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Abstract — Although recent laboratory tests are showing 
promising progresses in the materials and production 
technologies of photovoltaic devices, the commercial PV 
modules do not show analogous impressive 
improvements. Therefore, a diagnostic approach, able to 
check the current state of health of already installed PV 
systems, as well as their trend of ageing, assumes a 
strategic importance. In this scenario, we introduce a 
thermography-based diagnostics able to provide a 
detailed, clear and unambiguous information, thanks to a 
computer aided investigation that is much deeper than 
the today available infrared analysis. The proposed 
approach allows a numerical and qualitative evaluation of 
each cell of the PV device.  

This Part I – Framework introduces the methodology, 
based on two main analyses. The first one (cell analysis) 
studies each single cell, while the second one (cluster 
analysis) focuses the attention on groups of PV cells. The 
framework is also characterized by a pre-processing in 
which the Region of Interest is extracted from the 
infrared image in order to focus the successive processing 
and analyses only on this area. The Part II – Platform and 
Results shows the cloud platform implementing the 
workflow (it automatically generates a comprehensive 
and detailed report), and discusses also several significant 
cases of study. 

 
Index Terms — thermography, computer aided 

diagnostics, digital image processing, PV cells, PV 
modules, PV devices, filtering. 

I. INTRODUCTION 

ccording to a recent study of the Fraunhofer 
Institute for Solar Energy Systems (ISE), the 

maximum Photo Voltaic (PV) cell efficiency reached 
today is 46.0%, but this performance has been 
effectively obtained only in laboratory experiments [1]. 
The previous record of efficiency (44.7%) was 
obtained by the same ISE, and has been presented in 
literature [2]. These values (as well as other 
performances since 1976), have been summarized by 
the National Renewable Energy Laboratory (NREL) in 
a well-known diagram [3]. 
Anyway, less exultantly, the efficiency of commercial 
PV modules goes from 8% to 22% (the lower bound 
being referred to the amorphous and organic PV cells, 
the higher one to the mono-crystalline ones). 

Sometimes the power losses are due either to the 
dust or to the dirt on the PV module, but they also may 
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depend on internal problems of the cells. In these last 
cases, they manifest themselves as temperature 
increases, as reported in Table 3 of [4].  

An abnormal over temperature of a PV cell (say, hot 
cell) causes a drastic efficiency loss, affecting the 
energy production: it results that a temperature increase 
of 10 °C for the cell surface provokes about 4% power 
loss (we say this hot cell light), while an increase of 18 
°C reduces the power of about 7÷10% (we say this hot 
cell strong).  

When internal problems arise, they are classified as 
defects and are essentially grouped in two main 
typologies [5]-[7]: material-induced (depending on the 
internal material structure), and process-induced 
(generated during the productive process). In order to 
deeper investigate these phenomena, some specific and 
known defects have been modelled and inserted in 
well-operating PV cells, and their thermal effects have 
been analyzed, mainly by means of the Finite Element 
Method (FEM) [8], [9].  

In fact, FEM is largely employed to study effects in 
industrial applications for diagnostic purposes, thus, for 
instance, in [10], it has been also used to model three 
different typologies of defects which commonly appear 
in PV modules (linear edge shunt and hole for mono-Si 
and poly-Si cells, conductive intrusion for amorphous-
Si cells), obtaining a punctual analysis of the over 
temperatures. Anyway, these typologies of defects are 
not the only ones already known (e.g., entrapped air, 
non-linear edge shunt, Schottky-type, scratches, 
aluminum particles, and so on), whereas many other 
defects are still neither defined nor modelled: anyhow, 
though this field is surely an important and open 
research area to be investigated in the future, it has 
been already clarified that defects manifest themselves 
as over temperatures. Since a PV module cannot be 
point-to-point investigated by means of a thermometer, 
the issue is overcome by means of thermography, 
which allows both to highlight hot spots and to perform 
an efficient and systematic investigation on typical 
defects in solar cells [11]. For instance, in [12] the 
thermographic analysis is used to identify the mismatch 
faults of PV modules; in [13] it is used for detecting 
snail trails and cell micro-cracks, and in [14] the 
thermography is proposed for improving the energy 
efficiency under partial shading conditions. Moreover, 
in [15], its employment for controlling the quality of 
PV modules is compared to other non-destructive 
techniques, such as electro- and photo-luminescence 
imaging and [16]-[17] propose combined techniques of 
both luminescence and thermography during the 
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production process. Now, though a comparison 
between luminescence imaging and lock-in 
thermography proves that there is no predominance of 
one technique over the other one in detecting defects in 
solar cells (as Table I of [18] demonstrates), of course 
thermography shows some advantages on the other 
techniques. In fact, today, it represents a consolidated 
tool for diagnostic purposes for several reasons, such as 
robustness and availability of: 

 portable and fixed thermo-cameras; 

 low-cost devices; 

 several typologies of sensors (as it will be better 
explained in the successive section), and so on.  

For example, an automated control system for PV 
plants, able to distinguish a defected module from a 
well working one has been recently proposed [19], 
which is based on an unmanned aerial vehicle, 
embedding an IR camera.  

This scenario motivates this paper at proposing a 
diagnostic workflow for carrying out an accurate 
quantitative analysis of PV devices, up to the level of 
each single cell, based on the automatic processing of 
InfraRed (IR) images, that has been also implemented 
on a cloud platform [20], whose details are given in 
Part II [21]. The diagnostic approach has been 
developed and tested for different PV devices. Among 
them, those having larger diffusion and greater 
economical emphasis are the PV modules, which have 
been used as cases of study, widely discussed in [21].  

This paper is structured as follows. Section II briefly 
describes the relations among the bands of the IR 
spectrum, the sensors of the thermo-cameras and the 
behavior of the glass superimposed on the PV module. 
Section III presents the diagnostic workflow and 
illustrates its main steps, while Conclusions ends the 
paper. 

II. IR ANALYSIS AND THERMAL-CAMERA 

SPECIFICATIONS 

Fig. 1 reports a wavelength diagram, zooming on the 
visible and IR spectrums: as it is shown, the IR band 
comes immediately after the red color of the visible 
spectrum, from which takes its name. Moreover, it is 
usually divided into other sub-bands, defined by the 
adjectives near- (from the superior limit of the visible 
range), shortwave-, midwave-, longwave-.  
 

 
Fig. 1. Near-, shortwave-, midwave-, longwave- infrared sub-
bands. 

 

It is extremely important to properly take into 
account the IR spectrum composition, when one has to 
perform an IR acquisition of PV devices. This, at least 
for two reasons: 1) the thermal sensor of the camera 
captures the radiation within a specific spectral range, 
and not in the whole IR spectrum (therefore, it is very 
important to know the specifications of the employed 
thermal-camera); 2) the glass protecting the PV device, 
said solar glass, assumes a different behavior, with 
respect to the wavelength of the emitted radiation 
(opaque for the long-wave IR and transparent for the 
mid-wave IR). 

With respect to the second point, there is a great 
difference if the IR acquisition is made by means of a 
midwave thermal-camera or through a longwave one. 
The thermal-cameras operating in the midwave IR 
range are very sophisticated from the technological 
point of view, because they need a cooling system for 
the thermal detector. This makes them very expensive 
and less diffuse. Instead, the thermal-cameras operating 
in the longwave IR range use a micro-bolometer as 
thermal detector. This sensor stresses the detector 
material heating it, and changing its electrical 
resistance: the resulting variation are transduced into 
temperatures, which are finally quantized in the pixels 
of the IR image. The micro-bolometer does not require 
cooling; consequently, the technology of the long-wave 
IR thermal-cameras results simpler, leading to a lower 
price and a larger diffusion. However, unfortunately, 
IR images acquired by means of a long-wave IR 
thermal-camera represent the temperature map of the 
glass on the PV device, and not the temperature map of 
the PV cells. This mismatch is caused by the opacity to 
the long-wave IR of the solar glass, and in our 
experience is usually contained in the range 1÷3 °C, 
mainly depending on the glass thickness and on the 
iron percentage. For these reasons, the awareness of the 
typology of the employed thermal-camera is needed in 
order to know if the temperature map (i.e., the IR 
image) has to be intended as referred to the PV cells or 
to the solar glass. After having remarked that the above 
mismatch becomes more relevant when the 
temperatures of the PV cells are different enough, 
causing an inaccurate diagnostics, we point out that the 
software platform [21], implementing the here 
proposed workflow, is compatible with both the mid-
wave and the long-wave thermal-cameras. In fact, in 
the preliminary INPUT stage, the software asks the 
user to select the typology of the IR camera and, in 
case of long-wave cameras, to specify the glass 
thickness. This information is used to automatically 
correct the temperature map on the solar glass, on the 
basis of the theory of the heat transmission through a 
body. 

III. DIAGNOSTIC METHODOLOGY 

After having acquired an IR image, its analysis 
(consisting on processing, data interpretation, and 
generation of the final report) requires a lot of skills 
and experience, but, above all, results extremely time 
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consuming, because, if a fine diagnostics is desired, 
many analyses are needed to select and quantify the 
anomalies. In order to speed up and automatize all of 
these tasks, we propose the workflow represented in 
Fig. 2, whose computing steps (violet rectangles) are 
described in the following subsections. 

 
Fig. 2. Proposed diagnostic workflow.  

A. ROI definition 

After the IR image is loaded, and the thresholds are set 
(”Load IR image & environmental parameters” and 
”Set thresholds” INPUT BLOCKS of Fig. 2), the 
definition of a Region Of Interest (ROI) coincident 
with the PV module is needed (“ROI definition” 
BLOCK), since an IR image contains almost always 
objects other than the PV module. This step is two-
fold: it allows to deal with smaller images and to focus 
the attention only on the target of the analysis, i.e. the 
PV module. For the sake of clarity, Fig. 3 shows a 
green quadrangle evidencing the ROI, whereas the red 
markers define the grid subdividing the PV module in 
cells. This figure (as Figs. 4 e 5 that will be discussed 
in the following), has been automatically produced by 
the software platform [21]. As it is clearly visible, the 
ROI can be obtained extracting the quadrangle 
individuated by the four vertices of the PV module, and 
it can be usefully partitioned in as many sub-areas as 
the total number of PV cells. Each sub-area represents 
a PV cell, and all the incoming analyses –from now 
on– will regard only this ROI. 

 

 
Fig. 3. ROI and grid of PV cells.  

B. Perspective correction 

Because of the perspective introduced by the mutual 
position of the camera with respect the PV module 
during the acquisition, the ROI will not be a rectangle, 
and the areas of the PV cells will be different each 
other, as it is noticeable by comparing the PV cells in 
the upper side of the image of Fig. 3, with those in the 
lower side.  

Therefore, the proposed framework applies an affine 
transformation on the extracted ROI, in order to resize 
each PV cells to an identical area (as shown in Figs. 4 
and 5), and allow to the subsequent analyses to operate 
on each PV cell in identical conditions. 

C. ROI filtering 

The ROI may be filtered for removing or reducing 
eventual noise, preparing it to the successive analyses. 

The decision about the filter type and how to set its 
characteristic parameters is not unique, because it 
depends on the image under consideration, and may be 
influenced by the environmental conditions and by the 
acquisition modality. Some suggestions can be found 
in [22], where it is also proved that the edge detection 
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can be usefully used, only if applied on a filtered 
image. With respect to this topic, detailed information 
about the application of the known Canny’s edge 
detector on PV modules can be found in [11], [14] and 
[22]. 

Our experience, built in many diagnostic campaigns 
on PV plants, shows that the median filter constitutes 
an effective tool to reduce the noise in IR images of PV 
modules, since its result (differently from other 
conventional filters), is not produced by convolutions, 
but collecting the median values of each pixel-
neighborhood. Thanks to this philosophy, almost often 
the median filter discards at all the noisy pixels, 
instead of taking them in consideration, though 
weighted by filter coefficients. Nevertheless, in the 
large casuistry of processed IR images, we have also 
noticed that a stronger low-pass action than that one 
allowed by a simple median filter, may be sometimes 
needed, making necessary other filters. Thus, the 
workflow provides three possible filtering strategies 
(bland, soft and hard), each one stronger than the 
previous one: they may be based either on a median 
filter, or on a Gaussian filter, or on a cascade of them. 

D. Cell analysis  

The cell analysis allows investigating the health of 
each PV cell, through its thermal state. This analysis is 
performed for each single PV cell, as if this one was 
not connected to other cells. Its first goal is to separate 
the uniform cells from the non-uniform ones, where the 
uniformity is related to the colors (i.e., the 
temperatures) of the constituting pixels. This task can 
be performed by calculating, for each PV cell, the 
variance and the mean of its temperatures. PV cells 
having variance lower than a pre-defined threshold (see 
the “Set thresholds” INPUT-BLOCK) are considered 
uniform, otherwise non-uniform.  

E. Cell classification  

The analysis of non-uniform cells requires particular 
attention, because sometimes the non-uniformity 
depends on the internal degradation of the PV cell, 
whereas other times it is due to external causes, such as 
dust or dirt on the solar glass. For this reason, the non-
uniform cells must be marked for successive specific 
on site investigations (see the “N” branch of the “Is the 
cell uniform” IF-BLOCK).  

On the contrary, the uniform PV cells can be 
immediately studied, by comparing the mean 
temperatures of the cells with the expected one (that 
may be determined basing both on the Nominal 
Operative Cell Temperature -NOCT- and on the 
environmental conditions, such as irradiance level and 
air temperature). Nevertheless, since the efficiency of a 
PV cell decreases as the temperature increases, the only 
connotation hot cell (given to the cells showing over 
temperature) is not sufficient to determine the severity 
of the anomalies and the consequent efficiency 
reduction: therefore, when a rough diagnostics is 
unsatisfying, to quantify the value of the over 

temperature is mandatory, in order to get a finer one.  
Details on the analysis implementation, both at this 

level and at the successive Cluster level (see paragraph 
III.G), are given in [20]. Briefly, our approach consists 
in setting two thresholds, say T1 and T2 (see the “Set 
thresholds” INPUT-BLOCK), which classify all the 
possible cases in three levels of hot cells strictly related 
to the amount of power losses: light (overtemperature ≤ 
T1), medium (T1 < overtemperature ≤ T2), strong 
(overtemperature > T2), as clarified by the example in 
Fig. 4. Please note that non-uniform cells (masked in 
black in Fig. 4) may appear (or not) everywhere in each 
module. Thus, the location of non-uniform cells on the 
left and right edges of the module in Fig. 4 is 
absolutely fortuitous, as it is evidenced by other cases 
of study, discussed in [21]. 

 

 
Fig. 4. Non-uniform (masked in black) cells; Normal (green 
N) cells; Light (yellow L), medium (orange M) and strong 
(red S) hot cells. 

 
Finally, the hot cells can be classified in function of 

the main (and more common) defects, taking into 
account a relation between the over temperature caused 
by the defect itself and the information reported in 
Table I, that we have extracted from the Table 2 of the 
exhaustive study in [23]. 
 
 

TABLE I. DEFECT CLASSIFICATION BY MEANS OF TEMPERATURE 

DIFFERENCE, EXTRACTED BY TABLE 2 OF [23] 

Defect Over temperature 

Bypassed substring 4±2 °C 

Cell fracture 2.5÷45 °C or higher 

Soldering 12.5±3.6 °C 

Shunted cell 1.2±0.4 °C 
 

F. Cluster assignment  

Of course, PV cells having similar mean 
temperatures may occur, and they can be near or far 
each other. The proposed framework groups these PV 
cells in families called clusters and proposes a second 
level of analysis, focused on such groups of cells, and 
not on the single cells.  

The clustering is mainly performed basing on the 
mean temperatures of the PV cells: the “Cluster 
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assignment” BLOCK assigns each PV cell to a cluster 
characterized by a given temperature range (as it was 
initialized in the “Set thresholds” INPUT-BLOCK), 
according to the method presented in Part II [20]. 
Obviously, higher the range, lower the grain and less 
the number of clusters, and vice versa.  

G. Cluster analysis & classification 

Once created, the clusters can be analyzed and 
classified. The valence of this step is twofold, as 
detailed in the following. 

I. To be helpful to the manufacturers, highlighting 
anomalies: in fact, a PV module may be built by 
PV cells coming from different productive 
processes (wafer blocks), thus having different 
thermal behaviors, even if the datasheet will be 
unique for the whole module.  

II. To allow the end user to monitor at a global level 
the thermal behavior of the cells: in fact, 
nowadays the IR analysis is typically performed 
either yearly or once a semester; thus the cluster 
analysis can highlight whether any cell continues 
to belong to the same cluster or not, since the 
composition of a cluster can vary during the life 
of the PV module and this can be evidenced in 
periodical reports. 

Moreover, cells which were classified as strong hot 
spot during the “Cell analysis” may be characterized 
by over temperatures of different entities, causing 
inefficiencies that can significantly vary: for instance, 
as it has already said in the introduction, an over 
temperature of 10 °C provokes a 4% inefficiency, 
while an over temperature of 18 °C causes a 7÷10% 
decrease. Thus, a more useful information on the state 
of the PV module can be achieved assigning them to 
different clusters, so evidencing a finer grain 
classification than that one achieved for the hot spot.  

For example, let us suppose that during the cell 
analysis, 20% of the cells resulted strong hot cells, i.e. 
they showed an over temperature > T2. If either all of 
their over temperatures or a large part of them had 
exceeded T2 only slightly, of course we would have 
observed a power loss, but if all of them had outclassed 
T2, then we would have seen a much higher power loss 
than in the previous case. Resuming, depending on the 
value of the over temperature, the power loss can be 
more or less significant. 

By this way, the “Cluster analysis & classification” 
BLOCK analyzes each cluster basing on the number of 
enclosed cells, the position inside the PV module, the 
connectivity among cells (as later explained), and the 
mean value of the cluster temperature. After that, the 
BLOCK classifies the clusters sorting them from the 
no-problem ones to the most critical one, on the basis 
of the power loss.  

About the previously mentioned connectivity, two 
cases are possible: a) jointed cluster; b) disjointed 
cluster. In the jointed clusters, any couple of cells 
belonging to the cluster can be connected by at least 

one path which encloses only cells belonging to the 
cluster itself: therefore, the cluster appears as only one 
blob. Contrarily, in a disjointed cluster, at least two 
cells which cannot be connected by a similar path exist, 
and the cluster results composed by more than one 
blob. Fig. 5 shows one of the two clusters extracted 
from the PV module of Fig. 3. This one results a 
disjointed cluster composed by two blobs (respectively 
containing 16 and 12 PV cells): since the PV module is 
installed on the roof of a building, and the IR image 
has been acquired in a sunny day (shaded neither by 
clouds nor by other objects), the two blobs evidence 
that those PV cells have internal defects, producing 
similar over temperature.  

 

 
Fig. 5. Cluster of PV cells, constituted by two blobs. 

H. Equalization 

The last processing block consists on an equalization 
that does not modify the temperature values, but only 
their representation in terms of grey-levels. Therefore, 
it does not act on the diagnostics, being performed just 
in order to assign the whole available 8-bits dynamic 
only to the temperature range present on the ROI, i.e., 
the PV module, with the purpose of providing a better 
visualization of the results. 

IV. CONCLUSIONS  

This paper proposes a workflow for processing IR 
images of PV devices, in order to get detailed, 
quantitative and objective information. Its goal is to 
perform a twofold diagnosis focused both on the cell 
level and on the cluster level. In order to make 
affordable and automatic the entire process, the 
workflow has been implemented into a software 
platform, whose description is given in Part II [20].  

The analyses resulting from the workflow can help 
not only the manufacturers to improve their production 
processes, but also the end users to check and to 
interpret the real state of health of a single PV module, 
thus constituting a valid support for the maintenance, 
because it allows to evaluate the trend of ageing.  

For instance, let us consider, as case of study, the 
defected PV module in Fig. 3, evidently characterized 
by a bypassed string and a shunted cell (other 
diagnostic cases are discussed in [20]). The workflow 
has pointed out several criticalities that were not 
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perceptible in the source image. Firstly, the two 
external columns of cells, which, being not uniform, 
have been masked in black on Fig. 4. Secondly, 7 light 
and 18 medium hot spots have been revealed in 
addition to the expected 14 strong hot spots belonging 
to the bypassed string. Finally, Fig. 5 shows a cluster 
different from that one related to the bypassed string.  

At the best of our knowledge, no current automatic 
diagnostic approach can give absolute directions on 
replacing or not a certain PV module from a PV plant, 
since the final decision depends on several factors such 
as age and ageing trend of the PV module, financial 
implications, and so on; but the proposed workflow 
represents a valid support to the technicians for these 
important evaluations. 
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