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Abstract Among enterprise business processes, those related to HR management
are characterized by conflicting issues: on the one hand, the peculiarities of intellec-
tual capital ask for rather expressive representation languages to convey as many
facets as possible; on the other hand, such processes deal with huge amounts of
resources to be managed.

For handling HR management tasks, our approach combines the representation
power of a logical language with the information processing efficiency of a DBMS.
It has been implemented in a fully functioning platform, I.M.P.A.K.T., that we
present here highlighting its peculiarities for three relevant business processes: skill
matching, task/team composition and company core competence identification.

Keywords Skill Management · Knowledge Compilation · Description Logics ·
RDBMS · SQL

1 Introduction

The so-called network economy changed the way of conceiving knowledge man-
agement in organizations. Enterprise borders go far beyond its physical location
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and more and more knowledge-intensive resources become available across the
network. Such a shared environment asks for unambiguous interpretation of infor-
mation sources and makes knowledge-based technologies a key success factor. In
particular, business processes automation can take a crucial chance by technologies
supporting knowledge representation and management [21].

Among other business activities, human resources management can get a signif-
icant boost from the adoption of knowledge-based technologies aimed at business
automation. In fact, intellectual capital is an asset with peculiarities: it is intan-
gible, its description is subjective, and the way to describe such an asset is a key
choice for its successful exploitation. Logic-based representation perfectly fits such
peculiarities, and the representation language—if properly chosen—could support
human resources management automation through suitable reasoning services.

Even though such a flexibility and informative potential is paid in terms of
computational cost of reasoning, semantic-based enterprise systems may represent
a good candidate to substitute traditionally employed solutions, mostly based on
Relational Data Base Management Systems (RDBMSs). Despite recent emerg-
ing systems in the data storage field, such as NOSQL1 technologies, we focus on
RDBMS, as structured data model engine, and SQL, as declarative language for
data manipulation and retrieval, since they still represent the most popular and
well-known tools in enterprise scenario. Nevertheless, RDBMSs lack of a seman-
tic characterization of resource descriptions and thus allow only for syntax-based
information management, which is too restrictive for a domain as knowledge-
intensive as human resources. Our main goal in this paper is aiming at filling
such a gap.

For example, available e-recruitment tools2 generally store information about
employment, personal data, certifications and competence of candidates by exploit-
ing RDBMSs with customized and structured templates. Then, some information
is extracted through relational query languages—SQL or some variants. Now, an
RDBMS is surely suitable for efficient storage and retrieval of data, yet SQL is
usually not flexible enough to support a discovery process as complex as recruit-
ment. Take, for instance, the problem of selecting the most appropriate candidate
for some job; this is a process involving several preferences, some along orthogonal
dimensions—e.g., acquired skills vs. geographical location—while others somehow
related—e.g., learning gaps and expected salary. By means of SQL standard oper-
ators such as aggregate functions, group by and order by clauses, the user is able
to retrieve the best tuples (i.e., the best candidates for a specific task) according
to her sorting criteria; yet such tuples still need a human-based post-processing
phase, where incompatible or unsatisfied preferences (not directly representable
by standard SQL) are evaluated and traded off.

More generally, classical DB-based techniques show their limits in managing
complex domains: (i) search processes can be very time-consuming but often un-
satisfactory because underlying frameworks basically rely only on keyword-based
approaches; (ii) a user can express only mandatory requirements (it is not possi-
ble to select features according to some negotiable constraints). On the one hand,
such systems usually do not return arranged outcomes (a priori excluding results
summarily deemed as not relevant) and, above all, they do not provide any re-

1 e.g., http://nosql-database.org/
2 e.g., http://www.monster.com/, http://www.careerbuilder.com
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sults explanation. On the other hand, heavy computational capabilities prevent a
widespread usage of semantic approaches, and as soon as real data sets have to be
faced in common applications, response times become often unacceptable.

We propose to reconcile such a dichotomy by combining the richness in infor-
mative content, typical of semantic-based approaches, with efficient data manage-
ment and scalability, characterizing RDBMS-based ones. To draw an analogy with
Programming Languages, our approach allows a user to express information in a
high-level knowledge representation language, and then it “compiles” and stores it
away as tuples in a Relational Data Base (RDB). Then, when the user expresses
queries regarding such data—still in the high-level representation language—they
are compiled to SQL queries that match the previous tuples. In this way, our sys-
tem retains both the expressiveness of a knowledge representation language and
the efficiency of an RDBMS.

Our approach follows the so-called Knowledge Compilation scheme [10]. Knowl-
edge Compilation has been employed to make computationally easier to reason over
the information contained in a Knowledge Base (KB), by splitting the reasoning
process in two phases: (i) the KB is pre-processed, thus parsing it in a proper data
structure (off-line reasoning); (ii) the query is answered exploiting the structure
coming out of the first phase (on-line reasoning). To this purpose, the proposed
skill engine leverages KB pre-processing to reduce on-line reasoning overhead.

The main contributions of this article may be summarized as follows:

– we present a novel skill management approach, which adopts a Knowledge
Compilation scheme over a KB formalized in Description Logics (DLs) [2],
that makes the proposed approach different from our previous work [17]. At
the same time, it preserves computational efficiency, which is quite low in fully
logic-based approaches.

– we present I.M.P.A.K.T. (Information Management and Processing with the
Aid of Knowledge-based Technologies)3, as an innovative system implement-
ing the approach above. I.M.P.A.K.T. is an integrated system for human re-
sources management by supporting the execution of three relevant business
processes: i) retrieval of ranked referral lists, ii) working team composition, iii)
automated extraction of strategical enterprise competence4. The performance
of such business processes exploits an inference engine solving non-standard
reasoning services, by means of a flexible query strategy in standard SQL.
This strategy results from the design of the on-line reasoning component of
our Knowledge Compilation approach.

For a matter of readability, we here report only on the modeling approach allowing
to translate the KB into the reference relational database. We do not delve into
details about the design of SQL queries solving the reasoning services at the basis
of provided HRM services, only reporting on the design of the off-line reasoning
phase of the Knowledge Compilation approach.

The rest of the paper is organized as follows. The next section reports on
relevant professional tools and research proposals related to our work. Section

3 An embryonic I.M.P.A.K.T. version, including only retrieval of ranked referral lists of
candidates, has been presented in [53].

4 A short introduction of the three services in I.M.P.A.K.T. has been given in some previous
works [55,54,18].
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3 introduces the off-line reasoning component of the proposed knowledge com-
pilation approach (the reader not familiar with Description Logics may need to
read through Appendix A before). In Section 4 we first show efficacy of the pro-
posed non-standard reasoning services through a comprehensive example and then
present a numerical experimental evaluation of the system. Conclusions close the
paper.

2 Related Work

In order to motivate the proposal of I.M.P.A.K.T., we compare it with relevant
related work. In particular, to show how I.M.P.A.K.T. combines advantages of
both DB-based and logic-based approaches to automated recruitment, we report on
related work pertaining to both categories, proposed in professional and academic
products.

2.1 Professional solutions for Recruitment

Most professional tools for talent management5 and e-recruitment are enterprise
suites supporting human resources management, including solutions that, even
though improving the recruitment process by means of innovative media and tools,
do not introduce a significant novelty charge. Available solutions in fact exploit
databases to store candidate personal and employment information, and perform
recruitment on the basis of exact match, in absence of a logic-based structure.

On the contrary, the inadequacy of exact match of resumes in job search has
been recognized several times over the last years, and motivates the proposal of
some professional solutions.

To the best of our knowledge, one of the first logic-based tools for recruitment
and referral process is RESUMIX6, which has been employed at US Army and
Navy Department till 2012, and is still at the basis of NASA recruitment process.
As far as we can see, due to the privacy restrictions required by its employment
in military institutions, RESUMIX is a staffing tool using techniques mining the
context of words to overcome limits of keyword-based search. It is semi-automated
(the last resume review is left to humans) and asks applicants for writing resumes
according to a specific format (guided by a web interface), and apply for open
positions. RESUMIX distinguishes skills in required and desired ones in the de-
scription of open positions: only required skills must be matched by the retrieved
candidate, while desired ones are only used to rank candidates. No explanation is
returned for the proposed solutions.

Sovren7 offers different valuable solutions to semantic-based matching of pro-
files. Notably, the Sovren Resume Parser deals with the problem of converting
resumes from several text formats to the standard HR-XML schema8. This fully

5 http://www.attract-hr.com/cm/about,
https://www.oracle.com/it/applications/human-capital-management/
talent-management/acquisition/index.html

6 http://nasajobs.nasa.gov/NASAStars/about_NASA_STARS/what_is_resumix.htm
7 http://www.sovren.com
8 http://www.hropenstandards.org/
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distinguishes Sovren from other providers, which ask candidates to model CVs
in a specific format. The fully-automated tool Sovren Semantic Matching Engine
(SSME) is able to match resumes (in HR-XML) to job offers properly formatted
thanks to the Sovren Job Order Parser embedded in SSME (the parser translates
also job offers in plain text). SSME allows for weighting search criteria (the gran-
ularity level of the weighting mechanism is not provided) and returns a ranked
list of candidates, which seems to exclude false-positives (it is not clear if the
process produces false-negatives, because the matching strategy is not revealed
in full details). The full automation makes the matching process completely hid-
den to the recruiter, who does not receive any explanation about retrieved results.
SSME provides also a service for finding candidates (jobs) who are similar to other
candidates (jobs, respectively), called candidate (job) clone.

Around 2013, Monster.com(R), the leading Web job-matching engine, intro-
duced the service Monster Power Resume Search(TM)9 to improve the relevance
of candidates recruitment over Monster database. The product relies on the se-
mantic 6Sense(TM) search technology, patented by Monster Worldwide, Inc. itself.
Thanks to such a search technology, the novel engine is able to mine the content
and the context of each term in the request. A guided interface supports recruiters
in specifying all the features of the request, together with the related levels and
years of experience. Monster Power Resume Search(TM) retrieves a ranked list of
candidates, whose top skills are shown in the results interface and easy to compare.
The service apparently lacks of a mechanism for weighting job requirements and
of an explanation of ranked results.

Talemetry(R) Source & CRM offers an easily searchable interface over a single
database combining internal and external candidate sources. The interface allows
for specifying the relevance of each feature in the request. The match process re-
turns a ranked list of candidates, together with a brief description of their main
skills and job experiences. The matching criterion adopts both ontological cate-
gorization and semantic analysis, but is not revealed in details. No explanation of
results is provided.

In Figure 1 we classify the four tools introduced above and I.M.P.A.K.T.,
according the six dimensions emerged in their analysis: input format of resumes,
weighting mechanism of search features, ranking of results, level of automation,
information returned with ranked results, and candidate/job clone service.

We immediately remark that none of the analyzed tools deals with team com-
position and core competence extraction, which are therefore outside the analysis,
but still represent services which I.M.P.A.K.T. has more than the others. We also
remark that such services ground on the same ontology, E-R model, profile storing
and reasoning primitives in SQL. This makes I.M.P.A.K.T. an integrated system
for human resources management and not only a recruitment service.

As for skill matching, we report in bold font the distinguishing peculiarities of
each tool. Notably, all the tools return a ranked list of candidates (see Row 3 in
Figure 1) but most of them show only a standard portion of the resume beside
each returned candidate. Only I.M.P.A.K.T. returns explanation of results, in the
form of fulfilled, additional, underspecified and conflicting features (see Section 4.1
for details on such features).

9 http://hiring.monster.com/recruitment/Resume-Search-Database.aspx
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Fig. 1 Comparison of semantic-based recruitment systems (distinguishing peculiarities are
reported in bold font)

Even more importantly, I.M.P.A.K.T. is the only one using explanation to
rank results. In particular, it extends the search to non-exact matches in an Open
World Assumption, going further a merely subsumption-based match. The match
strategy of the other tools is not revealed in full details, and, for some of them, it
is not clear if an ontology is employed to mine the context and the content of key-
words. In the worst case, no ontological structure is used and neither subsumption
between candidate and job description holds. In the best case, an ontology is used
but the tool does not go further a subsumption-based match. This may cause an
unaffordable number of false negatives, which, in turn, reduces the tool utility.

As for the first two rows in Figure 1, a service for CV translation from plain
text and an improved mechanism for weighting features are under investigation.
Their implementation will be part of our future work.

We did not report in bold font the automation level of SSME, because the
adoption of full automation in skill matching is controversial. Many systems (see
RESUMIX, as an example) leave the final choice up to humans and claim semi-
automation as a noteworthy possibility.

2.2 Review of related literature

The knowledge compilation process underlying I.M.P.A.K.T. makes it able to
share some features with DB-based approaches to skill management and some
others with logic-based ones. Therefore, we first report on the DB-based solutions
to resource matching related to ours. Then, we compare the framework underlying
I.M.P.A.K.T. with logic-based research proposals.

A feature not new in database querying and provided by our system is the
possibility to take into account both user preferences and strict requirements in
the overall retrieval procedure. In database querying, infact, the need to provide
users with a set of answers taking into account the presence of preferences has
been recognized. Two competing approaches emerged so far, thanks to the work
by Chomicki [12], though not specifically applied to skill management. The first
one—defined as quantitative—models preferences by means of utility functions
[9,44], whereas the second qualitative one uses logical formulas [12,32]. In other
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words, in the qualitative approach, the preferences between the tuples in the result
set of a query are directly specified, usually by using binary preference relations.
In the quantitative approach, preferences are instead indirectly expressed by using
scoring functions that associate a numeric score to each tuple in the result set.
Then, a tuple t1 is preferred to a tuple t2 iff the score of t1 is higher than the score
of t2.

Differently from both the above introduced approaches, we do not define a spe-
cific query language for preference management. In fact, we are interested in pro-
viding a powerful tool exploiting only standard SQL, which is both well-known in
enterprise environments and commonly employed in resource management frame-
works implementation. Moreover, in preference-based approaches, tuples represent
classical structured information. On the other hand, several works have been pre-
sented [40,30] dealing with non-structured information, i.e., textual descriptions
representing informative needs. On the contrary, we manage semantic-based infor-
mation, properly modelled and stored in tuples of a database, such that reasoning
tasks can be performed over them.

Several approaches have been presented, where databases allow users and ap-
plications to access both ontologies and other structured data in a seamless way.

An approach aimed at classification in SQL databases of ontologies formalized
in ELH has been presented in [19]. Furthermore, [56] shows a translation of ALN -
concepts into pairs (database, query) such that to decide Subsumption C v D one
evaluates the query from D over the database from C. In this way, subsumption
between the original concepts can be decided as query answering over a database.
These approaches are devoted only to knowledge representation, since they solve
subsumption, and not to non-standard reasoning services like Concept Abduc-
tion and Contraction (actually such services do not even have a formalization in
ELH). Another possible optimization is to cache the classification hierarchy in
the database and to provide tables maintaining all the subsumption relationships
between primitive concepts. This happens for example in Instance Store (iS) [5], a
system for reasoning over OWL KBs specifically adopted in biomedical-informatics
domains. iS is also able—by means of a hybrid reasoner/database approach—to
reply to instance retrieval queries w.r.t. an ontology, given a set of axioms assert-
ing class-instance relationships. A comparison between iS and our approach shows
that the former reduces instance retrieval to pure TBox reasoning and it is able
to return only exact matches, whilst we use an enriched relational schema storing
only the ABox (i.e., facts) in order to provide a logic-based ranked list of results.

Das et al [13] developed a system that stores OWL-Lite and OWL-DL ontolo-
gies in Oracle RDBMSs, and provides a set of SQL operators for ontology-based
matching. Jena 2 Ontology Stores [63], Sesame [8] and Oracle RDF Store use
a three columns relational table 〈Subject, Property,Object〉 to memorize RDF
triples whereas other ontology storage systems, such as DLDB [45] and Sesame on
PostgreSQL [8], adopt binary tables. The most popular and recent OWL storage
is OWLIM [33]. It is a Sesame plug-in able to add a robust support for the seman-
tics of RDFS, OWL Horst and OWL2 RL [1]. Another system exploiting DBMS
techniques to deal with reasoning tasks (i.e., subsumption check and instance re-
trieval) is OWLDB10. It defines a methodology for translating SHOIN inference
rules into relational database queries, with benefits in scalability and performance.

10 http://owldb.sourceforge.net/
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SHER [20] is a highly-scalable OWL reasoner performing both membership and
conjunctive query answering over large relational datasets using ontologies mod-
eled in a subset of OWL-DL without nominals. It relies on an indexing technique
summarizing database instances into a compact representation used for reasoning.
It works by selectively uncompressing portions of the summarized representation
relevant for the query, in a process called refinement. Internally, SHER uses Pellet
to reason over the summarized data and obtain justifications for data inconsistency.
SHER allows for getting fast query answering, but does not provide a ranked list of
results. PelletDB11 provides an OWL 2 reasoning system specifically built for en-
terprise semantic applications. It combines Pellet’s OWL capabilities and scalable
native reasoning of Oracle Database 11g so ensuring performance improvements
w.r.t. to the use of such technologies separately. Differently from the previous
approaches, one of the most widespread DL-reasoners, i.e., KAON212, does not
implement the tableaux calculus, but it reduces a SHIQ(D) knowledge base to a
disjunctive datalog program. An inference engine for answering conjunctive queries
has been so developed applying well-known deductive database techniques.

All the cited systems, although using languages more expressive than I.M.P.A.K.T.,
are only able to return either exact matches (i.e., instance retrieval) or general
query answering. Instead, we use an enriched relational schema to deal with several
non-standard inferences, to provide effective value-added services. This peculiar-
ity is due to the logic-based nature of I.M.P.A.K.T.: the knowledge compilation
process is able to embed an informative content otherwise hardly extractable with
classical DB-based approaches.

The benefits of semantic technologies in enterprise knowledge management
have been pointed out since 1990s and continue to be widely recognized—even in
very recent works [28,31,60]. In particular, several approaches propose ontologies
as knowledge repositories, to provide a common vocabulary and to model general
Knowledge Management procedures [27] and tools [11].

A relevant issue arises in using ontologies once they have been built, i.e., rea-
soners and reasoning services must be designed and implemented to take full ad-
vantage from the effort placed in structuring an ontology. Also, an intense use
of inference services is required [42,43] to justify the computational cost of their
performance.

On the contrary, although several semantic facilitators have been proposed
in literature for several scenarios and techniques [48,50,57,64] often they do not
fully leverage the ontological structure, limiting their inferences to simple sub-
sumption matching. The work by Colucci et al [14] gathers several semantic-based
approaches to retrieval, based on specifically devised non-standard services in De-
scription Logics. Thanks to them, the matchmaking process may be extended
w.r.t. exact match. An approach seemingly similar in overcoming exact matches
has also been proposed [6]. It extends the one for measuring similarities in ontolo-
gies by Ehrig et al [22] for combining the advantages of similarity-based search
with those of ontology-based systems. Nevertheless, such an approach does not
allow to provide explanation of results in case of non-exact matches.

The approach to skill matching by Hefke et al [26] may appear close to the
above-mentioned one [14]. It is based on a technique presented by Stojanivic et al

11 http://clarkparsia.com/pellet/
12 http://kaon2.semanticweb.org/
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[49] for ranking query results. The relevance of query outcomes is computed taking
into account the structure of the underlying domain (using the Knowledge Base
content) and the inference process characteristics. The ranking, though providing a
useful support to the choice between the returned profiles, only classifies answers
w.r.t. queries formalized with a well-defined structure. Such an approach lacks
expressiveness in the querying process. Moreover, the Open World Assumption is
not made, because only answers explicitly providing characteristics required by the
query are considered. Finally, no explanations are provided about the rationale in
case of absence of match.

Mochol et al [38] address the role of semantic techniques in improving the accu-
racy of job search. The authors propose to describe candidates and jobs according
to so-called thematic clusters, which represent specific portions of CVs and job
postings. The similarity of each pair of corresponding clusters is then computed
on an ontological basis and contributes to the calculus of total similarity between
the candidate and the job. Although sustaining semantic-based search, the au-
thors raise important outstanding problems, like the impossibility to express the
duration of a particular experience (e.g., 3 years experience in Java programming)
and the lost of job applications which do not fit 100% to the defined requirements
but are still acceptable for the employer (e.g., 3 years instead of 5 years indus-
try experience). To address such needs, the authors propose a query relaxation
approach supporting the raking of results and reducing the number of false neg-
atives. Notably, I.M.P.A.K.T. overcomes both the problems raised by Mochol et
al : it supports the specification of years of experience related to each profile fea-
tures and performs an extended matchmaking, which not only returns imperfect
matches but also explains the reason for such an imperfection.

Fazel et al [23] propose the formalization of job announcements and resumes
in a given template in DLs. The template distinguishes skills in requirements and
desires, and performs match only on requirements, using desires only for ranking
matching candidates. I.M.P.A.K.T. allows for such a distinction, but returns also
candidates slightly conflicting the job posting, together with the reason for the
mismatch. Moreover, the approach by Fazel et al does not investigate and motivate
the adopted DL and does not exploit its reasoning services. The match is based on
measures for semantic similarity and seems not to take much advantage from the
proposed formalization in DLs. In other words, it is not clear how the logic-based
characterization of employed terms affects the ranking process. On the contrary,
I.M.P.A.K.T. performs the match (and all the other supported processes) by
implementing well-investigated inferences in DL, in a feasible and unambiguous
fashion. The choice of the DL is therefore motivated by the feasibility needs and
made clear to the reader.

Very recently, an approach for reasoning under uncertainty and vagueness,
adopting a fuzzy Description Logics, has been applied to the job market [29]. The
fuzzy extension copes with the need to manage vague and uncertain information,
like the salary, the age and the daily working hours, so to give flexibility to the
query process. In particular, Dempster-Shafer Framework and Dempster’s rule of
Combination are used to reach an agreement for matchmaking between a job seeker
and a recruiter. This theory is suited for preference fusion situations. The match-
making process implements a set of Semantic Web Rule Language (SWRL) [41]
rules, executed to define Offer and Seeker constraint factors. As for the approach
by Fazel et al [23], the underlying ontology models concepts in a two-fold fash-
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ion: the same entity (e.g., Degree) has one conceptualization as requirement (e.g.,
RequiredDegree) and one other as preference (e.g., PreferredDegree). Duplex con-
ceptualizations are also set to differentiate offered features (e.g., SeekerPreferences)
from searched ones (e.g., SkillPreferences). This is due to the choice of managing
the JobSeeker and the JobOffer in different templates, to be logically compared by
applying above mentioned rules. Thanks to knowledge compilation, I.M.P.A.K.T.
is able to return and explain also almost-exact matches, only through standard
SQL queries translating well-defined reasoning services. Notably, I.M.P.A.K.T.

ontology allows for modeling both resumes and job offers with the same template,
without splitting the same entity in different concepts.

The design of an adaptive approach based on automatic matching learning
has been proposed for the mediation between recruiters and candidates [36]. This
approach should be able to calculate the transformation cost of a given profile
into a requested job offer, so that profiles with higher transformation cost should
rank worse than those with lower cost. The approach is just sketched at design
level, but the authors outline the importance of: i) using knowledge bases to avoid
multiple conceptualizations of the same entity; ii) having a weighting mechanism
for the formalization of requests; iii) augmenting the number of matches through
a mediation process. The design of I.M.P.A.K.T. shares this vision, so that these
three issues are addressed by the system.

The research by Rácz et al [46] extends the results of an exact subsumption-
based matching, by taking into consideration similarities between different skills
that are not related by the subsumption relation. In particular, the approach com-
putes the probability of having some required skills on the basis of the explicitly
hold ones. Then, a probabilistic matching based on the maximum entropy model
is analyzed: the match value of a job offer and an application is the result of a
probabilistic query. The number of false positives deriving from this approach is
not investigated and no explanations is given for retrieved matches.

From the literature reviewed so far, it emerges that:

– all the approaches propose a semantic-based representation of human resources
domain;

– logic-based matching (possibly based on subsumption) of candidates and offers
is the ideal one, but often returns a too small number of candidates;

– a mechanism for weighting the importance of features required/offered is pro-
vided in each approach;

– each approach adopts a different approximation strategy to gain matching
chances.

In the following, we show how I.M.P.A.K.T. follows the principles itemized above,
but presents several distinguishing features w.r.t. existing approaches. In particu-
lar, it is a semantic-based system, which incorporates in a unique modeling frame-
work knowledge management solutions related to different organizational needs,
rarely—if ever—faced from an integrated perspective. To the best of our knowl-
edge, it is among the few systems fully exploiting the knowledge representation
effort spent in modeling informative resources. I.M.P.A.K.T. proposes, in fact, sig-
nificant explained solutions double-tied with some Description Logics inferences,
specifically developed for explanation purpose. This ensures the originality of sys-
tem functionalities.
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In all the revised approaches, the approximation strategy is not made clear
to the user (either the recruiter or the candidate), while I.M.P.A.K.T. makes
all the information used for ranking candidates explicit and available for possible
mediation processes.

Moreover, we stress that I.M.P.A.K.T. completely differs from the system we
presented in our past research [17], which: i) is fully logic-based and therefore has
retrieval times not feasible in a real scenario; ii) lacks of a mechanism for dis-
tinguishing requirements and preferences in the query process; iii) grounds on a
different approximation strategy and then returns less matches, with the explana-
tion of only missing and conflicting features; iv) does not offer the possibility to
mediate match starting form the provided results.

On the contrary, the modeling effort spent in knowledge compilation makes
I.M.P.A.K.T. significantly original. It is in fact able to perform in feasible times
tasks related to knowledge representation and reasoning by only reverting to a
DBMS.

3 Modeling the Knowledge Base

In the following, we assume the reader familiar with basic DLs formalism and
reasoning services. Nevertheless, a short introduction to DLs may be found in
Appendix A for interested readers.

I.M.P.A.K.T. framework aims at properly storing profiles (i.e., structured
CVs, see Definition 2 for its formalization), to efficiently perform reasoning services
only via SQL standard queries over a relational database fully mapping the KB.
Provided services are related to three categories of human resources management
business processes and rely on a unified framework for knowledge representation.
I.M.P.A.K.T. takes all the information needed to understand and manage the
domain of human resources from a specifically developed modular ontology. The
ontology currently includes nearly 5000 concepts modeling both the technical and
the complementary skills a candidate may hold. In particular, by technical skills we
mean the candidate background knowledge about specific technologies and tools,
while by complementary skills we mean personal and social abilities. In order to
give an idea of the modeling effort, we note its development took one year with a
working team composed of three knowledge engineers and one domain expert.

An upper level sketch of the modular KB structure, denoted by K is shown
in Figure 2, with reference to both the intensional (TBox T ) and the extensional
(ABox A) components defined in Appendix A. Of course, the ontology modular-
ity allows for extending it whenever a new category of work-related features is
identified. Such an extension would change the knowledge compilation schema,
whose construction process is able to support the incremental introduction of new
modules in the ontology, as shown in Section 3.1. Hereafter, the content modeled
in each ontology module is briefly described:

– Knowledge models the hierarchy of possible candidate competence and techni-
cal tools usage abilities, including classes like FunctionalProgramming, Database,
PHP and ZendFramework, to name a few; moreover, the module provides a prop-
erty to specify, for each competence, the related experience role type (e.g.,
developer, administrator, and so on) and a predicate to convey the experience
level, expressed in work years;
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– JobTitle models the hierarchy of possible job positions, such as TeacherAssistant
or DatabaseAdministrator; the module also provides a predicate to specify the
job experience level (years).

– Industry models the hierarchy of industrial sectors where a candidate may
have worked, such as InstitutionalAreas, ResearchLaboratories, CompanyDepartments;
a module predicate allows also for defining years of work experience in a spe-
cific industry.

– ComplementarySkill models the class hierarchy about complementary atti-
tudes (a.k.a. soft skills) such as Cooperation, StressTolerance, Leadership,
ProblemSolving, which complete CV technical skills and competence and often
help evaluating a candidate profile.

– Level models the hierarchy of candidate education and training levels: from
basic education to MasterDegree, the whole candidate qualifications can be
specified including specific Certifications she gained.

– Language models the hierarchy of possible languages known by the candidate
and provides three concrete features to further classify language knowledge
in verbalLevel, readingLevel and writingLevel and assign a reference level
(from 1—basic—to 3—excellent) to such language skills.

Fig. 2 Skill KB overview

In the following, we formally denote by T = {Mi|0 6 i 6 6} the whole skills
ontology adopted by the current I.M.P.A.K.T. implementation. All the classes
modeling technical and complementary skills, briefly described above, belong to
one of the ontology submodules Mi, with i > 0, shown in the lower layer in Figure
2. The component Profile Template in Figure 2 is the main ontology module, M0.
It directly imports all the previous modules and models all of the properties needed
for describing the candidate profile through the above detailed classes. We define
such properties by the name entry points. In particular, Profile Template includes
one entry point for each imported sub-module: as an example, hasComplemen-
tarySkill (or alternatively hasIndustry) is the entry point which allows for specify-
ing features of the candidate profile related to the category ComplementarySkill

(respectively Industry).

Formally, an entry point is defined as follows:
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Definition 1 (Entry Point) Given the skill ontology T , an Entry Point R0
j

with 1 6 j 6 6, is a property defined in the module M0 such that (R0
j )I ⊆

∆I ×MIj .

In order to fully represent the features of Human Resources management, real-
life examples suggest that at least the following constructors are needed: conjunc-
tion, universal and existential quantification, and concrete features (see e.g., Robert
profile described at the end of this section). We did not find evidence that atomic
negation is needed, at least when modeling a knowledge profile; in fact, profiles
never require that a candidate does not know something. Also for describing a
CV, negative information is not provided (no one starts a list of things s/he does
not know). However, the interplay of existential and universal quantification leads
to reasoning problems that are not computable in polynomial time [2, Ch.3], and
such computational complexity hampers the translation into SQL of our problems
(see Appendix B for proofs and a discussion). Therefore, I.M.P.A.K.T. adopts a
CV representation (see Definition 2) allowing for reasoning only on FL0(D) con-
cepts which represent knowledge about our domain. Such a DL does not allow for
atomic negation, coherently with the domain assumption motivated above, and
drops existential quantification. As a consequence, each ontology module Mi, with
i > 0, is modeled according to the formalism of FL0(D).

Thanks to the knowledge modeling outlined so far, it is possible to model
Candidate Profiles in the ABox (see Figure 2). We notice that all personal infor-
mation in the CV, which are structured data by definition (i.e., first/second name,
address, telephone, car availability, etc.) are not considered for the logic formaliza-
tion, given that they can be more properly represented straightly in the relational
schema. The CV classification approach we propose is based on a role-free ABox,
which then includes only concept assertions of the form P (a), stating that the
candidate a (i.e., her CV description) offers profile features P .

The effectiveness and the efficiency of I.M.P.A.K.T. framework is intuitively
double-tied to the design of the Entity-Relationship (E-R) model: only a properly
designed storing of both ABox instances and TBox axioms may make the further
reasoning stages work. Before starting with the description of the employed E-R
model, we need to provide readers with some crucial definitions.

Definition 2 (Profile) Given the skill ontology T , a profile P is an ALE(D)
concept defined as a conjunction of existential quantifications, P = u(∃R0

j .C),

with 1 6 j 6 6, where R0
j is an entry point and C is a concept in FL0(D) modeled

in the ontology module Mj .

We notice that the description of a profile would need the alphabet of ALE(D),
but its structure is constrained by Definition 2; we cannot therefore exploit the
full ALE(D) expressiveness to model the knowledge at hand. We point out, also,
that the profile structure given in Definition 2 allows for six types of conjuncts
modeling CV features, but the number of features is not constrained: the six entry
points are just a way to identify CV sections and describe all items belonging to
them.

The currently implemented list of possible conjuncts of a profile P is reported
in Table 6 in Appendix C.
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3.1 Knowledge Compilation schema

Our knowledge compilation problem aims at translating the skill knowledge base
into a relational model, without loss of information and expressiveness, in order to
reduce on-line reasoning time. So, relational schema modeling is the most crucial
design issue and it is strongly dependent on both knowledge expressiveness to be
stored and reasoning to be provided over such a knowledge.

Notice that all non-standard reasoning services performed by I.M.P.A.K.T.

process the atomic information making up the knowledge descriptions to be stored
rather then the concept as a whole. For this reason, the availability of a finite
normal form for such descriptions turns out to be very useful and effective. We
recall that FL0(D) concepts can be normalized according to the Concept-Centered
Normal Form (CCNF), [2, Ch.2], through the recursive application of the formulas
in Figure 3, until no rule is applicable at every nesting level.

TBox reduction Concept reduction

A → A u C
if A v C ∈ T

A → C
if A = C ∈ T

∀R.(D u E) → ∀R.D u ∀R.E

Fig. 3 Rules for FL0(D) CCNF.

A finite normal form is instead not available for ALE(D) concepts and this mo-
tivates our choice to model CVs according to Definition 2. I.M.P.A.K.T. exploits
all the informative content needed for the on-line reasoning phase by extracting
FL0(D) components (namely each C in a Profile—see Definition 2) from modeled
CVs.

In the following, we provide Definition 3 to denote what we mean by CCNF of
a concept F—CCNF(F )—in the rest of the paper.

Definition 3 (CCNF(F )) Given the skill ontology T :

1. if F is a concept description in FL0(D) modeled in the ontology module Mj ,
with 1 6 j 6 6, then CCNF (F ) is the concept-centered normal form of F ,
computed according to rules in Figure 3.

2. if F is a conjunct in Definition 2, F = ∃R0
j .C, we denote by CCNF(F ) the

concept description CCNF (F ) = ∃R0
j .CCNF (C).

3. if F is a Profile according to Definition 2, F = u(CJ) , with CJ = ∃R0
j .C, we

denote by CCNF(F ) the conjunction of all CCNF(CJ).

The E-R model resulting from knowledge compilation is sketched in Figure 4.
In particular, the schema in Figure 4(a) shows all the entities needed to represent
the Tbox T axioms and is obtained according to the following design rules:

1. a table Concept is created to store all the atomic information managed by
the system: i) concept and role names; ii) the CCNF atoms of all the FL0(D)
concepts defined in modulesMj , with 1 6 j 6 6. Among attributes of Concept
table, a specific relevance is assumed by level: it indicates the depth level of
the concept name in the ontology (taxonomy).
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Fig. 4 Database relational schema

2. three tables mapping recursive relationships over the table Concept—namely
Parent, Ancestor and Desconcept—are created to store, respectively, for
a concept C, information about its parents, its ancestors and the atoms of its
CCNF—CCNF(C)—in case C is a defined concept.

3. a table Rj(X) is created for each entry point R0
j (see Definition 1), where X

is a set of attributes X = {profileID, groupID, conceptID, value, lastdate}
detailed in the following (see Figure 6 for a toy example).

Notice that, thanks to the third rule, our model can be easily extended. If
moduleM0 in T is enhanced by a new entry point in order to capture a novel aspect
of candidate CVs, then the schema may be enriched by adding the corresponding
table Rj(X) to it.

The schema in Figure 4(b) models instead the entities needed to store all
features of candidate profiles P (a).

Notice that Figure 4(a) and Figure 4(b) share the same tables Rj(X), but
from different levels of abstraction. In fact, the ontology modules in T define the
schema level by determining both the number and the structure of tables Rj(X),
whereas ontological features of candidate profiles P (a) in A represent the instance
level and populate such Rj(X) tables.

Thus, all features modeled in profile descriptions according to Definition 2 are
stored in tables Rj(X) related to the involved entry points, while Profile table
includes the so called structured information: extra-ontological content, such as
personal data (e.g., last and first name, birth date) and work-related information
(e.g., preferred working hours, car availability). Intuitively, each individual a is
involved in one P (a) assertion only, while the same feature P could be offered by
more than one candidate.

Once the CCNF(P ) of a profile P = u(∃R0
j .C)—with 1 6 j 6 6—has been

computed according to Definition 3, the assertion P (a) is stored in the database. In
particular, I.M.P.A.K.T. produces a unique identifier for the candidate a, assigned
to attribute profileID in Table Profile, and, for each conjunct ∃R0

j .C belonging
to P (a), it adds one tuple for each atom of the CCNF (C) to the related table
Rj(X).
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MasterDegree v Level

EngineeringDegree v MasterDegree

ComputerScienceEngineeringDegree v EngineeringDegree

English v Language

Programming v KnowledgeType

EngineeringAndTechnologies v Knowledge

Java v OOP

C++ v OOP

VisualBasic v OOP

OOP v ProgrammingLanguage v SWDevelopment v ComputerScienceSkill v EngineeringAndTechnologies

PostgreSQL v RDBMS v OpenSourceDBMS v DBMS v InformationSystem v ComputerScienceSkill

InternetTechnologies v ComputerScienceSkill

ArtificialIntelligence v ComputerScienceSkill

Fig. 5 The ontology sketch used as reference in examples

In order to better clarify the role of tables Rj(X), consider the informa-
tive content in hasKnowledge (i.e., Rj = hasKnowledge). In such a table,
I.M.P.A.K.T. archives all technical skills and competence held by P (a), where
each conjunct ∃hasKnowledge.C describes a single skill of P (a). Thus, the entry
point hasKnowledge identifies the table for storing the profile competence, but
the information actually modeling the held skill is described by C—or equivalently
by CCNF (C). As a consequence, to fully convey all the competence and technical
knowledge in a given profile (identified by profileID), the full set of tuples in
hasKnowledge table, related to that profileID, is needed. We notice that the
same candidate profile P (a) may include more than one conjunct involving the
same entry point. For example, both ∃hasKnowledge.C and ∃hasKnowledge.D
could belong to the same P (a). In accordance with the relational schema intro-
duced so far, the atoms of both CCNF(C) and CCNF(D) are stored in the same
table hasKnowledge, but two different groupID values are assigned to C and
D atoms, respectively (see Figure 6 for a toy example).

To further clarify both usefulness and effectiveness of the previous E-R model-
ing w.r.t. skill and talent management domain, a toy profile description is proposed
hereafter.

Let us suppose Robert is a candidate; his profile can be described as: ”Robert
speaks English with a scholar level whereas he is doing better with written English.
He has a degree in Computer Science Engineering, with mark equal to 110 (out
of 110), an excellent experience in Java programming (5 years until December 10,
2010) and he is two years experienced in PostgreSQL DBMS (until July, 2011),
...”. Robert profile can be represented according to the following features:

– hasLevel - Computer Science Engineering Degree (final mark = 110)
– hasKnowledge - Java (knowledge type = programming, years of experience =

5, last update = 2010-12-10); PostgreSQL (years of experience = 2, last update
= 2011-07-31)

– knowsLanguage - English (verbalLevel=1, writingLevel=2).

Robert profile is modeled according to Definition 2 and Table 6 (see Appendix
C) in a concept P as in the following:
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Concept

conceptID name level

1 mark null

2 year null

3 skillType null

4 lastdate null

5 skillType.Programming 2

6 skillType.KnowledgeType 1

7 Knowledge 1

8 EngineeringAndTechnologies 2

9 ComputerScienceSkill 3

10 SWDevelopment 4

11 ProgrammingLanguage 5

12 OOP 6

13 Java 7

14 PostgreSQL 8

15 OpenDBMS 7

... ... ...

hasKnowledge

profileID groupID conceptID value lastdate

100 1 13 null null

100 1 12 null null

100 1 11 null null

100 1 10 null null

100 1 9 null null

100 1 8 null null

100 1 7 null null

100 1 6 null null

100 1 5 null null

100 1 2 5 2010-12-10

... ... ... ... ...

100 2 14 null null

100 2 15 null null

... ... ... ... ...

Profile

profileID first name second name birth date ... working hours car ...

100 Robert Wane 1959-07-15 ... 9-14 true ...

... ... ... ... ... ... ... ...

Fig. 6 Tables filled to store one feature of Robert profile (profileID = 100)

∃hasLevel.(ComputerScienceEngineeringDegreu =110 mark) u
∃hasKnowledge.(Java u ∀skillType.Programmingu =5 yearsu =2010−12−10 lastdate)u
∃hasKnowledge.(PostgreSQLu =2 yearsu =2011−07−31 lastdate)u
∃knowslanguage.(English u =1 verbalLevelu =2 writingLevel).

I.M.P.A.K.T. normalizes and splits P in components then stored in the three
tables: hasKnowledge, hasLevel and knowsLanguage.

With reference to the model in Figure 4 and ontology sketch in Figure 5, tuples
storing only the conjunct ∃hasKnowledge.(Javau∀skillType.Programmingu =5

yearsu =2010−12−10 lastdate) are reported in Figure 6. The reader can notice that
the conjunct:
∃hasKnowledge.(PostgreSQLu =2 yearsu =2011−07−31 lastdate)
has a groupID value different from 1 in Table HasKnowledge, but the same
profileID value.

In order to improve readability, in Figure 4 we do not represent tables needed
to store intermediate results for computing the final reasoning task. Such tuples
are materialized in the proper tables and views, created at runtime according to
user requirements. Finally, the presented modeling approach translates a profile
assertion P (a) of n conjuncts into more than n database tuples (see Figure 4, as an
example). It therefore increases the storage size, almost linearly. Nevertheless, such
a drawback is largely repaid in terms of flexible match classes management and
quick logic-based ranking and explanation of results as reported in the following.
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4 I.M.P.A.K.T. in action

I.M.P.A.K.T. is a Java web services application. It uses Jena API13 to access the
underlying ontology model and Pellet14 reasoner to classify ontologies in the pre-
processing phase. It is noteworthy that, every time there are no implicit axioms in
the reference ontology, it is possible to give up the reasoner by disabling its service,
thus improving system performance. I.M.P.A.K.T. has been developed upon the
open source PostgreSQL 9.3 DBMS and uses: (1) auxiliary tables and views to
store the intermediate results; and (2) stored procedures and b-tree indexes on
proper attributes to reduce retrieval times. Moreover, the compliance with stan-
dard SQL makes I.M.P.A.K.T. available for a broad variety of platforms.

A real data set originated from three different employment agencies—one hav-
ing the headquarter in Italy and the other two in France—was initially created
by collecting approximately 180 CVs of candidates specifically skilled in the ICT
domain, so to simulate the scenario of an actual company in the ICT industry.
Such a dataset has also been exploited for an iterative refinement phase of both
the Skill Ontology development and the setting of the Skill Matching parameters
(i.e., entry points levels and weights in scoring strategy).

In the next subsections, we show I.M.P.A.K.T. working mode through an
extended example covering, respectively, three services for human resource man-
agement: i) skill matching for the retrieval of ranked referral lists, ii) working team
composition, iii) automated extraction of strategical enterprise competence. The
subset of ten candidate profiles (out of 180) used throughout the example is given
in Appendix D. Profiles have been chosen in order to bring out the special features
of our approach during the presentation of solution processes. To this aim, we also
consider in the following up-to-date all the features tied to experience years spec-
ification in each candidate profile. We outline that actual semantic profiles can be
imported by editing I.M.P.A.K.T. Graphical User Iinterface (GUI), specifically
built for inserting both structured information and ontologically one by means of
ontology browsing.

4.1 Skill Matching

When dealing with the search for the right candidate to assign to a job, recruiters
are often in front of cases of non-perfect match: the availability of knowledge
profiles fully satisfying a job request, even though desirable, is quite a rare event.
In most cases, therefore, the search for a candidate profile more specific than the
knowledge request at hand fails and needs to be followed by the search for profiles
only approximately matching the request.

Obviously, in order to evaluate the matching degree between a job request and
a candidate profile, it is necessary that both of them share the knowledge base
used for representation. Thus, the job requests submitted to I.M.P.A.K.T. need
to be represented according to the syntax detailed in Definition 2, that is the same
formalism employed for candidate profiles representation. According to the same

13 http://jena.apache.org/

14 http://pellet.owldl.org/
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profile data structure, both required and provided knowledge profiles are modeled
and each conjunct ∃R0

j .C represents either a feature to search or to store.

The formal approach adopted by I.M.P.A.K.T. to perform the Skill Matching
process has been presented in our past research [55]. We here just recall that, for
a candidate profile P (a) to fully satisfy a job request F , both formalized as a
DL concept description, there should exist a subsumption relation between P and
F , formally P v F . If, instead, subsumption does not hold, specific non-standard
inferences can be exploited both to retrieve a ranked referral list of candidates only
approximately matching the request, and to explain the reasons for the absence
of a perfect match in terms of missing (through a Concept Abduction Problem)
or conflicting (through a Concept Contraction Problem) features.

Moreover, a job opening may have some features strictly required, which have
to be necessarily fulfilled by selected candidates, and some other characteristics
managed as preferences. Thus, both groups of user requirements (preferences FP
and strict constraints FS) compose a job request F . In the most general case
of job request F containing both FS and FP, I.M.P.A.K.T. performs a two-
step matchmaking approach, namely Matchmaking, which starts with Strict Match
process, computing a set of profiles fully satisfying strict requirements (i.e., we
can retrieve candidate profiles P (a) more specific than FS) and then proceeds
with Soft Match process trying to approximately match preferences with profiles
belonging to the set returned by Strict Match. The Soft Match is devoted to
finding candidates satisfying to some extent the preferences FP in the job request
F by implementing the above mentioned approach to approximate matching. In
particular, the search has to revert also to candidates having some missing features
and/or having features slightly conflicting w.r.t. FP.

In order to clarify Skill Matching behavior, we start from a typical request of
a recruiter:

I’m looking for a candidate having an Engineering Degree (preferably in Com-
puter Science with a final mark equal or higher than 103 (out of 110)). A Doctoral
Degree is welcome. A good familiarity with written English could be great. Further-
more s/he should be at least six years experienced in Java and s/he should possibly
have complex problem solving capabilities.

I.M.P.A.K.T. provides a GUI to compose recruiter’s requests: Figure 7 shows
such a GUI w.r.t. the previous example request, which we refer to with Q2 in the
following. Observe that I.M.P.A.K.T. provides exactly the same interface used for
defining/updating the candidate profile, coherently with our approach that defines
the same template for CVs and queries description.

By looking at Figure 7, we shortly introduce all highlighted panels in the
following:

– Panel (a) provides a GUI section for each of the six entry points (see Definition
1) described in Section 3, with an additional Degree section only for recruiter
convenience;

– Panel (b) allows users to perform a keyword-based search aimed at identifying
ontology concepts modeling the requirements they have in mind (such a search
process involves concept names, labels and comments); it allows one also to
search candidates profiles comparable to given ones by editing first and last
name of the known candidate;
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Fig. 7 Query composition GUI

– Panel (c) enables the user to explore both taxonomy and properties of a concept
selected to specify a given entry point;

– Panel (d) shows all of the features required in the query;
– Panels (e)-(f): for each item in Panel (d), the GUI allows users: (1) to specify

whether the feature is a strict one—Panel (f)—or if it is a preference—Panel
(e); (2) to delete the whole feature; (3) to complete the description showing
all the elements (concepts, roles and concrete features) that could be added to
the selected feature; (4) to edit either feature atoms or existing feature values.

Q2 request shown in Figure 7 can be summarized as:

1. strict requirements: Engineering Degree;
2. preferences: Computer Science Engineering Degree and final mark >= 103;

Doctoral Degree; Java with experience >= 6 years; Complex Problem Solving
capabilities; Good Written English.

In the following, we show how the approach we propose can provide an answer
to Q2, including both strict requirements and preferences, w.r.t. to the data set in
Appendix D. Part (a) of Figure 8 presents the ranked list of returned candidates (9
out of 10 available ones) with the related score. The ranked list can be explained
as follows:

– only 9 out of 10 selected profiles are returned by the Strict Match. In fact, the
candidate Carla Buono does not fulfill strict requirements specified in Q2 and
then she will not be part of the final result set;



Embedding Semantics in Human Resources Management Automation via SQL 21

– a small subset of candidate sample (i.e., Mario Rossi, Daniela Bianchi and
Elena Pomarico) is made up by people with similar profiles: their CVs only
differ by experience years associated to either job titles, enterprise working
or exploitation of a given competence. In particular, years of experience are
never specified in Elena Pomarico’s profile. Such profiles allow us to make
clear how these differences, even slight, cause profiles to be differently ranked.
Hence, Daniela Bianchi is the best result among them because she fully sat-
isfies the Java experience requested by the recruiter together with the strict
requirements;

– the best results are Domenico De Palo and Daniela Bianchi. The former sat-
isfies several preferences but he is 6 years experienced in object oriented pro-
gramming (a direct ancestor of Java programming in the reference ontology)
whereas the latter is 6 years experienced in Java, as required. Observe that
hasKnowledge entry point, exploited to represent the user requirements of
Java programming, belongs to the main relevance level in the ranking strat-
egy;

– two profiles (i.e., Mario Rossi and Carmelo Piccolo) include features slightly
conflicting (according to the Soft Match definition) with query preferences;

– several candidates (i.e., Mariangela Porro, Marcello Cannone, Carmelo Pic-
colo, Lucio Battista and Nicola Marco) satisfy only a few characteristics other
than strict requirements. The scoring mechanism ranks them lower than all
the other profiles, better filling query preferences;

– many selected profiles have additional features w.r.t. the query, although they
do not affect the ranking mechanism.

With reference to Figure 8, for each of the ranked results, the recruiter can ask
for: (1) viewing the CV (Panel (b)); (2) analysing the employment and personal
information (Panel (c)); and (3) executing the match explanation procedure. In
Figure 9 match explanation outcomes of Mario Rossi candidate are presented. In
particular, in Panels (a)-(b) an overview of the request is shown (differentiating
strict constraints—Panel (a)—from preferences—Panel (b)), whereas Panels (c)-
(d)-(e)-(f) show the following information:

– Panel (c) shows fulfilled features, i.e., features required by the query and either
perfectly matched by the candidate or slightly conflicting in her profile;

– Panel (d) provides additional features, i.e., technical skills in the candidate CV
not required at all by the query or more specific than the required ones;

– Panel (e) gathers underspecified features, i.e., parts of the query not explicitly
specified in the retrieved CV;

– Panel (f) provides conflicting features as specified in the retrieved CV.

Let us consider feature 6 in Panel (b) of Figure 9: “at least six years of Java
experience”. By looking at Panel (c), it can be noticed that Mario Rossi is 5 years
experienced in Java and Object Oriented Programming. Such a conflict is high-
lighted in the GUI as shown in Panel (f) so making the recruiter aware of profile
features slightly conflicting with the query. Notice that the same preference (i.e.,
the one identified by ID = 6) generates two pieces of information in Panel (c): the
candidate CV includes both Java and some Object Oriented Programming 5 years
experienced knowledge. Such a duplication in fulfilled features does not introduce
redundancy and it is instead exploited to show in Panel (f) CV conflicting features
related both to Object Oriented Programming (lack of one more year of working
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Fig. 8 Skill Matching results GUI after Q2 execution

experience in C++ and Visual Basic) and to specific Java knowledge. Besides the
conflicting features, Mario Rossi has also some underspecified ones (see Panel (e))
and then, he cannot fully satisfy the recruiter request.

4.2 Team Composition

I.M.P.A.K.T. Team Composition service aims at supporting the process of as-
signing more than one task to different groups of available individuals: a process
we denote by many to many skill matching. The formal approach adopted by
I.M.P.A.K.T. to perform such a process has been presented in previous work [54].

Such service supports a Project Manager by automatically providing a set of
possible working teams for each task or project activity. In particular, a project
manager request is composed by the descriptions of all the project tasks to be
covered. In turn, each project activity (or task) description, PAi, is composed by
three entities: (i) a description Ki of the knowledge required for the task; (ii) a
set of temporal constraints Di and (iii) a number of required team members mi.
Formally, PAi = 〈Ki, Di,mi〉 where Ki holds a crucial role in the selection of
candidates profiles set at the basis of the Team Composition process.

Coherently with the strategy adopted by the previously detailed Matchmaking
process, team composition takes full advantage from the ontology modeling effort
and adopts the OWA. In fact, it allows one not only to find a team that, based
on provided skills descriptions, fully covers Ki, but also teams only approximating
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Fig. 9 Mario Rossi match explanation with conflicting features

such a full cover. Of course the search reverts to such a partial cover only when a
completely satisfactory group cannot be retrieved due to lack of requested skills or
temporal unavailability of candidates. Moreover, the Team Composition process
considers equivalent all possible solutions—several combinations of candidates al-
location may exist—and leaves the selection of the most proper set of assignments
up to the Project Manager, given the high level of subjectivity of the task.

We notice that, in order to retrieve the candidate profiles satisfying as much as
possible skills Ki of task PAi, both Ki and P have to be described according to
Definition 2. In particular, Ki conjuncts of the form ∃R0

j .C employ only the entry

point R0
j = hasKnowledge: TeamComposition involves currently only technical

skills in the search process.

Given a set PA of project activities PAi = 〈Ki, Di,mi〉, Team Composition
process is basically performed according to the following steps:

1. the Matchmaking process in Section 4.1 is performed by taking as input each
conjunct of a Project Manager request, that is a job request F including only
hasKnowledge entry point, in accordance with the above introduced consider-
ations on Ki;

2. for each PAi the candidates’ availability is checked by joining the set of pro-
files returned by the previous step with tuples in a table—availability—
specifically defined in the DB to store candidates temporal constraints (even
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though not represented in Figure 4 for the sake on synthesis). Only candidate
profiles satisfying the constraints in Di are returned;

3. the set of all candidate teams, Assignments = {Assignments(PAi)|1 6 i 6
N}, where each Assignments(PAi) is a set of all possible teams covering PAi,
is computed without taking into account the need for executing PAj ∈ PA
with i 6= j. In turn, each team in Assignments(PAi) is computed by taking
into account both the need for covering as much as possible required skills Ki

and the required number of team members mi;
4. a Constraint Satisfaction Problem (CSP)[58] solver computes the set of all

possible solution teams solving the whole set of project activities PA. Such
solutions are obtained by considering the elements in the set Assignments
returned at step 3 as variables and temporal information in Di as constraints,
for each activity PAi: the final goal is obviously returning an assignment set
such that concurrent activities never involve the same profile.

I.M.P.A.K.T. provides a GUI specifically built to compose the inputs to Team
Composition. According to the above definition of project activities, let us consider
a project manager searching for a work team to employ in a new project composed
by 3 activities (see Panels (a)-(b) of Figure 10):

1. PA1 – Architecture Design
Start Date: 2014-09-01
End date: 2014-11-30
Team: from 2 to 3 candidates
Skill : Modeling tool (preference), Software Development (preference)

2. PA2 – Data Layer
Start Date: 2014-10-13
End date: 2014-12-20
Team: 2 candidates
Skill : Object Oriented Programming (preference), DBMS (preference)

3. PA3 – Implementation Layer
Start Date: 2014-12-15
End date: 2015-04-30
Team: from 2 to 3 candidates
Skill : J2EE (preference), Hibernate (preference)

Observe that, by using I.M.P.A.K.T. GUI in Figure 10, the project manager can
describe each activity by means of technical knowledge needed for solving it. It is
also possible to set such required competence as strict requirement or preference.
For each project activity, Panel (d) in Figure 10 enables ontology browsing only for
defining required knowledge. In particular, Panels (c), (d) and (e) provide the same
functionalities (i.e., ”global” keyword-based search on ontology entities, ontology
classes and properties browsing, and features editing, respectively) showed for the
query composition GUI of Skill Matching service (see Section 4.1 for details).
Panel (b) is introduced in order to edit all the activity features: name, start date,
end date, number of team members. Moreover, Panel (a) shows an overview of all
the selected skills for each activity. It is noteworthy that, by adding a required
knowledge in Panel (e), I.M.P.A.K.T. automatically performs the matchmaking
process, and then it highlights by means of a red icon those skills not covered
by any profiles. In our example, Panel (a) shows a red icon for the knowledge of
a Modeling Tool to indicate that it cannot be satisfied. This happens when no
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candidate experienced in the required knowledge exists. In other words, before
starting the composition process, the system acknowledges the user whether each
of the required task competencies is covered or not. In this way, he can decide
how to proceed: choosing another competence and/or deleting the non-covered
competence, given that it does not have correspondence in candidates retrieval
nor in results composition.

Fig. 10 Activities definition GUI

With reference to profiles in Appendix D and to the activities introduced be-
fore, team solutions are presented in Panel (b) of Figure 11. In particular, the
figure shows team members assigned by Solution 1. For example, Mario Rossi
and Lucio Battista are the selected team members for activity PA2, thanks to
their experience, respectively, in object oriented programming (i.e., Java, C++,
and Visual Basic) and DBMS, as showed by the ”‘Competence”’ list in Panel (c)
of Figure 11. We point out that, the system is able to assign the same Human
Resource to different activities when these one are not overlapped (e.g., Daniela
Bianchi is assigned to both activities PA1 and PA3).

For each activity, the previous panel presents candidate lists to solve the task,
and I.M.P.A.K.T. GUI also supports team completion process in case of selection
of teams smaller than required (i.e., teams indicated with a ”warning” icon in the
same figure’s panel). The team completion process is performed using again the
CSP solver having as input the same temporal constraints but different variables.
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In fact, I.M.P.A.K.T. now considers a smaller profiles set (candidates already se-
lected have not to be considered anymore). An assignment is incomplete when
no other candidate covering both the required skills and the selected temporal
view exists. Hence, in order to select candidates among the available ones, sev-
eral strategies can be tested. I.M.P.A.K.T. currently favours candidates with the
highest rank value and, among equally ranked ones, it chooses candidates with the
highest number of additional features w.r.t. the required ones.
Additionally, Panel (c) of Figure 11 shows candidates description (i.e., the rela-
tive CV and competence list), whereas a temporal scheduling of work activities is
represented through a Gantt chart in Panel (a) of the same figure.

Fig. 11 Team Composition results GUI

4.3 Core Competence Identification

In recent enterprise solutions research literature emphasis has been given, in par-
ticular, to the identification of capabilities leading companies to business success:
several approaches to strategic management have been proposed and classified
according to the perspective they take on the problem [24].

Many research contributions sustain the resource-based theory of the company
[61,62] suggesting to search for competitive advantage in unique company capa-
bilities [3,4,34,37].

Other proposals focus on the achievement of competitive advantage through
the deployment and exploitation of capabilities embedded in business processes:
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such a dynamic capabilities approach asks for continuous reshaping of firms assets
[52].

Alternative approaches [7,47,51] take the so-called competence-based perspec-
tive, which identifies in the Core Competence of the company as a whole a source
of competitive advantage more crucial than the its single, discrete, assets. The no-
tion of Core Competence was firstly defined [25] as a sort of capability providing
customer benefits, hard to be imitated from competitors and possessing leverage
potential. Further definitions of Core Competence have been proposed in the liter-
ature in the attempt of finding methods for detecting such a collective knowledge
[35,39].

Our proposal takes the competence-based perspective and in particular shares
with it the interpretation of company strategic competence as a collective asset,
resulting from the synergy of human resources.

To this aim, I.M.P.A.K.T. services rely on the computation of partial Common
Subsumers, formally defined in our past research [15]. In that paper it is proposed
a Common Subsumer Enumeration algorithm determining the sets of common
subsumers of a collection {C1, . . . , Cp}. The rationale of the algorithm is that of
extracting from the set of profiles at hand, the knowledge components shared by a
significant number of individuals in the set, with such a significance level to be set
as a threshold value by the people in charge for strategic analysis. The algorithm
works by taking as input a concept collection in the form of a Subsumers Matrix
and the above introduced threshold value.

I.M.P.A.K.T. implements the above recalled service, but redefines the Sub-
sumers Matrix as a a Profiles Subsumers Matrix, in order to cope with the features
of the concept collection at hand. The formal approach adopted by I.M.P.A.K.T.

has been presented in previous work [18].

In order to understand the rationale of Core Competence Identification, we
show how I.M.P.A.K.T. works with reference to the example CVs shown in D. In
particular, in order for the problem representation to be more compact, we take—
w.l.o.g.—the following assumptions: i) only CV information related to technical
knowledge is taken into account; ii) we consider a subset P of CVs in D such that
the modeled technical knowledge involves only concepts represented in Figure 5
and thus related to Computer Science domain: P = {1, 2, 3, 4, 5, 9, 10}.

In Figure 12, the I.M.P.A.K.T. GUI for the Core Competence Identification
process is shown. Panel (a) provides the input user interface for choosing the
degree of coverage k and the desired entry points to be considered in the extraction
process. Panel (b) lists all possible pieces of company Core Competence, providing
the user with the possibility to visualize (in Panel (c)) the personnel holding such
a strategic asset.

5 Experimental evaluation

Section 4 shows the efficacy of the proposed approach, with reference to its three
main services, as performed by I.M.P.A.K.T..

Assuming such an efficacy, we here focus only on performance tests, in order to
evaluate data complexity and expression complexity of our knowledge compilation
approach.
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Fig. 12 Core Competence Identification GUI

We recall that both Team Composition and Core Competence Identification
services rely on the performance of the matching service introduced in Section
4.1. For this reason, we start (see Section 5.1) by testing the performance of Skill
Matching process and then refer to the achieved results for evaluating the execution
times of the other two processes (see Section 5.2 and Section 5.3).

Execution times are retrieved by running I.M.P.A.K.T. on an Intel Dual Core
server, equipped with a 2.26 GHz processor and 4 GB RAM.

All tests measure the average time over ten repetitions of the same request for
each service.

Datasets specifically suited for testing each service have been designed and de-
scribed in the following subsections. In particular, different datasets are selected
among the ones possibly returned by a specifically developed synthetic KB in-
stances generator. The generator is able to automatically create satisfiable profiles
according to Definition 2, according to a generation criterion which may be set
on the basis of testing needs. For example, one may choose the features format
(i.e., number of features for each entry point/relevance level, number of numeric
restrictions, minimum number of specified technical skills, etc.). Indipendently on
the service, we built datasets in which profiles have a number of features for can-
didate comparable to the average value evaluated in the real data set discussed in
Section 4.
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5.1 Skill Matching

As hinted before, we tested each service with reference to datasets specifically
selected for their suitability to the solving approach to experiment.

In particular, for testing Skill Matching, we generated five data sets, namely
DS1, DS2, DS3, DS4, DS5 including respectively 500, 1000, 2000, 3500 amd 5500
profiles. The bigger datasets are supersets of the smaller ones. Furthermore, the
format of generated profiles is set to include 30 features for hasKnowledge entry
point, 2 features for hasLevel and knowsLanguage entry points, and 3 features for
hasJobTitle, hasIndustry and hasComplementarySkill entry points.

In this specific service, also queries to be performed need to be properly selected
for testing pourpose. In particular, we refer to nine queries, which we consider
significantly different in expressiveness and which we classify into the following
three groups:

A queries including only strict requirements, described by either generic concepts
(Q4) or more specific ones (Q5);

B queries including only preferences, also represented by either generic concepts
(Q2) or more specific ones (Q3);

C queries combining features in items A and B (Q1,Q6,Q7,Q8,Q9).

We also notice that:

1. query Q1 is the formal profile (see Definition 2) translating a real job request
returned by http://www.monster.co.uk/, exploited keywords: SQL, SSAS,
OLAP Cube, C#; Q1 thus includes 3 strict and 6 soft requirements for the
entry point hasKnowledge, 1 strict and 3 soft requirements for the entry point
hasComplementarySkill, 1 and 3 soft requirements for the entry hasIndustry
and hasJobTitle, respectively.

2. queries from Q2 to Q7 include one feature per entry point.
3. Q6 = Q2 ∪Q4 and Q7 = Q3 ∪Q5.
4. Q8 involves only three entry points, i.e., hasKnowledge, knowsLanguage and

hasLevel.
5. Q9 involves several features for each entry point.

Table 1 shows the retrieval times and the number of retrieved profiles (#p) for
each data set and request discussed above.

Reported times refer to three distinguished phases of the matching process:
query normalization (retrieval times denoted by tn in Table 1), which is dataset-
independent; Strict Match (retrieval times denoted by tst in Table 1) and Soft
Match (retrieval times denoted by tsf in Table 1), which also includes the final
ranking process.

As for data complexity, the reader may notice that, not surprisingly, retrieval
times of both match processes increase almost linearly with datasets size (e.g. see
Q5). Furthermore, Strict Match performance is dramatically affected by #p (see
results for DS5 in Table 1), whereas the Soft Match retrieval times seem to grow
more slowly with #p. We observe that the more significant impact of the number
of retrieved profiles on Strict Match execution is due to the fact that such a process
involves by construction the SQL intersection of several queries. Moreover, results
of Q5 are dataset-independent: the Strict Match process always returns the same
profile (i.e., no other profile satisfying strict requirements exists in the datasets).
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Table 1 Normalization times (tn) and retrieval times for strict (tst) and soft (tsf ) match, and
number of retrieved profiles (#p) for datasets DS1, DS2, DS3, DS4 and DS5 of, respectively,
500, 1000, 2000, 3500 and 5500 profiles. Times are expressed in milliseconds.
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As concerns expressiveness complexity, we observe that: (i) the retrieval times
of queries classified in items A and B increase with the query expressiveness; (ii)
queries classified in item C, for which an execution of Strict Match preliminary to
Soft Match is needed, show times for Soft Match notably reduced, so confirming
the theoretical complexity results. Moreover, for a number of retrieved profiles
greater than 3000 (see tsf in Q2 and Q3 on DS4, DS5), the more the data set
is large, the more the expressiveness of soft requirements impacts on retrieval
times. Noteworthy, the real query Q1 generates, for each dataset, retrieval times
comparable to all queries classified in item C, considering also the #p value. As
a general remark, the query expressiveness does not significantly affect retrieval
times in the whole matchmaking process involving both strict requirements and
preferences.

Finally, for giving the reader a hint on the effectiveness of the presented ap-
proach in real enterprise scenario, where commercial DBMS are often adopted, we
also conducted some tests on Oracle XE. We compared retrieval times obtained
by executing the same queries on both PostgreSQL database and Oracle XE in-
stance. Results confirm the performance limits of exploiting open-source DBMS,
revealing retrieval times reduction of 90 percent for the execution over Oracle XE
vs. PostgreSQL for a dataset of 50000 profiles.

5.2 Team Composition

Coherently with the above evaluation guidelines, we first introduce the datasets
and the queries adopted for the evaluation of Team Composition process. As con-
cerns the first design choice, we here use the same datasets DS1, DS2, DS3 as in
Section 5.1. The cardinality of such datasets (500, 1000 and 2000 profiles, respec-
tively) may be considered comparable to the size of the real-world companies in
the need for automatically composing multidisciplinary teams.

The queries adopted to evaluate how much the Matchmaking process affects
the retrieval times of Team Composition service have been designed as described
below. We recall that each project activity description, PAi, is composed by three
entities: (i) a description Ki of the knowledge required for the task (Ki is described,
according to Definition 2, as conjunction of features of the form ∃R0

j .C, where

R0
j = hasKnowledge); (ii) a set of temporal constraints Di and (iii) a number of

required team members mi. In particular, each query is composed by combining
three heterogeneous project manager requests (PAi, with i ∈ {1, 2, 3}), which
differ from each other in the level of expressiveness. Namely, the categories of
project activities in the following have been conceived:

– PA1 involves only rather generic knowledge (e.g., DBMS) in its component
K1;

– PA2 involves in its component K2 also features with an higher specificity (e.g.,
PostgreSQL) than PA1;

– PA3 involves in its component K3 very specific knowledge, described by the
most specific concepts in the Skill Ontology taxonomy.

For each PAi we always ask for three team members (mi = 3) and set Start date
and End Date as in the project description of Section 4.2.
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Table 2 I.M.P.A.K.T. Team Composition times (in ms).

No. profiles
500 1000 2000 500 1000 2000 500 1000 2000

P1 P2 P3
PA1 tst 35 102 114 0 0 0 38 85 122

tsf 0 0 0 516 898 1869 0 0 0
tca 75 77 81 90 98 91 73 74 80
#n 10 33 56 24 41 84 10 33 56

PA2 tst 62 79 148 0 0 0 36 64 104
tsf 0 0 0 217 352 809 236 172 355
tca 76 81 79 79 80 90 75 78 90
#n 53 104 196 93 187 377 71 146 270

PA3 tst 29 57 96 0 0 0 0 0 0
tsf 0 0 0 158 204 285 192 203 244
tca 48 60 69 78 71 89 71 85 83
#n 2 8 22 11 23 59 11 23 59

P tDB 199 218 229 247 249 270 219 237 253
tCSP 661 1043 1156 1260 2017 1601 1631 1284 1257
#sol 4 11 19 14 20 54 12 16 23
ttc 860 1261 1385 1507 2266 1871 1850 1521 1510

Each query asks for three project activities, such that each activity belongs
to one category above. Moreover, we identified three classes of queries, Pi, with
i ∈ {1, 2, 3}, such that:

– P1 is a class of queries including only strict requirements and project activities
made up by at least three conjuncts in Ki;

– P2 is a class of queries rewriting the same queries as in P1 by managing all
features as preferences;

– P3 is a class of queries combining both strict requirements and preferences and
including project activities made up by at least five conjuncts in Ki.

Times resulting from queries execution are reported in Table 2. In order to
better investigate on the Team Composition performance, for each project activity
PAi we show retrieval times w.r.t to the service steps recalled in Section 4.2. In
particular, in Table 2 , we denote by tstthe time for Strict Matching, by tsf the
time for Soft Matching, by tca the time for checking temporal constraints and
by tCSP the time for executing CSP solver. Moreover, we refer to the number of
profiles assigned to each activity PAi by #n and to the number of project teams
returned by the CSP solver by #sol.

We recall that, by construction, Strict and Soft Match are automatically per-
formed during the composition phase of each project activity. Then, the availability
check is executed for each profile returned by the matching process. Eventually, all
candidate profiles are combined in different possible team solutions through the
CSP solver. According to this, we here do not comment on retrieval times for the
matchmaking process which, by the way, confirm results shown in Section 5.1.

The time for team composition is therefore formally defined as follows: ttc =

tDB + tCSP , where tDB =
3∑

i=1

tcaPAi
(intuitively, tcaPAi

is the time need for check-

ing availability of candidate profiles matching component Ki of PAi). In par-
ticular, tDB measures the time for checking temporal constraints for retrieved
candidates through SQL queries executed on the PostgreSQL database, whereas
tCSP measures computation time for the adopted CSP solver.
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As shown in Table 2, the time for checking availability seems not to be much
affected by the number of profiles to be analyzed. On the other hand, the number of
possible final solutions affects the computation time for the CSP solver execution,
that represents also the most time consuming phase—if compared to both skill
match and availability checks phases. We adopted a simple Java API for CSP
solution, because the proposed experimental evaluation is preliminary and we are
interested in proving only the feasibility of the team composition. Performed tests
suggest instead to search for more suitable APIs for CSP computation, able to
implement advanced mechanisms for CSP problem optimization.

5.3 Core Competence Identification

As in the previous subsections, we are here interested in the evaluation of data com-
plexity and expression complexity of our knowledge compilation approach to Core
Competence extraction. To this aim, we first selected the most suitable datasets
to perform the following two test campaigns: 1) the performance of our implemen-
tation is compared to a fully logic-based one ([17]) and expression complexity is
evaluated; 2) data complexity of our approach is evaluated.

A different pair of datasets is adopted in the two test categories. More specif-
ically, the first category works on two datasets, DS1 and DS2 such that DS2 is
more specific than DS1, i.e., it is characterized—for the same number of profiles—
by a bigger set of resulting profile concept components. The second test category
adopts instead other two datasets, DS3 and DS4, also such that DS4 is more
specific than DS3.

Moreover, in generating the datasets, profiles features have been set by tak-
ing into account only CV information related to technical knowledge (i.e., pro-
files include only conjuncts of the form ∃R0

j .C, where the entry point R0
j =

hasKnowledge).
The first test campaign is aimed at evaluating expressiveness complexity. In

the evaluation of execution times, we considered that Core Competence Identi-
fication is made up by two main extraction steps: the Profile Subsumers Matrix
(PSM) computation, and the Common Subsumer Enumeration (CSE) algorithm
execution (we recall that such algorithm takes the PSM as input). From now on,
we call tpsm the average time for computing a PSM, tcse the time for performing
CSE algorithm and n the number of profiles.

Figure 13 and Figure 14 show the performance results with reference to subsets
of 5, 10, 15 and 20 profiles in DS1 and DS2 (such subsets are characterized by the
same cardinality as those evaluated in the fully logic-based solution [17]).

Adopting subsets of different cardinality allows for investigating on the impact
of the number of analyzed profiles on execution time. Figure 13 shows, in fact,
tpsm (Figure 13(a)) and tcse (Figure 13(b)), both in milliseconds, vs. n.

We recall that the computation of PSM asks for the reduction of the input
profiles in so-called Profile Concept Components [18]. Intuitively, the more specific
is the profile, the bigger is the number of components making it up. This motivates
the adoptions of data sets of different specificity: DS1 and DS2: the objective
of evaluation is investigating the relation between the number of profile concept
components resulting from the data set and the execution time, when the number
of profiles is given. Figure 14 presents, in fact, tpsm and tcse vs. the profile concept
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components number. We notice that both Figure 14(a) and Figure 14(b) refer to
the profile concept components deriving from DS1 and DS2: for each value of n,
the smaller computation time value refers to DS1 and the bigger to DS2. In both
experiments, k = 0.3× n.

(a) (b)

Fig. 13 PSM (a) and CSE (b) computation time vs. number of profiles. Times are expressed
in milliseconds.

(a) (b)

Fig. 14 PSM (a) and CSE(b) computation time vs. profile concept components

By looking at results, it can be noticed that the matrix creation is the most
computationally expensive process: tpsm is in general bigger than tcse. Moreover,
the number of profiles affects more the common subsumer enumeration process,
than profile subsumers matrix computation.

It is worth noticing how the adopted knowledge compilation approach dra-
matically improves process performance w.r.t. the fully logic-based one [17]: as an
example, matrix computation time for 20 profiles has changed from 180 seconds to
about 660 milliseconds. Such a significant improvement encourages the adoption
of the approach in large real-world scenarios.



Embedding Semantics in Human Resources Management Automation via SQL 35

The second test campaign is aimed at evaluating the data complexity of the
approach.

The KB instances generator was adopted to randomly create the data set DS3

of 500 profiles (each with only 3 technical skills) and to extend it to 1000 and 2000
profiles. DS4 was analogously generated, starting from 500 profiles, including a
higher average number of technical skills (30 instead of 3). Intuitively, the resulting
profile concept components number increases (in DS3 components arise up to
11643 for 2000 profiles, while in DS4 to 28177). DS3 has been also extended
to 1000 and 2000 profiles. The execution time for the two main steps of Core
Competence extraction process are shown in Table 3, w.r.t. DS3 and DS4 and
k = 0.3× n.

Datasets Cardinality
500 1000 2000

tpsm
DS3 0.87 1.1 1.74
DS4 3.91 9.24 27.29

tcse
DS3 0.21 0.46 1.4
DS4 66.06 235.81 912.57

Table 3 Core Competence extraction times (in seconds)

With reference to DS3, the Profile Subsumers Matrix creation is still the
most computationally expensive process. Conversely, the Core Competence Enu-
meration execution time dramatically raises in presence of significantly complex
profiles—and consequently of a huge number of deriving concept components (see
values of tcse referred to DS4 and Figure 14(b)). Performed tests suggest that there
should be a critical value of the number of concept components, after which the
most time-consuming phase switches from the matrix computation to the common
subsumers sets identification.

6 Conclusions

Motivated by the need of efficiently managing large quantities of information in
a human resources management system while still benefiting from novel non-
standard reasoning services typical of knowledge representation and reasoning,
we introduced a knowledge compilation approach in an originally designed rela-
tional schema, and devised solutions to execute inference services—both standard
and non-standard ones—through standard-SQL queries only. We exploited such
services referring to three relevant business processes typical of recruitment and hu-
man resources management, presenting them in the framework of the I.M.P.A.K.T.
system. We reported an effective comparison with existing tools and research solu-
tions and showed the effectiveness of our approach also from a computational point
of view. Implementation of optimization techniques, such as table partitioning in
our PostgreSQL database, are under development. As expected, first results show
an improvement in the I.M.P.A.K.T. performance (e.g., for the skill matching
execution over a dataset of 10000 profiles, we obtain a reduction of 30 percent on
the retrieval time). Moreover, we are currently studying the peculiarities of the
proposed design method for database modeling and management, with the aim of
generalizing it to a framework fully independent from the underlying ontology.
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Future work aims at testing further devised strategies for score calculation and
at designing a service for CV translation from plain text according to our skill on-
tology. Moreover, in order to deal with specific business application requirements,
e.g., the need to deploy I.M.P.A.K.T. in a more scalable environment, we are
investigating the possibility of exploiting Big Data technologies for KB modeling
and querying.
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A Basic Description Logics

Description Logics are a family of formalisms and reasoning services widely employed for
knowledge representation, in a decidable fragment of First Order Logic. We give here a lim-
ited introduction to make this paper self-contained, referring the interested reader to more
comprehensive introductions [2, Ch.2].

The alphabet of each DL is made up by unary and binary predicates, known as Con-
cept Names A1, A2, A3, . . . and Role Names r1, r2, r3, . . ., respectively. Complex Concept
Descriptions—which we denote with the symbols C,D—are built (recursively) from concept
and role names composed by constructors like, for example, conjunction of concepts A1 uA2,
minimum number of role fillers (> n r), and many others. Intuitively, concepts represent
classes of individuals of the domain of interest, and roles represent binary relations between
them. Each choice of constructors defines a different DL, and characterizes such DL both in
terms of expressiveness and computational complexity of reasoning tasks. In fact, it is well
established that the more a DL is expressive, the harder is inferring new knowledge from its
descriptions [2, Ch.3].

The expressiveness of a DL may be also enriched by the introduction of concrete features
f1, f2, f3, . . ., which are binary predicates whose second argument belongs to a concrete domain
D (e.g., integers, reals, strings, dates). Each domain comes along its set of unary predicates
p1, p2, p3, . . ., and new classes can be constructed by requiring that an individual satisfying a
predicate—for instance, a feature years representing years of experience of an individual, could
be used with a predicate =3 to form the class =3 (years) of individuals having exactly three
years of experience. There is also the possibility of having n-ary predicates over n concrete
domains, but we are not going to use them here. Given a DL L, its enrichment with concrete
features is usually denoted by L(D).

The semantics of concept descriptions is conveyed through an Interpretation I = (∆I , ·I),
where ∆I is the domain of I—a nonempty set—and ·I is an interpretation function such that,
conforming to the above intuition about concepts and roles,

– ·I maps each concept name A in a set AI ⊆ ∆I
– ·I maps each role name r in a binary relation rI ⊆ ∆I ×∆I
– if concrete features with some domain D are used, ·I maps each feature name f in a binary

relation fI ⊆ ∆I ×D, and each predicate p to a subset pI ⊆ D.

The DL constructors we use or mention in this paper, along with their semantics, are shown
in Table 4. In the last four columns, an “x” in the cell of row c (the constructor) and column
L (the DL) means that c is used in L, except for the last row that names L with concrete
domain D as L(D).

Statements about classes in the domain of interest are divided into Concept Definitions
and Concept Inclusions. Definitions (denoted by A ≡ C) state—in the form of a complex
concept C—the necessary and sufficient conditions for an individual to belong to the concept
A. For instance, A3 ≡ A1uA2 states that an individual belongs to A3 if and only if it belongs
to both A1 and A2. Inclusions (denoted by A v C) state in C only the necessary conditions
for membership in A. For instance, A4 v A5 states that an individual belongs to A4 only if it
belongs to A5. Each concept name A can appear on the left-hand side of at most one of such
definitions or inclusions—if any. Concept names are divided into Defined Concepts, appearing
on the left-hand side of some concept definition, and Primitive Concepts, which do not appear
on the left-hand side of any definition (but can appear on the left-hand side of an inclusion).
Intuitively, an individual belongs to a primitive concept A only if this membership is explicitly
stated (we define later on how this can be done), while membership can be implicit for defined
concepts (and reasoning can be necessary to derive it).

The set of inclusions and definitions yield a formal representation of the intensional
knowledge of the domain of interest, known as TBox in DL systems, and Ontology in the
generic knowledge representation framework. TBoxes containing recursive concept definitions
are called cyclic (acyclic otherwise). In this paper we use only acyclic TBoxes.

An interpretation I is a model for a TBox T if it satisfies all concept definitions and
inclusions in T .

A DL system usually allows one to make statements about named individuals a1, a2, a3, . . ..
This part of a DL-knowledge base is known as ABox, and statements have one of the following
two forms:

– Concept assertions: C(a) states that an individual a belongs to the concept C
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Table 4 DLs Set of Adopted Constructors
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– Role assertions: r(a, b) states that individual a relates to the individual b through role
r.

An interpretation I assigns an element aI ∈ ∆ to each individual a, and is a model for
an ABox A if it satisfies (aI , bI) ∈ rI for all role assertions r(a, b) ∈ A and aI ∈ CI for all
concept assertions C(a) ∈ A.
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Table 5 The expressiveness of FL0(D) (adopted by I.M.P.A.K.T.) explained with examples.

Expression Example Intuitive Explanation

top-concept > whole domain

bottom-concept ⊥ empty set

conjunction Javau∀skillType.Programming knowledge about Java and
programming experience

value restriction ∀knowsLanguage.English
elements of the domain know-
ing only English as foreign
language

concrete features =3 (years)
elements of the domain en-
dowed with exactly 3 years of
working experience

concept definition
EnglishSpeaker ≡
∀knowsLanguage.English u
=3 (verbalLevel)

represents someone skilled at
English conversation

concept inclusion Java v OOP
Java knowledge is more spe-
cific than Object Oriented
Programming knowledge

I.M.P.A.K.T. adopts a CV representation (see Definition 2) allowing for reasoning only on
FL0(D) concepts which represent knowledge about our domain.The full expressiveness of the
adopted FL0(D) subset is explained, with the aid of constructors usage examples, in Table 5.

A.1 Standard Inference Services

The most important service characterizing reasoning in DL checks for specificity hierarchies,
by determining whether a concept description is more specific than another one or, formally,
if there is a subsumption relation between them.

Definition 4 (Subsumption) Given two concept descriptions C and D and a TBox T in
a DL L, we say that D subsumes C w.r.t. T if for every model of T , CI ⊂ DI . We write
C vT D, or simply C v D if we assume an empty TBox.

For example, consider the following concept descriptions, referred to a required task and
a personnel profile, respectively:

– T1 = ∀hasKnowledge.ProgrammingLanguageu >3 (years)
– P1 = ∀hasKnowledge.Javau =5 (years) u ∀hasLevel.ComputerScience

Considering a TBox with the two following concept inclusions Java v OOP and OOP v
ProgrammingLanguage, knowledge expressed by P1 is more specific than the one required by
T1: according to the previous definition T1 subsumes P1.

Several widely used services may be reduced to subsumption, like concept equivalence
and concept satisfiability (intuitively, a concept description is satisfiable if it can be somehow
interpreted in the knowledge domain).

A.2 Non-standard Inference Services

Although very useful in many knowledge management settings, both subsumption and satis-
fiability return a yes/no answer. The first category of services provided by I.M.P.A.K.T. is
instead aimed at returning referral lists of job candidates, ranked according to their ability
to fulfill the job request initiating the recruiting process. In such a scenario, both explanation
and belief revision turn out to be useful to cope with cases in which no perfect match exists
between job request and candidates. The process performed by I.M.P.A.K.T. to return referral
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lists of candidates conceptually originates from the extended matchmaking approach originally
introduced in our past research [17], based on Concept Abduction and Concept Contraction.

Concept Contraction is useful when C uD is unsatisfiable in the ontology T , i.e., the task
and the profile are not compatible with each other. In this case, as in a belief revision process,
we want to retract some requirements G (for Give up) in D, to obtain a new contracted task
request K (for Keep) which is compatible with D. In other words, such that KuD is satisfiable
in T .

Concept Abduction is instead useful when C and D are satisfiable w.r.t. each other (the
task and the profile do not contain conflicting information) but subsumption does not hold
(i.e., a full match is unavailable). In this case the objective is hypothesizing some explanation
on which are the causes of this result.

The third I.M.P.A.K.T. service category aims at determining the strategic competence of
a company, denoted by Core Competence in knowledge management literature [25]. The objec-
tive of the implementation of services for automatic Core Competence extraction is identifying
a common know-how in a significant portion of company personnel, with a degree of coverage
to be set by the management. To this aim, I.M.P.A.K.T. framework follows the conceptual
line by Colucci et al [16], based on Least Common Subsumer (LCS) computation.

B Theoretical Limits of Knowledge Compilation in SQL

The translation into SQL of a problem stated in Description Logics is subject to some theoreti-
cal limitations regarding efficiency. It is well known [59] that deciding whether a relational query
Q over a database db retrieves an individual a—a problem that we denote by db |= Q(a) in the
following—is PSpace-complete in expression complexity (fixed db, varying Q), and LogSpace-
complete in data complexity (fixed Q, varying db). We now analyze the consequences of these
facts for the size and complexity of our translation. We denote by |db| the size of a database,
which is proportional to the number of tuples assuming relations of bounded arity.

Given a CV C and a profile P expressed in some DL, the standard and non-standard
services offered by our system imply—as a special case—deciding Subsumption between C
and P , denoted by C v P . Our approach translates:

– a CV C into a database, which we denote ν(C), with a special individual a representing
the person having that CV, and

– a profile P into an SQL query π(P ).

Subsumption between C and P holds iff ν(C) |= π(P )(a), that is, iff a is retrieved from the
database ν(C) by the query π(P ). Hence, subsumption in a given DL could be solved by
first applying the translation, and then answering the corresponding query. Rephrasing the
complexity results, for a fixed query π(P )(a), the problem ν(C) |= π(P )(a) is solvable in
LogSpace considering |ν(C)| as input.

Now let C,P be expressed in a DL whose subsumption problem C v P is ExpTime-
complete, such as SHIN (D), which is equivalent to OWL1-DL. We observe that C v P iff
(C u ¬P ) v ⊥, where C u ¬P is a concept which is still in SHIN (D), and the same is
true for every DL which is closed under concept negation. If transformation ν(·) could be
performed in polynomial time, then its output ν(C u ¬P ) has size polynomial in |C u ¬P |.
Since ν(C u¬P ) |= π(⊥)(a) can be decided in space logarithmic (and hence time polynomial)
in |ν(Cu¬P )|, then the ExpTime-complete problem C v P could be solved in polynomial time
by first transforming C,P into ν(Cu¬P ), then ⊥ into π(⊥)—a constant since ⊥ is fixed—and
then deciding ν(C u ¬P ) |= π(⊥)(a). The same argument could be repeated for DLs in which
C v ⊥ (concept satisfiability) is a problem in any complexity class C above PTime, such as
NP, or co-NP, or PSpace. We can conclude with the following theorem, whose proof is in the
above argument.

Theorem 1 Let L be a DL whose subsumption problem is complete for some complexity
class C, and such that either L is closed under concept negation, or L contains ⊥. If the
transformation ν(·) could be computed in polynomial time, then C ⊆ PTime.

Recall that PTime is provably strictly contained in ExpTime, hence the above theorem in
this case says—by contraposition—that ν(·) cannot run in polynomial time at all, e.g., for
L = SHIN (D). For C below ExpTime and above PTime, e.g., C = NP, the claim is conditioned
to C ⊆ PTime, which is considered unlikely.
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Regarding the transformation π(·), a similar argument could be developed. In fact, C v P
iff > v (¬C t P ), where ¬C t P is a concept that still belongs to a DL which is at least
as expressive as ALC. So, one could decide C v P by first transforming > into ν(>)—some
constant database—then transforming ¬C t P into π(¬C t P ), and then decide ν(>) |=
π(¬C t P )(a). The latter problem can be solved in PSpace with respect to |π(¬C t P )|. If
π(·) could be performed in polynomial time, it would yield a query π(¬C t P ) whose size is
polynomial in |¬C t P |. Overall, C v P would be a problem solvable in PSpace also with
respect to the size of C and P .

Theorem 2 Let L be a DL whose subsumption problem is complete for some complexity class
C, and such that L is closed under concept disjunction and negation. If the transformation
π(·) could be computed in polynomial time, then C ⊆ PSpace.

Hence, for languages like SHIN (D), finding a polynomial-time transformation π(·) would
imply ExpTime ⊆ PSpace, a statement that—although not yet disproved—is considered very
unlikely in complexity theory.

We conclude that to look for polynomial-time transformations, one should limit the choice
of the DL to those in which C v P is a problem in PTime (for polynomial-time ν(·)) or in
PSpace (for polynomial-time π(·)). It seems unreasonable to use different DLs for curricula
and profiles, so the stronger PTime-condition dominates the choice. This motivates our choice
of FL0 for expressing curricula and profiles, since FL0 is one of the DLs having a polynomial-
time subsumption problem.

C Alphabet for Profile Definition

The complete list of possible conjuncts of a profile P is reported Table 6.
Notice that for each profile conjunct in which the feature years is defined, it is mandatory

to specify also the feature lastdate, in order to be aware whether the experience level is up to
date. Moreover, the proposed approach considers only features of the form =n p in the profile
storage phase, whereas it manages features p in the form {6n p,>n p,=n p} in the reasoning
phase: intuitively a candidate specifying her level of work experience sets the years to a natural
number, while the management of information in the profiles may need the whole set of order
relations.

Table 6 Skill Reference Template

Entry point(R0
j ) Category Feature Description (DL syntax)

hasLevel Level ∃hasLevel.(Level u (>,6,=)nmark)

hasJobTitle JobTitle ∃hasJobTitle.(jobTitle u (>,6,=)nyearsu =n lastdate)

hasIndustry Industry ∃hasIndustry.(Industry u (>,6,=)nyearsu =n lastdate)

hasKnowledge Knowledge ∃hasKnowledge.(Knowledge u ∀skillType.Typeu
(>,6,=)nyearsu =n lastdate)

hasComplementarySkill ComplementarySkill ∃hasComplementarySkill.(ComplementarySkillu
(>,6,=)nyearsu =n lastdate)

knowsLanguage Language ∃knowsLanguage.(Languageu =n readingLevelu
=n verbalLevelu =n writingLevel)

D Candidate Profiles Example Set

1 - Mario Rossi

– Level: Computer Science Engineering (mark 110), Secondary School (mark 60), Master Degree
– JobTitle: Database Administrator(4 years), Project Manager (2 years)
– Industry: Banking (4 years), IT and Telematics Applications (2 years)



Embedding Semantics in Human Resources Management Automation via SQL 45

– Knowledge: Cplusplus (5 years), Java (5 years), Visual Basic(5 years)
– ComplementarySkill: Cooperation (5 years), LeaderShip (5 years)
– Language: English (excellent writing, verbal and reading), French (good writing)

2 - Daniela Bianchi
– Level: Computer Science Engineering (mark 110), Secondary School (mark 60), Bachelor
– JobTitle: Database administrator (4 years), Project Manager (2 years)
– Industry: Banking (4 years), IT and Telematics Applications (2 years)
– Knowledge: Cplusplus (2 years), Java (6 years), Visual Basic (1 years)
– ComplementarySkill: Cooperation (5 years), LeaderShip(5 years)
– Language: English (excellent verbal, writing and reading), French (good writing)

3 - Lucio Battista
– Level:Managerial Engineering (mark 104), Secondary School (mark 60), Master Degree, CCDP
– JobTitle: Database Administrator (4 years), Project Manager (2 years)
– Industry: Banking (4 years), IT and Telematics Applications (2 years)
– Knowledge: DBMS (2 years)
– ComplementarySkill: Cooperation (5 years), LeaderShip (5 years)
– Language: English (excellent verbal, writing and reading), French (good writing)

4 - Mariangela Porro
– Level: Managerial Engineering (mark 104), Secondary School (mark 60), Master Degree, Master

after master
– JobTitle: Database Administrator (4 years), Network computer systems Administrator (4 years)
– Industry: Banking (4 years), IT and Telematics Applications (2 years)
– Knowledge: DBMS (2 years), Internet Technologies (2 years)
– ComplementarySkill: Learning Strategy (8 years)
– Language: English (good verbal, writing and reading)

5 - Nicola Marco
– Level: Electronics Engineering (mark 104), Bachelor, Master after Master
– JobTitle: Database Administrator (2 years), Network computer systems Administrator (2 years)
– Industry: Banking (4 years), IT and Telematics Applications (2 years)
– Knowledge: DBMS (5 years), Internet Technologies (5 years)
– ComplementarySkill: Learning Strategy (8 years)
– Language: English (good writing, verbal and reading)

6 - Carla Buono
– Level: Statistics (mark 106), Master Degree, Master after Master
– JobTitle: Cost Estimator (4 years), Budget Analysts (10 years)
– Industry: Banking (4 years), Business Strategic Management (2 years), Finance Banking (1

years)
– Knowledge: Sales and Marketing (2 years), Administration and Management (4 years), Mathe-

matics (10 years)
– ComplementarySkill: Critical thinking (8 years), monitoring (8 years)
– Language: English (excellent writing, verbal and reading knowledge), French (good writing

knowledge)

7 - Marcello Cannone
– Level: Managerial Engineering Degree (mark 106)
– JobTitle: Training and Development Manager (2 years)
– Industry: Sales, Banking and Consumer Lending
– Knowledge: Economics and Accounting (4 years), WorkflowManagement
– ComplementarySkill: Visualization, Spatial orientation, Verbal abilities
– Language: English, German (excellent writing and reading knowledge, basic verbal knowledge)

8 - Carmelo Piccolo
– Level: Mechanical Engineering (mark 79)
– JobTitle: Patternmaker Metal and Plastic, Process Planner (6 years)
– Industry: Engineering Services (14 years), Clothing and Textile Manufacturing (11 years)
– Knowledge: VBScript, Process Performance Monitoring
– ComplementarySkill: Systems Skills, Complex problem solving (10 years), Visual Color Dis-

crimination (14 years)
– Language: English (basic writing knowledge), French (excellent reading knowledge)

9 - Elena Pomarico
– Level: Computer Science Engineering, Secondary School, Bachelor
– JobTitle: Database Administrator, Project Manager
– Industry: Banking, IT and Telematics Applications
– Knowledge: CplusPlus, Java, Visual Basic
– ComplementarySkill: Cooperation, Leadership
– Language: English (excellent writing, reading and verbal knowledge), French (good writing

knowledge)

10 - Domenico De Palo
– Level: Computer Science Engineering (mark 110), Doctoral Degree
– JobTitle: Project Manager (4 years), Teachers (4 years ), Database Administrator (4 years)
– Knowledge: OOprogramming (6 years), Artificial intelligence (4 years), Internet technologies (4

years)
– ComplementarySkill: Cooperation (6 years), Complex problem solving (5 years)
– Language: English (excellent verbal knowledge)


