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Abstract

MOre than a decade after its introduction, the concept of a “smart
grid” remains essential to the industry’s ongoing digital trans-
formation. A smart grid (SG) is an electricity network that

enables the bidirectional flow of electricity and data and can detect, react
to, and proactively address changes in demand and a variety of other con-
cerns, all through the use of digital communications technology. Modern
SGs designed for the 21st century are required to have self-healing capa-
bilities, which are characterized by the capacity to automatically restore
and recover the interruption of energy in the grid and to shorten the in-
terruption period for customers, thereby decreasing the likelihood of a
more severe disaster, such as one caused by a cascading effect.

A wide range of disciplines, including computer science, electrical
engineering, signal processing, statistics, artificial intelligence, and ma-
chine learning, have been applied to the study of automatic fault predic-
tion tasks over the past years. This dissertation focuses on the integration
of machine learning-based techniques to improve the self-healing capa-
bilities of SGs and examines these ML approaches not only from the
standpoint of fault prediction accuracy but also their trustworthiness.
Among the numerous facets of trust, this study focuses on the robust-
ness (against faults and adversarial attacks) and interpretability of the
proposed fault prediction systems.

This doctoral research project was assigned by the e-distribution Smart
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Grid Lab in Milan,1 where the objective of the project was to “develop
Artificial Intelligence (AI) algorithms with the goal of enabling auto-
matic self-healing characteristics for next-generation smart grids”. Self-
healing can be used in a distribution network, e.g., in the smart grid, to
detect a fault, localize the fault and diagnose the fault type, to isolate
and neutralize it. It should be noted that we followed a Human-Centred
Design approach,2 initially visiting the e-distribution Smart Grid Lab in
Milan to interview electrical engineers and study their work, systems,
and artifacts. Then, due to the limits imposed by the COVID-19 epi-
demic, we conducted monthly video sessions with the Lab team in order
to discuss the preliminary research findings.

In the context of this doctoral dissertation, methods for predicting
faults and identifying them by type and origin have been devised, imple-
mented, and evaluated. In order to extract useful information from the
electrical signal and incorporate it into a machine-learning fault predic-
tion system, a number of novel techniques have been proposed in addi-
tion to existing ones being improved. These techniques include hand-
crafted temporal, frequency, and wavelet features, as well as 2D CNN-
based visual spectrogram methods. We also examine the explainability
of the various integrated technologies, including the use of visual expla-
nation, in order to make the systems more transparent to a wider audi-
ence (operators, consumers).

Furthermore, this work enlightens a crucial research area in the se-
curity of smart grids, namely what happens to fault prediction methods
when they are targeted by malicious actors or adversarial attacks. It is
demonstrated that state-of-the-art adversarial techniques like FGSM and
BIM are capable of learning minor perturbations that can trick the ML
models, for example, by misclassifying the fault type or location, hence
prolonging or impeding the recovery time of the rescue team.

1https://www.e-distribuzione.it/progetti-e-innovazioni/smart-grids.html
2ISO 9241-210:2019 - Ergonomics of human-system interaction - Part 210: Human-centred design

for interactive systems.
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CHAPTER1
Introduction

Background. Earlier than a century ago, when energy demands were
modest, the concept of our modern electricity was conceived. Tradi-
tional electricity grids were unable to adapt to the continuously chang-
ing requirements of the 21st century due to their one-way interaction and
reliance on technologies from the 1950s. The ability to efficiently inte-
grate and manage diverse energy resources, such as conventional fossil
fuel sources, and renewable energy sources such as wind and solar en-
ergy, is vital for fulfilling the rising energy demand in the present and the
future.

The term smart electrical grids, or simply smart grids (SGs), is used
to describe the next generation of models for an intelligent electric net-
work that allows the collection of both traditional fossil fuel sources and
renewable energy sources such as wind and solar energy. Networks with
such characteristics are needed to meet the rising energy demand in the
present and future. SGs also take into account the actions of all con-
nected end-users, offering bidirectional interactions between end-users
and the grid operator as shown in Figure 1.1, hence enhancing the ac-
cessibility of the energy grid. As an illustration, consumers, such as
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Chapter 1. Introduction

residents and companies, are currently digitally connected to the ICT1

infrastructures of DSOs2 via a WAN network and smart meters, where
the latter facilitates the connection between the DSO-ICT network and
the consumer network. The ultimate objective of SGs is to make the
electrical grid more efficient, dependable, secure, and environmentally
friendly.

One necessity for SGs is the capacity to model fault states by their lo-
cation and types. A fault in electrical grids could be caused by inclement
weather, equipment deterioration, aging, or a security attack. A fault in
an electrical line can result in a power outage that disrupts business and
causes discomfort in homes and neighborhoods. Protection devices and
circuit breakers have traditionally been used to monitor faulty lines and
locations [49]. However, the power outage investigation report [10] re-
leased in 2006 described how undesirable operation of protection relays
and circuit breakers might create catastrophic cascading effects and sub-
sequent blackouts. For example, In August 2003, the power cascading
failure in the Northeastern United States and Ontario, Canada created a
global power outage that lasted four to seven days and left more than 50
million people without electricity, with damages estimated between 4 to
10 billion dollars. These situations call for intelligent, rapid, and precise
power fault prediction systems that can analyze the health of the grid and
conduct real-time fault analysis.

Approach. Over the past decade, researchers have analyzed autonomous
fault detection tasks from a variety of perspectives, combining tools and
methods from computer science, electrical engineering, signal process-
ing, statistics, artificial intelligence, and machine learning (ML). Var-
ious approaches have been proposed to identify, classify, and localize
faults [21, 40, 48, 64, 76, 87], which are described in detail in Chapter 2.
This dissertation focuses on the integration of machine learning (ML)-
based techniques to improve the self-healing capabilities of SGs and ex-
amines these ML approaches not only from the standpoint of fault pre-
diction accuracy but also their trustworthiness.

With the increased use of machine learning in daily life, more empha-

1Information and Communication Technology
2Distribution System Operators (DSO)
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Figure 1.1: Smart Grid technology two-way communication

sis has been placed on its trustworthiness. Although there is no univer-
sally agreed notion for responsible machine learning, the major objec-
tives include:

• Generalizability (or basic performance)

• Robustness

• Privacy

• Interpretability

• Fairness

where from the top to the bottom, the definition becomes increasingly
obscure; for example, there is no single answer to the question of what
fairness is in ML systems, and the response can be viewed from multiple
perspectives. We discuss these aspects in more details in the following.
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Chapter 1. Introduction

When discussing machine learning, the primary objective is typically
to reduce loss across the training set, with the hope of maximizing pre-
diction power on previously unseen data. Consequently, the primary pil-
lar of trust is the generalizability of the model, i.e., first and foremost we
want to train accurate models, and models that are not accurate are not
trustworthy. However, trustworthy ML is not limited to generalizabil-
ity (or basic performance), and additional aspects begin to emerge when
these systems are deployed in high-stake applications involving sensi-
tive data and critical scenarios. Robustness refers to a model’s ability to
withstand noisy and adversarial input, and may often be separated into
training-time (also known as poisoning attacks) and test-time data (ad-
versarial attacks). In order to establish trust in these circumstances, we
must train models that are resistant to adversarial settings. For what con-
cerns privacy, numerous ML models are trained on sensitive and private
data. The question is whether or not we can trust models to have access
to these sensitive data, and if they are trained on their data, whether or
not sensitive data information could be leaked during the training phase.

Concerning accurate and generalizable models, the general trend is
for these models to develop in complexity, and the fundamental ques-
tion is how the model arrived at a particular conclusion. This may be
applied to increase the transparency of decision-making processes. This
can also be utilized for model troubleshooting, particularly if machine
learning techniques are the core component of the system. This capacity
to explain the model’s decisions is frequently referred to as the model’s
interpretability. While increasing the quality of the ML model on the
total dataset, we must also ensure that the model behaves consistently
across subgroups, particularly those with sensitive characteristics such
as gender and age. As a result, we seek to comprehend the fairness of
ML models and to develop fair models.

1.1 Research Contributions

As explained in the preceding section, there are many facets of trust-
worthiness in ML and SGs and it is beyond the scope of a single thesis
to cover all aspects. Beyond the generalizability of fault prediction ap-
proaches, this study focuses on certain characteristics of trust, such as

4



1.1. Research Contributions

Trustworthy Machine Learning in Smart Grid

Interpretability Dataset & 
EvaluationSecurity

Adversarial attack 
(Intentional)

Fault 
(Unintentional)

Ch. 3
Ch. 4 Ch. 5 Ch. 6 Ch. 7

Figure 1.2: Thesis outline

robustness against faults (unintentional) and adversarial attacks (inten-
tional) and interpretability, among others.

Figure 1.2 presents a summary of the research contribution in relation
to the chapters of this dissertation. Each section discusses one aspect of
trustworthy ML in SGs, discussed in more detail below:

1.1.1 Ch. 2: Literature Review

This section covers a comprehensive literature review that studies failure
prediction methods in electrical grids from a computational approach and
proposes a taxonomy for classifying state-of-the-art literature.

Contribution. Smart grid systems (SGs) are a prominent topic in the
literature and contain various subtopics, such as fault management, com-
munication issues, and security. Recently, a number of surveys focusing
on diverse viewpoints of SGs have been published. A detailed examina-
tion of the algorithms and approaches for the three tasks of fault detec-
tion, fault type classification, and fault location prediction for transmis-
sion (HV), distribution (MV), and low-voltage (LV) lines has not been
presented to our knowledge. We provide a comprehensive analysis and
taxonomy of the currently employed strategies for fault prediction jobs
in SGs. Our primary focus is on data-driven algorithms. The survey dis-

5



Chapter 1. Introduction

cusses future research directions and SG-related outstanding difficulties
highlighted in Chapter 8. The content of the foundations and state-of-
the-art described in Chapter 2 has been presented in the article, and the
journal Expert System with Applications is currently reviewing the com-
plete form of this work.

1.1.2 Ch. 3: Fault Prediction System Using Handcrafted Features

Contribution. In chapter 3 of this dissertation, we focus on three dimen-
sions dependability, serviceability, and accountability, which comprise
the security requirements of an SG application. The first two dimensions
are covered in Chapter 3 and deal with fault detection and localization,
while the final aspect addresses creating the system in a more transpar-
ent manner that will be explained in chapter 6. In Ch3 3, we propose
a data-driven self-healing system that uses machine learning (ML) ap-
proaches to classify fault types and locations automatically. This chap-
ter’s research contributions are based on conference papers delivered at
the ITASEC conference [8].

1.1.3 Ch. 4: Fault Prediction System Using Visual CNN features

Contribution. Due to the vast amounts of data encompassing energy
networks, machine-learned (ML) models, especially those based on deep
learning, have become more prevalent in the infrastructure of power
systems. In order to bridge the gap between previous research and re-
cent breakthroughs in the field of deep learning, in Chapter 4 we pro-
pose a spectrogram-convolutional neural network-based representation
of the electrical signals, where pre-trained models such as GoogleNet
and SqueezeNet are applied. We present simultaneous location and type
classification along with an individual prediction of fault type and fault
zone, which most previous works focused on. This chapter is extracted
from the article published in the Expert System with Applications jour-
nal [6].

1.1.4 Ch. 5: Adversarial Machine-learned Attack in Smart Grid

Contribution. In Chapter 5 of this dissertation, we examine adversarial
attacks against SGs. Adversarial attacks are subtle but non-random per-
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1.1. Research Contributions

turbations learned by the adversary and inserted into the test data to pro-
duce incorrect outputs. We investigate the impact of adversarial attacks
on fault prediction systems, focusing on fault type and location classi-
fication, by investigating numerous experimental scenarios with varying
adversary objectives (e.g., targeted vs. untargeted attacks). This chap-
ter’s proposed research contributions are based on conference papers pre-
sented at Adversarial Learning Methods for Machine Learning and Data
Mining@KDD’22, the premier data mining conference.

1.1.5 Ch. 6: Interpretability of Fault Prediction System

Contribution. The exceptional accuracy of machine learning and deep
learning methods comes with a cost: their growing complexity and re-
semblance to black-box models. This dissertation’s Chapter 6 focuses
on the interpretability of the proposed machine-learned fault prediction
methods in SGs. In this chapter, we characterize explanation approaches
and discuss them as feature-learned interpretability published in [7], vi-
sualizing the impact of pairs of attributes using a decision-tree model [8],
and finally, we propose a CNN-based representation of spectrogram-
modeled fault data and a visual explanation based on Grad-CAM [6].

The proposed research contributions of this chapter are derived from
conference papers presented at the Italian Workshop on Explainable Ar-
tificial Intelligence co-located with the 19th International Conference of
the Italian Association for Artificial Intelligence, XAI.it@AIxIA 2020 [7],
and the Italian Conference on Cybersecurity, ITASEC 2021 [8], in ad-
dition to Journal article published at the Expert system with Applica-
tions [6].

1.1.6 Ch. 7: Datasets and Evaluations

Contribution. Despite the vast amount of effort and research published
in the field of machine learning for smart grids, reproducibility and lack
of available datasets with codes that facilitate the development of ML
models and comparison between them pose a significant barrier to the
advancement of research in the field.

We describe various kinds of datasets for fault prediction and adver-
sarial attacks thereon and publish the benchmarking code for these sce-
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narios. In particular, we release the following datasets:

• IEEE13-AdvAttack: The dataset released here3 serves two princi-
pal purposes: (i) the classifications of faults and the regions where
they are most likely to occur, and (ii) the analysis of adversarial
machine-learning attacks aimed at fault type and zone classification
tasks. This dataset has been released in the resource track of the
CIKM’22 conference (main track) [5], which is an annual core-A
conference in the field of data mining that attracts top-tier research;

• Spectrogram-CNN: The dataset released heree4 serves two pri-
mary purposes: (i) spectrogram-based classifications of faults type
and the zones where they are most likely to occur, and (ii) visual
interpretation of spectrogram images of voltage signals using Grad-
CAM. This dataset has appeared in the journal of Expert System
with Applications.

1.2 List of Publications

The following articles were published during the course of this research
(Corresponding author is Ph.D. Candidate in all accepted papers. Au-
thors are listed in alphabetical order):

Under Review

Ardito, C., Cataldi, A.,Deldjoo, Y., Di Noia, T., Di Sciascio, E., &
Nazary, F.. (2022). Fault Prediction in Electrical Smart Grids: State-
of-the-art and Future Trends under a Computational Perspective.

Journal Publications

Ardito, C.,Deldjoo, Y., Di Noia, T., Di Sciascio, E., & Nazary, F..
(2022). Visual inspection of fault type and zone prediction in electrical
grids using interpretable spectrogram-based CNN modeling, Journal of
Expert System with application (ESWA), 210, 118368.

3 https://bit.ly/3NT5jxG
4 https://github.com/atenanaz/FaultClf_SmartGrids
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1.2. List of Publications

Conferences Publications

Ardito, C.,Deldjoo, Y., Di Noia, T., Di Sciascio, E., & Nazary, F..
(2022, October). IEEE13-AdvAttack A Novel Dataset for Benchmark-
ing the Power of Adversarial Attacks against Fault Prediction Systems
in Smart Electrical Grid, In Proceedings of the 31st ACM International
Conference on Information & Knowledge Management (CIKM), (pp.
3817-3821).

Ardito, C.,Deldjoo, Y., Di Sciascio, E., Nazary, F., & Sapienza, G.
(2021, August). ISCADA: Towards a Framework for Interpretable Fault
Prediction in Smart Electrical Grids, In IFIP Conference on Human-
Computer Interaction (pp. 270-274). Springer, Cham.

Ardito, C.,Deldjoo, Y., Di Sciascio, E., & Nazary, F.. (2021). Revisit-
ing Security Threat on Smart Grids: Accurate and Interpretable Fault
Location Prediction and Type Classification, In The Italian Conference
on CyberSecurity (ITASEC) (pp. 523-533).

Ardito, C., Di Sciascio, E., & Nazary, F.. (2020). Improving smart grid
self-healing by a graph modeling approach, 6th Italian Conference on
ICT for Smart Cities And Communities (I-CiTies 2020).

Workshops

Ardito, C.,Deldjoo, Y., Di Noia, T., Di Sciascio, E., Nazary, F., &
Servedio, G.. (2022, August). Machine-learned Adversarial Attacks
against Fault Prediction Systems in Smart Electrical Grids, AdvML@KDD’22.

Ardito, C.,Deldjoo, Y., Di Sciascio, E., & Nazary, F.. (2020). Interact-
ing with Features: Visual Inspection of Black-box Fault Type Classifi-
cation Systems in Electrical Grids, In XAI.it@AI*IA (pp. 135-141).

Following, we present the background and literature review of smart
electrical grid and significant definition about it. Then, moving from
Chapter 3 to Chapter 7, we describe in detail the research contributions
shown in Figure 1.2. In the end, we review the findings in this disserta-
tion and propose sopen research directions and possible future work fault
prediction task in SGs.
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CHAPTER2
AI self-healing methods in Smart Grid:

Foundations and State of the Art

Self-healing is one of the primary characteristics of smart electrical grids
(SGs). The ability of SGs to automatically restore and recover the inter-
ruption of energy in the grid and to decrease the interruption period for
customers lessens the likelihood of a more severe disaster, such as one
caused by a cascading impact [56]. Self-healing requires both hardware
(such as sensors, switches, actuators, and communication networks) and
software to be effective (i.e., algorithms capable of providing fault detec-
tion and localization). In this chapter, we present the foundation back-
ground needed to understand the primary hardware and software compo-
nents utilized in the literature on fault prediction for power grids.

2.1 Foundations of self-healing features in smart grid

Figure 2.1 depicts the taxonomy for the fault prediction system in SGs
for the three tasks of (1) fault detection, (2) fault type classification, and
(3) fault location classification.
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Figure 2.1: Taxonomy of fault prediction system

2.1.1 Fault type

There are two types of power grid electrical faults: open- and short-
circuit faults. In addition, they may be either symmetrical or asymmetri-
cal. In addition, the High Impedance Fault (HIF) [12,20], which does not
(necessarily) fall into any of the aforementioned categories, has garnered
considerable attention in recent years. This attention is in part owing
to the threat posed by HIF faults and the difficulty of identifying them.
These types of faults are thoroughly covered in the following:

• Short-circuit faults. Short-circuit faults (a.k.a. "shunt faults") are
one of the most common types of electrical network failures. A
short-circuit fault is an abnormal connection with very low impedance
between two locations with different potentials, whether intentional
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2.1. Foundations of self-healing features in smart grid

or unintentional. These are the most frequent and dangerous faults
that can cause abnormally large currents to flow through the equip-
ment or transmission lines. If short-circuit failures are allowed
to continue merely a few times, they can cause substantial equip-
ment damage (such as a fire) due to overheating or arcing prob-
lems. Short-circuit faults are caused due to insulation failure be-
tween phase conductors or between earth and phase conductors
or both. The likelihood of these inaccuracies may be increased
by severe weather conditions, such as lightning, intense rain and
snow, outdated equipment, and human error [62]. These faults
can be classified as symmetric or asymmetric in both transmission
and distribution systems, i.e., phase-to-phase (LL), single-phase-
to-ground (LG), or two-phase-to-ground (LLG), or symmetric i.e.,
three-phase-to-ground (LLLG or LLL) faults [1, 75]. Short circuit
failures are responsible for the majority of power system malfunc-
tions. The likelihood of an LG fault occurring in the power grid
is 85%, whereas the likelihood of a three-phase fault occurring is
2% [62]. To detect and reduce these types of faults, protective de-
vices like fuses, circuit breakers, and protective relays are employed
for current and overload protection.

• Open-circuit faults. Open-circuit faults, also known as "series faults,"
can be either symmetrical or asymmetrical when one or more con-
ductors (phases) in the power grid are broken. Joint failures of
cables and overhead lines, failure of one or more circuit breaker
phases, and melting of a fuse or conductor in one or more phases
are the most frequent causes of these faults.

• Symmetrical and unsymmetrical faults. In symmetrical faults, all
three lines are short-circuited to one another and occasionally to the
earth (LLL, LLLG). Due to the fact that all three lines have the same
load current magnitude and phase angle, symmetrical faults are also
known as balanced faults. They are hazardous since they can pro-
duce a large amount of current, but they rarely occur. As a result of
these problems, the load current in the three lines is unbalanced.

• High impedance fault (HIF). HIFs commonly occur at voltages be-
tween 4 kV and 34.5 kV in electric distribution. They occur when
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a conductor breaks and makes touch with the earth or when a high-
impedance object comes into contact with the conductor. The largest
problem with HIF is the amount of the fault current, which ranges
from 0 to 75 (A) and exhibits flashing and arcing at the place of con-
tact, creating a significant risk of fire or electrical shock [12,20,53,
84,85]. As a result, HIF detection is vital for ensuring safety. How-
ever, because the fault current level is often lower than the nominal
current, it is difficult for conventional safety systems to detect HIFs
(such as over-current and distance relays).

2.1.2 Data collection

Algorithms for fault detection, classification, and localization use some
form of data for their task. We can categorize this data into physical data
(such as measured voltage and currents), which is connected to the topol-
ogy of the electrical power grid, environmental data (such as whether),
geographical data (such as information on latitude and longitude), and
temporal data [22]. Voltage and current are among the most frequent
pieces of information that the algorithms can access. In general, data are
gathered from intelligent electronic devices and smart sensors (IEDs).
These IEDs are integrated into the actual smart power grid or added to
the particular grid’s topology. These electrical devices/sensors with in-
telligence include:

• Smart meter (SM). It is a device that captures current, voltage, and
electrical energy usage in real-time. Both the electrical consumer
and the provider are given access to this information. In the lit-
erature, SMs have been employed to extract measurements from
voltage and current waveforms, consider for example [12,41,63] or
to collect outage reports [39].

• Phasor measurement unit (PMU). This device uses GPS as a com-
mon time source for synchronization to measure the magnitude and
phase angle of current or voltage phasors from the electrical distri-
bution infrastructure system as shown in Figure 2.2. In the litera-
ture, they are utilized to collect very accurate time-stamped mea-
surements [20, 29, 33, 46]. [46] propose a PMU placement strategy
to improve fault location prediction performance.
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• Frequency Disturbance Recorder (FDR). It is a real-time data ac-
quisition tool attached to SGs that is more affordable and simpler
to install than PMU. Voltage, phase angle, and frequency are just a
few examples of multidimensional data that the FDR can measure
in coordinated fashion. As an illustration, in [38], it is used to de-
tect voltage and frequency, which are then transformed into feature
vectors and trained using a Hidden Markov Model.

• Merging Unit (MU). With the use of this device, analog signals from
traditional current and voltage converters can be transformed into
IEC 61850 sampled values. IEC 61850 is an international standard
defining communication protocol for intelligent electronic devices
at electrical substations [26].

• Remote Telemetry Unit (RTU). It is a remote-installed electronic
control system for managing numerous pieces of equipment. Through
messages delivered by the master system Supervisory Control and
Data Acquisition (SCADA) [67], it controls the connected equip-
ment by transmitting telemetry data from the equipment to SCADA
systems and vice versa.
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Figure 2.2: Example of Sensors used to communicate between electrical infrastructure
and monitoring infrastructure by collecting data such as PMU and MU
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2.1.3 Feature extraction and selection

Feature extraction aims to produce pertinent and valuable features from
the system’s raw data acquisition to achieve successful detection. The
three subcategories of feature extraction approaches are signal process-
ing, machine learning, and feature selection.

Signal processing methods deal with analyzing, synthesizing, and
modifying the signal (voltage or current) to accomplish important tasks
such as feature extraction required for the decision-making task. They
could be divided into time-based (aka temporal) feature extraction [8,
20], frequency-based to provide uniform spectral resolution [4, 20] and
calculating the phase angle of the voltage or current signals [66,69], and
time-frequency approaches, based on discrete-wavelet transform [1, 69,
88], s-transform [73], and Hilbert transform [2].

2.1.4 Decision making

Decision-making refers to the actual fault prediction algorithm, includ-
ing fault detection (FD), fault type classification (FTC), and fault loca-
tion prediction (FLD). Finding the distance between a fault and its nearby
buses is called fault location detection. Some research projects concen-
trate on the relatively task of fault zone prediction (FZP), which refers to
choosing the location of the fault from a specified list. Data-driven algo-
rithms, rule-based algorithms, or other techniques, such as mathematical
circuit modeling, can all be used as fault prediction algorithms as shown
in Figur 2.3.

• Data-driven approaches. Data-driven techniques aim to model a
system by "training" labeled data or "learning from examples," as
the term implies. After a system has been trained, it can be tested
with new data to determine how well it functions. Fig. 2 depicts the
pipeline of data-driven strategies. The techniques used here can be
separated into two categories: (1) traditional techniques like super-
vised learning and (2) modern techniques like deep neural networks
(DNNs). In Section 2.2 we provided more detailed information on
the topic.

• Rule-based approaches. Rule-based techniques seek to predict fault
by applying a set of instructions and rules in which the knowledge
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Figure 2.3: The generic structure of decision-making procedures

of a human expert has been manually encoded. Heuristic if-then-
else, fuzzy logic, and rough set theory are three of these techniques.
Section 2.2 has more specific information about these techniques.

• Other approaches. All strategies that come under other methods
do not consider data-driven and rule-based decision-making tech-
niques. Here, we focus on electrical circuit modeling, one of the
most popular techniques in the literature. This method enables
the study of electrical circuit behavior. A mathematical equivalent
model of the circuit is built using particular software, and its behav-
ior is then simulated under various circumstances. Circuit model-
ing, for instance, is used to introduce a fault into the circuit model
and test the effectiveness of alternative algorithms for fault detec-
tion. For instance, in [32] a model is constructed for investigating
faults during power swings. In [84] a simulation of a HIF was per-
formed to evaluate the validity of the proposed detection method
(cf. Section 2.2.3).
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2.2 State-of-the-Art Approaches

This section widely categorizes decision-making (DMs) for fault predic-
tion methods, as data-driven DMs or non data-driven DMs (e.g., rule-
based approaches). Due to focusing on artificial intelligence algorithms,
we mainly underline data-driven DM approaches; however, we discuss
the second class briefly.

2.2.1 Data-driven decision-making

We categorize data-driven strategies into two groups, as shown in Fig-
ure 2.1: (i) classical methods and (ii) modern approaches such as graph-
based models, deep learning (DL) models, and various other techniques,
as indicated in Table 2.1. The following provides further clarifications.

Classical approaches:

Classical ML algorithms frequently necessitate feature engineering, fea-
ture extraction, and processing by ML algorithms. These approaches’
key benefit is their simplicity, which often calls for less processing power
and computational resources and makes interpretation simpler. In gen-
eral, we can divide learning into three categories based on the training
data X = [x1, x2, .., xd, ., xn]

T , where n is the number of observations in
a T -dimensional space, and Y represents the labeled observations: super-
vised learning techniques demand n labeled observations, unsupervised
learning techniques require no labeled observations, and semi-supervised
learning techniques demand d labeled observations, where d < n.

Definition 1 (Supervised Learning - SL). Given a dataset D of n pairs
(x, y) ∈ X × Y , where x is the input sample, and y is its corresponding
class label, the goal is to learn a function fθ : X → Y that can predict
the class label y for each input sample x, where θ is the model parameter.
This leads to solving the following empirical risk minimization (ERM)
problem

min
θ

∑
(xi,yi)∈D

ℓ(f(xi; θ), yi)

where ℓ(.) is the empirical risk function or loss function.
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Examples of SL algorithms that have been applied in the literature of
smart electrical grids for fault prediction we can name of support vector
machine (SVM) [47, 64, 82],random forest (RF) [64], logistic regression
(LR) [29], decision tree (DT) [1], K-nearest neighbor (KNN) [1], and
neural networks [64, 73, 82]. Some research works also adopt mixed
neuro-fuzzy inference systems that involve both artificial neural network
and fuzzy logic [67, 82] for their addressed task. We will discuss deep
neural types in modern approaches.

Definition 2 (Unsupervised Learning - USL). Given a dataset D of n
input samples x ∈ X , the goal is to estimate a model that represents the
probability distribution p(xi | θ), where θ is the model parameter. This
probability distribution is essential for discovering impressive properties
among data.

An example of USL algorithms that have been used for fault predic-
tion tasks can name intra-class clustering [64], which generates more
specific information about fault, such as the most affected areas that re-
quire rapid intervention.

Definition 3 (Semisupervised Learning - SSL). Given a dataset D of n
elements, it can be divided in two parts: D1 composed by l pairs (xl, y) ∈
Xl × Y , where xl is the input sample, and y is its corresponding class
label; D2 is composed by m input samples xm ∈ Xm whose labels are
unknown. The goal is to learn a function fθ : X → Y that can predict
the class label y for each input sample x ∈ X , with X = Xl ∪ Xm. In
this case the ERM problem is

min
θ

Exm∈D2
[ℓ1 (f (xm; θ))] +

∑
(xl,y)∈D1

ℓ2 (f (xl; θ) , y)


where E denotes mathematical expectation, and ℓ1(.). ℓ1(.) and ℓ2(.) are
the empirical risk function [61].

Different algorithms, including self-training, co-training, generative
approaches, Graph-based methods, etc., are available for SSL. Self-training,
in which the classifier employs its predictions to train itself, is an illustra-
tion of an SSL technique used for fault detection in [20]. Here, the author
used SSL to deal with data that resulted from unseen events rather than
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relying just on a small amount of labeled data for detection. Addition-
ally, there are methods that may be applied in mixed modes, SL, USL,
and SSL, like Hidden Markov Model [37, 38].

A multitask logistic low-ranked dirty model (MT-LLRDM) is pro-
posed by Gilanifar et al. in [29], in which the fault classifiers are trained
in each location as a separate task. The method utilizes the similarities
in the fault data streams among multiple locations across a power dis-
tribution network to improve detection performance. The fault types at
each location are identified based on fault events obtained from PMUs
in various locations. For each classifier task, a logistic regression loss
function is ultimately used.

In [64], Raja et al. suggest a method for identifying and classifying
nine type of faults. They collect a time series for each station in the grid
and represent it as a vector. Then, they perform dynamic anomaly detec-
tion: if ‘n’ consecutive outliers are detected in the vector, where ‘n’ is
a determined threshold, they assume a fault has occurred. To categorize
the fault class, an auto-correlation function creates a small feature repre-
sentation of the data, which is then passed to a classification technique
like SVM, RF, or ANN. They also take into account intra-class analysis
by using unsupervised learning to precisely pinpoint the fault.

Transmission line fault location is suggested by Livani et al. in [47].
The authors first utilize an SVM classifier to detect the faulty areas after
extracting features from the observed voltages using Discrete Wavelet
Transform (DWT). After identifying faulted areas, they use the aerial
mode voltage wavelets to calculate the location of the fault.

An approach for HIF detection in distribution lines is proposed by
Veerasamy et al. [82]. Discrete Wavelet Transform is used to extract
features and train a variety of classifiers, including the Adaptive Neuro-
Fuzzy Inference System, Bayesian Neural Network, Fuzzy Inference
System, and Support Vector Machine (ANFIS). The study’s findings
demonstrate that ANFIS and ANN classifiers perform better than the
others.

In [67], Reddy et al. suggest a method for pinpointing transmis-
sion line faults. In order to facilitate synchronization, they obtain the
fault currents from Remote Telemetry Units (RTUs) using GPS technol-
ogy. Then they use Discrete Wavelet Transform to extract features and
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pass them to algorithms such as Adaptive Neuro Fuzzy Inference System
(ANFIS) and Artificial Neural Network (ANN) in order to locate faults.

In order to select appropriate wavelet functions and wavelet decom-
position levels for precisely classifying faults in transmission lines, Ab-
delgayed et al. in [1] offer a method based on the Harmony Search Al-
gorithm (HSA). The identified optimal wavelet function is used in DWT
to extract features from voltage and current signals. In the end, two ma-
chine learning techniques K-Nearest Neighbor (KNN) and Decision Tree
(DT), are used for fault classifications.

To detect and classify faults in power grids, Shafiullah et al. in [73]
propose a method based on a feed-forward neural network (FFNN). Here,
the measured three-phase current signals are processed through s-transform
(a generalization of the short-time Fourier transform (STFT)). In con-
trast to previous processing methods, ST decomposes processed signals
into time-frequency components and includes phase information for non-
stationary signals. FFNN is then given the extracted features, and it is
trained to identify several fault types, including single-line-to-ground
(LG), line-to-line-to-ground (LLG), and three-phase-to-ground failures
(LLLG).

The purpose of Cui et al. in [20] is to detect and locate high-impedance
faults by applying semi-supervised learning (SSL) to consider unlabeled
data. They extract a feature pool encompassing time series features,
DFT-based features, KF-based features, and other features from several
micro-PMUs. Then, in order to choose the ideal feature set and prevent
over-fitting, they use a wrapper method. To effectively classify data, the
chosen features are passed to an SSL-based detection method. Finally,
they propose an approach based on the probability distribution of the
fault impedance for locating the fault.

Jiang et al. in [38] collect both frequency and voltage signals by
Frequency Disturbance Recorders (FDRs) in order to detect and locate
a fault in the transmission line. The Matching Pursuit Decomposition
(MPD) technique processes the frequency signal to create a frequency
feature vector using a Gaussian dictionary. The Hidden Markov Model
(HMM) is then trained to use the frequency features to find and locate
systemic flaws. Similarly to this, MPD processes the voltage signal and
uses it to identify the fault’s location.
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To use the resulting spatial-temporal characteristics for fault identi-
fication, Jiang et al. train a variety of hidden Markov models (HMMs)
in [37]. In the spatial domain, the secondary voltage control (SVC) di-
vides the SG into different zones. A subset of synchrophasor measure-
ment devices is placed within each zone based on an optimal synchropha-
sor measurement devices selection algorithm (OSMDSA). To properly
characterize the signals, an MPD with a Gaussian atom dictionary is uti-
lized in the time domain.

Modern approaches:

We define modern approaches as those that train massive machine-learning
models employing vast amounts of data and powerful computing. The
prominent examples in this category include deep neural networks (DNNs) [13,
46] and graph-based learning [33]. With great success, these methods
have recently gained popularity for visual recognition tasks, and they
have now been applied to numerous additional classification problems.

To accurately detect and classify faults, authors in [13] perform clas-
sification tasks based on convolutional sparse AutoEncode (CSAE) and
softmax. They consider both three-phase voltage and current signals as
multi-channel signals and then use Sparse AutoEncoder (SAE) to extract
features from that signal automatically.

Locating the faulty lines in power grids is the main goal of the work
in [46] in the condition of limited measurement availability. They pro-
pose a method based on a four-layer Convolutional Neural Network (CNN)
classifier using voltage measurements. Additionally, they recommend a
PMU placement strategy based on the CNN classifier’s loss function to
boost performance.

In [33] a dependency graph approach is proposed for fault detection
and localization. They use a decentralized method based on Gaussian
Markov Random Fields (GMRFs) in particular to describe the interde-
pendence between many different variables. The proposed approach is
useful when measurements coming from different PMUs are incompati-
ble (e.g., not synchronized or at different sampling frequencies).

In [39] a data-driven approach for fault location is proposed. They
use the outage reports from smart meters (SMs) to predict the outage
region. In order to facilitate decision-making and accurately locate the
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fault, a model based on Mixed Integer Linear Programming (MILP) is
employed once the outage region has been identified.

Authors in [70] defined a problem which is a localized fault as a two-
class classification problem by considering temporal, geospatial, phys-
ical, and environmental data. To create the training set’s partition, K-
mean clustering is employed. Then a genetic algorithm is used for clas-
sification with an optimized learning rate. Finally, a fuzzy inference sys-
tem is applied to assess the test set’s dependability.

The authors of [42] investigate fault detection in covered conductor
overhead lines and take into account the frequency of peaks in the partial
discharge (PD) activity signal. As a result, a variety of classifiers, in-
cluding RF, gradient boosted machine (GBM), naive Bayesian classifier
(NB), and SVM are utilized to learn PD-Patterns to interpret a fault or a
not faulty situation.
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2.2.2 Rule-based methods

A series of hard-coded instructions, such as if-then-else expressions,
serves as the knowledge representation in a rule-based system. This
knowledge is based on a curated set of rules that are frequently non-
adaptive to the environment or new changes, reflecting the understand-
ing of a human expert in the field. We identified the following rule-based
approaches as shown in Table 2.1: (i) heuristic if-then-else approaches,
(ii) fuzzy-logic and rough-set approaches as decision-making methods
for fault detection in electrical grids. The articles discussed in this part
use various signal representation and feature extraction techniques, but
they all use rule-based decision-making as their common denominator.

Heuristic if-then-else approaches: Heuristics are methods for solv-
ing problems that might not be optimal but are nonetheless viable. It is
employed to find an approximative solution for issues without a precise
solution or for which finding one would take a lot of work. If-then-else
refers to the notion that the solution is found using a succession of con-
ditional statements.

By computing even harmonics in voltage measurements, Chakraborty
et al. [12] suggest a unique application of SMs for identifying HIF in dis-
tribution networks. Standard power electronic loads are supposed to pro-
duce a significant number of odd harmonic components during steady-
state operation, whereas HIF makes both even and odd harmonic com-
ponents. The even harmonic components present in the voltage wave-
forms are measured by each SM using the even harmonic distortion in-
dex (EHDI). If that index consistently surpasses a threshold over a given
period of time, HIF is recognized. To avoid switching or other brief tran-
sients being mistaken for HIF, time is set. When HIF is found, SM uses
the communication channel to alert the distribution substation.

The aim of Hashemi et al. in [32] is to detect both symmetrical and
asymmetrical faults during power swings by considering fundamental
frequency phasors of voltage and current. The magnitudes of the volt-
age and current phasors oscillate with the swing frequency during power
swings. In the absence of faults, the oscillatory magnitudes of voltage
and current phasors are out of phase. If a fault occurs, instead, they
become in phase. That is why they propose two algorithms capable of
detecting phase differences. A delta-based algorithm measures delta val-
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Chapter 2. AI self-healing methods in Smart Grid: Foundations and
State of the Art

ues by subtracting the present value of phasor magnitude from its cor-
responding value at one power cycle earlier. Then they compare the
current delta value with the voltage value. The admittance, which in-
cludes both an oscillating AC and a DC component, is calculated by the
admittance-based algorithm. After removing the DC component with
a full-cycle Discrete Fourier Transform (DFT), they compare the result
with a threshold.

The transient zero sequence currents (TZSCs) are extracted by Weng
et al. in [85] using the variational mode decomposition (VMD) approach
to provide a series of intrinsic mode functions (IMFs). Then the kurtosis
value is calculated for each IMF, and the IMF with the greater kurtosis
value is selected. Teager-Kaiser Energy Operators (TKEOs) are calcu-
lated for the selected IMF. Subsequently, the entropy value is calculated.
The HIF is determined by determining whether the entropy value is 0.

A robust phasor estimation method for fault detection is suggested
in [2] by Affijulla et al. The method, which is based on the Hilbert trans-
form, estimates the voltage and current phasors during a fault in order to
calculate the fault impedance. After integrating the feature values of the
voltage and current signals, they construct a derived feature value and
normalize it using impedance. The normalize feature value is an excel-
lent tool for fault detection since it is highly sensitive to the presence of
a fault.

Photovoltaic (PV) system failure detection is the focus of the work
proposed by Chen et al. [14]. This issue is seen by the authors as a se-
quential change detection issue. The output signals of the PV system are
measured using different meters. Then the time correlation of the faulty
signal and the signal correlation among different meters are exploited by
a vector auto-regressive (AR) model. Due to the difficulty of obtaining a
prior knowledge about the fault, they develop a change algorithm based
on the generalized local likelihood ratio (GLLR) test.

The IEC 61850 Merging Unit (MU) is proposed to be updated by
Gaouda et al. in [26] so that it can allow two-way communication and
be capable of detecting impending faults. MU is upgraded with digital
signal processing (DSP) ability that processes grounding currents and
reports situation awareness (SA) features to the SCADA system. Self-
healing capabilities can make use of SA features to detect and foresee
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early stages of coming faults.
Pasdar et al. present a method for detecting faulty nodes in [63]

that relies on injecting high-frequency current signals. By calculating
the difference between the measured and estimated voltage arrays, it is
possible to determine changes in the impedance characteristics and lo-
cate the problematic node due to the injected current signal’s imposition
of voltages on the nodes. The information required to determine each
node’s impedance characteristics is measured using a standard smart me-
ter (SM).

In [69] Saleh et al. propose a hybrid passive-overcurrent relay for
fault detection. The proposed relay is outfitted with an inductor and a
capacitor in parallel. Under DC fault circumstances, the LC circuit gen-
erates a specified frequency. A discrete wavelet transform (DWT) tool
can be used to capture this frequency in order to find high-resistance
faults.

In their HIF detection algorithm, Wang et al. [84] suggest looking for
waveform distortion in the temporal domain. An HIF current waveform
will always have some degree of distortion. The quenching and restrike
dynamic process of an arc near zero-crossing of the fault current is the
primary cause of the nonlinearity of waveform. They use a feature known
as the voltage-current characteristic profile (VCCP), which creates a plot
with the voltage and current represented by the Y-axis and the X-axis,
respectively, to characterize the nonlinear arc resistance. The maximal
slope appears at the zero-crossing parts. The variation of the slope can
be used as a fault indicator.

Fuzzy-logic and rough-set approaches: it is a family of multival-
ued logics in which the variables can assume a truth value belonging to
the real interval [0, 1], where 0 indicates "completely false", 1 indicates
"completely true" and the included values indicate intermediate degrees
of truth [16]. Additionally, a rough set is a particular mathematical tech-
nique used to cope with ambiguous and imprecise information and data
that is strongly related to the fuzzy theory [90].

Kiaei et al. in [41] propose a hybrid fault location method based on
fuzzy Petri net (FPN) technique, collecting data from protective devices,
fault indicators, smart meters. The suggested method uses an inference
system built using fuzzy petri nets (FPN) to predict the failed section uti-
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lizing discrete data from protective devices and fault indicators. Due to
failures of protection systems and data loss, fuzzy Petri nets may suffer
from multiple fault section estimation problems. To reduce the false es-
timations and detect the exact location of the fault, a consistency index is
defined that quantifies the similarity between the measured voltage and
current data and the corresponding values calculated using a computer
short circuit program.

The system operator has a dilemma since authors in [65] attempt to
classify the system’s condition and protect it from various problems. To
analyze the different combinations of the incoming signals and find pat-
terns for them, the dominance rough set theory (DRS) is proposed to
reasonably cope with all the clusters of data.

2.2.3 Other approaches

This section analyze additional fault prediction methods from the liter-
ature that do not belong to either data-driven or rule-based approaches.
We’ve incorporated the following techniques: (i) sparse representation,
(ii) electrical circuit modeling, (iii) traveling waves, (iv) optimization
problem, (v) power line communication.

sparse representation (SR) is a technique that has gained popularity
recently. The term "sparse solution" (also known as "sparse representa-
tion") refers to a linear system solution where the majority of the array’s
items are zero with a small number of non-zero components remaining.
Sparse coding (SC), group sparse coding (GSC) [75] and compressed
sending (CS) [36,49] are all techniques which deal with finding a sparse
representation. The fundamental idea behind CS is that with prior knowl-
edge about constraints on the signal’s frequencies, it can be reconstructed
with a small subset of data. This enables the system to consider a com-
pressed version of a problem in order to find a solution. On the other
hand, given a feature vector, SC aims to create a smaller matrix, called
the dictionary, and to ensure that the original feature vector can be rep-
resented as a linear combination of the fewest possible elements of the
dictionary, called atoms.

For instance, Majidi et al. in [49] suggest a fault location strategy
that builds the sparse current fault vector using compressed sensing (CS)
and sparse representation (SR) methods. Non-zero entries in this vector
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indicate the possible faulted areas. They monitor fault currents from the
PMUs and estimate fault voltages to distinguish between healthy and
faulty zones, which is utilized to correctly identify the failed line. In the
end, they calculate the fault distance in the faulted line using the least-
squares method and the substitution theorem.

Shi et al. [75] seek to automatically extract features by taking into
account the discriminative properties of sparse representation. Three-
phase half-cycle superimposed current signals are measured for the fault
classification task by Group Sparse Representation (GSR) because they
reach desirable fulfillment even under a low sampling rate. Additionally,
for the fault classification task, signals of fault types such as line-to-
line, line-to-ground, and three phase-to-ground are learned in an over-
complete dictionary.

For a complicated dc distribution network, Jia et al. [36] provide a
dc pole-to-pole short-circuit fault location algorithm. First they con-
struct the high-frequency impedance equivalent models of module mul-
tilevel converter (MMC) and dc/dc converter. The wavelet transform is
then used to extract high-frequency transient voltages from sparse data
points. Finally, they pinpoint fault locations using the Bayesian Com-
pressed Sensing (BSC) theory.

Electrical circuit modeling is a common technique used in literature
to investigate the behavior of electrical circuits and, consequently, elec-
trical faults. A circuit model is a mathematical representation of an
actual circuit or its components, accurately reflecting its behavior. In
the literature, this technique has not been used alone but combined with
other approaches to understand the behavior of particular faults and vali-
date the proposed methods’ efficiency through simulations. For instance
Chakraborty et al. [12] and Wang et al. [84] use it to model the behavior
of a HIF while Hashemi et al. [32] utilize circuit modeling to investigate
three-phase faults during power swing. Moreover, Saleh et al. [69] use a
circuit model to test the proposed relay during L-L and L-G faults. Jia
et al. [36] simplify the analysis of the impedance of transient processes
during faults by using an equivalent impedance model. A methodology
based on the Kalman Filter (KF) estimator is suggested by Manandhar
et al. [51] to identify faults and attacks on smart-grid systems. The KF
estimates the power grid’s state variables using data from the sensor net-
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work. Then χ2-detector is used to detect differences between the esti-
mated and measured data. They provide an additional detection method
based on the Euclidean distance metric to get over the chi2-detector’s
limitations in identifying false data-injection attacks.

Traveling waves is a technique used for fault location tasks in trans-
mission lines. The idea is that when a fault occurs, faults produce tran-
sient currents and voltages that radiate outward from the precise location
of the fault. By capturing these waves and measuring the difference in
arrival times, it is possible to locate the fault [47]. Since the waves might
originate from other locations besides the fault and are, therefore, more
difficult to find due to their numerous branches, this technique is more
challenging to use in distribution lines. However, various techniques
have been proposed to cope with this problem. For example, Shi et al.
in [74] propose a method based on reclosure-generating traveling waves
to remove traveling waves reflected from branches.

Fault detection and location can be solved through optimization prob-
lems. An optimization problem aims to find the best solution among all
the possible ones, considering a series of constraints that must be veri-
fied. Among the optimization techniques, Integer Linear Programming
(ILP) is used in [39] to locate faults. In this work, Jiang uses the outage
reports from smart meters (SMs) to predict the outage region. Once the
outage region is detected, data from Remote Fault Indicators (RFIs) is
used by a model based on Mixed Integer Linear Programming (MILP)
capable of supporting decision-making and correctly locating the fault.

In the literature, Some methods for fault detection take advantage of
the frequencies that power line communication (PLC) systems typically
employ for communication. For instance, Milioudis et al. in [53] de-
scribe an approach for HIF detection and localization using PLC tech-
niques. PLC systems may provide high-speed data transmission and su-
perimpose high-frequency signals on power networks. The HIF detec-
tion technique uses signal superposition on the power lines in a specific
frequency range. For the chosen frequency range, the difference between
input impedances under normal and fault circumstances is found and is
utilized to detect the presence of a HIF. A protection scheme for HIF de-
tection and localization in multiconductor distribution networks is also
presented by the same authors in [54]. A PLC device installed at the start-
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ing point of the monitored line is used for fault detection by calculating
differences in input impedance under normal and faulty conditions. Ad-
ditionally, they determine the precise location of the fault; they use the
responses to injected impulses measured from PLC devices.
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CHAPTER3
Data-driven Fault Prediction System

Using Handcrafted Features

3.1 Introduction and context

Smart electrical grids, known as smart grids (SGs), are a complex infras-
tructure of distributed energy resources, appliances, and facilities that
allow for the optimal use and asset optimization of resources, conse-
quently lowering power consumption and investment costs [30]. This
complicated infrastructure is therefore required to have high reliability,
efficiency, and penetration of renewable energy sources [18]. As an il-
lustration, a transmission line breakdown resulted in a cascade effect
and a multi-day blackout in the Northeastern United States and Ontario,
Canada, in August 2003. More than 50 million people were left without
power, losing 4 to 10 billion dollars [10, 49].

Circuit breakers and protection devices have traditionally been em-
ployed to monitor faulty lines and locations [49]. According to the
power outage examination report [10], The cascading effects and con-
sequent blackout in North America in 2003 were primarily caused by
the protection relays and circuit breakers operating improperly. These
instances highlight the need for intelligent, quick, precise fault diagnos-
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tics and power system security assessment technologies. Gunduz et al.
list a number of security requirements that must be met for an SG to be
secure, including confidentiality, integrity, and availability, or the CIA
triad. Data protection from unauthorized disclosure is referred to as con-
fidentiality. Integrity is the prevention of illegal data tampering and de-
struction, while availability is the ability of authorized parties in the SG
to access data when needed without compromising security.

Several security requirements, in addition to the CIA triad’s security
goals, must be met to guarantee cyber-security in SG applications. They
include authentication, accountability, privacy, dependability, and sur-
vivability [30]. We concentrate on dependability, survivability, and ac-
countability attributes and investigate them in a simulation of an actual
electrical grid failure. Dependability refers to a system’s ability to pro-
vide services on schedule, in an accurate manner, and without interrup-
tions due to faults. Ensuring dependability requires fault detection, fault
forecasting, and fault prevention. Survivability aims to provide services
in the presence of malicious activities and external faults. The essen-
tial survival measures are fault localization, maintainability, and secu-
rity protocols. Accountability operations make it possible to identify the
source of a problem by presenting more visible proof of the grid’s func-
tionality.

Motivated by this observation, in recent years, some machine-learned
techniques have emerged that aim to detect and diagnose the fault in a
data-driven manner. Electrical grids must have this self-healing capabil-
ity to be dependable and intelligent. In a nutshell, self-healing aims to
perform fault detection, fault type classification (FTC), and fault location
classification (FLC) to automatically restore and recover the interruption
of energy in the electrical grid and shorten the interruption length for
customers [56]. In this chapter, we put our attention to the following
question:

• What type of fault happened in the electrical grid? known as the
fault type classification (FTC) problem.

• Where the fault has occurred within the electrical grid network?
known as the fault location prediction (FLP) problem.

• Why the ML system produced specific FLP, or FTC decisions? known
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as the interpretability problem (This research question will be pre-
sented in chapter 6).

We present a systematic and in-depth study of FTC and FLP systems
along the following directions:

• we addressee both FTC and FLC tasks.

• Here, we use time, frequency, and wavelet representations. We ex-
amine the effects of several statistical aggregation functions for fea-
ture representation, such as computing the energy and maximum
level of the signals for time, frequency, and wavelet, along with the
n-th moment of the probability distribution functions (PDFs) [78]
(n ∈ [1, 4]).

• We thoroughly examine the interpretability phase and specify the
information it enables us to learn about the effects of the feature
classes and statistical aggregation operators used for feature repre-
sentation (Interpretability part will be explaned in chapter 6).

3.2 Method

In this section, we describe the proposed system that receives a voltage
signal as input and outputs two scores related to sub-tasks: FLP (zone
1, 2, 3, and 4) and FTC, line-to-ground (AG, BG, CG), line-to-line (AB,
AC, BC), and three-phase fault (ABC). Voltage measurements are taken
from a specific phase (A, B, or C) and zones from the IEEE-13 node test
feeder simulink environment1. The pipeline of processing steps is shown
in Figure.

3.2.1 Fault Simulation and Feature Extraction

We used the IEEE-13 node test feeder, a distribution network running
at 4.16 kV, for simulation (Complete information about simulation con-
ditions and distribution network will be presented in Chapter 7). We
divided the network into four critical zones. All of the identified zones
received fault injections. Then, voltage signals from all of those zones

1 https://it.mathworks.com/help/sps/ug/ieee-13-node-test-feeder.
html
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IEEE-13 Node test feeder
(distribution grid)

Fault injection 

Measurements of three-phase voltage 
signals from faulty zones   

Multi-class single label
Classification

Extracting  
Transform-domain features

Extracting 
Signal-level features 

Concatenation 

DWT

FTC FLC

Fault injection 
to 4 zones

(1) 632-671
(2) 632-633
(3) 692-675
(4) 671-680 

Interpretability via pairwise 
feature importance 

DFT 

7 Fault types

(1) Line-to-line 
(AB, AC, BC)

(2) Line-to-ground
(AG, BG, CG)

(3) Three-phase 
(ABC)

Figure 3.1: The pipeline of the proposed system

were monitored in three-phase mode. Seven different short circuit faults
-namely, AG, BG, CG, AB, BC, AC, and ABC-were injected into each
zone to serve as inputs for the FTC model. 22 measurements were col-
lected corresponding to 22 resistance values fault resistance Rf values in
the range [0.001-2]. For all experimental cases, faults were introduced at
a specific start time of t = 0.01 and were released at t = 0.02; as a re-
sult, tf = [0.01− 0.02] represents the faulty period, and tn = [0− 0.01]
represents the normal period. The overall simulation time was set to
t = [00.022] seconds.

All of the features that were taken from the faulty period tf were nor-
malized by the identical feature that was extracted from the non-faulty
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(normal) period tn in order to get relative feature values. Three cate-
gories of features from earlier literature were used in this study, each
with a specific attention level [1, 20, 66, 82, 88]:

• Time-domain: it refers to the original data measured in the time
domain. Six aggregation functions were applied for the given volt-
age signal x(t) to produce a feature vector of dimensionality six to
represent the time domain feature vector. They include the 1st to 4-
th moments: mean, standard deviation, skewness, kurtosis together
with the energy and the maximum level of the signal.

• Discrete Fourier transform (DFT): Voltage signals were also con-
verted to the frequency domain using discrete DFT under the for-
mula X(f) = F(x(t)), where F stands for the DFT operation,
in order to acquire more detailed information regarding frequency.
The computed spectrum was subjected to the same six aggregation
functions employed in the time domain, resulting in a feature vector
with a dimension of six for the frequency domain signal.

• Discrete Wavelet transform (DWT): a digital signal processing
method known as DWT applies multi-resolution analysis to sig-
nals [50]. The DWT uses a short window at high frequencies and a
long window at low frequencies, in contrast to DFT, closely reflect-
ing the properties of the (non-stationary) signals. Approximation
Ai and detail Di wavelet coefficients are present in multi-resolution
analysis at decomposition level i. We use five decomposition levels,
A5, D1:5, which are motivated by earlier publications [1, 88].

There are feature vectors with a dimensionality of 6 for time and DFT
domain, respectively. For DWT, We employ 6 (coefficients) × 6 (aggre-
gation procedures), resulting in a 36-dimensional feature vector for the
wavelet domain. In total, 48 (6+6+36) features were collected to repre-
sent the features in our labeled training dataset.The following statistics
represent features in the DWT domains:

• The maximum value of the coefficients: A5 and D1:5

• The energy of the coefficients: A5 and D1:5
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• The first moment (mean) value of the coefficients: A5 and D1:5

• The second moment (standard deviation) value of coefficients: A5

and D1:5

• The third moment (skewness) value coefficients: A5 and D1:5

• The forth moment (kurtosis) value coefficients: A5 and D1:5

3.2.2 Fault Type and Location Classification

Concerning the primary goal, we attempt fault type classification (FTC)
and fault location classification (FLC), which are fundamentally multi-
class classification issues. We employ a variety of classifiers, includ-
ing Decision-Tree, SVM, KNN, and Ensemble techniques (Bagged-Tree,
subspace k-nearest neighbors).

3.3 Experimental setup

In this section, We thoroughly explain the experimental setup, includ-
ing the dataset (cf Section 3.1), the training setup, and the classifiers (cf
Section 3.2), which are used to verify the effectiveness of the suggested
method.

3.3.1 Dataset

As mentioned in Section 3.2.1, The IEEE-13 distribution system is di-
vided into four critical zones for data gathering and constructing the
training dataset. The data collection was repeated for 22 different fault
resistance values Rf in the range of 0.001 to 2 for each type of fault,
as indicated in Table ??, to augment more data to the training dataset.
The total number of training instances developed corresponds to the size
of the dataset employed in this study for the empirical evaluation was
4 (zones) × 7 (faults) × 3 (phases) × 22 (resistance values) = 1848.

3.3.2 Classifiers and training setup

For FTC and FLP tasks, five different classifiers are applied such as (i)
Decision tree (DT), (ii) support vector machine (SVM), (iii) k-nearest
neighbors, (iv) ensemble (bagged tree), and (v) ensemble (subspace KNN).
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Table 3.1: characteristic of fault types, locations, and resistances.

Item Details

Fault type
phase to ground AG, BG, CG
phase to phase AB, AC, BC
three phase ABC

Fault location

zone 1 branch 632-671
zone 2 branch 632-633
zone 3 branch 692-675
zone 4 branch 671-680

Fault resistance

0.0010, 0.0273, 0.0535, 0.0798,
0.1061, 0.1323 0.1586, 0.1848,
0.2111, 0.2374, 0.2636, 0.2899,
0.3162, 0.3424, 0.3687, 0.3949,
0.4212, 0.4475, 0.4737, 0.5, 1, 2

For the ensemble (bagged tree) classifier, the learner type was the deci-
sion tree, and the number of learners was equal to 30. Likewise, for the
ensemble (subspace KNN), the number of learners was set to 30, and the
subspace dimension was equal to 18. We employed a hold-out validation
(80%-20%) for the training and test sets to expedite the experiments. Ta-
ble 3.2 demonstrates the precise statistics of the training and test set. We
employed MATLAB for feature extraction and classification.

Table 3.2: IEEE-13 dataset: |D|T — total number of data in dataset, |D|Tr — number
of samples in training, |D|Te — number of samples in testing.

dataset |D|T |D|Tr |D|Te

IEEE-13 1848 1478 370

3.4 Results and Discussion

To better understand the merits of the proposed system, we aim to clas-
sify the result in two sections (i) classification and (ii) Feature analysis
and interpretability. The second part will be analyzed in chapter 6 by
answering the following research questions through the course of exper-
iments:

Q1. Which feature classes (domains) impact the prediction task most?
Q2. Which aggregation functions (norm, mean, skewness, etc.) used

for the feature representation enhance the classification accuracy the most?
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Q3. Which is the most suitable interaction between domains and ex-
tracted features?

Classification:Table 3.3 outlines the classification outcomes for the
FLC and FTC tasks employing five classifiers. We can point out the
outcomes of the three feature classes (time, frequency, and wavelet) for
both tasks as follow:

DWT presents the results with the highest classification accuracy on
average for all of the experimental instances. The second-ranked method
is time-based, and DFT yields the lowest quality. Only with SVM and
for the FTC challenge does DFT outperform the time-domain signal in
terms of output. This can be explained by the fact that DWT uses a
multi-resolution analysis, making it a time-frequency method. Finally,
it should be highlighted that combining all of the features results in the
classification with the best quality. Thus, the relationship between the
quality of various feature descriptors generally holds as follows: ALL
> DWT > Time > DFT. Regarding the classifier type, it could be noted
that the Ensemble methods typically provide the highest classification
quality, followed by SVM, i.e., Ensemble > SVM > Others.

In conclusion, for FLP, (ALL, Ensemble sub-space k-nearest neigh-
bors) yields the best results, with an accuracy of 100%, followed by
(DWT, Ensemble) at 99.7%. For FTC, (ALL, SVM) and Ensemble (BT)
both achieve the highest accuracy, with 95.4% and 93.5%, respectively.

3.5 Summary

In this chapter, we have addressed the security threats on the electrical
grid, representing one of the self-healing features of smart grids. By in-
serting faults into the IEEE-13 distribution network and gathering data,
we first established a large-scale dataset of 1.8K samples. Then, we de-
veloped a data-driven methodology to carry out fault location classifi-
cation (FLC) and fault type classification (FTC) automatically and pre-
cisely. Our suggested method is based on a suit of features taken from
the time, frequency, and, most crucially, wavelet domains. Addition-
ally, it tests and evaluates the significance of various feature classes by
utilizing several cutting-edge classification algorithms. We further inves-
tigated how various aggression functions relate to feature representation.
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Table 3.3: Classification accuracy (%) using 48 (6+6+36) features and five classifiers.
The first and second most profitable results are shown in Bold and Italic, respec-
tively.

Domain Classifier FLP FTC

Time

DT 67.5 88.1
SVM 59.1 90.5
KNN 58 86.2

Ensemble (BT) 72.1 88.3
Ensemble (K) 63.1 88.9

Frequency
(DFT)

DT 59.1 82.4
SVM 59.3 91.6
KNN 62.3 85.1

Ensemble (BT) 65 87.3
Ensemble (K) 59.9 83.2

Wavelet
(DWT)

DT 99.2 92.1
SVM 98.9 93
KNN 98.6 93

Ensemble (BT) 99.7 93.5
Ensemble (K) 99.7 84.8

All

DT 99.7 94.3
SVM 98.6 95.4
KNN 97.3 92.4

Ensemble (BT) 99.5 94.9

Ensemble (K) 100 84.8

Finally, a unique feature of this research is to present an interpretabil-
ity analysis for the aforementioned classification problem, in which we
highlight how interpretability can illuminate the rationale behind certain
decisions made by the ML system. Results are encouraging and demon-
strate the benefits of the suggested system to address security vulnerabil-
ities in SGs.
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CHAPTER4
Fault Prediction System Using Visual

features based on CNN modeling

Fault diagnosis (fault type and location classification) is crucial in elec-
trical grids due to its significant and economic effects. We suggest us-
ing a spectrogram-based representation of the fault signals that can offer
higher temporal and spectral resolution by giving 2D space as an input of
CNN. Although most of the effort has focused on improving the antici-
pated accuracy of machine-learning models for fault prediction systems,
the interpretability of these systems has gotten less attention than other
crucial aspects of this topic. In chapter 6, the visual interpretation of the
spectrogram-convolutional neural network will be represented in depth.

4.1 Introduction and Context

The autonomous monitoring of large and complicated electrical power
systems has recently drawn much attention from researchers. Correct
diagnosis and early detection of developing faults, in particular, have
been identified as crucial duties because they help reduce potential severe
threats, like extensive power outages across the electrical power grid. As
discussed in chapter 1, Cascading failure occurred in the Northeastern
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United States and Ontario, Canada, in August 2003, leaving inhabitants
without power worldwide for four to seven days. According to reports,
the principal cause of the global catastrophe that occurred due to (i) a
tree falling on a transmission line, causing a cascade effect, and (ii) the
failure of protection systems to maintain the system stability was the
short-circuits of a 345kV line.

These illustrations highlight the need for intelligent, fast, and accurate
power fault detection systems to assess the grid’s condition and perform
automatic fault analysis in real time. Over the last decade, the prob-
lem of automatic fault monitoring in SGs has been studied from diverse
viewing angles, the use of an aggregate of equipment and strategies from
computer science, electrical engineering, statistics, and artificial intelli-
gence (AI), mainly using automated data-driven machine learning (ML)
algorithms [21, 40, 64, 76].

In PGs, fault monitoring is done to identify and fix one of the follow-
ing issues:

• Fault detection (FD): determining whether or not a fault occurred
within the PG is the goal of fault detection. Relays can isolate the
damaged area from the rest of the PG using accurate FD and avoid
further damage to the busses in the troubled parts while maintaining
power to the healthy sections. FD is a binary classification task.

• Fault zone classification (FZC): where locating the fault’s location
within the PG network is the goal. The expedition and recovery
effort can benefit from this information. FZC is a multi-class clas-
sification task.

• Fault type classification (FTC): finding the type of fault that oc-
curred in the network and classifying it appropriately are the objec-
tives of fault type classification. FTC is also a multi-class classifi-
cation task.

The focus of this chapter is on the FZC and FTC subtasks. This study
does not address the topic of FD, which is a binary classification task.
Nonetheless, a healthy class is considered one of the classes in the FTC
subtask.

The aforementioned fault diagnosis issues have been the subject of
extensive investigation. These techniques can be broadly categorized as
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analytical [27, 69], and data-driven approaches employing ML [13, 71].
Analytical models establish a general framework based on construct-
ing circuit formulation and calculating the circuit parameters. This ap-
proach’s drawback is that it sometimes requires empirical determination
of specific parameters, which may not always be available. However,
ML-based methods can speed up this process by quickly accessing and
analyzing vast volumes of data about the grid’s past and present condi-
tions. The condition for creating precise ML systems is selecting and
extracting the target fault classification task’s most pertinent properties
from faulty signals.

Despite the impressive progress made in the field, the interpretability
of current data-driven fault detection systems in PGs is lacking, which
is essential for widespread adoption in the energy domain and critical
decision-making. In other words, previous "black-box" models were not
intended to explain to human operators-who have historically relied on
visual awareness-why a particular failure has arisen. It is crucial to cre-
ate ML models that are more interpretable without compromising predic-
tion accuracy in order to keep people in the control loop. By employing
spectrogram-based CNN modeling of fault, which improves prediction
performance and allows for the incorporation of prior domain knowl-
edge, we provide a visual explanation of fault detection, which will be
considered in detail in chapter 6.

In this chapter, we begin with a representation of the fault signals
based on spectrograms, and then we employ two CNN types that have
already been trained to extract characteristics pertinent to managing the
task at hand automatically. In addition, we overlay the spectrograms
with heat maps that visually explain the decisions made by deep learning
systems. The contributions of this study include the following:

• Information representation: we propose using a spectrogram-
based representation of the fault signals since it can offer adequate
temporal and spectral resolution than other representations, like a
DFT-based model, which tends to provide uniform spectral reso-
lution. According to some studies, because DWT is based on the
symmetric kernel [2], it may be less successful at detecting signal
asymmetry, which could affect fault types that cause unsymmetrical
short-circuits, such as Line to Line (LL), Line to Ground (LG), or
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Line to Line to Ground (LLG).

• Information processing and prediction: To extract time-frequency
properties, spectrogram images were processed using two pre-trained
CNN types, GoogleNet and Squeeznet. As seen in other image clas-
sification challenges [35], CNNs can produce excellent outcomes
due to the millions of parameters involved in these networks. Be-
fore now, these pre-trained models have successfully modeled tem-
poral signals based on spectrograms in fields like music information
retrieval [17]. The utilization of Spectrogram-based CNNs allowed
us to gain a remarkable classification accuracy for both multi-class
fault type classification (FTC) and fault zone classification (FZC)
tasks.

• Simultaneous location and type classification:we demonstrate the
applicability of our proposed approach to suggest joint FTC and
FZC, in which the classifier would produce a single score represent-
ing both the FTC and FZC, in contrast to most prior work, which
focuses on the individual prediction of FTC or FZC, or both but
tested in separateness.

• Visual explanation: given that machine learning (ML) and deep
neural networks are black boxes, we construct an explanation mod-
ule to shed some light on the system’s failure decisions in this study
(this topic will be explained in the chapter 6)

4.2 Method

This section illustrates the core contribution of the present work. Fig-
ure 4.1 depicts the pipeline of the proposed system. The three following
steps make up the main processing actions:

4.2.1 Spectrogram-representation of the data

We employed spectrograms collected from the input voltage signals to
generate a time-frequency representation from the measurement signal
and utilize the prediction power of deep neural networks. A spectro-
gram is created by segmenting a time-domain signal into shorter pieces
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of equal length. Then, each segment is subjected to the fast Fourier trans-
form (FFT). The spectrogram is a graphic representation of the spectrum
for each segment. In particular, the computation of the spectrogram en-
tails (1) splitting the signal into segments of length n that overlap equally,
(2) windowing each segment, (3) calculating consecutive Fast Fourier-
transform (FFT) for each segment, and (4) finally visualizing the power
of each segment of the spectrum as an image. Spectrograms can be a
valuable tool for illustrating how the signal’s non-stationary frequency
content changes over time. We primarily use the Spectrograms’ visual
representation feature as input to deep neural networks for the fault di-
agnostic task.

The equivalent spectrogram of the original three-phase fault (ABC)
voltage signal that is impacted by a three-phase fault is displayed on the
left side of Figure 4.1. The visual patterns of the spectrogram before and
after fault injection differed, as seen (in the middle of the spectrogram).
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4.2.2 CNN-based feature extraction

We utilized two powerful deep pre-trained CNN models, GoogleNet and
SqueezeNet, which have both been used successfully in spectrogram-
based modeling of temporal signals, such as music signals in music
information retrieval task [17], in order to be able to extract notewor-
thy features from the visual spectrogram representation (providing both
time and frequency information). The following is a description of these
networks:

• GoogleNet: It is a pre-trained CNN that was developed using the
ImageNet database and achieved state-of-the-art performance for
classification and detection in the ImageNet Large-Scale Visual Recog-
nition Challenge 2014 (ILSVRC14) [79]. The CNN is based on an
inception architecture with 22 deep layers and 144 building blocks.

• SqueezeNet: This CNN architecture contains an 18-layer deep net-
work with 68 building blocks that were developed using a smaller
CNN architecture [35] and trained on ImageNet. This network has
demonstrated the ability to learn characteristics from many photos
in different categories. In this network, an input image has a dimen-
sion of 227 by 227 (pixel × pixel).

Figure 4.1 illustrates how CNNs deal with I Feature Learning and (ii)
Classification tasks. Convolution and pooling are combined for feature
learning. Convolutional layers build feature maps that list the presence
of particular features (fault features) in the input signal by repeatedly ap-
plying learned filters to input spectrogram images. The feature maps’
dimensionality is decreased by adding a pooling layer after the convo-
lutional layer. As a result, the network needs to learn a smaller set of
parameters. Feature classification uses fully connected layers that es-
sentially act as a classifier and assigns a probability for the input image
being one of the fault classes (location or type).

In both deep networks, the Softmax function is applied to the output
of Fully connected layers, where the procedure is defined for multi-class
classification according to:

P (y = j|x) = ex
Twj∑K

k=1 e
xTwk

(4.1)
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where 0 ≤ P (y = j|x) ≤ 1 is the conditional probability of classifying a
given instance input vector x as y = j and w being the weighting vector.
The classification layer, which assigns each input to one of the k classes
by using the cross-entropy function as below [9], receives the output of
the Softmax layer as its input in the final step.

loss = −
N∑
i=1

k∑
j=1

tijlnyij (4.2)

in which k refers to the number of classes (k = 12 fault types, and k = 4
for fault locations) and N is the number of samples. yij indicates the
value from the output of the Softmax function for ith sample belonging
to the jth class.

4.2.3 Fault diagnosis

We address two significant issues in fault diagnosis in the currently pro-
posed work, namely fault zone classification (FZC) and (iii) fault type
classification (FTC), which are both addressed in Section 1. We also
added a combined prediction challenge for the two sub-tasks. We use a
multi-label method with a one-hot encoding scheme to describe the re-
sult. There are 4, 12 (11 + 1 for healthy), and 45 (11 × 4 + 1 = 45)
classes in each of the three subtasks, FZC, FTC, and joint. Note that
since no zone could be associated with the healthy class (i.e., zones are
only taken into consideration for faults), we count the healthy class as a
single class, which brings the total number of classes to 11×4+1 = 45.
The algorithm will not check for its location if the model discovers a
healthy class.

4.3 Experimental setup

In this section, we explain the experimental setup, including the dataset,
data collection, training setup, and baselines used to confirm the effec-
tiveness of the suggested fault zone and type classification system. In our
simulation of the IEEE-13 test node feeder using MATLAB, we used the
default parameters, a voltage frequency of 60 Hz, and a sample time of
10−5.
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Table 4.1: Specification of fault types, locations and resistance values used in the
simulations

Item Details

Fault type

phase to ground AG, BG, CG
phase to phase AB, AC, BC
phase to phase to ground ABG, ACG, BCG
three phase ABC
three phase to ground ABCG

Fault location

zone 1 branch 632-671
zone 2 branch 632-633
zone 3 branch 692-675
zone 4 branch 671-680

Fault resistance

0.0010, 0.0273, 0.0535, 0.0798
0.1061, 0.1586, 0.2111, 0.2374
0.2899, 0.3162, 0.3424, 0.3949
0.4475, 0.5, 1

4.3.1 Data and Training

We injected 11 fault types with 15 different resistances for each type
of fault to these four critical zones adjacent to load flow buses number
671, 633, 675, and 680 (These zones are highlighted in Figure 4.2). This
information is summarized in Table 4.1. Chapter 7 has more specifics
concerning the condition with Simulink and the collected dataset.

Following data collection, GoogleNet and SqueezeNet, two separate
pre-trained deep CNNs, are employed. As indicated in Table 4.2, sev-
eral hyperparameters are applied to GoogleNet, SqueezeNet, and Cus-
tomCNN to achieve an ideal CNN structure for the training process.
A hold-out validation (70%-30%) was utilized for the training and test
sets. MATLAB R2020a was used to implement and validate the system.
Codes are available are made available.1

Table 4.2: Hyper-parameters utilized in the deep models (pre-trained CNNs and Cus-
tomCNN) for training the classification models analyzed in this research (FZC and
FTC).

Hyperparameter GoogleNet SqueezeNet CustomCNN
Initial learning rate [1e-3, 1e-4, 3e-3, 3e-4] [1e-3, 1e-4]
Bach size [128, 256] [32, 64] [64, 128]
Max epochs [15, 25]
Number of layers 144 68 4
Number of params. 7M 1.24M A few K

1 https://github.com/atenanaz/FaultClf_SmartGrids
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Zone 1

Zone 4

Zone 2

Zone 3

Figure 4.2: One-line diagram of the IEEE-13 node test feeder with highlighted four
selected zones.

4.3.2 Baseline

By examining several features taken from the time, DFT, and DWT do-
mains and utilizing a collection of well-known classifiers, we evaluated
the effectiveness of our system against reliable baselines. Three cate-
gories of features, (i) temporal (time-based), (ii) frequency (based on
DFT), and (iii) wavelet domain, represent the state-of-the-art in the field,
and they were used as the basis for feature extraction.

This study investigated the effects of several statistical aggregation
functions on feature extraction, including the probability distribution n-
th moment (n ∈ [1, 4])) as well as the energy and maximum level of the
signals. As a result, the time and frequency domain feature vectors were
six dimensions. We collected 6 (coefficients) × 6 (aggregation proce-
dures) for the DWT, resulting in a 36-dimensional feature vector for the
wavelet domain. Therefore, we examined a total of 6+ 6+ 36 = 48 fea-
tures that were gathered from the time, DFT, and DWT domains. Finally,
for the FTC, FZC, and joint (FTC+FZC) tasks, five different classifiers
were employed. They include (i) decision tree (DT), (ii) support vector
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machine (SVM), (iii) KNN, (iv) ensemble, and (v) Multi-layer percep-
tron (MLP) besides (vi) CustomCNN with four layers (with 64 and 32
neurons respectively used in the hidden layer). Similar to the splitting
used for assessing our system, we employ a hold-out validation (70%-
30%) while producing training and test sets.

4.4 Results and Discussion

This section reports the experimental results of three main tasks of fault
diagnosis of the proposed system: FTC, FZC, and joint FTC+FZC. Fi-
nally, we compared the proposed system with robust baseline methods,
as summarized in Table 4.4.

4.4.1 Fault zone classification (FZC)

The first thing that becomes apparent when looking at the data presented
in Table 4.3 is that the values obtained for FZC are substantially larger
than those for the other sub-tasks, namely FTC and FTC+FZC. This can
be explained by the fact that the FZC task has fewer classes (4 classes)
than the other sub-tasks, such as FTC (12 classes) and FTC+FZC (45
classes), making the task of the classifier a simpler one. We can see that
at epoch 25, SqueezNet achieves the maximum level of accuracy, 85.3%,
while GoogleNet achieves 85.1% (with a longer training time).

4.4.2 Fault type classification (FTC)

The best result for FTC was obtained for GoogleNett at epoch 25, with
the classification accuracy equal to 59.4%. However, SqueezeNet trained
in a remarkably short time and reached an accuracy score of 58.4% at
epoch 15.

4.4.3 Joint type-location prediction

In more detail, we can see that GoogleNet (57.2%) at epoch 25 achieved
the most significant results for the joint type-location classification by
looking at the differences between the results of the two-deep networks.
Despite this, SqueezeNet has managed to achieve its highest level of ac-
curacy (54.4%) at epoch 15 and a training duration that is three times
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Table 4.3: Classification accuracy (%) using spectrogram on GoogleNet, GoogleNet,

and CustomCNN along different epochs. The training times were obtained on a
regular machine. The could be decreased if performed on a high-speed machine
equipped with GPUs. The comparison between the models’ training time, however,
remains valid.

GoogleNet SqueezeNet CustomCNN
best epoch 25 25 15

FZC best accuracy 85.1 85.3 84.2
training time 10.29 h 3.92 h 8.43 h
best epoch 25 15 15

FTC best accuracy 59.4 58.4 56.9
training time 11.26 h 2.64 h 9.01 h
best epoch 25 15 15

FZC+ FTC best accuracy 57.2 54.4 56.6
training time 11.12 h 3.82 h 12.93 h

slower than GoogleNet.
Summary. in general, SqueezeNet looks to be the best choice for the

FTC and FZC subtasks when expected accuracy and training time are
considered, as it proposes high classification accuracy with a remarkably
shorter training period. However, GoogleNet can be the best solution if
almost precision is necessary. GoogleNet and CustomCNN seem to be
the top alternatives for joint prediction tasks in this case.

4.4.4 Comparative evaluation under baseline

As shown in Table 4.4, we compared the proposed system to strong base-
line techniques representing state of the art in ML-based prediction tech-
niques. The wavelet domain (DWT) produces, on average, features with
the highest classification accuracy for all three experimental scenarios,
regardless of the classifier type, making it the best domain among the
time, frequency, and wavelet domains. The cause may be related to the
fact that DWT uses a multi-resolution analysis of the signal, making it
appear to be a time-frequency technique. We have also included a Cus-
tomCNN with four layers (the hidden layer uses 64 and 32 neurons),
whose hyper-parameters are displayed for a fair comparison with Ta-
ble 4.2.

The data indicate a difference between the best outcomes from the
suggested method and the baseline. For instance, SqueezeNet outper-
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forms all other baselines with a maximum performance level of 85.3%
in the FZC task. Further, both GoogleNet and SqueezeNet outperform
CustomCNN, while SqueezeNet acts as the best model from a computa-
tional point of view.

On the other hand, GoogleNet and SqueezeNet both outperformed the
baseline for the FTC test, and GoogleNet scored the highest accuracy
(59.4%) in the proposed system. Likewise, for joint type-location clas-
sification, the best result was obtained by GoogleNet with an accuracy
of 57.2%. Additionally, CustomCNN outperformed SqueezeNet in accu-
racy while taking much longer to train, which is time-consuming.

4.5 Summary

The classification of fault type, fault zone, and joint type-location for
power grids are issues that we addressed in this research by proposing
a spectrogram-based CNN system (PGs). The proposed approach relies
on robust deep convolutional neural networks to extract visual elements
from the spectrogram images, reflecting time and frequency character-
istics of faulty signals, and classify them according to their origins, type,
and locations. We displayed the competitive results produced utilizing
two cutting-edge pre-trained CNNs, GoogleNet and SqueezeNet, com-
pared to the pre-existing baseline employing DFT, DWT, and Custom-
CNN.
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Table 4.4: Classification accuracy (%) using 48 (6+6+36) features and five classifiers
in three different domains, and CustomCNN classifier for spectrograms as a baseline
for comparison with the most promising results of the proposed technique.

FZC FTC FZC+FTC
Input Classifier & DeepNet accuracy accuracy accuracy

Time

DT 58.5 43.6 25.7
SVM 59.6 49 35.4
KNN 70.4 55.9 42.7

Ensemble 69.7 55.6 41.9
MLP 57.1 51.1 32.9

Frequency
(DFT)

DT 55.5 43.1 25.1
SVM 55 45.6 31.5
KNN 67.1 51.6 37.9

Ensemble 66.7 50.8 37.7
MLP 53.4 45.6 29.6

Wavelet
(DWT)

DT 79.2 42.8 26
SVM 81.6 49.3 49.2
KNN 84.2 55.3 53.9

Ensemble 83.1 48.8 45.6
MLP 82 50.4 47.3

Spectrogram
(proposed)

GoogleNet 85.1 59.4 57.2
SqueezeNet 85.3 58.4 54.4
CustomCNN 84.2 56.9 56.6
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CHAPTER5
Adversarial Machine-learned Attack in

Smart Electrical Grid

In smart electrical grids, fault prediction tasks such as fault detection,
fault type, and fault location classifications are vital due to their enor-
mous economic and functional consequences. Several smart grid appli-
cations have utilized data-driven methodologies, including fault detec-
tion and load forecasting. Nevertheless, the robustness and security of
these data-driven algorithms have not been adequately investigated for
all power grid applications. This chapter addresses the challenges raised
by the security of machine learning applications in the smart grid. First,
we demonstrate that adversarial perturbation can damage the smart grid’s
deep neural network approach. We underline how research on fault local-
ization and type classification accentuates the vulnerabilities of present
machine learning algorithms in the smart grid to a variety of adversarial
attacks.

5.1 Introduction and context

According to a statement released by the World Health Organization, at
least one in every ten patients experiences suffering due to inadequate
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infrastructure security. Instability or inadequate distribution of electrical
energy can directly influence people’s lives and societal well-being. The
current study is concerned with the “security of power grids”, which
serve as the country’s critical energy infrastructure (CEI) [60].

Under the smart grid (SG), conventionally-operated electrical grids
have undergone significant revisions and upgrades regarding dependabil-
ity, robustness, and efficiency. One of the most critical components of
SGs is their application in fault detection, fault classification, and routine
examination of the underlying disruptions that trigger the failures. Power
grid networks are inherently vulnerable to physical damage. Electrical
faults can be caused by natural disasters such as tree or bird contact,
lightning, or aging of the equipment [70]. Additionally, due to a lack of
insulation around the cables, these faults may frequently occur in High
Voltage Transmission Lines. Large-scale cascading consequences from
power system breakdowns might have a disastrous effect on the nation’s
economy and security. As a result, for the Electric Power Supply indus-
try and the overall security of CEI, rapid fault detection and classification
with a high degree of fidelity is a vital service.

The classification of faults and the locations where they occur are
the main topics of this chapter. While the primary goal of fault type
classification (FTC) is to identify the fault’s type class, fault zone clas-
sification (FZC) seeks to identify the zone (or occasionally the precise
location) in which the fault has occurred. In both transmission and dis-
tribution systems, voltage sags are the primary cause of faults, which
can appear as asymmetric (phase-to-phase (LL), single-phase-to-ground
(LG), or two-phase-to-ground (LLG) faults or symmetric (three-phase-
to-ground (LLLG or LLL) faults) [1,75]. Previous literature has utilized
a combination of tools and approaches from electrical engineering, sig-
nal processing, and artificial intelligence (AI) [21, 71, 75] to solve the
above fault classification tasks. Due to the vast volumes of data cover-
ing energy networks, machine-learned (ML) models, particularly those
based on deep learning, have seen an increase in adoption in the present
infrastructure of power systems.

Notwithstanding their great performance, the complexity of existing
(deep) inference methods could be their undoing. Adversarial attacks
can use their weaknesses to vulnerable the confidentiality, integrity, or
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Zone 1

Zone 3

Zone 2

SCADA 

Dispatch group

Figure 5.1: A hypothetical illustration of targeted adversarial attacks against fault
zone prediction in smart grids. A fault location prediction system was subjected to
an adversarial attack, and as a result, recovery groups were unintentionally sent to
zone 3 when they should have been in zone 2.

accessibility of SGs (aka the CIA triad) [24, 89]. Adversarial examples,
small but deliberate perturbations intended to make a machine learning
model generate incorrect results, are used to operationalize adversarial
attacks (e.g., to mis-classify an input sample).

The following is an example of a motivating scenario. As shown in
Figure 5.1, Here is an illustration of a motivating scenario. An attacker
can attack the fault prediction system used in supervisory control and
data acquisition networks (SCADA) [19] by breaching the SG system’s
communication network. The attacker’s objective is to launch a targeted
adversarial attack, i.e., to cause the ML model employed in the SCADA’s
fault classification system to misclassify an input sample into a known
but erroneous class. To accomplish this goal, in the FZC scenario, the
attacker selects an (illegitimate) target class label that can cause more
significant damage and suffering by prolonging the expedition and re-
covery effort. In other words, the attacker could activate a false posi-
tive signal and guide the rescue team to more difficult-to-reach and truly
faultless and densely populated regions. Similarly, in the FTC exam-
ple, the attacker might fool the system into predicting a simpler-to-repair
fault type when the fault is more complicated to repair. All these ex-
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amples and scenarios motivate that adversarial attacks if left unchecked,
can potentially cause catastrophic harm to society owing to their often
impenetrable nature.

Our key contributions are summarized as follows:

• We investigate the consequence of adversarial attacks against sev-
eral critical fault classification problems, namely fault type classifi-
cation (FTC), fault zone classification (FZC), and their combination
on a widely used dataset based on the IEEE-13 test node feeder with
renewable energies;

• We analyze adversarial attacks by examining multiple experimental
situations with different adversarial goals (targeted vs. untargeted),
attack models such as FGSM and C&W, and comparing them to
random noise and the baseline model (unattacked);

• Empirical experiments on a widely adopted dataset based on the
IEEE-13 test node feeder with renewable energies (more explana-
tion in chapter 7) indicate that adversarial attacks can degrade the
quality of classification significantly;

5.2 Security in Smart Grid

With the increasing development and widespread use of machine learn-
ing applications, it is vital to discover the adversarial vulnerabilities of
intelligent systems driven by these models. Recently, interest in adver-
sarial machine learning (AML), a subject that analyzes the security of
machine learning models under attack and from a defense viewpoint,
has risen.

We can classify the distinguishing characteristics of attacks against
machine-learning (ML) systems according to the following dimensions [83]:

• Attacks Timing. This concerns the time in the ML pipeline where
the attack is applied is considered. A decision-time attack (eva-
sion attack) attempts to alter the output of a model by introducing
adversarial samples that are precisely constructed and contain neg-
ligible human-imperceptible perturbations. A training-time attack
(also known as a poisoning attack) alters the training data by insert-
ing erroneous data points. The terms evasion and poisoning relate
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to their respective mechanisms of operation, i.e., “evading the clas-
sifier decisions” and “adding poisons to training data”, respectively.

• Attacks Information. A distinction is made between white-box
and black-box attacks. In the first case, the attacker has full knowl-
edge of the target model. In the other case, the attacker only has
partial or no knowledge of the target model. A white-box attack
is thought to be more potent than a black-box one. Therefore,
as a conservative measure, investigating the security of SGs under
white-box attacks is deemed more important.

• Attacks Goals. Adversarial attacks may be directed at creating a
specific misclassification, such as causing a trained function f to
predict an erroneous label l on an instance x (targeted attack), or
they may be directed at causing a generic misclassification (untar-
geted attack).

5.2.1 Adversarial examples and attack on SG

[15] concern the vulnerability of machine learning algorithms used in
building load forecasting and power quality disturbance investigation
against specific adversarial attacks such as [25] developed a generative-
adversarial system for partially labeled samples, named semi-supervised
generative-adversarial learning (GBSS). Generative-adversarial learning
aims to construct a semi-supervised learner resistant to attacks and faults.
In [58], adversarial attacks on convolutional neural network-based event
causes for three different power grid events (i) line energization, (ii)
capacitor bank energization, and (iii) fault prediction were given. The
fast gradient sign technique (FGSM) was employed to create false volt-
age or current data. The level of the opponent of the FGSM is further
compared using the Jacobian-based Saliency Map Attack (JSMA). The
performance of the CNN classifier against specific threats is enhanced
through adversarial training. According to [77], voltage stability is eval-
uated using adversarial instances produced utilizing methods like FGSM,
PGD, DeepFool, Universal Adversarial Network (UAN), as well as Uni-
versal Adversarial Perturbation (UAP) (UAP). Adversarial training is
used to protect against these adversarial examples.
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5.2.2 False data injection (FDI) attacks on SG

False data injection was considered an adversary in particular literature,
and a defense mechanism against this attack was originally presented
in the smart grid area [3]. For instance, [31], the authors examined the
benefit an attacker can obtain by attacking power measurements. Us-
ing zero-sum game theory, they quantified the gain received by injecting
false data points into the smart grid. [81] proposes a joint attack (attack
within an attack). They argued that deep learning technologies presented
as detectors are vulnerable to adversarial attacks. In this context, they
propose a joint adversarial example and FDIA (AFDIA) by perturbing
the neural attack detection employed in FDI.

5.3 Method

We have performed adversarial attacks against two machine-learned fault
classification tasks in smart electrical grids, which serve as the core at-
tack target. The attacks are conducted as non-targeted and targeted. This
section discusses our strategy in depth.

5.3.1 Problem definition

Adversarial task. Given a training dataset D of n pairs (x, y) ∈ X ×
Y , where x is the input sample, and y is its corresponding class label,
the classification problem is formulated as finding a target function fθ :
X → Y that can predict the class label y surroundings the input sample
x, where θ is the model parameter. The goal of the adversarial attacks is
to find a non-random perturbation δ to produce an adversarial example
xadv = x + δ such that it can induce an inaccurate detection (e.g., mis-
classification). The methods by which delta is learned are referred to as
adversarial attacks, and they can be either targeted or untargeted.

Definition 4 (Targeted adversarial attack). Given a trained classifier f(x; θ)
and a test instance from the dataset x0 ∈ D where f(x0; θ) = y0, the
goal of a targeted attack is to perturb x0 with a small budget ∥δ∥ ≤ ϵ

such that the perturbed sample would be mis-classified to the target label
yT ̸= y0, referred to as the mis-classification label. The problem can be
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represented using an unconstrained optimization problem formulation

min
δ:∥δ∥≤ϵ

L(f(x0 + δ; θ), yT ) (5.1)

One can note that in this case, here the attacker aims to minimize the
distance (loss) between the adversarial prediction f(x0+δ) and the mis-
classification label yT .

Definition 5 (Untargeted attack). The goal of the attacker in untargeted
attack is to cause any mis-classification to maximize the loss between the
adversarial prediction and the legitimate label y0

max
δ:∥δ∥≤ϵ

L(f(x0 + δ; θ), y′ ̸= y0) (5.2)

as such, it is clear that the attacker’s objective in this scenario is to cause
any mis-classification y′, regardless the of the specific type.

5.3.2 Fault Classification in Smart Grids

In this study, we explore different multi-class classification problems per-
tinent to fault prediction in smart grids with K ≥ 2 classes in this paper,
in which X is the input space and y = {1, 2, ..., K} the output space.
The two goal labels for the issues at hand in our scenario are (i) fault
location and (ii) fault type. Therefore, the main task is split into three
sub-tasks:

1. Fault location classification (FLC): with K = 4 the task seeks to
classify a given signal into its originating zone.

2. Fault type classification (FTC): with K = 11 the task aims to clas-
sify a given signal into one of the predefined fault types.

3. Joint location and type classification (FLC+FTC) k = 44 combin-
ing both fault class labels in the preceding cases.

where, (1) and (2) are explicitly contained in the dataset, while (3) is
obtained by combing each different possible combination of task 1 and
task 2. Therefore, we can state that the joint task is expected to be more
complex than the former.
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5.3.3 Adversary threat model

Before examining the effects of adversarial attacks, we explain the ad-
versary threat model provided. The adversary’s assumption entails:

• Adversary goal. The adversary wants to deploy untargeted and
targeted assaults to misclassify smart-grid fault classification tasks
in each of the three FZC, FTC, and joint sub-tasks. In the targeted
situation, the purpose may be to produce more difficult-to-reach or
difficult-to-resolve (mis-classification) labels to obstruct or delay
the recovery of the task.

• Adversary knowledge. We presume that the attacker is operating
in a white-box environment and is fully aware of all the feature ex-
traction model’s input and output parameters and the perturbation
they wish to estimate. In addition, the attacker has full access to the
input features that would be changed due to the attack. The attacker
can also obtain the class labels in targeted attack scenarios.

5.4 Experimental Evaluation

We analyzed adversarial attacks against smart grids on a dataset acquired
from IEEE-13 test node feeder with renewable energies. The experimen-
tal setup is presented below.

5.4.1 dataset

The MATLAB Simulink environment was used to inject short-circuit
faults into an IEEE-13 node test feeder to collect data and create the
training dataset for fault classification in smart grids [1,73,75] . Renew-
able energy sources like solar systems and wind turbines were included
in the node feeder. We divided the network into four zones, adjacent to
four load flow buses (numbered via 671,633, 675, and 680, see [59]),
and measured the three-phase voltage signals. We applied 11 short cir-
cuit faults to four specified zones in the IEEE-13 network. These faults
cover every conceivable short-circuit fault. To ensure having a sufficient
number of samples in the training dataset, each fault was generated with
22 different fault resistance values [34, 73]. Our final training dataset
contained 4 (zones)× 4 (measurement-zone)×11 (faults)×3 (phases)×
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22 (resistance values) = 11616 samples. Dataset will be described in
depth in the chapter 7. Note that we collected (measured) signals from 4
locations regardless of locations, and after feature extraction (see below),
we stacked them together to create a super-vector fed into the neural net-
work ML model.

The time series signals were represented as discrete features retrieved
from the time, frequency, and wavelet domains utilizing temporal, Dis-
crete Fourier transform (DFT), and Discrete wavelet transform (DWT)
analysis, as previously investigated [8, 69]. After that, we extract six
features from each domain related to energy, maximum, and the 4-th
moment of their probability distribution functions (PDFs) (e.g., mean,
norm, skewness, kurtosis). The overall size of the feature vectors utilized
in the learning model is 48, divided into 6 (time)+6 (DFT)+36 (DWT),
where we employed 6 (coefficients) 6 × 6 (aggregation operations) for
the DWT features, resulting in a 36-dimensional feature vector.

5.4.2 Adversarial Attacks

The implemented attacks consist of the fast gradient sign method (FGSM),
basic iterative method (BIM) [43], and Carlini and Wagner (C&W) [11].
FGSM is a white-box attack that utilizes the sign of the loss function’s
gradient to learn adversarial perturbations, and BIM is the iterative ver-
sion of the FGSM. In the untargeted scenario, FGSM aspires to generate
a perturbation that maximizes the training loss formulated as

δ = ϵ · sign(▽xℓ(f(x; θ), y)) (5.3)

where ϵ (perturbation level) represents the attack strength and ▽x is the
gradient of the loss function w.r.t. input sample x, y is the legitimate
label and sign(.) is the sign operator. A targeted FGSM attack is, instead,
formulated as

δ = −ϵ · sign(▽xℓ(f(x; θ), yT )) (5.4)

in which the goal of the attacker is maximize the conditional probability
p(yT |x) for a given input x.

The second category of adversarial attacks is Carlini and Wagner. It is
a powerful attack model for finding adversarial perturbation under three
various distance metrics (ℓ0, ℓ2, ℓ∞). Its key insight is similar to L-
BFGS [80] as it transforms the constrained optimization problem into
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an empirically chosen loss function to form an unconstrained optimiza-
tion problem as

min
δ

(
∥δ∥pp + c · h(x + δ, yT )

)
(5.5)

where h(·) is the candidate loss function.
The C&W attack has been used with several norm-type constraints

on perturbation among which the ℓ2 and ℓ∞-bound constraint has been
reported to be most effective [11].

5.4.3 Fault Classification

Model and training details. For the three classification tasks listed in
Section 5.3.2, we trained a multi-layer perceptron (MLP), a type of deep
neural network. An input layer, two dense layers, and an output layer
make up the model. As its number of neurons must match the num-
ber of output classes in each task, the latter is the only layer that varies
throughout the three tasks. Separate training stages are required for each
task, and they are all conducted using the same settings: 500 epochs, the
Adam Optimizer, a fixed learning rate of 10e-3, and a batch size of 20.
The hyper-parameters were obtained after fine-tuning.
Implementation of the attacks. We employed the IBM Adversarial Ro-
bustness Toolbox to accomplish the adversarial attacks due to its compat-
ibility with Keras and wide offer of suitable attacks for a deep learning
model. The performed attacks consist of FGSM, multi-step (BIM), and
C&W attacks. These attacks were conducted in both untargeted and tar-
geted scenarios.

5.5 Results and Discussion

Through the course of experiments, we want to answer the following
evaluation questions to understand better the efficacy of the researched
adversarial attacks against the fault classification system in SGs.

RQ 1: Compared to random noise, how successful are adversarial per-
turbations produced by various adversarial attack methods (FGSM,
BIM, and C&W) against the three fault classification tasks in SGs
provided in Section 5.4.3?
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Figure 5.2: Three tasks under targeted and untargeted adversarial attacks. Classifica-
tion accuracy for FZC = 0.7134, FTC = 0.4569, and FZC + FTC = 0.4543.
Best results for C&W were obtained under ℓ∞ for untargeted attacks and ℓ2 for tar-
geted attacks. Note that the starting point of noise power for all attacks and random
noise is 0.001.

RQ 2: How does the performance of attacks change when we alternate
between the attack targets?

Discussion. We begin our experimental study by addressing the evalua-
tion questions mentioned above.

Answer to RQ 1. This research question examines whether using ad-
versarial attacks on fault classification systems (FZC, FTC, and joint)
affects how the ML models behave. Figure 5.2 demonstrates that, across
three tasks and under various noise levels (ϵ), all analyzed adversarial
attacks - FGSM, BIM, and C&W - have a significantly more prominent
effect than random perturbation, with the impact expanding as the per-
turbation budget grows. Comparing the strength of the three adversarial
attack models, BIM is the strongest in all tasks. For instance, in the
situation of (untargeted, FTC) with an attack budget (noise level) equal
to epsilon = 0.04, BIM untargeted adversarial attack accuracy reaches
0.05, while FGSM and C&W reach 0.09 and 0.16, respectively, under the
same scenario. BIM and C&W are more affected by attack targets (tar-
geted vs. untargeted) than FSGM. For example, for the FTC (ϵ = 0.04),
the classification accuracy is 0.21 vs. 0.05 (BIM-untargeted vs. BIM-
targeted), however for FGSM the corresponding difference is only 0.1
vs. 0.09 (FGSM-untargeted vs. FGSM-targeted).

In summary, the strengths of the assaults can be contrasted using
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BIM>C&W>FGSM (the first being the strongest). Only textbfC&W-
targeted deviates from the pattern and performs poorly, while C&W-
untargeted performs sufficiently in all of the scenarios that were investi-
gated.

Answer to RQ 2. This research question concerns how the effective-
ness of various adversarial attacks differs across smart grid fault predic-
tion tasks and explores whether task complexity affects the results.

Starting with three tasks, we evaluate the attacks’ overall strength.
At ϵ = 0.04 the power of attacks FGSM-untargeted, BIM-untargeted,
C&W-untargeted, FGSM-targeted, BIM-targeted, C&W-targeted is equal
to 0.166, 0.160, 0.281, 0.271, 0.265, and 0.631 respectively. Thus, w.r.t
the base ML model (0.713), we may remark a relative degradation of
329% , 345% , 153% , 163%, 168%, and 13%. The equivalent relative
degrading power of attacks for FTC task are 396%, 756%, 175%, 374%,
108%, 17% and for the joint FZC+FTC task include 339%, 1408%,
226%, 779%, 206%, 4.9%. As a result, FZC = (275.6%, 114.6%), FTC =
(442.3%, 166.3%), and FTC = (657.6%, 329.9%) are the average degra-
dation powers for (untargeted, targeted) goals. It is possible to observe
that when a task becomes more challenging, both untargeted and targeted
attack models perform better (are stronger).
In summary, the result of empirical evaluation shows that the difficulty of
the fault prediction tasks (in SGs) impacts the effectiveness of the inves-
tigated adversarial attacks, which means that the attacks are better able
to manipulate the decision outcomes following FZC+FTC>FTC>FZC.

5.6 Summary

In this chapter, we analyzed the security and vulnerability of deep-learning-
powered machine learning (ML) models applied for fault predictions
systems such as FTC, FZC, and FTC+FZC under adversarial attacks.
We attacked the fault prediction systems using three distinct adversarial
assaults, FGSM, BIM, and C&W, with various attack targets, including
targeted and untargeted attacks. We can conclude that adding a small
amount of noise to the data can have a significant impact on the quality
of fault classification systems, particularly the complicated model. Fu-
ture research should examine these vital systems in depth against further

68



5.6. Summary

adversarial threats and defend them with adversarial training and detec-
tion techniques.
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CHAPTER6
Explanation in Fault Prediction System

6.1 Introduction and context

Why Explainable AI?
Machine learning (ML) is increasingly being utilized in critical in-

frastructures (CI), such as criminal justice and healthcare, for predic-
tion applications that have a substantial impact on the lives of individu-
als. Many machine learning (ML) models are black boxes with insuffi-
cient justification for their decisions [68]. Interpretable and explainable
ML techniques are necessary to design comprehensible machine learn-
ing systems, i.e., systems that can be comprehended by a human mind,
as well as to comprehend and explain predictions generated by sophis-
ticated models, such as deep neural networks [52]. According to [52],
explainable ML attempts to provide post-hoc explanations for already-
existing black box models or proprietary models that are incomprehen-
sible to humans, while interpretable ML focuses on constructing models
that are intrinsically interpretable.

In the context of smart grids, the literature is aligned by the tendency
of empirical experiments to concentrate on predicting the accuracy of
fault prediction, seeking an answer to questions such as “Is it possible
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to identify a fault using ML techniques accurately?” or “Which classi-
fication method can more accurately predict a fault class type?” Sadly,
these trends toward total automation of the SG self-healing capability
are not meant to warn human operators, who typically rely on manu-
al/visual awareness. To keep humans in the control loop, it is critical to
develop Explainable ML models that can replace these black-box pre-
diction models and provide rules that can be understood with a little in-
vestigation.

Another area of interest that this thesis looks at is the interpretabil-
ity of existing ML models that are usually black-box. Novel techniques
have been developed and existing ones refined to keep human operators
informed about why certain decisions were made. To the best of our
knowledge, the latter aspects have been rarely considered in the previous
literature, and thus this chapter pushes the current literature one step to-
ward a transparent, accountable, and suitable platform, which is in line
with the recent General Data Protection Regulation (GDPR). Methods
for ML interpretability and explanations applied in this chapter are clas-
sified in Figure 6.1. It is noted that this chapter goes through details
of interpretability and other parts of the work described in a nutshell or
represented in the mentioned chapter.

Interpretable Model Explanation Method

Decision Tree

Interpretable & Explainable ML method 
Used in this study

Model-specific Model-agnostic

Grad-CAM Partial dependence 
plot

Figure 6.1: Interpretable and explainable method used to keep human-operatores in-
formed in SG.
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6.2 Feature-learned Interpretability

6.2.1 Explainability with partial dependence plots (PDP)

In place of covering the topic of recommending alternative classifica-
tion approach for fault prediction, the focus of this section is on the core
question,“Given popular classification techniques already identified by
the community, is it possible to exploit the results of predictions in order
to obtain more interpretable outcomes?”. A feature-based model ex-
planation indicates the contribution of each input feature to a model’s
output for a particular data point.

Experiments. Voltage signals gathered from the IEEE-13 node test
feeder are the input to the system, while the output is one of seven fault
kinds, including line-to-ground (AG, BG, CG), line-to-line (AB, AC,
BC), and three-phase fault (ABC). Faults were induced into a randomly
selected zone, zone 4 in this example, as depicted in Figure 4.2, and
then characteristics were retrieved from the zone’s three-phase voltage
signals. This section describes one approach we adopted for a feature-
based explanation of the fault type classification method in SGs based on
partial dependence plots (PDPs).

Approach. The considered steps include two primary phases:

1. Feature representation. We used features derived from three-phase
voltage signals represented in the time and frequency domains (DFT).
To define characteristics, we compute the energy and maximum of
the signals on both time-domain and frequency-domain signals, as
well as the n-th moment of the probability distribution functions
(PDFs) [78] (n ∈ [1, 4]). We collected a total of 12 (6+6) features to
represent the characteristics in our labeled training dataset [23, 28].

2. Interpretability and explaination. To examine explainability, we
propose employing visual analytic techniques such as partial de-
pendence plots (PDPs) [57] and feature importance measurement
using an interpretable model based on decision trees [86]. Using
these two complementary visual analysis methodologies, which ex-
amine and illustrate the individual influence of features and their
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pairwise relationship, the user may interpret the classification model’s
outcomes with a high degree of accuracy;

Two primary classifiers were used to classify fault types: decision tree
and k-nearest neighbors. We represent the classification task as a multi-
class signal-label classification. We used two classifiers as shown in
Table 6.1 and considered DT for feature-level explanation.

Note that in a classification task involving supervised learning, find-
ing significant variables (features) helps in identifying the key drivers.
This method does not, however, explain the connection between the in-
put variables and how this relationship influences the outcome of the ML
model. To address this issue, a partial dependence plot (PDP) is used to
understand the relationship between input variables and predictions. In
our scenario, a PDP can for example indicate whether the chance of a
certain fault increases with signal energy and frequency signal kurtosis,
a question that does not appear to have a simple answer. In addition,
PDP can detect whether two features have a monotonic, linear, or no
connection. These are crucial indicators that allow the human operator
to completely study and grasp the black-box fault predictions.

Results and Discussions. The discussion of the results is divided into
two sections. We begin with the classification results. The impact of
two feature analysis approaches on the interpretability of classification
predictions is discussed below.

Table 6.1 provides a summary of the classification results using two
classifiers, namely decision tree and k-nearest neighbors, using a hold-
out setting (80%-20%) for the training and test sets. We can observe
that the average classification accuracy across all experimental condi-
tions tested is greater than 92%, confirming the discriminative power of
the chosen features. The decision tree had the highest classification ac-
curacy at 96.42%. Thus, during the subsequent phase, a decision tree is
utilized.

Figure 6.2 illustrates the results of the feature explainability assess-
ment. Particularly, Figure 6.2-a displays the impact of various features
on fault type classification predictions. The findings show that the signal-
level features: energy, mean, and kurtosis, as well as the frequency-level
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Table 6.1: Classification accuracy (%) using 12 features and two classifiers. For the
k-nearest neighbors, k = 5 was used.

Classifier decision tree k-nearest neighbors
Accuracy 96.42 92.85

features: energy and mean, provide the most valuable features. There-
fore, we can note that features at the frequency and signal levels can both
impact classification predictions. Figure 6.2-b and Figure 6.2-c offer a
more in-depth analysis of the findings. These plots show the effects of
mutual feature interactions on the classification outcome and were pro-
duced using the PDP technique. We can observe that the two charac-
teristics chosen (as an example) in Figure 6.2-b, namely mean−dft and
energy−sig, are NOT mutually informative, meaning that a change in the
values of either one of these features does not affect the classification
conclusion in either a positive or negative way. This is equivalent to
saying that mean−dft has all the necessary information encoded in the
set {mean−dft, energy−sig}. As a result, we may use mean−dft for the
classification task with confidence and anticipate getting accurate clas-
sification results. A different relation is established for the interaction
between the features {mean−dft, kurtosis−sig}, as shown in Figure 6.2-
c. We can see that both features have a monotonic effect on the cate-
gorization predictions in this situation. When feature values are in the
bottom-left corner of the figure, the best classification is made.

The information offered by the PDP analysis for the SG fault type
classification task offers additional insights that could not be gained us-
ing the conventional feature importance analysis technique, as illustrated
in Figure 6.2-a. For instance, while Figure 6.2-a details the influence of
the 12 features utilized as a group, it does not provide specific insights
on whether the same results could be obtained when a smaller set of fea-
tures are used. We can see that while some feature pairs, like mean−dft
and energy−sig, are mutually complementary, other feature pairings are
correlated. The system designer may eventually use this information to
determine (1) which feature(s) to concentrate on for the extraction phase
from the SG signals, (2) how to represent the feature to obtain more
informative features (e.g., the n-th PDF moment we used), and (3) by
the system human operator to understand the cause of particular system
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faults.

Figure 6.2: Results of feature analysis (a) feature importance scores for 12 features by
the decision tree (b-c) PDP interaction plots utilizing two dominant features in part
(a).

6.2.2 Explainability using Pairwise Feature Selection Analysis

A second approach to providing explanations utilizing pairs of charac-
teristics is considering pair feature selection and studying the combined
effect in an ML prediction model.
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Experiments. This system is fully described in chapter 3. For this sec-
tion, we focus on fault zone prediction (FZP), which is a multi-class
classification task. We use a variety of classifiers, including Decision-
Tree, SVM, KNN, and Ensemble approaches (Bagged-Tree, sub-space
k-nearest neighbors). For data collection and to generate the training
dataset, the IEEE-13 system is divided into four essential zones. Then,
seven distinct faults were introduced into each zone. The data collection
was repeated for 22 fault resistance values Rf ranging from 0.001 to 2
for each type, with a range of 0.001 to 2. This dataset is larger than the
one utilized in the preceding section. Refer to chapter 3 for a discussion
of the properties and outcomes of classification tasks in further detail.

Approach. In this study, explainability was achieved by the employ-
ment of a decision-model-informed strategy that involved the visualiza-
tion of the impact of feature pairings that significantly impact the FZP
task. In other words, we switched to one of the best classifiers that had
won the initial classification task and then searched for the best feature
pairs (combination) that would yield the highest classification accuracy.
We counted all potential pairs, classified the outcomes, and displayed the
results using a heatmap as shown in Figure 6.3.

Results and Discussion. Two sections comprise the outcomes discus-
sion. First, we have classification findings, which are described in sec-
tion 3.4. Following, we consider the impact of two feature analysis ap-
proaches on the interpretability of classification predictions.

The heatmap in Figure 6.3 displays the feature importance analysis
visualization. The heatmap illustrates the impact of both feature classes
and 48 features and their pairwise relationship on fault location predic-
tion. We depict the interpretability analysis FLP with decision tree clas-
sifier results. With the interpretability analysis, we respond to the fol-
lowing experimental inquiries:

• The impact of the domain (temporal, DFT, or DWT)? It can be seen
from Figure 6.3 that DWT is a significant factor in the majority of
the orange and yellow zones that correspond to highly accurate FZP
outcomes. It is noteworthy to see that the DWT feature class has
more discriminative information (especially for d1 and d2) than the
mostly blue-colored time and frequency domain (regardless of the
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Figure 6.3: Visualization of the effects of several features on the accuracy of the FLP
classifidcation results. This image displays the overall effects of the pairwise inter-
actions of 48 characteristics.

feature aggregation method). Due to its multi-resolution analysis
and filter bank, DWT contains more valuable information than DFT
and time signal, and these results provide more clear information on
the ML prediction’s particulars;

• The impact of the aggregation function (norm, mean, skewness, etc.)
When examining the DWT results, the majority of yellow patches
correspond to Kurtois > skewness > Mean. These results are
illuminating and demonstrate the significance of n-th moment PDF
statistics;

• The impact of the interaction between extracted features and do-
mains. Generally, the interaction of DWT with other classes (DWT,
DFT, and time) improves classification accuracy. However, the
combination of DFT and time provides little classification-relevant
information. The most satisfactory results are obtained for (DWT,
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skewness, d1, and d2) and DWT (DWT, kurtosis, d1, and d2).

6.3 Visual Explanation

We also examined employing a two-dimensional visual representation
(e.g., an image capturing both time-frequency information) instead of a
one-dimensional feature vector for explanation in this research. This rep-
resentation is significant because it enables the deployment of deep neu-
ral networks (DNNs), particularly convolutional neural networks (CNNs),
which have demonstrated promising results in various visual recognition
applications [44]. The majority of previous research, with the exception
of Chen et al. [13], focus on a non-visual representation of input data.
Chen et al. only evaluate temporal information visually, omitting fre-
quency information from fault modeling, in contrast to our recommended
method, which employs a time-frequency spectrogram representation.

The majority of prior literature on ML fault diagnosis focuses on
black-box prediction models that emphasize boosting the system’s fore-
cast accuracy. Designing interpretable ML models that can replace tradi-
tional black-box prediction models and generate rules that can be com-
prehended with minimal inspection is vital if we want to keep humans in
the control loop who have relied on visual awareness for a long time. The
current work at hand introduces a Grad-CAM technique that can visually
analyze and emphasize the parts of the spectrogram image that are most
essential to the classification objective. Detailed information regarding
the classification problem is provided in section 4.4 and a spectrogram is
used here to provide a visual explanation.

6.3.1 Visual explanation using Grad-CAM

Even while it can assist with fault diagnosis with an outstanding level of
accuracy, deep learning has one major drawback: it is unable to under-
stand the model or explain why it made particular predictions.

As stated by Zhou et al. [91] , suitable explanation methods must
meet two criteria: (i) reliability and (ii) ease of human interpretation.
The essential realization is that it is difficult to interpret complicated
approaches such as deep neural networks. We utilized the Grad-CAM
method [72] to graphically represent the factors that influenced network
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prediction. Grad-CAM generates a heatmap and visualizes crucial re-
gions in the input image (here spectrograms) that were crucial for the
model’s decision-making for a specific class label. Comparing it to the
FTC and FZC tasks investigated in this work, we find that the similarity
in the important regions highlighted in the 2D space for a given class
label (e.g., fault type or zone) can provide clearer indications as to why
the system made certain decisions for specific classification tasks.

Grad-CAM illustrates how the various regions of the spectrum images
associated with (i) various fault types, (ii) various fault zones, or (iii)
combinations thereof, affect the system’s ultimate judgment. Using the
Grad-CAM technique emphasizes two crucial objectives in particular:

• Intra-class similarity: it attempts to respond to the question, “how
much the highlighted regions by Grad-CAM are similar for predict-
ing faults within a certain class, e.g., fault AB for the FTC sub-
task?”.

• Inter-class variation: It attempts to answer the question, “How dif-
ferent are the regions highlighted by Grad-CAM for two distinct
classes, such as fault AB and fault ABC?”

We created the three visual summaries displayed in several Figures to
determine the extent to which Grad-CAM aids in class separation in the
context of fault diagnosis in the Power grid. The three primary sub-tasks,
FZC, FTC, and joint FTP+FZC, are shown in Figures 6.4, 6.5, and 6.6,
respectively.
Visual explanation of FZC. Figure 6.4 displays the visual explanation
outcomes obtained using the Grad-CAM technique for the FZC sub-task.
In this sub-task, the classifier takes as input the spectrogram images la-
beled with the zone ids and returns as output the unknown zone id of test
images. The results show that samples within each zone have high simi-
larity (high intra-list similarity) and high differences across classes (high
inter-list difference). For instance, we can see that the emphasized areas
are centered at the top (Zone 1), near to top (Zone 2), middle (Zone 3),
and bottom (Zone 4). Regardless of the fault type, we can also observe
that the characteristics of activated feature maps (i.e., the size and shape
of highlighted regions) inside Zone 1 are substantially more comparable
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than in Zone 3. These results are interesting and reveal that faults that
occurred in different zones produce frequency and time responses that
are similar within a zone (intra-similarity) and different when we move
across various zones (inter-difference), and this is a valuable piece of
information that CNNs can leverage to make accurate predictions.
Visual explanation of FTC. Figure 6.5 displays Grad-CAM images of
diverse fault types located in different zones. Here we can also notice
similarities in the size and positioning of the red-highlighted portions be-
tween the locations in the images on which the network has focused. This
signifies that different fault types (e.g., line-to-line vs. line-to-ground)
have different characteristics, i.e., intra-class difference, while they look
similar for faults within the system.
Visual explanation of joint FTC+FZC We also visualize in Figure 6.6
the results of fault diagnosis for the joint FZC+FTC tasks. It could be
noted that the networks’ concentration for each <fault type, fault zone>
differs from the other scenario. For instance, while there exists a high
level of intra-class similarity for Grad-CAM images of fault ABC (e.g.,
they are all centered in the lower part of the figure), they look different,
i.e., inter-class difference when we move from Zone 1 to Zone 4 (e.g.,
their shape is different).

Overall, the Grad-CAM graphical representation of the results sug-
gests that distinct fault classes (types or zones) generate temporal and
frequency responses that are remarkably similar within a class (intra-
class similarity) but dramatically different between classes (inter-class
difference). Compared to prior, less transparent models, this is a useful
piece of information that can be easily interpreted and evaluated by a
human operator or field worker.

6.4 Summary

In this chapter, we studied three approaches to the explainability of com-
plex machine learning (ML) models in the context of faults prediction in
smart grids: (i) partial dependence plots (PDPs), (ii) visual explanation
(Grad-CAM), and (iii) interpretable model (DT). We propose a visual ex-
planation technique based on Grad-CAM for the three tasks FZC, FTC,
and joint FZC+FTC to provide insights on why the DNN reached a cer-
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Figure 6.4: Grad-CAM for four fault zone classification by utilizing seven types of
faults (ABC, AB, AC, BC, AG, BG and CG)
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Figure 6.5: Grad-CAM of fault type classification, seven fault types in different four
zones

tain decision. To understand the results of the FTC task in a reasonable
manner, we additionally investigated feature importance measurement
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Grad-CAM Zone 1 Zone 2 Zone 3 Zone 4

Fault ABC

Fault AC

Fault AG

Figure 6.6: Grad-CAM of joint type-location classification (four zones seven types of
faults)

using an interpretable model based on a decision tree and partial depen-
dence plots. Finally, using the Decision tree, we displayed the influence
of pairs of attributes significantly influencing the classification task.
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CHAPTER7
Datasets and Evaluations

7.1 Introduction

Conventionally regulated electrical grids have undergone significant ad-
justments and upgrades over the years in terms of reliability, robustness,
and efficiency. Power grid networks are inherently prone to physical
damage and electrical failures can be caused by natural phenomena like
a tree falling on a power line, a bird hitting the wire, lightning, or aging
of the equipment. One of the most important characteristics of SGs is
their application in fault detection, fault classification, fault location pre-
diction, and routine evaluation of the underlying disturbances that cause
failures.

Numerous smart grid (SG) applications, such as fault detection and
load forecasting, have used data-driven methodologies; nevertheless, the
resilience and security of these data-driven algorithms have not been well
investigated. One of the largest obstacles in the examination of the se-
curity of smart grids is the lack of publicly available datasets that can
be used to assess the system’s resistance to different types of faults and
fault prediction systems under adversarial attacks.

This chapter contributes to the distribution of the datasets that we

85



Chapter 7. Datasets and Evaluations

have collected and that might be utilized in a variety of machine learning
systems. Specifically, the data may be examined in relation to:

• Input feature characteristics

• The type of the ML system

where for the latter, we address two primary ML systems: (i) fault type
and location classification systems, and (ii) the analysis of adversarial
machine-learning attacks aimed at the former fault prediction systems
(fault type and location classification). For the former aspects, we ex-
amine (i) numerical features represented by temporal and DFT features
(cf. Section 7.4) versus (ii) visual spectrogram representations (cf. Sec-
tion 7.3), where the outline of this chapter is based on the feature repre-
sentations utilized for fault-related tasks.

7.2 Related Datasets

For the purpose of evaluating different three-phase grid algorithms, test
grids have been established under SGs that simulate the behavior of a
genuine distribution feeder. Incorporating renewable energy sources is
another feature of today’s modern test grids. The following is a list of
the most often seen distribution network test grids found in the literature.

• IEEE-13. This exceptionally small circuit model is intended to
evaluate typical aspects of 4.16 kV distribution analysis software. It
is short, somewhat heavily loaded, characterized by a single voltage
regulator at the substation, overhead and subterranean lines, shunt
capacitors, an in-line transformer, and unbalanced loading;

• IEEE-14. It is a simplified representation of the American electri-
cal grid. The facility contains 11 loads, 5 generators, and 14 buses;

• IEEE-33. It encompasses both balanced and unbalanced three-
phase power systems, as well as additional information on inte-
grating distributed and renewable generating units, reactive power
compensation assets, reconfiguration infrastructures, and load and
renewable generation profile statistics for various case studies;
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• IEEE-34. This feeder is already in place in Arizona, and it has a
nominal voltage of 24.9 KV. It has two in-line regulators, an in-line
transformer for a short 4.16 KV section, a total of 24 unbalanced
loads, and two shunt capacitors, and its overhead transmission lines
are lengthy and lightly laden;

• IEEE-37.: This feeder is a genuine California feeder with an op-
erational voltage of 4,8 kV, delta-configured. All line segments are
underground; substation voltage regulation consists of two single-
phase open-delta regulators, spot loads, and extremely unbalanced
loads;

• IEEE-123. It operates at a nominal voltage of 4.16 kV. This cir-
cuit is described by overhead and underground lines, unbalanced
loading with constant current, impedance, power, four voltage reg-
ulators, shunt capacitor banks, and switches.

Many different simulation programs, such as MATLAB, are used in the
electrical sector to handle the problem of fault prediction, and their use in
a recent research is discussed here. They include MATLAB Simulink [85],
PSCAD [12,37,38], RSCAD [73], PSS/Sincal [2], Opal-RT [29], PST [40,
46], DIgSILENT [32, 49], MATPOWER [33].

Despite the extensive usage of simulation tools for failure prediction
systems in SGs, none of the existing research papers have, to our knowl-
edge, attempted to make simulation data from IEEE test node feeds
publicly available. This is a significant obstacle to the development of
machine-learned adversarial attacks and failure prediction systems.

To address this shortcoming, we provide two exhaustive datasets on
smart electrical grids (based on the IEEE-13 test node feeder) that pro-
vide both a thorough catalog and a set of distinguishing features for elec-
trical networks.

7.3 IEEE13-AdvAttack: A Novel Dataset for Benchmarking
the Power of Adversarial Attacks in SGs

7.3.1 General information

This section describes the first dataset for benchmarking adversarial
machine-learned attacks against a fault prediction system; the data ob-
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tained for this study is based on the IEEE-13 test node feeder. Although
other types of node feeders as stated in Section 7.2 may be used, for the
sake of simplicity we used IEEE-13 and left the exploration of other node
feeders for the future. The IEEE-13 node test feeder consists of a 4.16
KV voltage generator, 13 fault simulation buses, and three-phase signal
measuring equipment. This distribution system can be divided into four
critical zones: zone 1: 632-671, zone 2: 632-633, zone 3: 692-675, and
zone 4: 671-680.

7.3.2 Feature extraction and fault Simulation

In this section, we describe the dataset and data collection used to test
the effectiveness of adversarial attacks on fault zone and type classifi-
cation systems. For the IEEE-13 test node feeder simulation which we
performed in MATLAB, we used the default parameters, which com-
prised a voltage frequency of 60 Hz and a sampling time of 10e − 5.
We generated data by injecting faults into the IEEE-13 node test feeder
in the Simulink environment of MATLAB. In the four critical zones
next to load flow buses 671, 633, 675, and 680, we injected 11 unique
fault types with 22 unique resistances per fault type (lines within the
red boxes in Figure IEEE-13). Table 7.1 provides a summary of this in-
formation, a dataset composed of 11616 faulty samples was created in
which 4 (zones)× 4 (measurement-zone) × 11 (faults) × 3 (phases) ×
22 (resistance values) = 11616. For healthy data, we obtained raw
healthy signals for 88 different line lengths by measuring from specified
four zones and for three phases 88 (Line-length)×4 (measurement-zone)×
3 (phases) = 1056.

The entire period for fault simulation was t = [0.0 − 0.02], and
each fault was added at t = 0.01 and removed at t = 0.02, resulting
in tf = [0.01 − 0.02]. tf = [0 − 0.01] represents the fault duration,
while th = [0.01 − 0.02] represents the healthy (non-faulty) period of
time. We present on Github 1 a graphical representation of the num-
ber of simulation-generated samples for both faulty and healthy signals.
In this study, we selected three types of features exploited in prior re-
search [1, 20, 66, 82, 88]:

1https://bit.ly/3NT5jxG
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Table 7.1: The characteristic of the dataset used for classification and training the
machine-learned adversarial attacks in this work.

Item Details

Fault type

phase to ground AG, BG, CG
phase to phase AB, AC, BC
phase to phase to ground ABG, ACG, BCG
three phase ABC
three phase to ground ABCG

Fault location

zone 1 branch 632-671
zone 2 branch 632-633
zone 3 branch 692-675
zone 4 branch 671-680

Fault resistance

0.0010, 0.0273, 0.0535, 0.0798
0.1061, 0.1323 0.1586, 0.1848
0.2111, 0.2374, 0.2636, 0.2899
0.3162, 0.3424, 0.3687, 0.3949
0.4212, 0.4475, 0.4737, 0.5, 1, 2

• Time-domain features. It refers to the original, time-domain-measured
data. When six aggregation functions were applied to the voltage
signal x(t), a six-dimensional time domain feature vector was gen-
erated. They contain (mean, standard deviation, skewness, and kur-
tosis) as well as the signal’s energy and maximum level;

• Frequency-domain features. The discrete Fourier transform (DFT)
is used to translate voltage signals to the frequency domain. Using
the same six aggregation functions employed in the time domain,
a six-dimensional frequency-domain feature vector was generated
from the calculated spectrum;

• Discrete Wavelet transform (DWT). DWT examines digital sig-
nals at multiple resolutions. Multi-resolution analysis employs wavelet
coefficients of approximation Ai and detail Di. Motivated by pre-
vious works [1, 88], we employed a large number (five) of level-
decompositions according to A5, D1:5;

As a whole, 48 features are obtained, consisting of 6 time-domain
features, 6 DFT features, and 36 DWT features (five stages of decompo-
sition plus one level of approximation).
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7.3.3 Dataset Structure

The files comprising the dataset are arranged in a predetermined struc-
ture to facilitate retrieval. The Github repository provides details about
the format of the data set. We have a “DataSet-IEEE13-withRE” folder
that contains two additional directories: (1) Voltage readings for all three
phases, faulty bad and healthy signals, are included in the “RawTime-
SeriesData” file; (2) A “FeatureData” folder containing features extracted
using Discrete wavelet transform (DWT), Discrete Fourier transform (DFT),
and Time domain.

7.3.4 Benchmarking

In order to accomplish the three classification tasks outlined in section 7.3.5,
we trained a Multi-layer Perceptron (MLP) neural network. The model
consists of an input layer, a dense layer, and an output layer. Unlike the
other layers, the number of neurons in this layer varies among the three
tasks, to account for the different numbers of output classes required
by each. Each job has its own training phase, but they all follow the
same parameters: 500 epochs, Adam Optimizer, a fixed learning rate of
10e−3, and a batch size of 20. The hyper-parameters were derived from
the results of the tuning process.

For adversarial attacks, we used the IBM Adversarial Robustness
Toolbox because of its seamless interoperability with Keras and com-
prehensive collection of attacks well-suited for deep learning models. In
both non-targeted and targeted situations, attackers use FGSM and multi-
step attacks (BIM, PGD).

7.3.5 Fault Classification in Smart Grids

In this study, we focus on many multi-class classification issues relevant
to failure prediction in smart grids, where X is the input space and y =
{1, 2, ..., K} is the output space. Our problem demonstrates the use of
two different target labels for the problems at hand (i) fault location and
(ii) fault type. As a result, the primary endeavor is broken down into
three parts. Therefore, the main task is split into three sub-tasks:

1. Fault location classification (FLC): with K = 4 the task aims to
classify a given signal into its originating zone as shown in Table
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7.3. IEEE13-AdvAttack: A Novel Dataset for Benchmarking the Power of
Adversarial Attacks in SGs

Table 7.2: Result of application of adversarial attacks against fault classification tasks
on the presented IEEE-13 dataset.

Base Random Noise Adversarial Attack
FGSM BIM C&W

Attack goal ϵ = 0.05 ϵ = 0.05 ϵ = 0.05
UnTargeted FZC 0.71 0.556 0.160 0.154 0.281 (ℓ∞)
UnTargeted FTC 0.46 0.388 0.075 0.048 0.166 (ℓ∞)
UnTargeted Joint 0.45 0.320 0.086 0.023 0.139 (ℓ∞)

Targeted FZC 0.71 0.556 0.260 0.265 0.631 (ℓ2)
Targeted FTC 0.46 0.388 0.076 0.198 0.388 (ℓ2)
Targeted Joint 0.45 0.320 0.030 0.135 0.432 (ℓ2)

7.1;

2. Fault type classification (FTC): the objective of the task with K =
11 is to classify a given signal into one of the fault classes shown in
Table 7.1;

3. Joint location and type classification (FLC+FTC): K = 44 combin-
ing both fault class labels in the previous cases;

where, (1) and (2) are explicit in the dataset, whereas (3) is obtained by
combining all feasible combinations of tasks 1 and 2. Consequently, we
can expect the joint task to be more difficult than the previous one.

7.3.6 Adversarial Attacks against Fault Classification

The adversary seeks to misclassify smart-grid fault classification tasks
in each of the three FZC, FTC, and joint subtasks through the use of
untargeted versus targeted attacks.
Adversary knowledge. Our assumption is a white-box scenario in which
the attacker is aware of all the parameters of the feature extraction model
used to estimate the perturbation he or she wishes to estimate. Moreover,
the attacker has complete access to the input features that would be mod-
ified as a result of the assault. In a targeted attack scenario, an attacker
can also collect class labels.
Explored Attacks. The executed attacks include the fast gradient sign
technique (FGSM), the basic iterative method (BIM), and Carlini and
Wagner (C&W), with FGSM belonging to the ℓ∞-norm attack type and
C&W to the ℓ∞-norm and ℓ2-norm attack types, respectively. BIM is
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the iterative variant of the FGSM, which is a white-box approach that
exploits the sign of the loss function’s gradient to learn adversarial per-
turbations. Formally, in the untargeted case, FGSM seeks to generate a
perturbation that maximizes the training loss defined as

δ = ϵ · sign(▽xℓ(f(x; θ), y)) (7.1)

where ϵ (perturbation level) is the attack strength, ▽x is the gradient of
the loss function with respect to the input sample x, y is the legitimate
label, and sign(.) is the sign operator.

Other adversarial attack categories investigated on this dataset were
BIM and C&W, which are described in detail in Chapter 5.
Discussion. In Table 7.2, we present the outcomes of benchmarking
two security-related scenarios, (i) fault classification and (ii) adversarial
attack against a fault classification system, using the proposed dataset.
Base illustrates the result of the pure classification system prior to an
assault (FZC, FTC, or combined). As the complexity of the work devel-
ops from FZC to FTC to joint, it can be demonstrated that classification
accuracy decreases. We compare the efficacy of adversarial perturba-
tions generated by FGSM, BIM, and C&W to that of random noise. In
addition, we consider the performance of attacks to vary as we switch
between attack targets. As demonstrated in Table 7.2 the investigated
adversarial attacks FGSM, BIM, and C&W have a significantly bigger
impact in untargeted settings.

For instance, comparing the strength of the three adversarial attack
models, BIM is the strongest in all tasks. In the case of (untargeted,
Joint), BIM untargeted adversarial attack accuracy reaches 0.023, whilst
FGSM and C&W reach 0.086 and 0.139, respectively, under the same
condition. The effect of attack target (targeted vs. untargeted) is stronger
on BIM and C&W than on FSGM. For example, for the (FTC), the clas-
sification accuracy of 0.048 vs. 0.198 (BIM-untrg vs. BIM-trg), however
for FGSM the corresponding difference is only 0.075 vs. 0.076 (FGSM-
untrg vs. FGSM-trg).

7.3.7 Conclusion

By recreating IEEE-13 test feeders with renewable energy and generat-
ing relevant data, we investigated the security and vulnerability of fault
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classification systems in the context of smart electrical grids. First re-
leased was IEEE13-AdvAttack, a large-scale simulated dataset based on
the IEEE-13 test node feeder that is appropriate for supervised fault clas-
sification tasks under SG. In the dataset, both traditional and renewable
energy sources are represented. We investigate the resilience of fault-
type classification and fault zone classification systems in the face of
adversarial attacks. To defend these systems against alternative adver-
sarial training and detection strategies will necessitate more nuanced and
in-depth research, which we intend to conduct in the future.

7.4 A Dataset for Electrical Grid Using Spectrogram-Based
CNN Modeling

In addition to IEEE13-AdvAttack described in the preceding section,
we have contributed to the creation of a new class of fault prediction-
applicable features based on CNN representation of spectrograms. This
chapter explains the characteristics of the features and attributes that ac-
company this dataset. We note that the dataset presented in this section
was collected from an IEEE-13 node test feeder without renewable en-
ergy (RE) and simulated in MATLAB Simulink. The dataset has been
divided into three folders as shown in Figure 7.1:

1. Raw time-series data: This subfolder contains the raw time-series
data, one containing raw false data and the other having raw healthy
information.

• FaultySignal-withoutRE. There are two folders containing raw
time-series data; one contains raw faulty data and the other con-
tains raw healthy data. For the fault simulation, as shown in
Figure 7.1, We partitioned the network into four zones. For
the entire simulation time, t = [0.0 − 0.022], we injected 11
fault types (AG, BG, CG, AB, AC, BC, ABG, ACG, BCG,
ABC, ABCG) with 22 different resistances for each type of
faults into these four critical zones next to load flow buses
numbers 671, 633, 675, and 680. As each fault with each re-
sistance was applied at a specific start time of t = 0.01 and
was removed at t = 0.02, the faulty duration is represented
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Figure 7.1: The structure of the dataset in our SpectCNN benchmark.
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by tf = [0.01 − 0.02] and the healthy (non-faulty) duration is
represented by th = [0 − 0.01]. Three.csv files in this folder
include voltage measurements for phases A, B, and C;

• HealthySignal-withRE. We obtained raw healthy signals for 88
line lengths from four locations and three stages for Healthy
data. This folder contains three.xlsx files containing voltage
measurements for phases A, B, and C. The whole duration of
the simulation was t = [0, 0− 0.022]. The chart below depicts
the number of samples generated by simulation for both faulty
and healthy signals;

2. FeatureData: Consideration is given to three domains for the base-
line: time, frequency (discrete Fourier transform DFT), and discrete
wavelet transform (DWT). As inputs to classifiers, we examine the
influence of several statistical aggregation functions that compute
the n-th moment of probability distribution functions (PDFs) (n ∈
[1, 4]) together with the energy and maximum level of the signals
for three domains. In all, 48 features are retrieved, including six
time-domain features, six DFT features, and thirty-six DWT fea-
tures (five stages of decomposition plus one level of approxima-
tion). In this sense, six attributes are multiplied by six for DWT. In
this folder, we find two folders containing information on features
for broken and healthy signals.

• Features faultySignal. There are three.csv files for flawed data,
each containing 48 features and labels and 2640 samples for
phases A, B, and C, respectively. In addition, there are two
labels, “locLabel” and “faultLabel”, as well as resistance and
measurement location information in columns with the headers
“resistance” and “measloc”;

• Features healthySignal. There are three.csv files for healthy
data, each including 48 features and labels and 240 samples for
phases A, B, and C, respectively. In addition, columns with the
titles “lineLength” and “measloc” include information regard-
ing line length and the location of measurements. There are
three.csv files for healthy data, each including 48 features and
labels and 240 samples for phases A, B, and C, respectively. In

95



Chapter 7. Datasets and Evaluations

DataSet_IEEE13_Test
Feeder_without RE

RawTimeSeriesData

FeatureData

Spectrogram

FaultySignal_withoutRE

HealthySignal_withoutRE

Features_faultySignal

Features_healthySignal

All_spectrograms

Spect_divided_by_task

voltage_phaseA.csv
voltage_phaseB.csv
voltage_phaseC.csv

voltage_phaseA_healthy.xlsx
voltage_phaseB_healthy.xlsx
voltage_phaseC_healthy.xlsx

features_voltage_phaseA.csv
features_voltage_phaseB.csv
features_voltage_phaseC.csv

features_voltage_phaseA_healthy.csv
features_voltage_phaseB_healthy.csv
features_voltage_phaseC_healthy.csv

spect_withoutRE_faulty

spect_withoutRE_healthy

FinalData_location

FinalData_Type

FinalData_joint_Type_Loc

Zone subfolders

Type  subfolders

Joint  subfolders

Figure 7.2: The graphic illustration of how our proposed CNN-based Spectrogram
represents the features for fault and healthy signals.

addition, columns with the titles “lineLength” and “measloc”
include information regarding line length and the location of
measurements.

3. Spectrogram. Two primary folders exist for spectrograms. (1) All
spectrograms and (2) Spect by task. The "Spect divided by task"
folder is created because the MATLAB datastore class requires pic-
tures to be grouped in subfolders where each subfolder has a class
label.

• All spectrograms. This folder is home to two files: (i) spect
withoutRE faulty, which contains spectrograms with errors. For
example, “IEEE13-locLabel-1-mesloc-1-resistance-0.001-faultLabel-
AB-voltage-phaseC.png” comprises information regarding the
location label, the location at which the signal is measured,
the resistance, the type of the fault, and the phase; (ii) spect-

96



7.5. Summary

withoutRE-healthy file which includes healthy spectrograms.
For example, “IEEE13-mesloc-1-lineLength-0.60554-voltage-
phaseB-healthy.png” is the name of an image that contains all
information regarding the location where the signal is mea-
sured, the line length, and the phase.

• Spect by task. This folder contains three directories that have
been formatted as MATLAB datastore classes, with each sub-
folder serving as a class label. These three folders correspond
to the three classification tasks.

– FinalData-location. This folder has four subfolders labeled
with CNN-related images Zone-1, Zone-2, Zone-3, and Zone-
4;

– FinalData-Type. This folder contains 12 subfolders con-
taining CNN-related image labels (Fault-AB, Fault-ABC,
Fault-ABCG, Fault-ABG, Fault-AC, Fault-ACG, Fault-BC,
Fault-BCG, Fault-BG, CG, AG, and Healthy);

– FinalData-joint-Type-Loc. This folder contains 5 sub-folders
(Zone-1, Zone-2, Zone-3, Zone-4, Zone-h) and each of these
sub-folders contain 11 sub-sub-folders for instance (z1-Fault-
AB, z1-Fault-ABC, z1-Fault-ABCG, z1-Fault-ABG, z1-Fault-
AC, z1-Fault-ACG, z1-Fault-BC, z1-Fault-BCG, z1-Fault-
BG, z1-Fault-CG, z1-Fault-AG) except sub-folder Zone-h
which contain one sub-sub-folder Healthy that are labels
with corresponding images for CNN.

Several fault classification strategies are compared in Table 7.3, all of
which make use of a convolutional neural network (CNN) to represent
electrical data via spectrograms. Learn more about the experiments in
Chapter 4.

7.5 Summary

In this chapter, we presented the distribution of the datasets that we have
gathered and that may be exploited in a range of machine learning sys-
tems thanks to the information provided in this chapter. To be more
specific, the data can be analyzed in connection to:
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Table 7.3: Classification accuracy (%) using spectrogram on GoogleNet, GoogleNet,
and CustomCNN along different epochs. The training times were obtained on a
regular machine. The could be decreased if performed on a high-speed machine
equipped with GPUs. The comparison between the models’ training time, however,
remains valid.

GoogleNet SqueezeNet CustomCNN
FZC best accuracy 85.1 85.3 84.2
FTC best accuracy 59.4 58.4 56.9

FZC+ FTC best accuracy 57.2 54.4 56.6

• Input feature characteristics

• The type of the ML system

where for the latter, we address two primary ML systems: (i) fault type
and location classification systems, and (ii) the analysis of adversarial
machine-learning attacks aimed at the former fault prediction systems
(fault type and location classification). For the former aspects, we ex-
amine (i) numerical features represented by temporal, frequency, and
wavelet features (cf. Section 7.4) versus (ii) visual spectrogram repre-
sentations (cf. Section 7.3), where the outline of this chapter is based on
the feature representations utilized for fault-related tasks.

In order to further assist researchers in using this dataset and com-
paring their results with those of other papers and experiments, we at-
tempted to provide some baseline results through experiments. This
was done in order to make it easier for the adoption of the datasets in
fault prediction tasks that are performed in SGs. We demonstrated in
detail the performance of various numerical features, notably those rep-
resented by time, frequency, and wavelet (see Chapter 5) when used to
fault prediction tasks and adversarial attacks against such systems (cf.
Section 7.3). Following that, we demonstrated how well SoA CNNs per-
formed on an entirely new category of data, which was distinguished
by time-frequency spectrograms as opposed to the frequency or tempo-
ral properties that are more traditionally used. We offered experimental
examples of how this visual data can be utilized in the fault prediction
tasks (cf. Section 7.4) that were devised and obtained competitive per-
formance, see also chapter 4 for more detailed information.
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CHAPTER8
Conclusion

8.1 Summary of Thesis

This Ph.D. study topic was sponsored by the e-distribution smart grid lab
in Milan, Italy. Notably, we used a Human-Centred Design approach,
initially visiting the e-distribution Smart Grid Lab in Milan to interview
electrical engineers and see their work, systems, and artifacts. Then,
because of the restrictions imposed by the COVID-19 outbreak, we held
monthly video conferences with the Lab team to review the preliminary
research findings.

In this Ph.D. dissertation, the problem of fault prediction in smart
electrical grids is elaborated, and approaches for leveraging trustwor-
thy AI in SGs are investigated and presented. The presented methods
tackle the issue of enhancing SGs’ self-healing capabilities by account-
ing for the robustness (security) aspect of trustworthiness, enhancing the
transparency of the presented systems through explanation, and evaluat-
ing the proposed methods by developing a dataset, which is one of the
field’s gaps. In this chapter, we first summarize and provide the conclu-
sion of the works conducted in this thesis. Afterward, we present the
future research directions for extending this work.
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8.2 Main Contributions.

Several self-healing systems for smart grids based on machine learning
approaches have been presented. This method often aims to predict the
nature and location of a fault in its earliest stages. Multiple novel strate-
gies, in addition to the refinement of previously existing ones, have been
presented to extract meaningful information from the electrical signal
and incorporate it into a machine-learning fault prediction system for
developing fault prediction systems, such as type and location classifi-
cation tasks. These methods include 2D CNN-based visual spectrogram
methods and hand-crafted temporal, frequency, and wavelet inputs for
ML algorithms.

In addition, as a second contribution field of research, we investigated
adversarial attacks on fault prediction systems. Illustrated is the capa-
bility of cutting-edge adversarial techniques, such as FGSM and BIM,
to learn perturbations that can trick ML models, for example, by mis-
classifying the fault type or location and delaying the rescue team’s re-
covery time.

As a third research field of this thesis, we also explored the explain-
ability of the many integrated technologies, including the use of visual
explanation, to make the systems more understandable to a larger audi-
ence (operators, consumers).

Last but not least, we exampled the distribution of the datasets that
we have introduced in the context of this Ph.D. thesis and that, as a result
of the information offered in the present thesis, can be utilized to train
various types of ML models for the intended fault prediction tasks.

8.3 Outlook and Future Work

In the following, we lay forward some open research directions and chal-
lenges in fault prediction task in SGs, for more exploration:

• Defenses against adversarial agents. In recent years, the fragility
of the smart grid as critical infrastructure has become a major con-
cern. In [15], the vulnerability of various adversarial attacks against
machine learning algorithms used in building load forecasting and
power quality disturbances is investigated. Relevant studies on var-
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ious elements of SGs, such as fault classification and fault zone
prediction, have, to the best of our knowledge, been investigated as
infrequently as we did in this thesis. Recent advancements in ad-
versarial machine learning (AML) technology, specifically defense
against these adversarial attacks, should be studied in more-depth,
notably for fault detection, location identification, and type catego-
rization;

• Privacy in SG. The collected information from individuals is a valu-
able resource. Before using this information, consensus must be es-
tablished, and no action should be made if approval is lacking. Pri-
vate information falls into two broad categories: (1) identifiers (e.g.,
a person’s name and social security number) and quasi-identifiers
(information such as a person’s postal code) and (2) sensitive qual-
ities (properties that people do not want revealed such as health
status, voting history, income, and location data). Privacy in ML
and SGs frequently addresses the second method and is one of the
first steps in building trustworthy systems. Unreliable parties may
steal or attacks data collected by devices (sensors) on transmission
and distribution networks, as well as data supplied to SCADA via
communication networks. Federated learning and differential pri-
vacy are two of the most prominent methods for protecting privacy
in machine learning, and merit higher consideration in smart grids;

Overall, the taxonomy presented in Chapter 2 of this thesis provides
an actionable catalog that practitioners and scholars can use to identify
specific predictive activities and countermeasures, along with a list of
sources where additional information about the proposed techniques can
be obtained. The remaining chapters, however, give and demonstrate
actual fault prediction models and adversarial attacks against such sys-
tems.
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