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ABSTRACT: 

 

The article describes an innovative procedure for the three-dimensional analysis of decay morphologies of ancient buildings, through 

the application of machine learning methods for the automatic segmentation of point clouds. In the field of Cultural Heritage 

conservation, photogrammetric data can be exploited, for diagnostic and monitoring support, to recognize different typologies of 

alterations visible on the masonry surface, starting from colour information. Actually, certain stone and plaster surface pathologies 

(biological patina, biological colonization, chromatic alterations, spots,...) are typically characterized by chromatic variations. To this 

purpose, colour-based segmentation with hierarchical clustering has been implemented on colour data of point clouds, considered in 

the HSV colour-space. In addition, geometry-based segmentation of 3D reconstructions has been performed, in order to identify the 

main architectural elements (walls, vaults), and to associate them to the detected defects. The proposed workflow has been applied to 

some ancient buildings’ environments, chosen because of their irregularity both in geometrical and colorimetric characteristics. 

 

 

1. INTRODUCTION 

The present research aims at investigating methods for the 

semantic segmentation of point clouds, to detect and analyse 

decay phenomena affecting masonry fabrics surfaces. The work 

is developed within a wider research context, focused on 

innovative procedures for the digital documentation and 

preservation of Cultural Heritage. In this field, the knowledge of 

the state of conservation of a building and the pathologies of its 

architectural elements, are fundamental for the identification of 

coherent interventions and maintenance. Currently, the decay 

mapping is a manual practice, with low accuracy and huge 

amounts of time, due to the complexity of architectural heritage 

environments. The wide diffusion of digital survey techniques, 

such as close-range photogrammetry and laser scanning, leads 

to a significant improvement in the survey of ancient buildings ( 

Remondino, 2011; Aicardi et al., 2018; El-Din Fawzy, 2019). In 

Computer Aided Design, reverse engineering consists in the 

measuring, analysing and testing a real object, in order to 

virtually reconstruct it into a 3D model (Wang, 2011). 

Particularly, it consents to convert recording data (from 

photogrammetry or laser scanning) into point clouds, enclosing 

geometrical coordinates and RGB colour values. A further and 

less explored development concerns the exploitation of 3D data 

in restoration and maintenance, to automatically extract 

information about the state of conservation of the fabric, via a 

semantic segmentation of point clouds.  

 

In literature, segmentation methods are employed for 

architectural element detection (Nguyen and Le, 2013; Grilli et 

al., 2017), to overcome manual practice limitations and to 

reduce editing. On the contrary, point cloud segmentation is 

rarely adopted for decay detection (Valero et al., 2019; Xu et 

al., 2020). In these studies, segmentation algorithms act on two 

kinds of properties of raw data: geometric features (3D 

coordinates, normal vectors, derivatives) and colorimetric 

attributes (RGB colour values).  

Specifically, geometric segmentation is mostly deployed for 

detecting building components through geometric primitives 

within 3D point clouds (edge-based, region-growing, model 

fitting, hybrid, machine learning segmentation) (Hackel et al., 

2016; Valero et al., 2018; Grilli et al., 2019; Hamid-lakzaeian, 

2020; Teruggi et al., 2020; Croce et al., 2021;). In Zhan et al., 

(2009) colour information has been used to improve the 

geometric pipeline, for the identification of objects with the 

same direction but different colours.  

 

On the other hand, colour-based segmentation has been 

performed mainly on 2D images (Malinverni et al., 2017; 

Vorobel et al., 2021), or in some cases on 3D data (Valero et al., 

2019; Galantucci et al., 2020), for the detection of decay 

patterns recognizable for their predominant colours  or their 

chromatic differences. Usually standard colour information of 

images or three-dimensional data is expressed in RGB, which is 

not a suitable space for a colour-based segmentation, because 

the spatial proximity, corresponding to the geometric distance 

between colour-values, is not coherent with the perceptive 

similarity among colours (Sonka et al., 2014; Gonzalez and 

Woods, 2018). For this reason, it is necessary to consider other 

colour-spaces (like HSV, YCbCr, YIQ, YUV, …) where the 

human perception is taken into account and the two features 

(geometric distance and perceptive similarity) are related 

(García-Lamont et al., 2016) . 

 

The proposed approach combines and tests colour-based and 

geometry-based segmentation methods, in order to identify and 

analyse together decay evidences and the main architectural 

elements (walls, vaults, etc.) in a point cloud. The outcomes 

should be chromatic morphologies corresponding to decay 

patterns (biological patina, biological colonization, chromatic 

alterations, spots,...) (ICOMOS, 2008), associated to 

architectural component surfaces.  

 

 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-2-2021-129-2021 | © Author(s) 2021. CC BY 4.0 License.

 
129



 

2. METHODOLOGY 

Point cloud segmentation can be achieved through a plurality of 

methods, diversified according to the data grouping criteria, on 

the basis of some properties or features (like geometry, colour, 

size, shape, scale patterns,...). The main approaches could be 

classified into several  categories: standard ones, based on the 

principles of discontinuity (edge-based methods) or similarity 

(region growing); model-fitting methods, performed by 

mathematical models (RANSAC, Hough Transform,…); and 

machine learning applications,  Artificial Intelligence 

algorithms, which make predictions on empirical training data 

(k-means clustering, hierarchical clustering,..) (Nguyen and Le, 

2013; Sonka et al., 2014). In the present research, some of the 

above-mentioned approaches have been combined, for an 

automatic historical building point cloud segmentation, as 

illustrated in the methodological workflow (Figure 1): 

 

 Colour-based segmentation, through machine learning 

(clustering algorithms) applied to colour attributes of point 

clouds, considered in different colour-spaces, to distinguish 

various typologies of chromatic alterations; 

 

 Geometry-based segmentation, by model fitting algorithms, 

for the identification of the kind of architectural element on 

which decay evidences are detected. 

 

The procedure for the colour-based segmentation, explained in 

Section 2.1, has been implemented in MathWorks ® MATLAB. 

Conversely, the open source software CloudCompare, has been 

adopted for the geometric segmentation (Section 2.2) (Schnabel 

et al., 2007; Girardeau-Montaut, 2020). 

 

2.1  Colour-based segmentation  

The colour-based segmentation is structured as a machine 

learning application, to the purpose of analysing various 

typologies of surface decay (biological patina, biological 

colonization, chromatic alterations, spots,...). Machine learning 

is appropriate to exploit colour properties connected to dense 

point clouds, for the recognition of chromatic alterations, as a 

result of an unsupervised learning on the training data (point 

clouds). In the case of masonry surface pathologies, given the 

complexity and heterogeneity of their characteristics, the great 

advantage is that there is no need for pre-fixed labels, because 

they are introduced by the algorithm itself. The outputs are 

clusters of points (groups of similar examples data), segmented 

isolating different colour ranges, which correspond to the decay 

patterns. 

 

 

  
Figure 1 Methodological Workflow 
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Among these methods, some clustering algorithms have been 

examined, such as minimum Euclidean distance, k-means and 

hierarchical clustering, in order to find the most suitable to the 

specific goal. The first segments the point cloud into clusters, on 

the basis of the Euclidean distance between points. The 

clustering is made considering a minimum distance between 

clusters, established in advance. The k-means is an iterative, 

data-partitioning algorithm, to classify the data set, into an “a 

priori” fixed number of clusters (k), defined by their centroids. 

It is an exclusive method because each of the n observations is 

assigned to only one of the k clusters. The algorithm starts 

randomly choosing k initial cluster centres (centroid) and 

computes the distances between each point and each centroid. In 

every iteration of the procedure the centroids vary their position, 

to minimize the total within cluster variance (the average 

distance of the observations in a single cluster from the cluster 

mean) (Hastie et al., 2008). 

 

On the contrary, hierarchical clustering do not depend on a prior 

choice of the minimum distance between clusters or the number 

of clusters, as in the algorithms previously described. It 

organizes data on its own, in hierarchical representations like 

cluster trees or dendrograms. Each level of the dendrogram 

collects groups of data with similar characteristics, and it results 

from the combination of the clusters at the lower level. 

Therefore, the whole structure consists in an ordered sequence, 

which allow the user to define the pruning of the dendrogram, 

on the basis of the specific application. There are two main 

kinds of strategies for hierarchical clustering: 

 

 Agglomerative approaches, which start with every 

observation in its own cluster, and, at each level, pairs of 

clusters are merged into one, moving up the hierarchy 

recursively. The choice of the pairs is made, according to 

the smallest dissimilarity between clusters. 

 Divisive approaches, which begin at the top of the 

hierarchy, grouping all the observation into a single cluster. 

They proceed splitting groups of data with the largest 

dissimilarity between clusters.  

 

In this study, an agglomerative approach is adopted, with the 

Ward’s minimum variance method for the computation of the 

distance between clusters. It is a recursive algorithm, which 

starts from the squared Euclidean distance between singleton 

clusters (clusters composed by a single point), and at each step 

achieves the pair of clusters that leads to minimum increase in 

total inner-cluster variance (Ward, 1963). The Ward’s minimum 

variance method is based on the minimization of the total inner-

cluster variance, defined as the sum of the squares of distances 

among all the elements in the cluster and its centroid, according 

to the following equation (1): 
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(1) 

 

where xr, yr, zr  are the coordinates of the centroid of cluster r  

xs, ys, zs are the coordinates of the centroid of cluster s 

            nr and ns are the number of elements in clusters r and s 

To achieve a colour-based segmentation, the hierarchical 

clustering algorithm is applied to chromatic data of point clouds 

(RGB triplets associated with each point). However, in RGB 

(red, green and blue), an additive colour model, the metric 

distance does not correspond to the colorimetric distance 

between colours. The lighting and shading factors influence the 

colour perception, producing a mismatch between proximity in 

RGB space and perceptive colour closeness (Zhan et al., 2009). 

 

Hence, different colour spaces have been examined for the 

purpose of identifying the most accurate one: 

 

a. HSV (hue, saturation, value);  

b. YCbCr (luma component, blue and red difference chroma 

components);  

c. YIQ (luma component, in-phase, quadrature);  

d. YUV (luma component, blue projection, red projection).  

 

In these colour-spaces, unlike the RGB, the perceptive 

similarity is more proximate to the Euclidean distance between 

colour triplets, because they take human perception into 

account. They are defined by mathematical coordinate 

transformations from an associated RGB colour space 

(Gonzalez and Woods, 2018). In HSV, hue corresponds to the 

colour’s position on a colour wheel and is related to the colour 

transitions from red to orange, yellow, green, cyan, blue, 

magenta, and finally back to red. Saturation ranges from 

unsaturated (shades of grey) to fully saturated (no white 

component). While value coincides with brightness. Indeed, in 

HSV, unlike in RGB, the chromaticity is detached from the 

intensity (García-Lamont et al., 2016). YCbCr, YIQ and YUV 

belong to the family of luminance/chrominance colour spaces, 

which allow the use of reduced bandwidth for chrominance 

elements. YUV is defined through a luminance component (Y) 

and two chrominance components (UV), representing the 

deviations of blue and red from the luminance. YIQ is 

analogous to YUV, but it is meant for the analogic television 

signal. On the contrary, in YCbCr the chrominance 

characteristics correspond to the deviations of blue and red from 

luminance expressed in greyscale (Gonzalez and Woods, 2018).  

 

2.2 Geometry-based segmentation  

In the interest of associating decay patterns to specific 

architectural elements, an additional step could be implemented 

in the workflow, concerning a geometry-based segmentation of 

the original point cloud, through the application of shape 

detection or best fitting algorithms. In this case an efficient 

RANSAC (RANdom SAmple Consensus) algorithm is adopted 

(Schnabel et al., 2007). It works constructing candidate shape 

primitives (planes, cylinders, spheres,…), in correspondence of 

randomly selected minimal sets from the source data. These sets 

are constituted by the smallest number of points required to 

uniquely define a geometric primitive. The primitives are 

verified for all points in the dataset, to understand how many of 

them they can approximate. The procedure is recursive, and it 

stops with the extraction of the shape approximating the major 

number of points. The limit of acceptance is related to a pre-

determined probability that there is no better candidate for the 

considered set of points. The remaining data are tested against a 

new primitive, following the same scheme. In summary, a series 

of parameters are defined to adapt the procedure to the analysed 

data, thus varying tolerances of inclusion for the segmentation: 

 

• kind of primitive (plane, sphere, cylinder, cone, torus); 

• minimum number of points to uniquely define a primitive;  

• maximum distance between the set of points and the 

primitives; 

• sampling resolution (distance between neighbouring 

points in the data); 

• maximum angular deviation between point normal and 

primitive; 

• probability that no better candidate exists. 
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3. CASE STUDY 

The methodological pipeline has been applied to three case 

studies, consisting in three diverse architectural volumes, 

pertaining to ancient masonry buildings with typical materic 

and morphological characteristics (Figure 2). The environments 

are denoted by an irregular 3D development and extended 

forms of surface decay. In particular, the cases are: 

 

 Case 1: a cross-vault covering part of the main cloister of 

the convent of “San Leonardo” (16th century, Monopoli, 

Bari, Italy);  

 Case 2, Case 3: two barrel vaulted architectural units of 

the Cappuccini ex-convent (16th century, Conversano, 

Bari, Italy). 

            

              
Figure 2. Top: Case 1; Bottom: Case 2 (left), Case 3 (right) 

 

The on-site survey of their state of conservation led to the 

identification of five main classes of pathologies, as described 

in the Illustrated glossary on stone deterioration patterns 

(ICOMOS, 2008): biological patina, biological colonization, 

spots, deposits and moist areas.  

 

The cases have been scanned and virtually reconstructed 

through digital photogrammetry, with Agisoft Metashape. The 

equipment and the parameters are indicated in Table 1. The 

obtained point clouds have been sampled, for reducing 

computational costs. 

Parameters Case 1 Case 2 Case 3 

Camera 
Samsung 

NX2000 

Fujifilm X-

A10 

NIKON 

D3100 

Sensor 

resolution 

5472 x 3648 

pixel 

4896 x 3264 

pixel 

4608 x 

3264 pixel 

Focal length  16 mm 23.2 mm 18 mm 

Area 33 m2 46 m2 56 m2 

N° points 2.850.090 44.810.067 28,979,012 

N° sampled 

points 
294.200 292.763 254,693 

GSD 0.80mm/px 0.30mm/pix 0.35mm/pix 

Table 1 Photogrammetric survey details 

4. VALIDATION AND DISCUSSION 

4.1 Colour-based segmentation 

The hierarchical algorithm illustrated in Section 2.1 has been 

applied in the four colour-spaces (HSV, YCbCr, YIQ, YUV) 

and then compared to understand in which of them there is an 

optimal separation among colour ranges, corresponding to the 

various kinds of pathologies, as emerged from the on-site 

inspection and the ground truth (produced by a manual 

segmentation of the original point cloud). Consequently, 

starting from the cluster tree, the appropriate level to cut the 

dendrogram has been found (Figure 3). As a result of the 

experimentation, the proper number of clusters to be considered 

is 5, because an inferior number is not sufficient to distinguish 

the variations of the chromatic components, while a superior 

number generates too small clusters with negligible extension. 

In Figure 4 there is an example of the application of the 

hierarchical clustering to Case 1 and Case 3, with a pruning 

level of 3 clusters. It is possible to observe that in both cases 

different colours have been grouped together, producing an 

unacceptable result. 

 

 
Figure 3. Dendrogram of Case 1. Red line: pruning at 5 

clusters; X-axis: clusters; Y-axis: Ward’s distance  

 
Figure 4. Example of one of the three inaccurately segmented 

clusters on Case 1 (left) and Case 3 (right) 

 

For each colour space, 5 clusters have been generated, for a 

total number of 20 clusters. After a qualitative comparison of 

the 20 clusters in pairwise (250 collations), on the basis of their 

chromatic correspondence, HSV appeared to be the most 

performing in the isolation of colours (Figure 5).  

 

To validate this hypothesis, for each of the five clusters 

segmented in HSV, an analogous one has been identified in the 

other three colour-spaces, through the evaluation of the clusters’ 

histograms (RGB distribution evaluated both with the three 

channels split and unified). Taking into account the overlapping, 

only those clusters with the highest percentage have been 

considered as analogous (Figure 6 left), while clusters with a 

little percentage have been excluded (Figure 6 right). 
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Figure 5 Hierarchical segmentation in HSV (Case 2): a) original point cloud; b) cluster 1: moist area (10%); c) cluster 2: biological 

colonization/patina (18%); d) cluster 3: spots/deposit (10%); e) cluster 4: unaltered surface (57%); f) cluster 5: staining (6%) 

 

 
Figure 6. Clusters’ histogram overlapping (left: 75% overlapping; right: 0.12 % overlapping). 

 

 
Figure 7. Overlapping between analogous clusters histograms (unified RGB) of the four colour spaces and the ground truth. Case 2: 

moist area (left); staining (right). 
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A further passage concerns the overlapping of the four 

analogous clusters’ histograms with the ground truth (manually 

segmented clusters), as illustrated in Figure 7. The HSV 

histograms are the ones with the most similar trend with respect 

to the corresponding ground truth. In fact, on the one hand in 

the other colour spaces more points are included in the same 

cluster, containing parts that are not consistent with the analysed 

alteration (Figure 7 left); on the other hand, in HSV the detected 

colour range is wider (Figure 7 right), because unlike in the 

other spaces (YCbCr, YIQ, YUV), the luminance component 

doesn’t outweigh the chrominance ones. Indeed, the resulting 

segmentation in these colour spaces splits the same colour range 

and the corresponding decay pattern in more than one cluster. 

Also, the comparison of the number of points and the related 

percentage of each analogous cluster of the four colour spaces 

with its equivalent ground truth, confirmed that HSV is able to 

better isolate specific colour ranges, associated with the decay 

patterns, and it is more reliable both in terms of colour interval 

and in terms of extension (number of points; area, based on the 

average point density; extension-percentage) (Table 2). From 

Table 2, it is possible to observe that, in the five classes (moist 

area, biological colonization/patina, spots/deposit, unaltered 

surface, staining), the extension in percentage has a maximum 

variation of 1% between the ground truth and HSV, while in the 

other colour spaces the diversity range is wider.   

As a consequence, it was possible to quantify the extension of 

each decay pattern in the three case studies: 

 

 Case 1: biological colonization (15%); biological patina 

(14%); unaltered surface (26%); moist area (27%); deposit 

(17%); 

 Case 2: moist area (10%); biological colonization/patina 

(18%); spots/deposit (10%); unaltered surface (57%); 

staining (6%); 

 Case 3: biological patina (18%); moist area (26%); 

biological colonization (20%); deposit (19%); staining 

(13%). 

 

In figure 8, there is an example of the overlapping of areas and 

edges extracted from one HSV cluster (biological patina), to the 

original point cloud, verifying the coherency of the distribution 

of the obtained segmentation. 

 

  
Figure 8. Case 1: superimposition of cluster 1 (biological 

colonization) to the original point cloud to the original point 

cloud 

 

Table 2 Case 2 - point cloud segmentation: ground-truth (manually labelled portions); HSV clusters; correspondent clusters in the 

other colour space 
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4.2 Geometry-based segmentation 

Also, the geometric segmentation has been applied to the three 

case studies. The outcomes of RANSAC are point clouds of the 

detected primitives, corresponding to the main architectural 

elements. In Figure 9, a graphical representation of the 

application to one of the architectural volumes is proposed, 

where only primitive shapes like planes and cylinders have been 

searched. The parameters illustrated in Section 2.2 have been 

defined as follows: 

 

• minimum number of points per primitive = 2000;  

• maximum distance to the primitives = 0.02; 

• sampling resolution = 0.034; 

• maximum normal deviation = 25,00°; 

• overlooking probability = 0.01. 

 

The geometric segmentation has extracted six cylinders (the 

panels of the cross vault) and two planes (the perimetral vertical 

walls). In Figure 10, for the two detected planes, the chromatic 

segmentation led to the identification of some forms of 

alterations: in the first case, for the left-side wall, the clusters 

correspond to biological colonization/patina and unaltered 

surface; while in the second case, for the right-side wall, it was 

possible to separate the biological colonization/patina from the 

moist area (visible from the altered colour).The detected areas 

are consistent with the ones obtained from the colour-based 

segmentation on the entire point cloud. 

 
Figure 9 Application of the RANSAC to the dense point cloud. 

5. CONCLUSIONS  

The present research proposes a colorimetric and geometric 

analysis and segmentation of 3D point clouds, for diagnostic 

purposes in the Cultural Heritage domain, through the 

application of point cloud processing and machine learning.  

 

For the colour-based segmentation, different clustering methods 

have been investigated, and among them the hierarchical 

clustering has been preferred. The HSV colour-space is the most 

consistent with the purposes of the colour segmentation, 

because it proves to be efficient in the accurate identification of 

a plurality of chromatic decay morphologies, both in terms of 

extension and colour interval. The application to three selected 

case studies enabled the validation of the proposed 

methodology, detecting a series of chromatic alterations on the 

masonry surface, previously recognized through a visual 

inspection of the environments. The advantage of this approach 

is the possibility to achieve both a qualitative and quantitative 

analysis of different morphologies of surface alterations, 

starting from 3D data, with semi-automatic procedures, in 

support of diagnostic activities. On the other hand, the 

geometry-based segmentation allows the association of the 

detected decay patterns to the architectural elements, on which 

they are located.  

 

On the contrary, a limitation of this procedure could be the 

difficulty to distinguish and isolate chromatic alterations on 

decorated surfaces, like frescoes, temperas or wall papers. As 

future remarks, the methodology could be tested on case studies 

with different characteristics, in terms of finishing materials and 

decorative apparatus.   
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Figure 10 From left to right: biological colonization and unaltered surface of the wall on the left; biological colonization and moist 

area of the wall visible on the right. 
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