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ABSTRACT

The development of accurate transition and turbulence models is of fundamental interest
for predicting flows in turbomachinery and improving their design. Recently developed
optimization techniques, based on Lagrangian multipliers approach and direct-adjoint it-
erations, allow one to investigate the basic mechanisms by which perturbations grow and
turbulence is self-sustained in wall-bounded flows. In particular, employing the linearized
Navier-Stokes equations, the lift-up effect has been found to be responsible of the tran-
sient growth of the perturbations and of the by-pass transition. In the present work, the
extension of the optimization approach to the nonlinear equations is described, both for
the cases of transitional and turbulent flows. Optimal coherent structures are identified,
such as large scale streaks and hairpin vortices, which carry a great part of the Reynolds
stresses. Such coherent structures are a suitable starting point for the development of
reduced-order models of turbulence.

INTRODUCTION

Turbulence is a widespread complex phenomenon influencing, in particular, the perfor-
mance of turbomachinery. In fact, in turbomachinery flows, boundary-layer transition from
laminar to turbulent flow and the structure of the turbulent boundary layer remarkably affect
the friction coefficient at wall, the flow separation (stall), and the heat transfer. Yet, achieving a
thorough comprehension of the dynamics of wall-bounded turbulent flow remains a formidable
challenge since turbulence appears in a variety of different states and patterns competing with
the ordered laminar state (Barkley et al., 2015).

Due to the complexity of such phenomena, the development of accurate low-order models
is a suitable route for improving the design process of tubomachinery. To determine low-order
models for the onset of chaotic motion from a laminar regime, recent studies have turned the at-
tention to the dynamics of large scale structures, neglecting the random small scale motion: two
main examples are the direct percolation model (Lemoult et al., 2016) and the front propagation
scenario (Barkley et al., 2015), explaining the coexistence of turbulent patterns competing with
the ordered laminar state in the transitional regime.

Even when the flow reaches a fully developed turbulent regime, it remains characterized by
small-scale chaotic fluctuations as well as coherent structures, i.e. fluid motions highly corre-
lated over both space and time (Panton, 2001), with characteristic wavelengths and lifetimes.
From a dynamical point of view, this coherent motion carries a much larger momentum than
the chaotic motion at small scales; thus, a careful characterization of such structures bears an
enormous potential for modeling and controlling the self-sustained turbulence dynamics.
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First evidence of the existence of exact coherent solutions of the Navier—Stokes equations
was given by Nagata (1990) for plane Couette flow and by the vortex-wave interaction theory
of Hall & Smith (1991) for high Reynolds numbers. Later, grounding on linear modal and
non-modal instability analysis, several authors (Hamilton et al., 1995; Waleffe, 1997) have ex-
plained the mechanism driving coherent streaky structures close to the wall in transitional and
turbulent flows by a self-sustained process composed of the following three steps: 1) streamwise
streaks originate from weak streamwise vortices (this process is known as "lift-up” mechanism
and generates a transient growth of the perturbation energy); ii) saturating nonlinearly, they
become prone to secondary instability; iii) the consequent streak oscillations recreate stream-
wise vorticity by nonlinear interactions, leading back to the first step. It is noteworthy that flow
structures composed by streaks and vortices, similar to those characterizing the first step of the
self-sustained mechanism, are involved in a linear transient energy-maximization mechanism
as demonstrated by Butler & Farrell (1993).

Other authors (Adrian, 2007; Tomkins & Adrian, 2003) have observed that large-scale co-
herent structures populate the outer region of wall-bounded turbulent flows, with average span-
wise length of O(h) (h being the outer length scale, for instance the half height of a channel
flow or the boundary-layer thickness of the flow over a flat plate). These large-scale structures
have the form of packets of hairpin vortices (Adrian, 2007; Wu & Moin, 2009) or large-scale
oscillating streaks (Tomkins & Adrian, 2003). The presence of packets of hairpin vortices has
been also predicted in pipe flow by the theory of Sharma & McKeon (2013) using a superposi-
tion of response modes taking the form of traveling waves. Seyadi et al. (2013) show that, for
the case of boundary-layer flow, for very different transition scenarios, such as H-type, K-type,
or by-pass transition, flow statistics in the final phase of transition collapse and the flow is dom-
inated by packets of hairpin vortices. Moreover, the mean and Reynolds stress profile of this
transitional flow are in very close agreement with statistics of developed turbulence. Therefore,
the hairpin packets represent a structural basic feature of wall-bounded turbulence, at least in
the transitional regime.

The present work aims at investigating whether the formation of hairpin vortical structures in
wall-bounded transitional and turbulent flow is governed by an energy maximization process on
a suitable time scale. The idea is inspired by the linear transient growth analysis which has been
employed to explain the linear growth of streaky structures in turbulent flows (Butler & Farrell,
1993). Here, a nonlinear approach is employed for studying highly energetic transient events
characterized by ejections and sweeps, using a Lagrange-multipliers optimization technique
coupled with a direct-adjoint iterative procedure (Pringle et al., 2012; Cherubini et al., 2010;
Cherubini & De Palma, 2013) for computing optimal perturbations.

PROBLEM FORMULATION

In the present section two formulations of the optimization problem are presented. The
first formulation applies to laminar flows whereas the second is designed for turbulent flows.
The fundamental difference is in the definition of the “base” flow and of the corresponding
“perturbation”. For laminar flows, the base flow is the exact steady solution of the Navier—
Stokes (NS) equation with given boundary conditions; the perturbation to the laminar flow may
evolve in time toward transition to turbulence provided that suitable conditions are satisfied. For
turbulent flows, one has to define a non-trivial base flow, which is not an exact solution of the
Navier—Stokes equations, but usually a mean flow; moreover, in this case, the perturbation is
the sum of coherent and chaotic contributions.



Transitional flow

For transitional flows, the nonlinear optimization procedure is employed looking for pertur-
bations of the laminar base flow which are able to induce the largest perturbation energy growth
at a short target time. The general technique developed by the authors (Cherubini et al., 2010)
to find global optimal perturbations is here briefly recalled. Using such an approach we are
able to prove the existence of a nonlinear amplification mechanism of the disturbances which is
more effective with respect to the linear one and capable to lead the flow to turbulence for lower
values of the perturbation amplitude. Moreover, we can identify the typical flow structures in-
volved in the optimal evolution towards turbulence.
We look for the velocity perturbation u at ¢ = 0 (initial time), having a given initial energy £y,
which can induce at a target time 7" the highest perturbation energy E(T) = {u(T) - u(T)},
where the symbol { } indicates integration over the considered three-dimensional domain. This
optimal perturbation is computed by means of a Lagrange multiplier optimization, which con-
sists in finding extrema of the augmented functional
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In equation (1), the Navier-Stokes equations (written in perturbative formulation with respect
to the exact laminar solution) have been imposed as constraint; (u', p') and \ are the Lagrange
multipliers, namely, the adjoint variables, and Re is the Reynolds number.

Integrating by parts and setting to zero the first variation of £ with respect to (u, p) leads
to the adjoint equations plus the compatibility condition (not shown for brevity, see Cherubini
et al. (2010) for details).

The optimization procedure for a chosen target time 7' can be summarized by the following
loop: 1) An initial guess is taken for the initial condition, u(0), with an associated initial energy
FEy. 2) The direct problem is integrated up to t = T. 3) The adjoint variables, uf(T'), are
provided by the compatibility condition 2u(7")/E(0) — u'(T) = 0. 4) The adjoint problem is
integrated backward in time from ¢ = T to ¢ = 0. 5) At ¢ = 0, the initial direct state is updated
in the direction of the gradient, where the gradient of £ with respect to u(0) is 9L/0u(0) =
—2u(0) ({u(T) - u(T)} — AEp) / {u(0) - u(0)} + {u’(0) }. 6) The objective function E(T) is
evaluated: if its variation between two successive iterations is smaller than the chosen threshold
e = 107 the loop is stopped, otherwise the procedure is restarted from step 2).

(1

Turbulent flow
For turbulent flows, the optimization procedure is applied to the Reynolds-averaged Navier—
Stokes equations in order to study the dynamics of finite-amplitude perturbations. We split
the flow vector q = [u, p]?, composed of the velocity vector and pressure, into a mean flow
component Q = [U, 0,0, P]” and a disturbance q = [i, 0, w, p|”. Injecting this decomposition
in the NS equations, the following equations for the dynamic of the perturbations are obtained:
a—u+ﬁ~Vﬁ+U-Vﬁ—|—ﬁ-VU: —V}f)—l—i
ot Re
where 7 = @it is the the Reynolds stress tensor that needs to be known or modeled for clos-
ing the problem. This term appears when the perturbative formulation employs a base flow U
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Figure 1: Optimal perturbation: green Figure 2: Streamwise distribution of
indicates the streamwise component the spanwise-averaged skin-friction coeffi-
(u= —00latt =0and u = —0.1 cient for T' = 50, 100, 150, 200, 250 (solid
at t = 75); blue and red indicate lines from left to right) together with the
negative and positive spanwise com- laminar and turbulent theoretical distribu-
ponents, respectively (w = 40.007 at tions (bottom and top dashed lines, respec-
t=0and w = £0.05 att = 75). tively).

which is not a solution of the steady Navier—Stokes equations. Here, we compute 7 a-priori by
a fully turbulent direct numerical simulation (DNS) in the same flow conditions and V - 7 has
the role of a steady forcing, depending only on the wall-normal direction for the channel flow.
Using equations (2), we look for perturbations capable of inducing a peak of kinetic energy in
a finite time 7. Thus, we maximize the kinetic energy growth of the disturbance at time 7',
G(T) = E(T)/E(0), where E(t) = {u(t) - u(t)}. The energy gain G(T) is maximized using
a Lagrange multiplier approach, the initial energy Fy, equations (2), and the incompressibil-
ity condition being imposed as constraints using the Lagrange multipliers or adjoint variables
(uf, p"), as follows:

:%_/OT{ﬁT.NNS}dt—/OT{ﬁ.(v.ﬁ)}dt—A(EE(S)—1), 3)

where NS represents the Navier—Stokes operator given by equation (2). Deriving the functional
£ with respect to the variables u, p, one obtains the following adjoint equations:

ou'
ot
Following the optimization loop previously described in the case of transitional flows, (see
Pringle et al. (2012), Cherubini et al. (2010), Duguet et al. (2013), Cherubini & De Palma

(2013), Cherubini et al. (2015)), the optimisation problem is solved by direct-adjoint iterations
coupled with a gradient rotation algorithm (Foures et al., 2013; Farano et al., 2016).
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RESULTS

Transitional flow

A transitional-flow study is presented concerning a boundary-layer flow. The Reynolds
number is defined as Re = U,,0*/v, where v, §*, and U, are the kinematic viscosity, the in-
flow boundary-layer displacement thickness and the freestream velocity, respectively, and are
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employed to nondimensionalise the flow variables. The three-dimensional perturbation vanishes
at the bottom and upper-boundary points of the computational box, whereas periodicity is im-
posed in the spanwise homogeneous direction. Since the flow is not periodic in the streamwise
direction, a zero perturbation condition is imposed at inflow and outflow by means of two fringe
regions which allow the perturbation to vanish smoothly. The inflow points of the optimization
domain are placed at z;, = 200 with respect to the leading edge of the plate. The direct and
adjoint equations are integrated by a second-order-accurate fractional step method using a stag-
gered grid (Verzicco & Orlandi, 1996). A second-order-accurate centered space discretization
is used. An optimization domain with dimensions L, = 200, L, = 20 and L, = 10.5 has
been chosen, z, y, and z being the streamwise, the wall-normal and the spanwise directions,
respectively. After a grid-convergence analysis, a mesh made up by 901 x 150 x 61 points —
stretched in the wall-normal direction so that the height of the first cell close to the wall is equal
to 0.1 —is selected. The nonlinear optimization has been performed for Re;, = 610 with initial
energy Iy = 0.1. The shape of the optimal perturbations shows large differences with respect
to the linear case. Figure 1 provides the streamwise and spanwise component of the nonlinear
optimal perturbation, at¢ = 0 and ¢t = T, for the target time 7" = 75. In the first frame ({ = 0) of
Figure 1, one can observe the presence of two series of streamwise-alternated elongated patches
of the spanwise component of the perturbation (blue and red surfaces), placed at the two flanks
of a low-momentum flow region (green surfaces). Moreover, the regions where the streamwise
component of the velocity disturbance is negative are associated with zones of positive wall-
normal component. This means that the amplification of the perturbation is not only due to the
lift-up effect, but is strongly affected by nonlinear interactions. In fact, at ¢t = T" = 75 (see
the second frame of Figure 1), the classical streamwise-elongated streaks are not recovered, but
one can observe the presence of a A-structure which strongly recalls the bulge in the streamwise
fluctuation recently described in direct numerical simulations (DNS) of transition induced by
travelling turbulence patches by Wu & Moin (2009). Such A-structures are here observed in
the wall-normal and streamwise components of the velocity perturbation, whereas the spanwise
component shows a sinuous shape along x. Similar shape and behaviour have been found for
the optimal perturbation at higher target times for the same initial energy. Figure 2 shows the
streamwise distribution of the spanwise-averaged skin-friction coefficient C'y at different times.
The laminar and turbulent distributions of C are also reported for comparison. One can ob-
serve that, in the core of the propagating wave packet, for 7" > 200, Cy reaches values which are
typical of turbulent flows. It is noteworthy that, at each time instant, a smooth-varying region is
observed, recalling the calm region typical of the trailing edge of turbulent spots.

Figure 3 shows snapshots of the vortical structures identified by the Q-criterion and of the
streamwise component of the perturbation extracted from the DNS at times ¢ = 0, 35, 65, 95.
The first frame shows the presence of alternated quasi-streamwise vortices, with an inclination
in the (x, ) plane of about 4° with respect to the streamwise direction (in the linear case they
are aligned with ). These vortices are tilted in the streamwise direction by the Orr mechanism,
presenting at ¢ = 35 (second frame) an inclination of about 10° in the (z, y) plane (not shown).
Due to such an inclination, the downstream part of the vortex, which lies away from the wall,
is convected downstream faster than the upstream part because it experiences higher base flow
velocity; this causes the stretching and the amplification of such structures, which take the form
of A-vortices. At the same time, such vortices induce patches of high- and low-velocity via the
transport of the momentum associated with the base flow and with the finite amplitude stream-
wise perturbation. At ¢ = 65 (third frame) the vortices are further stretched in the streamwise
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Figure 3: Snapshots of the perturbation at ¢ = 0, 35, 65, 95, obtained by the DNS initialized
by the nonlinear optimal for 7' = 75 and Ejy = 0.01. The green iso-surfaces refer to the Q-
criterion; blue and red iso-surfaces refer to the negative and positive values of the streamwise
velocity component, respectively.

(@) t+ =T} )t =Tt

out

Figure 4: Optimal disturbance for T}, (left) and T, (right) with £y = 1072, Isosurfaces of
negative streamwise velocity (green) and Q-criterion colored by contours of streamwise vortic-
ity (positive blue, negative red). The encircled regions are reported in a close-up on the right
insets.

direction, so that a vortex filament oriented in the spanwise direction (the arch) is formed con-
necting the two quasi-streamwise vortices and inducing the formation of a hairpin, whose head
is clearly visible at ¢t = 95.

Turbulent flow

This section provides the analysis of turbulent channel flow at friction Reynolds number
Re, = u,h/v = 180; u,, h, and v being the friction velocity, the half-height of the channel,
and the kinematic viscosity, respectively. The choice of studying a turbulent parallel flow is
due to the need of reducing the computational cost of the simulations by using a more compact
computational domain. Computations are performed using the spectral-element code NEK5000
(Fischer et al., 2008), with Legendre polynomial reconstruction of degree 7 and second-order-
accurate Runge-Kutta time integration scheme. Since two scaling of the variables are employed,
variables expressed in inner units (normalized using w, and viscous length scale, §, = v/u,)
are indicated with the superscript *, whereas variables without any superscript are scaled in
outer units (normalized using the centerline velocity U, and h).
Incompressible flow is computed by solving the Navier—Stokes equations (NS) in a box having
streamwise, wall-normal, and spanwise dimensions equal to L, = 4w, L, = 2, L, = 2,



N[ [ [ [ N[ [ [ [

0 10 20 0 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

0
(@tt=0 (b) tT =49

T [ | [ [

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

(c) t+ =147

N[ [ [ [

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

(e) t+ = 343 ) t+ = 431

Figure 5: Snapshots of the time evolution of the outer optimal structures: isosurfaces of Q-
criterion coloured by the wall normal distance y*.

respectively. Dirichlet boundary conditions for the three velocity components are imposed at
the walls, whereas periodicity is prescribed in the streamwise and spanwise directions.

A crucial independent parameter of the optimization procedure is the target time 7', which
is related to the lifetime of the coherent structures populating the flow. Butler & Farrell (1993)
have chosen as representative of the time scale of coherent structures the eddy turnover time at
y™ & 20 (resulting in T = 80 for Re, = 180), finding optimal small-amplitude disturbances
having the shape of low- and high-speed streaks with the inner typical spanwise spacing A\ =
110. Here, we employ the same criterion, choosing the inner optimization time 7, = 80,
(T}, = 8.16) roughly corresponding to one eddy turnover time evaluated in the buffer layer at
yT = 19 (Butler & Farrell, 1993); and the outer optimization time 7.\, = 305 (T,; = 31.12),
corresponding approximately to one eddy turnover time at the centerline of the channel.

The resulting optimal finite-amplitude disturbance obtained for 7" and £y = 102 consists
at ¢ = 0 of alternated inclined streamwise vortices, flanking localized regions of streamwise
velocity strong defects (not shown). Whereas, at T}, the optimal disturbance consists of highly
modulated streaks having a typical spanwise spacing of A\ ~ 113, surrounded by positive and
negative streamwise vortices, with a spanwise spacing of about A\ ~ 56 (figure 4 (a)); this is a
typical value recovered for vortex spacing in turbulent channel flow (Panton, 2001). Increasing
the target time to the outer timescale 7" ,, the optimization algorithm provides a different flow

structure. The initial optimal perturbation is strongly localized in space and is characterized
by alternated streamwise vortices and localized patches of streamwise velocity perturbations



(not shown). Attt = Tt ., this initial perturbation turns into a much more complex structure,
mostly composed of packets of hairpin vortices on top of highly oscillating streamwise streaks,
as shown in figure 4 (b). In particular, strong vortical structures are observed at two differ-
ent scales. The small-scale structures are not symmetric and have spanwise length A\ ~ 100
(consistent with the observations of Zhou et al. (1999)). They are placed on top of the low-
speed streaks, apparently as a result of their sinuous instability. On the other hand, the largest
vortical structures have a clear symmetric hairpin shape, with typical wavelengths \, ~ 2h
and A\, ~ 2.5h, consistent with the observations of turbulent bulges and packets of hairpin
of length ~ 2h (Adrian, 2007). To further characterize the dynamics of the outer nonlinear
optimal perturbation, we analyze its time evolution. Figure 5 provides six snapshots of the op-
timal perturbation (Q-criterion isosurfaces, coloured by the wall-normal distance), from t* = 0
to t© = 431. The initial perturbation is localized in the three space directions and is com-
posed of two packets of thin counter rotating vortices showing a spanwise symmetry, placed
at y© ~ 20 (as indicated by the colours in figure 5 (a)). In figure 5 (b) one can observe the
typical downstream tilting due to the Orr mechanism (Orr, 1907). Following the evolution of
the perturbation, we can notice that the vortices tend to be lifted up from the wall towards the
center of the channel, developing structures of increasing size in an inverse cascade from small
to large scales (Jiménez, 1999). Concerning the vortical dynamics, one can observe the forma-
tion of new vortices aligned with the initial ones along modulated steamwise streaks (see figure
5 (c)). These vortices are lifted in the wall-normal direction, creating symmetric or non sym-
metric arches on top of the negative streaks at the wall, as one can observe in figure 5 (d). Once
the small-scale hairpin and cane vortices have been created, some of them further grow and lift
in the outer region (Adrian, 2007), as shown in figure 5 (e). When the structures have reached
their maximum spatial growth, they begin to break-down, starting an energy cascade from the
large scales towards the small ones, closing the loop towards the establishment of featureless
turbulence (see figure 5 (f)).

CONCLUSIONS

Several experimental and numerical analysis have marked the importance of hairpin vorti-
cal structures in transitional and turbulent wall-bounded flows, indicating that such structures
might represent a structural feature of wall-bounded turbulence. The present work aims at in-
vestigating whether the formation of hairpin structures in wall-bounded flow is governed by an
energy maximization process on a suitable time scale. A nonlinear approach is employed for
computing optimal perturbations, using a Lagrange-multipliers optimization technique coupled
with a direct-adjoint iterative procedure.

For transitional flow, we have shown that optimal perturbations with large enough initial en-
ergies are localized in space and composed of spanwise-alternated thin vorticity tubes inclined
with respect to the streamwise direction and placed around regions of large streamwise and
wall-normal perturbations of opposite sign, resembling localized sweeps and ejections. Tran-
sition is triggered suddenly and occurs in a very localized region, inducing the formation of
hairpin structures. Thus, hairpin vortex structures can be the outcome of a nonlinear optimal
growth process, in a similar way as streaky structures are linked to a linear optimal growth
mechanism.

For turbulent flows, different nonlinear optimal structures have been found. Depending on
the chosen time scale for the energy growth they can have the shape of oscillating streaks or
hairpin vortices. At least at moderate Reynolds numbers, we have found that also for turbu-



lent flows, nonlinear optimal structures at the outer scale correspond to hairpin vortices. The
presence of optimal structures in turbulent flows confirms that the complex dynamics of such
flows can be approximated by a low-dimensional dynamics. In fact, we have verified that such
optimal coherent structures alone accurately approximate the characteristics of the entire tur-
bulent flow since they well reproduce its spectrum, its velocity probability density function, its
energy transfer mechanisms (Farano et al., 2017). Reproducing these coherent structures from
a superposition of simple modes, as proposed by Sharma & McKeon (2013) and Cohen et al.
(2014) leads to the possibility of designing a reduced model of wall turbulence.
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