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Abstract

This paper proposes a novel decentralized on-line fault diagnosis approach based on the solution

of some integer linear programming problems for discrete event systems in a Petri net framework. The

decentralized architecture consists of a set of local sites communicating with a coordinator that decides

whether the system behaviour is normal or subject to some possible faults. To this aim, some results

allow defining the rules applied by the coordinator and the local sites to provide the global diagnosis

results. Moreover, two protocols for the detection and diagnosis of faults are proposed: they differ for the

information exchanged between local sites and coordinator and the diagnostic capability. In addition,

a sufficient and necessary condition under which the diagnosability is achieved in the decentralized

architecture is introduced. Finally, some examples are presented to show the efficiency of the proposed

approach.

Keywords: Fault diagnosis, Discrete Event Systems, Petri nets, Integer linear programming.

I. INTRODUCTION

Fault diagnosis of Discrete Event Systems (DESs) has received extensive attention in recent

years. A fault causes a non-desired deviation of a system or of one of its components from
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its normal behaviour. Generally, the aim of fault diagnosis is to achieve three complementary

tasks: fault detection, fault isolation, and fault identification [1]. Fault detection is a function that

determines whether a system is normal or whether a fault has occurred. On the other hand, fault

isolation and identification respectively aim at localizing and identifying the system component(s)

and the nature of the fault. In this paper we use the terminology of fault diagnosis to describe

the objective of the detection and localization of a particular fault.

In the related literature, a lot of works are presented to solve the problem of fault detection

and diagnosis in the centralized setting [2–9]. On the other hand, many large real systems are

physically distributed: for instance manufacturing, transportation and power systems have intrin-

sically distributed architecture. Hence, such systems take advantage of the natural decomposition

in sub systems that can be controlled by decentralized approaches [10]. Consequently, also in

the case of fault detection and diagnosis some contributions are presented to deal with such

complex problems by exploiting the distributed system setting in the framework of automata

[11–16] and Petri Nets (PNs) [17–23].

This paper solves the decentralized fault diagnosis problem in a PN framework on the basis

of an extension of the centralized on-line fault detection method presented in [5]. By employing

the decentralized diagnosis architecture presented in [12] and [18], we assume that the system

is observed by a number of sites. Each site has the information about the system structure

(the structure of the PN) and the initial marking but can locally observe the system, i.e., each

site can observe a different set of observable transitions. At each observable event occurrence,

local diagnosis is performed by the sites that exploit the approach based on some Integer

Linear Programming (ILP) problem solutions [5]. By applying a protocol, each site transmits

its fault detection information to the coordinator that determines the global diagnosis state. The

coordinator does not have any information about the structure and the dynamics of the system

and has few computational capabilities. In particular, two diagnosis protocols specify the actions

performed by the local sites and the coordinator.

The first protocol (Protocol 1) detects the faulty or normal behaviour of the DES and it can

be useful for systems where the occurrence of a fault implies the process stop. More precisely,

the coordinator receives the diagnosis results from the local sites and makes a decision (global

diagnosis result) just by collecting the information obtained by the sites that observe the last

event.

The second protocol (Protocol 2) performs the global diagnosis by detecting the faults occurred



3

after the observation of an event sequence. Then, the coordinator collects the local diagnosis

information, infers the global diagnosis result and sends it to the local sites that use such

information for the subsequent fault diagnosis. Also in this case the designed coordinator works

with limited memory and computational capability, but it gathers the information received by

the local sites in order to make a global decision.

Hence, the key features of the coordinator are the following: i) it performs the fault detection

as the centralized diagnoser under a set of assumptions when the distributed setting of the system

requires a decentralized approach; ii) it allows the sites to avoid the message exchange among

themselves by reducing errors and delays.

Finally, introducing the definition of fault ambiguous sequences, we prove a sufficient and

necessary condition under which the diagnosability is achieved in a decentralized architecture

by applying Protocol 2.

The rest of the paper is structured as follows. Section II presents a literature review and

comments the previous approaches. Section III exposes some basic definitions and notations

that are necessary in the paper. Section IV describes the decentralized fault diagnosis problem

and recalls the basics of the centralized diagnoser proposed in [5]. Section V introduces the

specification of fault diagnosis for the local sites. Moreover, in Section VI some results are

proved in order to describe the actions of the local sites and the coordinator under Protocol

1. A second protocol is proposed in Section VII as an extension of the protocol in Section

VI and a sufficient and necessary condition under which the diagnosability is achieved in the

decentralized architecture is given. Finally, Section VIII analyzes the computational complexity

of the proposed diagnosis technique and Section IX presents conclusions and future research.

II. LITERATURE REVIEW

The problem of decentralized fault detection and diagnosis is usually solved by considering

two different distributed system settings.

In the first setting each site, dedicated to perform the fault detection and diagnosis, knows

and observes only a part of the system. Such sites can communicate with a set of near sites to

improve the diagnosis performance. In particular, Jiroveau and Boel [19] present a distributed

fault diagnosis method for large systems. The whole process is depicted as different time PN

models (each one modeling a local process) that interact with each other by guarded transitions

that become enabled only when some conditions are satisfied. The work in [19] considers that
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different local agents receive local observation and information from neighboring agents to

improve the performance of fault diagnosis. In [21], Genc and Lafortune tackle the on-line

fault diagnosis problem. The modular dynamic system consists of a group of place-bordered

PNs. Each module is supervised by a diagnoser that has local information only on a part of the

system. The paper [21] can detect the occurrence of the faults by the observed word, the structure

of the respective PN modules and their connections by common places. Moreover, Fanti et al.

[20] propose an approach that combines the modular setting presented by Genc and Lafortune

[21] and the approach based on the ILP problems proposed in [5]. Compared with the study in

[21], the method in [20] computes and communicates the markings of the common places only

and it does not need the full generation of reachable states at each event occurrence, thereby

avoiding the well known state explosion problem.

Moreover, the codiagnosability is proposed in [28–31], where local diagnosers perform the

diagnosis without communicating with the other local sites and the coordinator. In particular,

Qiu and Kumar [28] solve the diagnosis problem by building offline non deterministic multiple

automata diagnosers. Moreover, Takai and Ushio [29] extend the results of [28] to Mealy

automata with nondeterministic output functions: the system has a finite state set and the language

is generated by a finite automaton. In addition, Cassez [30] analyzes the fault codiagnosis problem

by finite automata and timed automata and the coordinator is a simple agent listening to local

diagnosers. Recently, in [31] the authors investigate the relationship between decentralized fault

diagnosis and decentralized control of DES under dynamic observations. In particular, they

present a new approach for the verification of transition-based codiagnosability on the basis of

the property of language-based coobservability.

In the second distributed system setting, each site has perfect knowledge of the PN structure

and initial marking but can locally observe a subset of the system events. Each site locally

performs the fault detection (diagnosis) and communicates its results with a coordinator that is

used to produce the global diagnosis state. In particular, Benveniste et. al [17] handle the problem

of alarm supervision in the field of telecommunication networks. Their study is based on a net

unfolding approach and restricted to safe PNs. Moreover, Debouk et al. [12] propose a general

strategy for decentralized diagnosis in the framework of automata. They propose three protocols

that are based on different levels of information to be transmitted between the coordinator

and the local sites. Motivated by the work in [12], Cabasino et al. [18] develop a method for

the decentralized diagnosis of PNs that extends the centralized approach in [3] and [4] to the
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distributed system setting considered in [12]. By using an approach based on the notions of basis

markings and justifications [3, 4], the paper [18] does not need to enumerate the state space as

in [12].

Now, comparing the proposed approach with the decentralized fault diagnosis presented in

the related literature, we consider the three protocols using automata proposed in [12], named

here P1, P2 and P3. Protocol P3 of [12] is similar to Protocol 1 of this paper since both require

that a local site communicates with the coordinator only when a fault is detected. However, P3

requires enumerating the automata states with the consequent state space explosion. On the other

hand, in P1 and P2 of [12] each site communicates to the coordinator all the possible reachable

states after each observed event. On the contrary, in Protocol 2 the local sites communicate to

the coordinator only the faults that have occurred.

Furthermore, Cabasino et al. [18] propose three protocols for decentralized diagnosis in the

framework of labeled PNs. However, they need to enumerate the basis markings after each

observable transition firing and the structure of the diagnoser is strictly related to the structure

of the DES. Similarly, the approaches of [28–31] require the off-line construction of the diagnoser

automata for DES with a limited number of states.

On the contrary, the protocols proposed in this paper exploit the advantages from the diagnosis

approach proposed in [5]: they do not require off-line calculations based on the structure of the

considered PN system. Hence, the proposed protocols turn out to be easily applicable to situations

in which the system structure may change.

III. BASIC DEFINITIONS AND NOTATIONS

In this section, we review some basics of PNs [24].

A PN is a net structure described by the quadruple PN = (P, T,Pre,Post), where: P is a set

of m places, T is a set of n transitions, Pre: P × T → N and Post : P × T → N are the pre-

and post-incidence matrices that specify the arcs (N is the set of non-negative integers). The

incidence matrix C of the net is C = Post− Pre.

A marking is a vector M : P → Nm that assigns to each place an integer number of tokens.

A PN system 〈PN,M0〉 is a net PN with an initial marking M0.

If it holds M ≥ Pre(·, tj) then transition tj ∈ T is enabled at M: this is denoted by M[tj〉.

When tj fires, the new marking M′ is reached, i.e., M[tj〉M′. Marking M′ is obtained by the PN
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state equation M′ = M + C · tj , where tj is an n-dimensional firing vector corresponding to the

jth canonical basis vector.

Let σ = t1t2 . . . tk be a sequence of transitions of length k with σ ∈ T ∗. The fact that a

transition t ∈ T appears in the sequence σ is denoted by t ∈ σ. Moreover, the notation M[σ〉M′

denotes that σ is enabled at m and its firing yields M′. In addition, σ: T → Nn is the firing

vector associated with the sequence σ.

A marking M is said to be reachable from 〈PN,M0〉 if there exists a firing sequence σ such

that M0[σ〉M.

A PN having no directed cycles is said to be acyclic. Now, if the PN system 〈PN,M0〉 is

acyclic, then it is proved that a marking M is reachable from M0 if and only if there exists a

non-negative integer solution y satisfying the state equation M = M0 + C · y [25], [26].

A language is employed to represent a DES behaviour. The event set E is regarded as a given

alphabet and L ⊆ E∗ denotes the set of all words (sequence of events) generated by a DES,

which is called the DES language. If a DES is modeled by a PN system, events are associated

with transitions.

Now, we define the transition labeling function λ: T → E∪{ε} that assigns to each transition

t ∈ T either a symbol ei ∈ E or the empty string ε.

Therefore, the set of transitions can be partitioned into two disjoint subsets T = To ∪ Tu,

where To collects the set of observable transitions and Tu is the set of unobservable or silent

transitions. More precisely, if t ∈ Tu, then λ(t) = ε, otherwise λ(t) 6= ε.

In this paper, we assume that a label ei ∈ E can be associated with only one transition. Thus,

the labeling function restricted to To is an isomorphism and with no loss of generality we assume

E = To. We extend the form of the transition labeling function to λ : T ∗ → E∗, then it holds

w = λ(σ).

Given a net PN = (P, T,Pre, Post) and the subnet TA ⊂ T of its transitions, we define the

TA-induced subnet of PN as the new net PNA = (P, TA,PreA,PostA), denoted by PNA∠TAPN ,

that results from PN removing all transitions in T\TA, where PreA and PostA are the restrictions

of Pre and Post to TA, respectively.
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IV. PROBLEM STATEMENT

A. Decentralized Diagnosis Architecture and Assumptions

Let ∆ = {f1, f2, . . . , fF} be the set of faults that may occur in a system and F the corre-

sponding cardinality. We model each fault fi ∈ ∆ by an unobservable fault transition τi ∈ Tf
with Tf = {τ1, τ2, . . . , τF} ⊆ Tu. The transition set Tnf = {τF+1, τF+2, . . . , τF+K} represents

the set of K unobservable transitions that are not faulty such that Tnf = Tu \ Tf . It is obvious

that we have O = n−K − F observable transitions in total.

Coordinator 

Site 1 Site 2 Site J

λ1(σ) λ2(σ) λJ(σ)

System Net <PN,M0>

Site 1 Site 2 Site J

λ1(σ)σ λ2(σ)σ λJ(σ)σ

Y 

(M0,w1) 

w1 w2 wJ

σ 

w

(M0,w2) (M0,wJ) 

σ σ 

Fig. 1: Decentralized fault diagnosis architecture.

This paper focuses on the problem of fault diagnosis in a decentralized setting, as shown in

Fig. 1. The system is supervised by a set J = {1, 2, . . . , J} of sites that performs local fault

diagnosis. Each site knows the PN structure and the initial marking but it observes a subset of

transitions in the net and different sites can observe different subsets of transitions. Then, the set

To,j ⊂ To with cardinality |To,j| = Oj denotes the set of locally observable transitions for each

site j ∈ J . Any observable transition can be observed by at least one site, i.e.,
⋃
j∈J To,j = To.

The set of unobservable transitions for each site j ∈ J can be defined as:

Tu,j = T\To,j = Tnf ∪ Tf ∪ (To\To,j), (1)

and Hj denotes the cardinality of the transition set Tu,j .

Moreover, for all sites j ∈ J , we define the labeling function as follows:
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λj(t) =

 λ(t), if t ∈ To,j
ε, otherwise

(2)

Now, wj = λj(σ) is the word associated with the sequence σ in the j-th site.

As depicted in Fig. 1, each site locally executes fault diagnosis once it observes word wj =

λj(σ), i.e., each site waits for an observable event and computes a local diagnosis state. Then,

based on such a result, the local site communicates with a coordinator according to a suitable

protocol. By some given rules in the related protocol, the coordinator elaborates the information

from the local sites and infers whether the system is normal or undergoes some possible faults.

In summary, the coordinator determines a global fault diagnosis vector state Y.

In this paper, the following assumptions hold for the decentralized fault diagnosis problem.

A1) Two transitions can not share the same label in the net systems.

A2) No unobservable transition fires after the last observable transition of any sequence σ.

A3) The net structure and its initial marking are known by any site j ∈ J .

A4) The Tu,j-induced subnet PNu,j∠Tu,jPN is acyclic for any site j ∈ J .

A5) Any observable transition t ∈ To must be observed by at least one site j ∈ J .

Assumption A1 guarantees that the system is deterministic since no source of non determinism

originating from the fact that different observable transitions share the same label are present.

Assumption A2 reports a condition about the silent closure, which is a common assumption in

the field of fault diagnosis both in the centralized and decentralized architecture in an optimistic

approach [5, 20]. Assumption A3 shows the knowledge-level of each site j. Assumption A4 is

a standard hypothesis that is stated in decentralized fault diagnosis both in the framework of

automata [12] and PNs [18]: cycles of unobservable events in each local site are not permitted,

in order to allow local fault detection. Assumption A5 guarantees that each observable transition

must be observed by at least one local site.

B. Basics of Centralized Fault Diagnosis

This section briefly reviews basics of the centralized fault diagnosis method in [5] that are

also necessary for each local site.

The input of the diagnoser is a PN system 〈PN,M0〉 and an observed word w ∈ L such

that w = λ(σ), where σ = σu1t1σu2t2 . . . σuhth (h ≥ 1) is the sequence of observable and

unobservable transitions corresponding to the word w. In particular, we denote by σo ∈ σ the
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subsequence of σ composed by the observable transitions, i.e., σo = t1t2 . . . th with ti ∈ To,

i = 1, 2, . . . , h. Moreover, σu = σu1σu2 . . . σuh ∈ σ is the subsequence of the unobservable

transitions where each σui ∈ T ∗u . By Assumption A1 E = To, then it holds σo = w. Then, the

diagnoser determines whether the system is normal or undergoes some possible faults.

In order to specify the diagnoser, we define the following function, where symbol N denotes

the normal behaviour of the system.

Definition 1: [5] Given an initial marking M0 ∈ Nm and a sequence σo of observable

transitions, we define Σ(M0, σo) = {σ ∈ T ∗|M0[σ〉, σo ∈ σ} as the set of interpretations of

σo at M0.

That is to say, Σ(M0, σo) is defined as the set of sequences consistent with σo.

Definition 2: [5] Given an initial marking M0 ∈ Nm and an observable sequence σo, we define

the set of interpretations of σo at M0 containing fault fk as: Σ(M0, σo, fk) = {σ ∈ Σ(M0, σo)|τk ∈

σ}.
Definition 3: [5] Let 〈PN,M0〉 be a PN system and w ∈ L be an observed word. The (set-

valued) function Φ: Nm×T ∗o → ∆∪{N} assigns to each initial marking M0 ∈ Nm and to each

w ∈ T ∗o the following sets:

1) Φ(M0, w) = {N} if ∀fk ∈ ∆, Σ(M0, σo, fk) = ∅ holds, i.e., there exists no interpretation

of σo containing a fault transition τk ∈ Tf , then the behaviour of the system is normal.

2) Φ(M0, w) = {fk ∈ ∆|Σ(M0, σo, fk) 6= ∅, σo = w}, i.e., each interpretation of σo includes

at least a fault that is collected in Φ(M0, w). Then the behaviour of the system is faulty.

3) Φ(M0, w) = {fk ∈ ∆|Σ(M0, σo, fk) 6= ∅, σo = w} ∪ {N}, i.e., two possible cases can

appear: i) one or more faults are contained in at least one interpretation of σo; and ii) there

exists at least one interpretation of σo without any fault transition. Then, the behaviour of

the system is ambiguous.

Example 1: Let us consider the PN system of Fig. 2 with M0 = [1, 1, 0, 0, 0, 0, 0]T . The

set of observable transitions is To = {t1, t2, t3, t4}, and the set of unobservable transitions is

Tu = {τ1, τ2, τ3}, where τ1 and τ2 model the faults f1 and f2, respectively. Suppose that the

observed word w = σo = t1 occurs at M0. Since it holds Σ(M0, t1)={τ1t1, t1}, then, by Definition

3, Φ(M0, t1) = {f1, N}, i.e., fault f1 may be occurred but the system may also be normal: the

system is ambiguous. Then, assume that the observed word w = σo = t1t2 occurs at M0. We

have Σ(M0, t1t2) = {τ1t1t2, t1τ1t2}: in this case all the interpretations of σo contain fault f1,

then Φ(M0, t1t2) = {f1}, i.e., the system is faulty.
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p1

p2

τ1 

τ3 

t1

p3

p4

p5

τ2 

p6

p7

t4

t3t2

Fig. 2: The PN of Examples 1, 2, 3, 4 and 6.

V. FAULT DIAGNOSIS FOR LOCAL SITES

In this section, the Fault Diagnosis Algorithm (FDA) is designed for each site j ∈ J of the

PN system derived from the centralized method in [5].

Then, given the transition sequence σ and the word wj = λj(σ) in the jth site, we denote by

σju ∈ σ (σjo ∈ σ) the subsequence of σ composed of the unobservable (observable) transitions

and by σju ∈ NK+F+Hj (σjo ∈ NOj) the corresponding firing vector. Similarly, let σf ∈ σju

denote the subsequence of σju composed of the fault transitions and by σf its corresponding

firing vector.

Thus, we review Proposition 12 in [5] in order to provide a local linear algebraic representation

of a sequence σ ∈ T ∗ that is consistent with wj = λj(σ) = σjo.

Proposition 1: Consider a site j satisfying Assumptions A1-A5. Given a locally observed

word wj = λj(σ) denoted by wj = σjo = tj1t
j
2 . . . t

j
r, a sequence σ = σju1t

j
1σ

j
u2
tj2 . . . σ

j
urt

j
r with

|σjui | ≥ 0 for i = 1, 2, . . . , r satisfies σ ∈ Σ(M0, σ
j
o) if and only if there exist r firing vectors

σju1 ,σ
j
u2
, . . . ,σjur that satisfy the following set of constraints:

ξj(wj,M0,Post,Pre) =
σjui ∈ NF+K+Hj , for i = 1, . . . , r

Cj
u

k∑
i=1

σjui ≥ Pre · tjk −M0 − C
k−1∑
i=1

tji , for k = 1, . . . r
(3)

where Cj
u is the restriction of the incidence matrix C = Post− Pre to Tu,j .
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Proof: (Only if) Assume that σ ∈ Σ(M0, σ
j
o) such that wj = λj(σ), σ = σju1t

j
1 . . . σ

j
urt

j
r and

M0[σ
j
u1
tj1〉M1 . . .Mr−1[σ

j
urt

j
r〉Mr, in which Mi is the marking reached after the firing of transition

tji for i = 1, . . . , r. The corresponding firing vectors σjui for i = 1, . . . , r satisfy the enabling

condition and the state equation as follows:

Mi−1 + Cj
u · σjui ≥ Pre · tji for i = 1, . . . , r (4)

Mi−1 + Cj
u · σjui + C · tji = Mi for i = 1, . . . , r (5)

By re-writing Eqs. (4) and (5) for each i = 1, . . . , r and recursively deleting all the intermediate

markings Mi for i = 1, . . . , r from the derived equations, it holds that Cj
u

k∑
i=1

σjui ≥ Pre · tjk −

M0 − C
k−1∑
i=1

tji for k = 1, . . . r where Pre, M0, and C are known terms.

(If) If there exist some firing vectors σjui for i = 1, . . . , r that satisfy the set of constraints

ξj(wj,M0,Post,Pre), then we can find a sequence of markings M1, . . . , Mr−1,Mr that satisfies

Eqs. (4) and (5). Since the Tu,j-induced subnet PNu,j∠Tu,jPN is acyclic, there exists a sequence

σ = σju1t
j
1σ

j
u2
tj2 . . . σ

j
urt

j
r that is enabled at M0 and may fire leading to the evolution M0[σ

j
u1
tj1〉

M1 . . .Mr−1[σ
j
urt

j
r〉Mr. Thus, σ ∈ Σ(M0, σ

j
o). �

Algorithm 1 provides the FDA that is performed by each site j ∈ J . Before introducing the

FDA, we introduce the following definitions and recall two propositions proved in [5].

The (set-valued) function Φj: Nm×T ∗o,j → ∆∪{N} assigns to each initial marking M0 ∈ Nm

and to each wj ∈ T ∗o,j the following sets:

1) Φj(M0, wj) = {N} if ∀fk ∈ ∆, Σ(M0, σ
j
o, fk) = ∅ holds, the behaviour is normal for site

j;

2) Φj(M0, wj) = {fk ∈ ∆|Σ(M0, σ
j
o, fk) 6= ∅, σjo = wj}, the behaviour is faulty for site j;

3) Φj(M0, wj) = {fk ∈ ∆|Σ(M0, σ
j
o, fk) 6= ∅, σjo = wj} ∪ {N}, the behaviour is ambiguous

for site j.

Proposition 2: Consider a site j satisfying Assumptions A1-A5. Given a locally observed

word wj = λj(σ) denoted by wj = σjo = tj1t
j
2 . . . t

j
r, the ILP problem, named ILPP 1, is defined

as:
max ϕ1,j(σ

j
u1
,σju2 , . . . ,σ

j
ur) =

r∑
i=1

σjui(τθ)

s.t. ξj(wj,M0,Post,Pre)
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Algorithm 1: FDA to determine Φj(M0, wj).
Input: 〈PN,M0〉, wj
Output: Φj(M0, wj)

1. Initialization

r := |wj|, Φj(M0, wj) := ∅, ϕϕϕmax1,j ∈ NF , ϕϕϕmax1,j := 0F
2. Deciding the faults that may have occurred

for each fθ ∈ ∆ do

Solve ILPP 1

z1,j = max ϕ1,j(σ
j
u1
,σju2 , . . . ,σ

j
ur) s.t. ξj(wj,M0,Post,Pre)

ϕmax1,j (θ) := z1,j

if ϕmax1,j (θ) > 0 then

Φj(M0, wj) := Φj(M0, wj) ∪ {fθ}

end for

3. Check if the behaviour is normal

if ϕϕϕmax1,j = 0F then

Φj(M0, wj) := {N} and go to Step 5

4. Check if the behaviour can be normal

Solve ILPP 2

z2,j = min ϕ2,j(σ
j
u1
,σju2 , . . . ,σ

j
ur) s.t. ξj(wj,M0,Post,Pre)

if z2,j = 0 then Φj(M0, wj) := Φj(M0, wj) ∪ {N}

5. Returning to the condition of recording the events

6. End

If for τθ ∈ Tf ILPP 1 admits a solution σju1 ,σ
j
u2
, . . . ,σjur and ϕ1,j(σ

j
u1
,σju2 , . . . ,σ

j
ur) =

ϕmax1,j (θ) > 0 with ϕϕϕmax1,j ∈ NF , then σ = σju1t
j
1σ

j
u2
tj2 . . . σ

j
urt

j
r ∈ Σ(M0, σ

j
o, fθ) holds.

Proposition 3: Consider a site j satisfying Assumptions A1-A5. Given a locally observed

word wj = λj(σ) denoted by wj = σjo = tj1t
j
2 . . . t

j
r, the ILP problem, named ILPP 2, is defined

as:
min ϕ2,j(σ

j
u1
,σju2 , . . . ,σ

j
ur) = 1TF

r∑
i=1

σfi

s.t. ξj(wj,M0,Post,Pre)

where 1TF is the F dimensional column vector with each element being 1.
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If ILPP 2 does not find a solution σju1 ,σ
j
u2
, . . . ,σjur such that its objective function ϕmin2,j = 0,

then the system is faulty for this site.

Now, we briefly describe the details of Algorithm 1. The inputs of Algorithm 1 are the net

system and the observable event sequence of the jth site. In Step 1, we initialize the variables

of the algorithm and define vector ϕϕϕmax1,j ∈ NF that saves the objective values z1,j of ILPP

1 for each fθ ∈ ∆. In Step 2, we define and solve ILPP 1 for each fθ ∈ ∆ and save its

corresponding objective value in ϕmax1,j (θ). If ILPP 1 finds a solution σju1 ,σ
j
u2
, . . . ,σjur for fθ and

its objective value z1,j > 0, then by [5], we have that σ = σju1t
j
1σ

j
u2
tj2 . . . σ

j
urt

j
r ∈ Σ(M0, σ

j
o, fθ)

and Φj(M0, wj) = Φj(M0, wj) ∪ {fθ}. Furthermore, Step 3 determines whether the system is

normal for the site j: if ϕϕϕmax1,j = 0F (we denote by 0F the vector of F elements equal to 0), then

the site j provides Φj(M0, wj) = {N}, i.e., the system is normal for the site j. In addition, Step

4 checks if there exists at least one interpretation of σjo that does not contain any fault transition.

Thus, ILPP 2 is defined. If its objective value z2,j = 0, then N ∈ Φj(M0, wj), i.e., the system is

ambiguous for site j.

VI. DECENTRALIZED FAULT DIAGNOSIS

In this section, first we prove some results in order to provide rules for the coordinator to

detect the global faulty behaviour of the system. Second, based on these propositions, we define

Algorithm 2, namely Protocol 1 that is devoted to decide if the behaviour of the paper is faulty

or normal.

A. Results for Decentralized Fault Diagnosis

Definition 4: Assume that w = t1t2 . . . th (h ≥ 1) is the observed word and wj = tj1t
j
2 . . . t

j
r

(r ≤ h) is the locally observed word of the site j. J ∗ = {j ∈ J |tjr = th} is defined as the set

of sites that can observe the last event in the word w.

Remark 1 ensures that J ∗ ⊆ J cannot be empty.

Remark 1: Under Assumption A5, for each t ∈ To, there exists at least a site j such that

t ∈ To,j . Thus, the set of sites that can observe the last event in the word w (w 6= ε) is not

empty, i.e., J ∗ 6= ∅.

Based on Remark 1, Proposition 4 shows the relationships between interpretations of σo at

M0 and the interpretations of σjo at M0 for each site j ∈ J ∗.
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Proposition 4: Consider the observed word w ∈ L at M0 and w = σo. Under Assumption A4,

for each site j ∈ J ∗, Σ(M0, σo) ⊆ Σ(M0, σ
j
o) holds.

Proof: By Remark 1 (where Assumption A4 necessarily holds), we have J ∗ 6= ∅. Since Tu,j ⊃ Tu

and To,j ⊂ To for each j ∈ J ∗, then wj ∈ w and σjo ∈ σo hold. If there exists σ ∈ Σ(M0, σo)

with w = λ(σ), then we can find a sequence σjo ∈ σo such that σjo = wj = λj(σ). We conclude

that Σ(M0, σo) ⊆ Σ(M0, σ
j
o) is true. �

Example 2: Consider the net in Fig. 2. Assume that the net system consists of two sites with

the sets of observable transitions To,1 = {t1, t3} and To,2 = {t2, t4}, respectively.

Assume that the observable word w = σo = t1t2t3 occurs at M0. Thus, only site 1 is in

J ∗ and w1 = σ1
o = t1t3. Since it holds Σ(M0, σo) = {τ1t1t2t3, t1τ1t2t3} and Σ(M0, σ

1
o) =

{τ1t1t2t3, t1τ1t2t3, τ3t1τ2t3, t1τ3τ2t3}, then Σ(M0, σo) ⊆ Σ(M0, σ
1
o) is true.

The following property ensures that ILPP 1 in Algorithm 1 for any site j ∈ J ∗ always admits

a solution, i.e., we can obtain a non-empty fault diagnosis result for each site j ∈ J ∗.
Property 1: Under Assumptions A1-A5, for any site j ∈ J ∗, the output of Algorithm 1 is not

empty, i.e., Φj(M0, wj) 6= ∅.
Proof: By Remark 1 (where Assumption A5 necessarily holds), we have J ∗ 6= ∅. Since w = λ(σ)

where σ = σu1t1 . . . σuhth with h ≥ 1, we have σ ∈ Σ(M0, σo), i.e., Σ(M0, σo) 6= ∅. By

Proposition 4, Σ(M0, σ
j
o) 6= ∅ is true. According to Proposition 1 (where Assumptions A1-A5

necessarily hold), ILPP 1 of Algorithm 1 admits a solution for any site j ∈ J ∗, leading to

Φj(M0, wj) 6= ∅. �

The following Proposition is a rule for a coordinator to decide whether the system is normal

according to the information of a local site.

Proposition 5: Consider the observed word w ∈ L at M0 and w = σo. Under Assumptions

A1-A5, if there exists a site j ∈ J ∗ that computes Φj(M0, wj) = {N}, then Φ(M0, w) = {N}

holds.

Proof: By Remark 1 (where Assumption A5 necessarily holds), we have J ∗ 6= ∅. Under

Assumptions A1-A5, we obtain Φj(M0, wj) from Algorithm 1. Since there exists a site j ∈ J ∗

in which Φj(M0, wj) = {N}, by Definition 3, we have Σ(M0, σ
j
o, fk) = ∅ for each fk ∈ ∆, i.e.,

there exists no sequence in Σ(M0, σ
j
o) that contains a fault transition. According to Proposition

4, there exists no sequence in Σ(M0, σo) that contains a fault transition either. Thus, it holds

Σ(M0, σo, fk) = ∅ for each fk ∈ ∆, i.e., Φ(M0, w) = {N} and the proposition is proved. �
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Moreover, the following proposition provides a rule for the coordinator to determine whether

a system is faulty according to the information of a local site.

Proposition 6: Consider the observed word w ∈ L at M0 and w = σo. Under Assumptions

A1-A5, if there exists a site j ∈ J ∗ that computes N /∈ Φj(M0, wj), then N /∈ Φ(M0, w) holds,

i.e., the system is faulty.

Proof: By Remark 1 (where Assumption A5 necessarily holds), we have J ∗ 6= ∅. Under

Assumptions A1-A5, we obtain Φj(M0, wj) from Algorithm 1. By assumption, N /∈ Φj(M0, wj),

then all the sequences in Σ(M0, σ
j
o) contain at least one fault transition. According to Proposition

4, Σ(M0, σo) ⊆ Σ(M0, σ
j
o), then N /∈ Φ(M0, w), i.e., the system is faulty during the observed

word w. Thus, the conclusion holds. �

Now the following proposition allows the coordinator to determine the fault that has occurred

in the system.

Proposition 7: Consider the observed word w ∈ L at M0 and w = σo. Under Assumptions

A1-A5, if there exists a site j ∈ J ∗ that computes Φj(M0, wj) = {fθ} with fθ ∈ ∆, then

Φ(M0, w) = {fθ} holds.

Proof: Since Φj(M0, wj) = {fθ} with fθ ∈ ∆, i.e., N /∈ Φj(M0, wj) for a site j ∈ J ∗,

then by Proposition 6 (where Assumptions A1-A5 necessarily hold), the system is faulty, i.e.,

N /∈ Φ(M0, w). Moreover, since fk /∈ Σ(M0, σ
j
o) ∀k ∈ {1, 2, . . . , F} and k 6= θ for the site j,

by Definition 3, Σ(M0, σ
j
o, fk) = ∅ ∀k ∈ {1, 2, . . . , F} and k 6= v. According to Proposition 4,

Φ(M0, w) = {fθ} and the thesis holds. �

Proposition 7 implies that if only one fault is detected in a local site and the system cannot

be normal for this site, then it is possible to decide that such a fault has occurred in the system

and the system is faulty.

Example 3: Consider the PN system in Fig. 2. Assume that the observable word w = t1t2 = σo

occurs at M0. Thus, only site 2 is in J ∗ and w2 = σ2
o = t2. By Algorithm 1 and Proposition 7,

we have Φ2(M0, w2) = {f1} and Φ(M0, w) = {f1}.

B. Fault Diagnosis under Protocol 1

This subsection presents a protocol applied by the coordinator in order to determine whether

the system behaviour is faulty or normal. The following definition specifies the system output

diagnosis states performed by the coordinator.
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Definition 5: The output of the coordinator is a vector Y ∈ {0, 1}F+2 that at each observed

event can provide the following diagnosis states under Protocol 1:

1) Y (1) = 1, if the system behaviour is faulty, Y (1) = 0 otherwise.

2) Y (2) = 1, if the system behaviour is normal, Y (2) = 0 otherwise .

3) Y (k + 2) = 1 for k = 1, ..., F , if the system is faulty and fk ∈ ∆ occurred, Y (k + 2) = 0

otherwise.

Based on the aforementioned results, Algorithm 2 is proposed to solve the problem of decen-

tralized fault diagnosis.

Now, we discuss the detailed steps of Algorithm 2. Step 1 initializes vector Y and Step 2

waits for a new transition t ∈ To firing. In Step 3.1, each site j ∈ J ∗ receives an observable

event associated with transition t ∈ To. In Step 3.2, site j performs Algorithm 1 and obtain

Φj(M0, wj). In Step 3.3, if N /∈ Φj(M0, wj), i.e., the system cannot be normal for this site, then

it sends Φj(M0, wj) to the coordinator. In this case, in Step 3.3.1, if Φj(M0, wj) = {fk} then it

sends fk to the coordinator. Moreover, if Φj(M0, wj) = {N}, i.e., the system is normal for this

site, then it sends N to the coordinator in Step 3.4.

In addition, Steps 4.1-4.4 are performed by the coordinator. More precisely, in Step 4.1

according to Proposition 7, if there exists a site j ∈ J ∗ such that the system is faulty and

only one fault fk ∈ ∆ is detected, then the system is faulty and fv has occurred in the system.

Hence, the coordinator updates the diagnosis states Y (1) = 1, Y (2) = 0 and Y (k + 2) = 1. In

Step 4.2, according to Proposition 6, if there exists a site j ∈ J ∗ that detects a faulty behaviour,

then the system is faulty, the coordinator updates the diagnosis states Y (1) = 1 and Y (2) = 0. In

Step 4.3, according to Proposition 5, if there exists a site j ∈ J ∗ such that the system is normal,

then the system behaviour is normal and the coordinator updates the diagnosis state Y (2) = 1.

In this case, the algorithm goes to Step 2 to wait a new event. Finally, if Y = 0F+2, then the

coordinator cannot determine whether the system is faulty or normal, then the algorithm returns

to Step 2 to wait a new event.

Example 4: Consider the net in Fig. 2. Assume that the observable sequence σo = t1t2 occurs

at M0. The centralized diagnoser in [5] provides the following results: Φ(M0, t1) = {f1, N},

Φ(M0, t1t2) = {f1}.

Now, Protocol 1 is applied. First, let consider σo = t1. Then, site 1 provides Φ1(M0, t1) =

{f1, N} and according to Protocol 1, site 1 does not send any information to the coordinator

that does not provide any result.
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Algorithm 2: Protocol 1
Input: 〈PN,M0〉

Output: Y

1. Y := 0F+2

2. Wait until a new observable transition t ∈ To fires.

3. Steps performed by each site j ∈ J ∗

3.1. w′j := wj and wj := w′jλj(t).

3.2. Site j computes Φj(M0, wj) by Algorithm 1

3.3. if N /∈ Φj(M0, wj)

then send Φj(M0, wj) to the coordinator.

end if

3.3.1. if Φj(M0, wj) = {fθ}

then send Φj(M0, wj) to the coordinator

end if

3.4. if Φj(M0, wj) = {N} then

transmit Φj(M0, wj) to the coordinator.

end if

4. Steps performed by the coordinator

4.1. If the coordinator receives Φj(M0, wj) = {fk},

then it sets Y (1) = 1, Y (2) = 0 and Y (k + 2) = 1.

Output Y and go to step 5.

4.2. If the coordinator receives Φj(M0, wj) and N /∈ Φj(M0, wj),

then it sets Y (1) = 1 and Y (2) = 0.

Output Y and go to Step 5

4.3. If the coordinator receives Φj(M0, wj) = {N}

then it sets Y (2) = 1.

Output Y and go to Step 2.

4.4. if Y = 0F+2 then go to Step 2.

5. End
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Now, let σo = t1t2: only site 2 performs its local fault diagnosis and provides Φ2(M0, t2) =

{f1}. According to Protocol 1, it transmits Φ2(M0, t2) = {f1} to the coordinator. The coordinator

sets Y (1) = 1, Y (2) = 0 and Y (3) = 1. Finally, the output of Protocol 1 is Y = [1, 0, 1, 0]T ,

then the occurrence of fault f1 is detected as in the centralized case [5].

VII. DECENTRALIZED FAULT DIAGNOSIS AND DIAGNOSABILITY ANALYSIS

This section proposes a protocol that can be applied by the local sites and the coordinator

in order to determine not only the faulty behaviour of the system but also the occurred faults.

In order to improve the quality of the fault diagnosis, it is necessary to introduce new results

and an additional ILP problem that the local sites have to solve. Moreover, the diagnosability

achieved in the decentralized setting by applying the presented second protocol is proved.

A. New Results for Decentralized Diagnosis

The following proposition proves that it is possible to decide if all the sequences in the set

Σ(M0, σ
j
o) contain the same fault transition τθ ∈ Tf by solving a new ILP problem.

Proposition 8: Consider a site j satisfying Assumptions A1-A5. Given a locally observed

word wj = λj(σ) denoted by wj = σjo = tj1t
j
2 . . . t

j
r, an ILP problem named ILPP 3 is defined

as:
min ϕ3,j(σ

j
u1
,σju2 , . . . ,σ

j
ur) =

r∑
i=1

σjui(τθ)

s.t. ξj(wj,M0,Post,Pre)

If for τθ ∈ Tf ILPP 3 admits a solution σju1 ,σ
j
u2
, . . . ,σjur with ϕmin3,j (θ) > 0 and ϕϕϕmin3,j ∈ NF ,

then all the interpretations of σo contain the fault transition τθ, i.e., Σ(M0, σ
j
o, fθ) = Σ(M0, σ

j
o).

Proof: According to Definition 2, it holds Σ(M0, σ
j
o, fθ) ⊆ Σ(M0, σ

j
o). We prove Σ(M0, σ

j
o, fθ) =

Σ(M0, σ
j
o) by contradiction, assuming that Σ(M0, σ

j
o, fθ) 6= Σ(M0, σ

j
o). Since Σ(M0, σ

j
o, fθ) ⊆

Σ(M0, σ
j
o), there exists a sequence σ = σju1t

j
1 . . . σ

j
urt

j
r such that σ ∈ Σ(M0, σ

j
o) and σ /∈

Σ(M0, σ
j
o, fθ), i.e., τθ /∈ σ. Hence, we infer that σjui(τθ) = 0 for all i ∈ {1, . . . , r}, i.e.,

ϕmin3,j (θ) = 0 which contradicts ϕmin3,j (θ) > 0. The conclusion holds. �

Based on Proposition 8, Proposition 9 provides a rule for the coordinator to determine whether

a particular fault has occurred.

Proposition 9: Under Assumptions A1-A5, if there exists a site j ∈ J ∗ in which the solution

of the ILPP3 gives ϕmin3,j (θ) > 0 for wj with θ ∈ {1, 2, . . . , F}, then fθ ∈ Φ(M0, w) and

N /∈ Φ(M0, w) holds.
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Proof: If there exists a site j where the solution of the ILPP 3 provides ϕmin3,j (θ) > 0 for wj , by

Proposition 8 it holds Σ(M0, σ
j
o, fθ) = Σ(M0, σ

j
o). According to Property 4, all the sequences in

Σ(M0, σo) also contain the fault fθ, i.e., N /∈ Φ(M0, w) and fθ ∈ Φ(M0, w). �

Moreover, we propose Propositions 10 and 11 to show the relations between the fault diagnosis

results of two observed words, which can be used to reduce the computational cost of Protocol

2.

Proposition 10: Given two observed words w′ = σ′o = t1t2 . . . tq and w = w′u = σ′o . . . th =

t1t2 . . . tq . . . th (q < h), if N /∈ Φ(M0, w
′), then N /∈ Φ(M0, w) holds.

Proof: Let us assume that the h firing vectors σu1 ,σu2 , . . . ,σuh are solutions of the set of con-

straints ξ(w,M0,Post,Pre) in [5]. By Proposition 12 in [5], the q firing vectors σu1 ,σu2 , . . . ,σuq

can also be a solution for the set of constraints ξ(w′,M0,Post,Pre). That is to say, for each

sequence σ = σu1t1σu2t2 . . . σuhth ∈ Σ(M0, σo), there exists a sequence σ′ such that σ′ =

σu1t1σu2t2 . . . σuqtq ∈ Σ(M0, σ
′
o) with q < h.

Now, we prove N /∈ Φ(M0, w) by contradiction. Suppose that N ∈ Φ(M0, w). By Definition

3, there is at least one sequence σ = σu1t1σu2t2 . . . σuhth ∈ Σ(M0, σo) that does not contain any

fault transition. Thus, we have σ′ = σu1t1σu2t2 . . . σuqtq ∈ Σ(M0, σ
′
o) that neither contains any

fault transition. That is to say, N ∈ Φ(M0, w
′) which contradicts N /∈ Φ(M0, w

′). The conclusion

holds. �

Proposition 11: Given two observed words w′ = σ′o = t1t2 . . . tq and w = w′u = σ′o . . . th =

t1t2 . . . tq . . . th (q < h), if ∀σ′ ∈ Σ(M0, σ
′
o), there exists a fault fθ ∈ ∆ such that τθ ∈ σ′ then

fθ ∈ Φ(M0, w) and N /∈ Φ(M0, w) hold.

Proof: By Proposition 12 in [5], there exists at least one sequence σ′ = σu1t1σu2t2 . . . σuq tq

∈ Σ(M0, σ
′
o) such that σ = σu1t1σu2t2 . . . σuhth ∈ Σ(M0, σo) with h > q. Since all the sequences

in Σ(M0, σ
′
o) contain the fault transition τθ, there exists at least one sequence σ ∈ Σ(M0, σo)

that contains the fault transition τθ, i.e., fθ ∈ Φ(M0, w).

Since all the sequences in Σ(M0, σ
′
o) contain τθ, then N /∈ Φ(M0, w

′). By Proposition 10, we

have N /∈ Φ(M0, w) and the conclusion holds. �

Proposition 12: Given two observed words w′ = σ′o = t1t2 . . . tq and w = w′u = σ′o . . . th =

t1t2 . . . tq . . . th (q < h), under Assumptions A1-A5, if there exists a site j ∈ J ∗ in which

Φj(M0, w
′
j) = {fθ} with fθ ∈ ∆, then fθ ∈ Φ(M0, w) and N /∈ Φ(M0, w) hold.
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Fig. 3: The PN of Examples 5 and 7.

Proof: Since there exists a site j ∈ J ∗ in which Φj(M0, w
′
j) = {fθ}, according to Proposition

7, we have Φ(M0, w
′) = {fθ}, i.e., the system is faulty. Hence, all the sequences in Σ(M0, σ

′
o)

contain the fault transition τθ. By Proposition 11, we have fθ ∈ Φ(M0, w) and N /∈ Φ(M0, w).

The conclusion holds. �

Proposition 13: Given two observed words w′ = σ′o = t1t2 . . . tq and w = w′u = σ′o . . . th =

t1t2 . . . tq . . . th (q < h), under Assumptions A1-A5, if there exists a site j ∈ J ∗ in which

ϕmin3,j (θ) > 0 for w′j , then fθ ∈ Φ(M0, w) and N /∈ Φ(M0, w) hold.

Proof: Since there exists a site j ∈ J ∗ in which ϕmin3,j (θ) > 0 for w′j , according to the proof of

Proposition 9, all the sequences in Σ(M0, σ
′
o) contain the fault fθ. By Proposition 11, we have

fθ ∈ Φ(M0, w) and N /∈ Φ(M0, w). The conclusion holds. �

Example 5: Consider the net in Fig. 3. Let us assume To = {t1, t2, t3, t4} and Tu = {τ1, τ2, τ3, τ4},

where transitions τ1, τ2, and τ3 represent faults f1, f2, and f3, respectively. Assume that the

system is locally observed by two sites with the sets of observable transitions To,1 = {t1, t3}

and To,2 = {t2, t4}, respectively.

Let w′ = t1t2 and w = t1t2t3 be two observed words. For the word w′, site 2 observes

w′2 = t2 and it obtains Φ2(M0, t2) = {f1} by Algorithm 1. According to Proposition 12, we

have f1 ∈ Φ(M0, t1t2t3) and N /∈ Φ(M0, t1t2t3).

Now consider that t4 occurs, i.e., w′ = t1t2t3 and w = t1t2t3t4. For the word w′, site 1

observes w′1 = t1t3 and it obtains Φ1(M0, t1t3) = {f1, f2} by Algorithm 1. In addition, we have

ϕmin3,1 (1) = 1 and ϕmin3,1 (2) = 1 for w′1. According to Proposition 13, it holds f1 ∈ Φ(M0, t1t2t3t4),

f2 ∈ Φ(M0, t1t2t3t4), and N /∈ Φ(M0, t1t2t3t4).
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B. Fault Diagnosis under Protocol 2

On the basis of the previous results, Protocol 2 is presented in Algorithm 3 and the steps of

the protocol are discussed. We remark that in Protocol 2 the coordinator receives the diagnosis

decisions from the local sites and, when the diagnosis state is updated, the coordinator sends it

to the local sites.

In Step 1, the coordinator and the sites define vector Y = 0F+2.

All the sites wait for a new observable transition. The sites that observe a new event (the

corresponding transition fires) compute Φj(M0, wj) by Algorithm 1 (see Step 3.2).

In Step 3.3, if N /∈ Φj(M0, wj) then by Proposition 6, the behaviour of the system is faulty

and the site transmits Φj(M0, wj) to the coordinator. In this case the site tries to determine the

faults that have occurred.

If Φj(M0, wj) = {fθ} then by Proposition 7 the system is faulty and the fault fθ occurred

(Step 3.3.1). Hence, the site transmits the fault to coordinator that updates in Step 4 Y (1) = 1,

Y (2) = 0 and Y (θ + 2) = 1.

On the contrary, the site has to check if the fault fθ ∈ Φj(M0, wj) has occurred (step 3.3.2). To

this aim the site checks whether the fault occurred during a previous observation (if Y (θ+2) = 0),

in such a case, by Proposition 11, the fault occurred after the last observation. Hence, the site

solves the ILPP 3: if the result is ϕmin3,j (θ) > 0, then the site sends fθ to the coordinator.

In Step 3.4, if Φj(M0, wj) = {N} then the site transmits Φj(M0, wj) to the coordinator.

Step 4 is performed by the coordinator that does not update the diagnosis state if it did

not receive any message from the local sites. On the contrary, it updates the values of Y: if

Φj(M0, wj) = {N} then Y (2) = 1 else Y (1) = 1, Y (2) = 0 and Y (θ + 2) = 1 for each fθ that

the coordinator received.

Finally, the coordinator sends the updated diagnosis state Y to each site j ∈ J .

Example 6: Consider the net in Fig. 2. Assume that the observable word w = σo = t1t2t3t4

occurs at M0. A centralized diagnoser in [5] produces the following results: Φ(M0, t1) = {f1, N},

Φ(M0, t1t2) = {f1}, Φ(M0, t1t2t3) = {f1}, and Φ(M0, t1t2t3t4) = {f1}.

Now, assume that the sites and the coordinator apply Protocol 2. First, let w = σo = t1: it

holds w1 = t1 and w2 = ε for sites 1 and 2, respectively. Then, only site 1 provides Φ1(M0, t1) =

{f1, N} and does not send any information to the coordinator that cannot determine whether the

system is faulty or normal and does not provide any result.
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Algorithm 3: Protocol 2
Input: 〈PN,M0〉

Output: Y

1. wj := ε, the coordinator and each site j ∈ J set Y := 0F+2.

2. Wait until a new observable transition t ∈ To fires.

3. Steps performed by each site j ∈ J ∗

3.1. w′j := wj and wj := w′jλj(t).

3.2. Site j computes Φj(M0, wj) by Algorithm 1.

3.3. if N /∈ Φj(M0, wj) then

site j transmits Φj(M0, wj) to the coordinator.

3.3.1. if Φj(M0, wj) = {fθ} then

site j transmits fθ to the coordinator and go to Step 4

3.3.2. for θ = 1 to F

if fθ ∈ Φj(M0, wj) and Y (θ + 2) = 0 then site j solves ILPP 3 for fθ

if ϕmin3,j (θ) > 0 then

site j transmits fθ to the coordinator.

end for

3.4. if Φj(M0, wj) = {N} then

site j transmits Φj(M0, wj) to the coordinator.

4. Steps performed by the coordinator

4.1. if the coordinator does not receive any message from the local sites

then go to Step 2.

4.2. if the coordinator receives Φj(M0, wj) = {N},

then it sets Y (2) = 1 and go to Step 5

else it sets Y (1) = 1 and Y (2) = 0

4.3. if the coordinator receives fθ, then it sets Y (θ + 2) = 1.

5. The coordinator transmits to each j ∈ J vector Y, outputs Y and go to Step 2.
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Let w = σo = t1t2 and it holds w1 = t1 and w2 = t2: only site 2 performs the local

fault diagnosis and provides Φ2(M0, t2) = {f1}. Site 2 transmits f1 to the coordinator that sets

Y (1) = 1, Y (2) = 0 and Y (3) = 1. Then, the output of Protocol 2 is vector Y = [1, 0, 1, 0]T

that is received by each site.

Let w = σo = t1t2t3: it holds w1 = t1t3 and w2 = t2 for sites 1 and 2, respectively. Only

site 1 performs the local fault diagnosis and computes Φ1(M0, t1t3) = {f1, f2}. Since Y (4) = 0,

site 1 solves ILPP 3 for f2 and obtains ϕmin3,1 (2) = 0. Thus, fault f2 did not occur and it is not

transmitted to the coordinator. The coordinator does not update the diagnosis state Y.

Finally, t4 occurs: w = σo = t1t2t3t4, w1 = t1t3 and w2 = t2t4. Then, site 2 provides

Φ2(M0, t2t4) = {f1} and, since Y (3) = 1 then site 2 does not solve ILPP 3. Hence, the output

of Protocol 2 remains Y = [1, 0, 1, 0]T which detects the occurrence of fault f1.

Example 7: Now, consider the net in Fig. 3 and assume that the observable word w = t1t2t3t4

occurs at M0. The centralized diagnoser of [5] gives Φ(M0, t1) = {N}, Φ(M0, t1t2) = {f1},

Φ(M0, t1t2t3) = {f1, f2}, and Φ(M0, t1t2t3t4) = {f1, f2, f3}.

The decentralized diagnosis performed by Protocol 2 provides the following results:

• w = σo = t1, w1 = t1 and w2 = ε, site 1 provides Φ1(M0, t1) = {N} and the coordinator

sets and transmits Y = [0, 1, 0, 0, 0]T , i.e., the behaviour is normal;

• w = σo = t1t2, w1 = t1 and w2 = t2, site 2 provides Φ2(M0, t2) = {f1} and the coordinator

sets Y = [1, 0, 1, 0, 0]T , i.e., fault f1 occurred;

• w = σo = t1t2t3, w1 = t1t3 and w2 = t2, site 1 provides Φ1(M0, t1t3) = {f1, f2}, solves

ILPP 3 for f2 and obtains ϕmin3,1 (2) = 1. The coordinator transmits Y = [1, 0, 1, 1, 0]T , i.e.,

f1 and f2 occurred;

• w = t1t2t3t4, w1 = t1t3 and w2 = t2t4, site 2 provides Φ2(M0, t2t4) = {f1, f2, f3}, solves

the ILPP 3 for f3 and obtains ϕmin3,2 (3) = 1. Hence, the coordinator sets Y = [1, 0, 1, 1, 1]T ,

i.e., the diagnosis is that f1, f2 and f3 occurred.

C. Diagnosability in the Decentralized Setting

In this section, we prove a sufficient and necessary condition under which the diagnosability

is achieved in the decentralized architecture by applying Protocol 2. In order to analyse this

issue, a fault ambiguous sequence is defined.
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Definition 6: Consider a PN system 〈PN,M0〉, the set of observable transitions To and a word

w ∈ L. Given a fault transition τk ∈ Tf , a sequence σ ∈ Σ(M0, σo), such that σ0 = w and τk ∈ σ,

is said to be fault ambiguous wrt τk if ∃σ′ 6= σ such that σ′ ∈ Σ(M0, σo) and σ′ /∈ Σ(M0, σo, fk).

In other words, a sequence σ ∈ Σ(M0, σo) is fault ambiguous wrt the fault transition τk if

there exists an interpretation σ′ 6= σ of σo that does not contain τk.

Definition 7: Consider a PN system 〈PN,M0〉 and the set of observable transitions To. The

system is said to be τk-diagnosable, if all the sequences σ such that w = λ(σ) with w ∈ L are

not fault ambiguous wrt τk.

Definition 8: Consider a PN system 〈PN,M0〉, a site set J = {1, 2, . . . , J} and the set of

locally observable transitions To,j ⊂ To for each j ∈ J . Given a fault transition τk ∈ Tf , a word

w ∈ L, a sequence σ ∈ Σ(M0, σo), such that σo = w and τk ∈ σ, σ is said to be fault ambiguous

wrt τk and J , if the following two conditions are satisfied:

1) ∀j ∈ J , given σjo = wj = λj(σ), ∃σ′ 6= σ and σ′ ∈ Σ(M0, σ
j
o), such that σ′ /∈ Σ(M0, σ

j
o, fk),

2) ∀σ′ ∈ Σ(M0, σo), it holds σ′ ∈ Σ(M0, σo, fk).

That is to say, a sequence σ containing a fault transition τk ∈ Tf is fault ambiguous wrt a set

of sites if, 1) the sequence σ is ambiguous for each local site wrt τk, i.e., in each local site its

observation has at least one local interpretation that does not contain τk; and 2) the sequence σ

is not ambiguous wrt τk in the PN system.

Now the following proposition about the diagnosability performed by Protocol 2 is proved:

Proposition 14: Let 〈PN,M0〉 be a PN system supervised by a set J = {1, 2, . . . , J} of

sites and τk ∈ Tf be the fault transition associated with fk ∈ ∆. Assume that the system is τk-

diagnosable. 〈PN,M0〉 is also τk-diagnosable in the decentralized architecture under Protocol 2

if and only if there is no fault ambiguous sequence wrt τk and J .

Proof: (If ) Given a fault transition τk ∈ Tf , if there is no fault ambiguous sequence σ ∈ T ∗

wrt τk and J , then ∃j ∈ J such that ∀σ ∈ Σ(M0, σ
j
o) it holds σ ∈ Σ(M0, σ

j
o, fk). Then each

sequence in Σ(M0, σ
j
o) contains τk: according to Protocol 2, site j and the coordinator detect

the fault. Thus, the fault is also diagnosable in the decentralized architecture by Protocol 2.

(Only if ) We prove the proposition by contradiction. Assume that there exists a fault ambiguous

sequence σ wrt τk and J and the system is τk-diagnosable. Hence, by Definition 11 it holds

∀j ∈ J , given σjo = wj = λj(σ), ∃σ′ 6= σ and σ′ ∈ Σ(M0, σ
j
o), such that σ′ /∈ Σ(M0, σ

j
o, fk).
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In this case, Protocol 2 can not detect the fault fk: this contradicts the assumption that the

system is τk-diagnosable in the decentralized architecture under Protocol 2. �

On the basis of Proposition 14, given a τk-diagnosable PN system supervised by a set J

of sites with
⋃
j∈J To,j = To, the possibility of detecting a fault ambiguous sequence wrt τk

and J decreases if the number of observable transition increases in each site (see the proof of

Proposition 4). As a consequence the diagnosis capability of Protocol 2 improves.

VIII. COMPUTATIONAL COMPLEXITY

This section discusses the computational complexity of Protocols 1 and 2.

First, we consider the computational complexity of Protocol 1. In Protocol 1, each site j ∈ J ∗

solves at most F+1 ILP problems that are NP hard. As known, the computational cost of solving

an ILP problem mainly depends on the number of constraints and variables. From Eq. (3), we

have r · (F +K+Hj) variables and r ·m constraints for each of ILP problem in the worst case,

where r is the length of the word wj , F is the cardinality of the set of Tf , K is the cardinality

of the set of Tnf , Hj is the cardinality of the set of Tu,j , and m is the number of places in the

whole net.

As for the computational complexity of Protocol 2, we note that each site j ∈ J ∗ needs to

solve 2F + 1 ILP problems in the worst case.

As a result, the on-line computational cost of Protocols 1 and 2 increases with the number of

observed events. To overcome this drawback, it is shown and proved in [5] that if the subnet

PNu,j∠Tu,jPN is an acyclic state machine and 〈PN,M0〉 is bounded, then each basic solution

of the LP relaxations of ILPPs 1, 2, and 3 is an integer-valued solution. In such a case the

solution of each ILPP can be obtained in real time.

IX. CONCLUSION

This paper extends the centralized on-line fault detection method presented in [5] to a dis-

tributed system architecture by proposing a new decentralized diagnosis strategy. To this aim

some results are proved in order to propose two protocols performed by a set of local sites and

a coordinator. At each observable event occurrence, local diagnosis is performed by the sites

that exploit the approach based on some Integer Linear Programming (ILP) problem solutions.

The two protocols are defined by the diagnostic information and operation managed by the local
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sites, the communication exchanged between the sites and the coordinator and the coordinator

decision rules.

Using the first protocol the coordinator provides the faulty or normal system state by collecting

the local site diagnosis. However, in this case the coordinator simply listens the local diagnosis

states.

By the second protocol the coordinator collects the local diagnosis information, communicates

and gathers the information received by the local sites and makes a global decision. In this case,

the coordinator can be able to single out the occurred fault by exploiting a larger computational

effort of the local sites with respect to the first protocol.

We remark the following issues of the decentralized diagnosis in comparison with the cen-

tralized approach:

• it is necessary to define the communication protocol between the local sites and the coor-

dinator;

• each site has to consider a larger number of unobservable transitions with a consequent

reduction of the diagnosis capability;

• the computational complexity of each local site diagnosis does not change.

On the other hand, when a centralized diagnosis is not possible due to the physically distributed

nature of the underlying system, it is necessary to use decentralized diagnosers possessing the

own set of sensors and computational capability.

Finally, some results about the diagnosability achieved by the proposed decentralized archi-

tecture is proved.

Future work will focus on the decentralized fault diagnosis problem in more complex system

settings, for instance in the case of an event that is associated with more transitions.
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cation distributed Petri net based diagnosers of discrete event systems,” in 8th Int. Conf.

Electr. Eng., Comput. Sci. Autom. Control., Merida City, Mexico, Oct, 2011, pp. 1–7.

[23] F. Basile, P. Chiacchio, and G. De Tommasi, “Decentralized K-diagnosability of Petri nets,”

in Proc. 11th Workshop Discrete Event Syst., vol. 45, no. 9, 2012, pp. 214-220.

[24] J. L. Peterson, Petri net theory and the modeling of systems, Englewood Cliffs, NJ, USA:

Prentice Hall, 1981.

[25] A. Ichikawa and K. Hiraishi. “Analysis and control of discrete event systems represented by

Petri nets,” Discrete Event Systems: models and applications, Springer Berlin Heidelberg,

pp. 115–134, 1988.

[26] Y. Li and W. M. Wonham, “Control of vector discrete-event systems. II. Controller



29

synthesis,” IEEE Trans. Autom. Control, vol. 39, no. 3, pp. 512–531, Mar. 1994.

[27] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis, “Diag-

nosability of discrete event systems,” IEEE Trans. Autom. Control, vol. 40, no. 9, pp.

1555–1575, Sep. 1995.

[28] W. Qiu and R. Kumar, “Decentralized failure diagnosis of discrete event systems,” IEEE

Trans. Syst. Man Cybern.-Part A: Syst. Humans, vol. 36, no. 2, pp. 384–395, Feb. 2006.

[29] S. Takai and T. Ushio, “Verification of codiagnosability for discrete event systems modeled

by Mealy automata with nondeterministic output functions,” IEEE Trans. Autom. Control,

vol. 57, no. 3, pp.798–804, Jan. 2012.

[30] F. Cassez, “The complexity of codiagnosability for discrete event and timed systems,” IEEE

Trans. Autom. Control, vol. 57, no. 7, pp. 1752–1764, Jan. 2012.

[31] X. Yin and S. Lafortune, “Codiagnosability and coobservability under dynamic observa-

tions: Transformation and verification,” Automatica, vol. 61, pp. 241–252, Sep. 2015.

[32] M. P. Cabasino, A. Giua, A. Paoli, and C. Seatzu, “Decentralized diagnosability analysis

of discrete event systems using Petri nets,” in Proc. IFAC World Congr., Milan, Italy, Aug.

2011, pp. 6060–6066.


