspace of $\operatorname{PG}\left(n^{2}-1, q\right)$ disjoint from $\mathcal{S}_{n-1, n-1}$ is exactly $n^{2}-n-1$.

In general, an exterior set \mathcal{E} of $\mathrm{PG}\left(n^{2}-1, q\right)$ with respect to a Segre variety $\mathcal{S}_{n-1, n-1}$ of size $\left(q^{n^{2}-n}-1\right) /(q-1)$ gives rise to a MRD code: this is done by identifying a point of \mathcal{E} and and its nonzero scalar multiples together with the zero matrix with members of $\mathcal{M}_{3 \times 3}(q)$, and this is the key tool of our approach.

The paper is organized as follows.
In Section 2 we describe the case $n=2$ where there exists a complete classification of linear and non-linear MRD codes that are closed under $\mathrm{GF}(q)$-multiplication. This classification in turn relies on the classification of flocks of the hyperbolic quadric $\mathcal{Q}^{+}(3, q)$ of the projective space $\mathrm{PG}(3, q)$ which as already observed, represents the smallest example of Segre variety. A flock of the hyperbolic quadric $\mathcal{Q}^{+}(3, q)$ of the finite projective space $\operatorname{PG}(3, q)$ is a partition of the points of $\mathcal{Q}^{+}(3, q)$ into $q+1$ irreducible conics. Under the polarity of $\operatorname{PG}(3, q)$ induced by $\mathcal{Q}^{+}(3, q)$, a flock of $\mathcal{Q}^{+}(3, q)$ corresponds to an exterior set with respect to $\mathcal{Q}^{+}(3, q)$ producing a MRD code, and in particular a so called constant-rank code.

A constant-rank code (CRC) of constant rank r in $\mathcal{M}_{m \times n}(q)$ is a nonempty subset of $\mathcal{M}_{m \times n}(q)$ such that all elements have rank r. Much research has been done to investigate the maximum possible dimension of a constant rank r subspace of matrix vector spaces with particular attention to finite fields. The results and techniques differ greatly according to properties of the underlying field. See [29], [15] for more details and results.

In Section 3 we concentrate on the case $n=3$ and construct several families of non-linear MRD codes. Our starting point was a $(3,3,2) \mathrm{GF}(q)-$ linear MRD code \mathcal{G} represented as a 5 -dimensional projective subspace W of $\mathrm{PG}(8, q)$ and disjoint from the Segre variety $\mathcal{S}_{2,2}$ (rank one 3×3 matrices in the matrix model of $\mathrm{PG}(8, q))$. In this case W is trivially an exterior set with respect to $\mathcal{S}_{2,2}$. We asked ourselves the following question. Is it possible to perturb the structure of W to obtain a non-linear MRD code? The answer is affirmative. Our goal was reached adopting a model of $\mathcal{S}_{2,2}$ in the projective plane $\operatorname{PG}\left(2, q^{3}\right)$ where the Segre variety is represented by a subplane $\bar{\pi}$ of order q, the code \mathcal{G} corresponds to a line ℓ disjoint from $\bar{\pi}$ and the new set is represented by the $\operatorname{GF}\left(q^{3}\right)$-rational points of a suitable algebraic curve. More precisely, we will introduce a derivation technique by deleting from W a distinguished set of $q^{2}+q+1$ planes and by adding suitable Segre varieties. In the plane model this corresponds to deleting suitable subsets of ℓ of size $q^{2}+q+1$ and by adding suitable subplanes of order q. This procedure can be iterated a certain number of times (multiple derivation) producing several non equivalent non-linear MRD codes.

In the last section we will construct a family of optimal non-linear constant-rank codes. Again, our approach is based on the geometry of the Segre variety of $\operatorname{PG}(8, q)$ and the Veronese surface of $\operatorname{PG}(5, q)$. More precisely, we will show that there exists a Segre variety embedded in $\Omega\left(\mathcal{S}_{2,2}\right)$ that is an exterior set with respect to the Segre variety $\mathcal{S}_{2,2}$).

We stress that in all our constructions Singer cyclic groups of PGL $(3, q)$ [21] and their liftings to collineation groups of higher dimensional projective spaces, fixing a Segre variety or a Veronese surface, play a crucial role.

2 The case $n=2$

In this section we report for completeness the complete classification of linear and non-linear MRD codes that are closed under $\mathrm{GF}(q)$-multiplication when $n=m=2$.

A maximal exterior set (MES) with respect to $\mathcal{Q}^{+}(3, q)$ is a set of $q+1$ points of $\operatorname{PG}(3, q)$ such that the line joining any two of them has no point
in common with $\mathcal{Q}^{+}(3, q)$. The polar planes, with respect to the polarity induced by $\mathcal{Q}^{+}(3, q)$, of the points of a MES, define a flock, and conversely.

A flock of the hyperbolic quadric $\mathcal{Q}^{+}(3, q)$ of the finite projective space $\operatorname{PG}(3, q)$ is a partition of $\mathcal{Q}^{+}(3, q)$ consisting of $q+1$ irreducible conics. In [31] Thas showed that all flocks of $\mathcal{Q}^{+}(3, q)$ are linear if q is even, and that $\mathcal{Q}^{+}(3, q)$ has non-linear flocks (called Thas flocks) if q is odd. Further, he showed that for $q=3,7$ and $q \equiv 1 \bmod 4 \mathcal{Q}^{+}(3, q)$ has only (up to a projectivity) the linear flock and the Thas flock. For $q=11,23,59$ other flocks of $\mathcal{Q}^{+}(3, q)$ were discovered, independently, by Bader, Baker and Ebert (for $q=11,23$), Bonisoli and Johnson. Since these three flocks are related to exceptional near fields, these flocks are called exceptional flocks, see [11] and the literature therein. Finally, flocks of $\mathcal{Q}^{+}(3, q), q$ odd, were classified by Bader and Lunardon [2] : Every flock of $\mathcal{Q}^{+}(3, q) q$ odd, is linear, a Thas flock or one of the exceptional flocks. Bonisoli and Korchmáros [5], Durante and Siciliano [11] presented other proofs of the above classification theorem.

The classification theorem is the following.
Theorem 2.1. Let \mathcal{E} be the MES defined by a flock F of $\mathcal{Q}^{+}(3, q)$ in the matrix model of $\operatorname{PG}(3, q)$. Then, either q is even and \mathcal{E} is a line or q is odd and one of the following possibilities occur:

1. \mathcal{E} is a line;
2. \mathcal{E} consists of $(q+1) / 2$ points on two lines ℓ, ℓ^{\perp}, where \perp is the polarity of $\mathcal{Q}^{+}(3, q)$;
3. \mathcal{E} is one of the sporadic examples.

In our setting the linear MES corresponds to a $(2,2,1) \operatorname{GF}(q)$-linear MRD-code. In all the other instances the MES corresponds to a $(2,2,1)$ non-linear maximum rank distance code .

3 The case $n=3$

In this section we construct several families of non-linear $M R D$-codes of $\mathcal{M}_{3 \times 3}(q)$. As already mentioned in the Introduction our method is based on the geometry of a Segre variety of $\operatorname{PG}(8, q)$. A very useful model of $\mathcal{S}_{2,2}$ arises from the geometry of the Desarguesian projective plane $\pi:=\operatorname{PG}\left(2, q^{3}\right)$. Indeed, each point P of $\operatorname{PG}\left(2, q^{3}\right)$ defines a projective plane $X(P)$ of the projective space $\operatorname{PG}(8, q)$ and the set $\mathcal{D}=\left\{X(P): P \in \operatorname{PG}\left(2, q^{3}\right)\right\}$ is a Desarguesian spread of $\operatorname{PG}(8, q)([28$, Section 25$])$. The incidence structure
$\pi:=(\mathcal{D}, \mathcal{L})$, whose points are the elements of \mathcal{D} and whose line set \mathcal{L} consists of the 5 -dimensional projective subspaces of $\operatorname{PG}(8, q)$ joining any two distinct elements of \mathcal{D}, is isomorphic to $\operatorname{PG}\left(2, q^{3}\right)$. The pair $(\mathcal{D}, \mathcal{L})$ is called the $\mathrm{GF}(q)$-linear representation of $\mathrm{PG}\left(2, q^{3}\right)$ (with respect to the Desarguesian spread \mathcal{D}).

Let X_{1}, X_{2}, X_{3} denote projective homogeneous coordinates in $\pi \simeq \operatorname{PG}\left(2, q^{3}\right)$ and let $\bar{\pi}$ be a subplane of π of order q. Let G denote the stabilizer of $\bar{\pi}$ in $\operatorname{PGL}\left(3, q^{3}\right)$.

We can always choose homogeneous coordinates in such a way that $\bar{\pi}:=\left\{\left(1, x^{q+1}, x^{q}\right): x \in \operatorname{GF}\left(q^{3}\right) \backslash\{0\}, N(x)=1\right\}$, where here $N(\cdot)$ is the norm function from $\operatorname{GF}\left(q^{3}\right)$ over $\operatorname{GF}(q)$. Indeed, it turns out that $\bar{\pi}$ is fixed pointwise by the order three semilinear collineation of $\operatorname{PG}\left(2, q^{3}\right)$ given by $\phi:\left(X_{1}, X_{2}, X_{3}\right) \mapsto\left(X_{3}^{q}, X_{1}^{q}, X_{2}^{q}\right)$.

Let $\langle S\rangle$ be a Singer cyclic group of $G[21]$. We can assume that S is given by

$$
\left(\begin{array}{ccc}
\omega & 0 & 0 \\
0 & \omega^{q} & 0 \\
0 & 0 & \omega^{q^{2}}
\end{array}\right)
$$

where ω is a primitive element of $\operatorname{GF}\left(q^{3}\right)$.
Remark 3.1. The subgroup $\langle S\rangle$ fixes the three points $E_{1}=(1,0,0), E_{2}=$ $(0,1,0)$ and $E_{3}=(0,0,1)$ of π, and hence the lines $E_{i} E_{j}, 1 \leq i, j \leq 3$. All the other orbits are subplanes of order q of π. Note that the line $E_{i} E_{j}$ is partitioned into the two points E_{i} and E_{j} and into $q-1$ orbits of $\langle S\rangle$ of size $q^{2}+q+1$. The collineation ϕ above normalizes $\langle S\rangle$.

The points of $\bar{\pi}$ correspond to the $q^{2}+q+1$ planes filling the system of a Segre variety $\mathcal{S}_{2,2}$ of $\operatorname{PG}(8, q)$ contained in the Desarguesian spread \mathcal{D}. Also, the lines of π, arising from sublines of $\bar{\pi}$, yield a set of $\left(q^{3}-q\right)\left(q^{2}+q+1\right)$ points of π that together with the points of $\bar{\pi}$ give rise to the points of the secant variety $\Omega\left(\mathcal{S}_{2,2}\right)$ of $\mathcal{S}_{2,2}([25],[23])$.

Under the action of the stabilizer G of $\bar{\pi}$ in $\operatorname{PGL}\left(3, q^{3}\right)$ the point set of π is partitioned into three orbits corresponding to the points of $\bar{\pi}$, points of π on extended sublines of $\bar{\pi}$ and the complement. Under the same group, by duality, the line set of π is partitioned into three orbits corresponding to sublines of $\bar{\pi}$, lines meeting $\bar{\pi}$ in a point and lines external to $\bar{\pi}$.

Proposition 3.2. In the linear representation of $\mathrm{PG}\left(2, q^{3}\right)$ any line of π disjoint from $\bar{\pi}$ corresponds to a 5 -dimensional projective subspace of $\operatorname{PG}(8, q)$ disjoint from $\mathcal{S}_{2,2}$.

Of course, any line of π disjoint from $\bar{\pi}$ gives rise to an exterior set with respect to $\mathcal{S}_{2,2}$ and hence, from a coding theory point of view, a $(3,3,2)$ GF (q)-linear MRD-code.

Now let $q>2$ and consider the set \mathcal{X} of points of π whose coordinates satisfy the equation $X_{1} X_{2}^{q}-X_{3}^{q+1}=0$. The set \mathcal{X} has size $q^{3}+1$ and it is fixed by $\langle S\rangle$. Also, it contains $q-1$ subplanes of order q, one of which is $\bar{\pi}$, and the points E_{1}, E_{2}. More precisely, the subplanes of order q embedded in \mathcal{X} are the subsets of points of π given by

$$
\pi_{a}:=\left\{\left(1, x^{q+1}, x^{q}\right): x \in \operatorname{GF}\left(q^{3}\right), N(x)=a\right\},
$$

where a is a nonzero element of $\operatorname{GF}(q)$. In particular, $\pi_{1}=\bar{\pi}$. From [10, Proposition 3.1] a line of π intersects \mathcal{X} in $0,1,2$ or $q+1$ points and the intersections of size $q+1$ are actually lines of subplanes of order q of π embedded in \mathcal{X}. We can assume that the Segre variety corresponding to $\bar{\pi}=\pi_{1}$ is the only Segre variety of $\operatorname{PG}(8, q)$ corresponding to rank one matrices of order three.

We recall the following definition.
Definition 3.3. [4] Let ℓ_{∞} be a line of π disjoint from the subplane $\bar{\pi}$. The exterior splash of $\bar{\pi}$ is defined to be the set of $q^{2}+q+1$ points of ℓ_{∞} that lie on an extended line of $\bar{\pi}$.

The line $E_{1} E_{2}$ is disjoint from all the $q-1$ subplanes π_{a} 's of π contained in \mathcal{X}. Also, for each subplane π_{a}, with $a \in \operatorname{GF}(q) \backslash\{0\}$, its exterior splash is the set of $q^{2}+q+1$ points of $E_{1} E_{2}$ given by

$$
Z_{a}:=\left\{(1, x, 0): x \in \mathrm{GF}\left(q^{3}\right), N(x)=-a^{2}\right\} .
$$

Such a set is a so-called $G F(q)$-linear set of pseudoregulus type. For further details on these linear sets see [25], [10] and [24]. All these subplanes and splashes are of course $\langle S\rangle$-orbits.

We need the following lemma.
Lemma 3.4. Let T be the fundamental triangle $E_{1} E_{2} E_{3}$ of π. A line of π is either a side of T or it contains a vertex of T or it induces a subline of a unique subplane of order q of π invariant under $\langle S\rangle$.

Proof. Assume that a line r of π induces sublines for two distinct subplanes of order q, say π_{a} and π_{b} of π, that are invariant under $\langle S\rangle$. Since π_{a} and π_{b} are both $\langle S\rangle$-orbits, the lines of π arising from the sublines of π_{a} and those
arising from the sublines of π_{b} coincide. Hence π_{a} and π_{b} correspond to two disjoint Segre varieties $\mathcal{S}_{2,2}$ in $\operatorname{PG}(8, q)$ having the same secant variety $\Omega\left(\mathcal{S}_{2,2}\right)$. Since a Segre variety is the singular locus X of its secant variety and X is uniquely determined, we have a contradiction. A counting argument completes the proof.

We are ready to prove one of the main results of this paper.
Theorem 3.5. The set $K:=\mathcal{X} \backslash\left\{\pi_{1}\right\} \cup Z_{1}$ is such that every line defined by any two of its points is disjoint from π_{1}.

Proof. As already mentioned, \mathcal{X} is of type $(0,1,2, q+1)$ with respect to the lines of π. Any line meeting \mathcal{X} in $q+1$ points is a subline of some order q subplane embedded in \mathcal{X} invariant under $\langle S\rangle$ [10, Proposition 3.1]. Therefore, from Lemma 3.4 a line meeting $\mathcal{X} \backslash\left\{\pi_{1}\right\}$ in $q+1$ points is disjoint from π_{1}. Assume now that a line r of π is 2 -secant to \mathcal{X} and that r is 1 -secant to π_{1} at a point P. Without loss of generality, we can assume that $P=(1,1,1)$ since $\langle S\rangle$ acts transitively on points of π_{1}. Let $Q=\left(1, x^{q+1}, x^{q}\right)$ be a point on an order q subplane embedded in \mathcal{X} distinct from π_{1}. Then $N(x)=a \neq 1$. A straightforward calculation shows that the line $P Q$ meets $E_{1} E_{2}$ in the point $\left(1, x^{q}(1-x) /\left(x^{q}-1\right), 0\right)$. Since $N\left(-x(x-1) /\left(x^{q}-1\right)\right)=$ $-N(x)=-a \neq-1$ it follows that the line $P Q$ is disjoint from Z_{1}. Then, a line joining a point of Z_{1} with a point of an order q subplane of \mathcal{X} distinct from π_{1} is disjoint from π_{1}. From [10, Proposition 3.1] a line of π through a vertex of T is either 1 -secant or 2 -secant to \mathcal{X}. In the latter case if such a line contains a point of π_{1} then it intersects \mathcal{X} in exactly one point; otherwise, it is disjoint from π_{1}.

The corresponding result in $\operatorname{PG}(8, q)$ is as follows.
Theorem 3.6. The set K^{\prime} corresponding to K in $\mathrm{PG}(8, q), q>2$, is an exterior set of size $\left(q^{3}+1\right)\left(q^{2}+q+1\right)$ with respect to the Segre variety $\mathcal{S}_{2,2}$ corresponding to π_{1}.

Proof. As observed before, every line of π corresponds to a projective 5subspace of $\operatorname{PG}(8, q)$ partitioned into $q^{3}+1$ planes of the Desarguesian spread \mathcal{D}. Hence any 5 -dimensional projective subspace corresponding to a secant of K is disjoint from $\mathcal{S}_{2,2}$. It follows that a secant line to K^{\prime} is either contained in a plane of \mathcal{D} or meets $q+1$ disjoint planes of \mathcal{D} of a 5 -dimensional projective subspace of $\operatorname{PG}(8, q)$ in which \mathcal{D} induces members of a plane-spread corresponding to the points of a line of π.

In terms of coding theory we have the following result.

Theorem 3.7. There exists a $(3,3,2)$ maximum rank distance non-linear code admitting a Singer cyclic group of $\operatorname{PGL}(3, q)$ as an automorphism group.

We end this section by showing that our geometric approach allows us to construct several non-equivalent $(3,3,2)$ maximum rank distance non-linear codes. We will consider a derivation technique of a $(3,3,2) \mathrm{GF}(q)$-linear maximum rank distance code.

Let us consider the partition of the line $E_{1} E_{2}$, which is disjoint from π_{1}, into the points E_{1}, E_{2} and the $q-1$ orbits Z_{a}, with $a \in \operatorname{GF}(q) \backslash\{0\}$, of $\langle S\rangle$ of size $q^{2}+q+1$. Note that the line $E_{1} E_{2}$ corresponds in $\operatorname{PG}(8, q)$ to a 5 -dimensional projective subspace which is an exterior set with respect to the Segre variety $\mathcal{S}_{2,2}$ determined by π_{1} and hence leads to a $(3,3,2)$ $\mathrm{GF}(q)$-linear maximum rank distance code.

Our derivation technique works as follows. Let us start from the partition $\left(Z_{1}, \ldots, Z_{q-1}\right)$ of the line $E_{1} E_{2}$ introduced above.

Proposition 3.8. The set $E_{1} E_{2} \backslash\left(\bigcup_{a \in Y} Z_{a}\right) \cup\left(\bigcup_{a \in Y} \pi_{a}\right)$, where Y is a subset of $\operatorname{GF}(q) \backslash\{0,1\}$, is such that every line defined by any two of its points is disjoint from π_{1}.

Proof. From the proof of Theorem 3.5 a line of π joining a point of π_{1} with a point of $\pi_{a}, a \neq 1$, meets $E_{1} E_{2}$ in a point of Z_{a}.

Corollary 3.9. There exist $\sum_{k=1}^{q-2}\binom{q-2}{k}(3,3,2)$ non-linear maximum rank distance codes of which at least $q-2$ are not equivalent.

Remark 3.10. In [13] R. Figueroa presented a new class of non-desarguesian projective planes of order q^{3}, q a prime power with $q \not \equiv 1 \bmod 3, q>2$. C. Hering and H.-J. Schaffer in [19] improved and simplified the construction for all prime powers q. From [26, Corollary 3] the set K constructed in Theorem 3.5 represents a line in the Figueroa plane. Moreover, any two sets constructed as in Theorem 3.5 are equivalent [9].

Remark 3.11. When $q=2$ some computer tests performed with MAGMA [6] give that all subsets of $\mathrm{PG}(2,8)$ yielding exterior sets with respect to a Segre variety $\mathcal{S}_{2,2}$ are just the 24 lines disjoint from $\bar{\pi}$. When $q=2$ no non-linear maximum rank distance codes arise from our construction.

4 Optimal Constant rank distance codes

In this section we will construct a family of optimal non-linear constantrank codes. Again, our approach is based on the geometry of Segre varieties and Veronese varieties of projective spaces.

We recall the definition of constant-rank code.
Definition 4.1. A constant-rank code (CRC) of constant rankr in $\mathcal{M}_{m \times n}(q)$ is a nonempty subset of $\mathcal{M}_{m \times n}(q)$ such that all elements have rank r.

We denote a constant-rank code with length n, minimum rank distance d, and constant-rank r by (q, m, n, d, r). The term $A_{R}(q, m, n, d, r)$ denotes the maximum cardinality of a (q, m, n, d, r) constant-rank code over $\operatorname{GF}(q)$. If C is a (q, m, n, d, r) constant-rank code, then the code C^{T} obtained by transposing all the expansion matrices of codewords in C is a (q, n, m, d, r) constant-rank code with the same cardinality. Therefore $A_{R}(q, m, n, d, r)=A_{R}(q, n, m, d, r)$, and henceforth we can assume $n \leq m$ without loss of generality. From [15, Proposition 8] we have that $A_{R}(q, n, m, d, r) \leq\left[\begin{array}{c}n \\ r\end{array}\right] \prod_{i=0}^{r-d}\left(q^{m}-q^{i}\right)$ and if this upper bound is attained the CRC is said to be optimal.

To our aim we need to recall some facts about Veronese surfaces of $\operatorname{PG}(5, q)$.

The Veronese surface of all conics of $\operatorname{PG}(2, q)$ is the variety \mathcal{V} of $\operatorname{PG}(5, q)$ with parametric equations

$$
\begin{equation*}
\left(X_{00}, X_{11}, X_{22}, X_{01}, X_{02}, X_{12}\right)=\left(x_{0}^{2}, x_{1}^{2}, x_{2}^{2}, x_{0} x_{1}, x_{0} x_{2}, x_{1} x_{2}\right) \tag{1}
\end{equation*}
$$

where $x_{0}, x_{1}, x_{2} \in \operatorname{GF}(q)$ and $\left(x_{0}, x_{1}, x_{2}\right) \neq(0,0,0)$. The mapping

$$
\mu:\left(x_{0}, x_{1}, x_{2}\right) \in \mathrm{PG}(2, q) \mapsto\left(x_{0}^{2}, x_{1}^{2}, x_{2}^{2}, x_{0} x_{1}, x_{0} x_{2}, x_{1} x_{2}\right) \in \mathrm{PG}(5, q)
$$

is called the Veronese embedding of $\operatorname{PG}(2, q)$. The variety \mathcal{V} consists of $q^{2}+q+1$ points. We stress some important properties of the Veronese surface \mathcal{V} (for further details see $[20]$). To the conics of $\operatorname{PG}(2, q)$ there correspond all hyperplane sections of \mathcal{V}. The hyperplane is uniquely determined by a conic if and only if the latter is not a single point. If the conic \mathcal{C} of $\operatorname{PG}(2, q)$ is a repeated line, then the corresponding hyperplane H of $\operatorname{PG}(5, q)$ meets \mathcal{V} at a non-degenerate conic. If \mathcal{C} is a pair of distinct lines of $\operatorname{PG}(2, q)$, then H meets \mathcal{V} at two non-degenerate conics with exactly one point in common. If \mathcal{C} is a non-degenerate conic of $\operatorname{PG}(2, q)$, then H meets \mathcal{V} along a rational quartic curve. Hence, \mathcal{V} contains $q^{2}+q+1$ non-degenerate conics and any two points of \mathcal{V} are contained in a unique conic. Since the conics of
\mathcal{V} correspond to the lines of $\mathrm{PG}(2, q)$, any two of these conics have a unique point in common. The planes of $\operatorname{PG}(5, q)$ meeting \mathcal{V} at a conic are called the conic planes of \mathcal{V}. Moreover, any two conic planes of \mathcal{V} have exactly one point in common, and this common point belongs to \mathcal{V}.

Identifying the points of $\operatorname{PG}(5, q)$ with all 3×3 symmetric matrices over $\mathrm{GF}(q)$, i.e.

$$
\left(X_{00}, X_{11}, X_{22}, X_{01}, X_{02}, X_{12}\right) \longleftrightarrow\left(\begin{array}{ccc}
X_{00} & X_{01} & X_{02} \\
X_{01} & X_{11} & X_{12} \\
X_{02} & X_{12} & X_{22}
\end{array}\right)
$$

the Veronese surface corresponds to the matrices

$$
\left(\begin{array}{ccc}
x_{0}^{2} & x_{0} x_{1} & x_{0} x_{2} \\
x_{0} x_{1} & x_{1}^{2} & x_{1} x_{2} \\
x_{0} x_{2} & x_{1} x_{2} & x_{2}^{2}
\end{array}\right)=\left(\begin{array}{c}
x_{0} \\
x_{1} \\
x_{2}
\end{array}\right) \cdot\left(\begin{array}{lll}
x_{0} & x_{1} & x_{2}
\end{array}\right) .
$$

The 3×3 symmetric matrices over $\operatorname{GF}(q)$ correspond to the conics of $\mathrm{PG}(2, q)$, hence there is an identification of the points of $\mathrm{PG}(5, q)$ with the conics of $\mathrm{PG}(2, q)$. The points of $\mathrm{PG}(5, q)$ which correspond to the degenerate conics of $\mathrm{PG}(2, q)$ are those represented by the set Ω_{1} of 3×3 symmetric matrices $\left(\begin{array}{lll}X_{00} & X_{01} & X_{02} \\ X_{01} & X_{11} & X_{12} \\ X_{02} & X_{12} & X_{22}\end{array}\right)$ over $\operatorname{GF}(q)$ with determinant zero and it turns out to be the union of the conic planes of \mathcal{V}. Moreover, Ω_{1} consists of the $\operatorname{GF}(q)$-rational points of the cubic hypersurface \mathcal{M}_{4}^{3} of $\operatorname{PG}(5, q)$ with equation $F=0$, where

$$
F=\left|\begin{array}{lll}
X_{00} & X_{01} & X_{02} \\
X_{01} & X_{11} & X_{12} \\
X_{02} & X_{12} & X_{22}
\end{array}\right|
$$

The hypersurface \mathcal{M}_{4}^{3} has $\left(q^{2}+q+1\right)\left(q^{2}+1\right)$ points and it has the Veronesean \mathcal{V} as double surface.

The tangent lines of the conics of \mathcal{V} are called the tangents or tangent lines of \mathcal{V}. Since no point of the surface \mathcal{V} is singular, all tangents of \mathcal{V} at the point P of \mathcal{V} are contained in a plane $\pi(P)$. This plane $\pi(P)$ is called the tangent plane of \mathcal{V} at P. Since P is contained in exactly $q+1$ conics of \mathcal{V} and since no two conic planes through P have a line in common, the tangent plane $\pi(P)$ is the union of the $q+1$ tangent lines of \mathcal{V} through P. Also $\pi(P) \cap \mathcal{V}=\{P\}$. Clearly, all tangent lines to \mathcal{V} and all tangent planes
to \mathcal{V} belong to the hypersurface \mathcal{M}_{4}^{3}. Since \mathcal{M}_{4}^{3} is the union of the conic planes of \mathcal{V}, any point of \mathcal{M}_{4}^{3} is on at least one tangent or bisecant of \mathcal{V}. As any two points of \mathcal{V} are contained in a conic of \mathcal{V}, each bisecant of \mathcal{V} is a line of \mathcal{M}_{4}^{3}. Hence \mathcal{M}_{4}^{3} can be also described as the union of all tangents and bisecants of \mathcal{V} and it is also said to be the secant variety of \mathcal{V}.

Denote by Ω_{1}^{e} the points of \mathcal{M}_{4}^{3} corresponding to the line pairs of $\operatorname{PG}(2, q)$, and similarly denote by Ω_{1}^{i} the points of \mathcal{M}_{4}^{3} corresponding to those degenerate conics which are made up of two imaginary lines intersecting in a real point. The repeated line conics correspond to the Veronese surface \mathcal{V}, hence $\mathcal{M}_{4}^{3}=\mathcal{V} \cup \Omega_{1}^{e} \cup \Omega_{1}^{i}$.
Note that

$$
X:=\left(\begin{array}{lll}
X_{00} & X_{01} & X_{02} \\
X_{01} & X_{11} & X_{12} \\
X_{02} & X_{12} & X_{22}
\end{array}\right)
$$

is of rank $1\left(X_{i j} \in \mathrm{GF}(q)\right.$ and not all the $X_{i j}$'s are zero), if and only if $X_{11} X_{22}-X_{01}^{2}=X_{00} X_{22}-X_{02}^{2}=X_{00} X_{11}-X_{12}^{2}=X_{00} X_{01}-X_{02} X_{12}=$ $X_{01} X_{12}-X_{11} X_{02}=X_{22} X_{12}-X_{01} X_{02}=0$ if and only if $X_{00}: X_{11}: X_{22}$: $X_{01}: X_{02}: X_{12}=x_{0}^{2}: x_{1}^{2}: x_{2}^{2}: x_{0} x_{1}: x_{0} x_{2}: x_{1} x_{2}$ for some x_{0}, x_{1}, x_{2} in $\operatorname{GF}(q)$, if and only if $X \in \mathcal{V}$. Thus the points of \mathcal{V} correspond to the 3×3 symmetric matrices over $\mathrm{GF}(q)$ of rank 1 and the points of $\Omega_{1}^{e} \cup \Omega_{1}^{i}$ correspond to those of rank $2 . \Omega_{1}^{e}$ is called the set of external points of \mathcal{M}_{4}^{3} and Ω_{1}^{i} is called the set of interior points of \mathcal{M}_{4}^{3}. Simple counting arguments show that

$$
\left|\Omega_{1}^{e}\right|=\left(q^{2}+q+1\right)\left(q^{2}+q\right) / 2, \quad \quad\left|\Omega_{1}^{i}\right|=\left(q^{2}+q+1\right)\left(q^{2}-q\right) / 2
$$

Then, $\left|\mathrm{PG}(5, q) \backslash \mathcal{M}_{4}^{3}\right|=q^{5}-q^{2}$ corresponds to the number of non-degenerate conics in $\operatorname{PG}(2, q)$. Call \mathcal{N} the orbit of non-degenerate conics.

When q is even, the hypersurface \mathcal{M}_{4}^{3} is the set of points of $\operatorname{PG}(5, q)$ whose coordinates satisfies the equation $X_{00} X_{11} X_{22}+X_{00} X_{12}^{2}+X_{11} X_{02}^{2}+$ $X_{22} X_{01}^{2}=0$. In this case, \mathcal{M}_{4}^{3} contains the plane $\pi: X_{00}=X_{11}=X_{22}=0$, which is disjoint from \mathcal{V}. Such a plane is called the nucleus of \mathcal{V}, and consists of all nuclei of conics of \mathcal{V}.

Let J be the automorphism group of \mathcal{V}. From [20, Theorem 25.1.1.0], J is an isomorphic copy of the group $\operatorname{PGL}(3, q)$, and so each linear collineation of $\operatorname{PG}(2, q)$ can be "lifted" to a collineation of $\operatorname{PG}(5, q)$ leaving \mathcal{V} invariant.

Let $S=\langle\sigma\rangle$ be the Singer cyclic group of $\operatorname{PG}(2, q)$. From [3] the lifting of σ to a collineation group of $\operatorname{PG}(5, q)$ fixing \mathcal{V} has the following rational
form

$$
M=\left(\begin{array}{ll}
T_{1} & O_{3} \\
O_{3} & T_{2}
\end{array}\right)
$$

where $T_{1}=S^{2}$ and $T_{2}=S^{q+1}$ both induce Singer cycles on $\operatorname{PG}(2, q)$. The group $\langle M\rangle$ has order $q^{2}+q+1$. Geometrically, $\langle M\rangle$ fixes two planes, π_{1}, π_{2}, and partition the remaining points of $\operatorname{PG}(5, q)$ into Veronese surfaces, one of which is \mathcal{V}, [3, Corollary 5]. In particular, the planes π_{1} and π_{2} are both full orbits of $\langle M\rangle$. Note that when q is even one of the two planes π_{1} and π_{2} is the nucleus for all the $q^{3}-1$ Veronese surfaces in the partition.

Under the action of $\langle M\rangle$ the variety \mathcal{M}_{4}^{3} is partitioned into $q^{2}+1$ orbits. When q is odd all such orbits are Veronese surfaces whereas if q is even one of such orbits is the nucleus of \mathcal{V}.

Definition 4.2. An exterior set with respect to a Veronese surface \mathcal{V} of $\mathrm{PG}(5, q)$ is a set \mathcal{E} of points of $\mathrm{PG}(5, q) \backslash \mathcal{V}$ such that the line joining any two points of \mathcal{E} is disjoint from \mathcal{V}.

Since any two tangent planes to \mathcal{V} meet in a point not on \mathcal{V}, the tangent lines to \mathcal{V} cover a subset, say T, of \mathcal{M}_{4}^{3} consisting of $\left(q^{2}+q+1\right)\left(q^{2}+q+2\right) / 2$ points and T is invariant under $\langle M\rangle$. It follows that for all q, \mathcal{M}_{4}^{3} contains a Veronese surface, that is an $\langle M\rangle$-orbit not belonging to T. More precisely $\mathcal{M}_{4}^{3} \backslash T$ contains $\left(q^{2}-q\right) / 2$ Veronese surfaces, different from \mathcal{V}, that are $\langle M\rangle$-orbits.

Let $\mathcal{V}_{1} \neq \mathcal{V}$ be any Veronese surface of $\mathcal{M}_{4}^{3} \backslash T$ which is an $\langle M\rangle$-orbit.
Proposition 4.3. The Veronese surface \mathcal{V}_{1} is an exterior set with respect to \mathcal{V}.

Proof. Two points P_{1} and P_{2} of \mathcal{V}_{1} correspond to two degenerate conics C_{1} and C_{2} of $\mathrm{PG}(2, q)$ not consisting of a repeated line. The line $P_{1} P_{2}$ corresponds to the pencil \mathcal{P} of conics generated by C_{1} and C_{2}. From [18, Table 7.7 , p. 175] the case in which the base locus of \mathcal{P} consists of $q+1$ points is excluded from our previous argument on tangent lines to \mathcal{V} : indeed in such a case P_{1}, P_{2} should lie on a tangent line to \mathcal{V}. In all the other cases, the base locus of \mathcal{P} is a single point P. In our setting, P_{1} and P_{2} are images one each other of a suitable collineation in $\langle M\rangle$. This means that in S there is a collineation τ sending C_{1} in C_{2}. Assuming that $C_{1}=L_{1} L_{1}^{\prime}$ and $C_{2}=L_{2} L_{2}^{\prime}$ we have that $L_{1}^{\tau}=L_{2}$ and $L_{1}^{\prime \tau}=L_{2}^{\prime}$. Then $P^{\tau}=P^{\prime} \in L_{2}$ and $P^{\tau}=P^{\prime \prime} \in L_{2}^{\prime}$. It follows that $P^{\prime}=P^{\prime \prime}=P$, a contradiction since S acts semi regularly on points of $\operatorname{PG}(2, q)$.

Now, let us consider the lifting of S to a collineation of $\mathrm{PG}(8, q)$ fixing a Segre variety $\mathcal{X}_{1}=\mathcal{S}_{2,2}$. It has the following rational form

$$
N=\left(\begin{array}{ccc}
T_{1} & O_{3} & O_{3} \\
O_{3} & T_{2} & O_{3} \\
O_{3} & O_{3} & T_{2}
\end{array}\right)
$$

where $T_{1}=S^{2}$ and $T_{2}=S^{q+1}$. The group $\langle N\rangle$ has order $q^{2}+q+1$. Geometrically, $\langle N\rangle$ fixes three planes, π_{1}, π_{2} and π_{3} and the projective 5dimensional subspaces generated by any two of them. In particular the 5 -dimensional projective subspace where $\langle N\rangle$ induces the group generated by

$$
\left(\begin{array}{ccc}
O_{3} & O_{3} & O_{3} \\
O_{3} & T_{2} & O_{3} \\
O_{3} & O_{3} & T_{2}
\end{array}\right)
$$

is partitioned in turn into $q^{3}+1$ planes forming a Desarguesian spread D. Also, it gives rise to a partition, say \mathcal{F}, of points of $\mathrm{PG}(8, q)$ not on the three 5 -dimensional projective subspaces generated by $\pi_{i}, \pi_{j}, i \neq j, i, j=1,2,3$, into $(q-1)\left(q^{3}-1\right)$ Segre varieties $\mathcal{S}_{2,2}$ which, in turn, are partitioned into Veronese surfaces (the so called flock of $\mathcal{S}_{2,2}$) [1, Theorem 3]. A proof of the fact that $\operatorname{PG}(8, q)$ can be partitioned into Segre varieties (apart from a number of subspaces) comes from Remark 3.1, by applying the GF (q)-linear representation of $\operatorname{PG}\left(2, q^{3}\right)$. Another proof of this fact comes from a slight modification of [3]. Note that the projective space $\operatorname{PG}(8, q)$ is the union of the $q^{3}+1\langle N\rangle$-invariant 5 -dimensional projective subspaces sharing the plane invariant under the group generated by

$$
\left(\begin{array}{ccc}
T_{1} & O_{3} & O_{3} \\
O_{3} & O_{3} & O_{3} \\
O_{3} & O_{3} & O_{3}
\end{array}\right)
$$

and a plane in the spread D. By construction there are $q-1$ sets of $5-$ dimensional projective subspaces each of size $q^{2}+q+1$ inducing a flock for $q^{3}-1$ Segre varieties in \mathcal{F}. Let L be a projective 5 -dimensional projective subspace of $\mathrm{PG}(8, q)$ fixed by $\langle N\rangle$ and intersecting \mathcal{X}_{1} into a Veronese surface \mathcal{V}, and choose \mathcal{V}_{1} to be another Veronese surface in the secant variety \mathcal{M}_{4}^{3} of \mathcal{V} that is an exterior set with respect to \mathcal{V}. Of course \mathcal{V}_{1} belongs to a unique Segre variety, say \mathcal{X}_{2}, in \mathcal{F}.

Theorem 4.4. The Segre variety \mathcal{X}_{2} is an exterior set of $\operatorname{PG}(8, q)$ with respect to \mathcal{X}_{1}.

Proof. First of all note that the secant variety of \mathcal{V}_{1} is the intersection between the secant variety of \mathcal{X}_{2} with L. We have to show that a secant line to \mathcal{X}_{2} at the points P_{1} and P_{2} is disjoint from \mathcal{X}_{1}. If P_{1} and P_{2} are on \mathcal{V}_{1} then from Proposition 4.3 there is nothing to prove since the line $P_{1} P_{2}$ lies on L. The previous argument holds true for any of the $q^{2}+q+15-$ dimensional projective subspaces inducing the flock of \mathcal{X}_{1} (and also the flock of \mathcal{X}_{2}). Assume that P_{1} and P_{2} lie on distinct Veronese surfaces of the flock of \mathcal{X}_{2}. Then the line $\ell=P_{1} P_{2}$ shares at most one point with the other $5-$ dimensional projective subspaces inducing the flock of \mathcal{X}_{2}. If ℓ met another Veronese surface of the flock of \mathcal{X}_{2} then ℓ would lie on \mathcal{X}_{2} and we are done. Otherwise, let P be a point on ℓ distinct from P_{1} and P_{2} and belonging to a 5 -dimensional projective subspace of the flock, say L^{\prime}, and let \mathcal{V}_{2}^{\prime} be the Veronese surface obtained by sectioning \mathcal{X}_{2} with L^{\prime}. Then, it turns out that P lies on the secant variety of \mathcal{V}_{2}^{\prime}. Let \mathcal{V}_{1}^{\prime} be the Veronese surface $L^{\prime} \cap \mathcal{X}_{1}$. It follows that \mathcal{V}_{2}^{\prime} is an exterior set of L^{\prime} with respect to \mathcal{V}_{1}^{\prime} and hence P cannot lie on \mathcal{V}_{1}^{\prime} and hence on \mathcal{X}_{1} as well. This completes the proof.

Theorem 4.5. There exists a family of ($q, 3,3,2,2$) optimal non-linear constant-rank codes admitting a Singer cyclic group of PGL $(3, q)$ as an automorphism group.

Proof. The points of \mathcal{X}_{2} correspond in the matrix model of $\operatorname{PG}(8, q)$ to matrices of rank 2. By scaling such matrices by nonzero scalars we get the desired codes.

Acknowledgments. This work has been published in Des. Codes Cryptogr., (2016) 79:597609 DOI 10.1007/s10623-015-0108-0.

References

[1] L. Bader, A. Cossidente, G. Lunardon, Generalizing flocks of $\mathcal{Q}^{+}(3, q)$, Adv. Geom. 1 (2001), no. 4, 323-331.
[2] L. Bader, G. Lunardon, On the flocks of $\mathcal{Q}^{+}(3, q)$, Geom. Dedicata 29 (1989), 177-183.
[3] R.D. Baker, A. Bonisoli, A. Cossidente, G.L. Ebert, Mixed partitions of PG(5,q), Discrete Math. 208/209 (1999), 23-29.
[4] S.G. Barwick, Wen - Ai Jackson, Exterior splashes and linear sets of rank 3, arXiv:1404.1641.
[5] A. Bonisoli, G. Korchmáros, Flocks of hyperbolic quadrics and linear groups containing homologies, Geom. Dedicata 42 (1992), 295-309.
[6] J. Cannon, C. Playoust, An introduction to MAGMA, University of Sydney, Sydney, Australia, 1993.
[7] B.N. Cooperstein, External flats to varieties in $P G\left(M_{n, n}(G F(q))\right)$, Linear Algebra Appl. 267 (1997), 175-186.
[8] P. Delsarte, Bilinear forms over a finite field, with applications to coding theory, Journal of Combinatorial Theory, Ser. A 25 (1978) 226-241.
[9] U. Dempwolff, On the automorphism group of planes of Figueroa type, Rend. Sem. Mat. Univ. Padova 74 (1985), 59-62.
[10] G. Donati, N. Durante, Scattered linear sets generated by collineations between pencils of lines, J. Algebr. Comb. (to appear).
[11] N. Durante, A. Siciliano, (B)-Geometries and flocks of hyperbolic quadrics, J. Combin. Theory Ser. A 102 (2003), no. 2, 425-431.
[12] T. Etzion, Problems on q-analogs in coding theory, arXiv:1305.6126 [cs.IT].
[13] R. Figueroa, A family of not (V, l)-transitive projective planes of order $q^{3}, q \not \equiv 1 \bmod 3$ and $q>2$, Math. Z. 181 (1982), 471-479.
[14] E. M. Gabidulin, Theory of codes with maximum rank distance, Problems of Information Transmission 21 (1985), 1-12.
[15] M. Gadouleau, Z. Yan, Constant-rank codes and their connection to constant-dimension codes, IEEE Trans. Inform. Theory 56 (2010), no. 7, 3207-3216.
[16] M. Gadouleau, Z. Yan, Properties of codes with the rank metric, Global Telecommunications Conference, 2006. GLOBECOM '06, IEEE, 1-5.
[17] A. Kshevetskiy, E.M. Gabidulin, The new construction of rank codes, Proc. IEEE Int. Symp. on Information Theory (2005), 2105-2108.
[18] J.W.P. Hirschfeld, Projective Geometries over Finite Fields, Clarendon Press, Oxford (1998).
[19] C. Hering, H.-J. Schaffer, on the new projective planes of R. Figueroa, Combinatorial theory, LNM 969 (1982), 187-190.
[20] J.W.P. Hirschfeld, J.A. Thas, General Galois Geometries, Oxford University Press, New York, 1991.
[21] B. Huppert, Endliche Gruppen, I, Die Grundlehren der Mathematischen Wissenschaften, Band 134 Springer-Verlag, Berlin-New York (1967).
[22] R. Koetter, F. Kschischang, Coding for errors and erasures in random network coding, IEEE Transactions on Information Theory, 54 (8) (2008), 3579-3591.
[23] M. Lavrauw, G. Van de Voorde: Field reduction and linear sets in finite geometry, arXiv:1310.8522.
[24] M. Lavrauw, C. Zanella: Subgeometries and linear sets on a projective line, arXiv:1403.5754.
[25] G. Lunardon, G. Marino, O. Polverino, R. Trombetti, Maximum scattered linear sets of pseudoregulus type and the Segre Variety $\mathcal{S}_{n, n}, J$. Algebr. Comb., 39 (2014), 807-831.
[26] J.M. Nowlin Brown, Some partitions in Figueroa planes, Note Mat. 29 (2009), suppl. 1, 33-43.
[27] R. M. Roth, Maximum-rank array codes and their application to crisscross error correction, IEEE Trans. Inform. Theory, 37 (1991), 328-336.
[28] B. Segre, Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane, Ann. Mat. Pura Appl. 64, (1964), 1-76.
[29] J. Sheekey, On Rank Problems for Subspaces of Matrices over Finite Fields, Ph.D. Thesis, University College Dublin 2011.
[30] D. Silva, F. R. Kschischang, R. Koetter, A rank-metric approach to error control in random network coding, IEEE Trans. Inform. Theory, 54 (2008) 3951-3967.
[31] J.A. Thas, Flocks of non-singular ruled quadrics in $\operatorname{PG}(3, q)$, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 59 (1975), 83-85.
[32] A. Wachter-Zeh, Decoding of Block and Convolutional Codes in Rank Metric, Ph.D Thesis, Techion-Israel Institute of Technology, 2013,

