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Sommario

La presente tesi ha come obiettivo lo sviluppo di una metodologia Boundary Element
per studiare problemi di contatto circolare 2D in condizioni steady-state. In particolare,
l’approccio si basa sulla definizione di un’appropriata funzione di Green viscoelastica
steady-state, che tenga conto della natura del dominio di contatto circolare, tipica, per
esempio, di una coppia rotoidale. In particolar modo, la presente formulazione permette
di studiare problemi viscoelastici in cui il materiale sia caratterizzato da uno spettro con-
tinuo di tempi di rilassamento. Il problema del contatto può essere facilmente formulato
sotto forma di prodotto di convoluzione spaziale tra gli stress e gli spostamenti, aprendo
alla risoluzione di svariati problemi di contatto in ambito ingegneristico; questi possono
essere caratterizzati da contatti multipli, come ad esempio si riscontra nei cuscinetti
viscoelastici a rulli. Peraltro, per formulare correttamente il problema, la definizione del
tensore di Green spaziale è fondamentale. In particolare, i componenti di tale tensore,
ossia gli spostamenti radiali e tangenziali associati a forze unitarie concentrate radiali
e tangenziali, sono determinati con il metodo dei potenziali complessi. A differenza
dell’approccio usuale che impiega la funzione di stress di Airy, il metodo dei potenziali
complessi consente, attraverso la definizione di opportuni potenziali complessi, di definire
un modus operandi che non richieda la risoluzione di nuove equazioni differenziali ad ogni
cambiamento del sistema di riferimento.

Una volta derivata la funzione di Green viscoelastica, si studia il problema del con-
tatto conforme di un perno rigido a contatto con uno spazio deformabile avente un foro
cilindrico. In un primo momento, la metodologia è stata validata con la soluzione analit-
ica di A. Persson per un caso puramente elastico; in seguito, è stato analizzato il caso di
uno spazio viscoelastico lineare: come ci si aspetta in un problema di contatto viscoelas-
tico, in corrispondenza del leading edge, la distribuzione di pressione mostra un picco,
mentre maggiori deformazioni si riscontrano in corrispondenza del trailing edge, a causa
del diverso rilassamento nelle due regioni. Infatti, in corrispondenza del trailing edge, il
materiale è stato appena deformato e si sta rilassando. Inoltre, questo processo dipende
dalla velocità, poiché il materiale, quando sollecitato a velocità molto basse e molto alte,
ossia quando si trova rispettivamente nelle zone rubbery e glassy, si comporta come un
solido elastico e la dissipazione di energia è trascurabile. Quest’ultima è importante a
velocità intermedie, a causa del comportamento isteretico del materiale.

In più, grazie alla ben nota efficienza computazionale dei metodi Boundary Element,
la presente metodologia viene impiegata come alternativa valida e numericamente più
efficiente agli approcci agli elementi finiti per analizzare il problema del contatto multi-
plo in un cuscinetto a corpi volventi, in cui le piste di rotolamento sono viscoelastiche
lineari e gli elementi volventi sono assunti come rigidi. Da un punto di vista applica-
tivo, la valutazione del problema del contatto è fondamentale. Infatti, si dimostra che
la distribuzione del carico tra i corpi volventi si discosta significativamente rispetto al
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caso puramente elastico, con alcuni rulli che non partecipano più al contatto con le piste
per determinati range di velocità. Ciò ha conseguenze non solo sulla durata dei corpi
volventi, ma può avere un impatto sulla dinamica del rotore del sistema supportato dal
cuscinetto. Infine, per corroborare il modello, le previsioni numeriche per un cuscinetto a
rullini con anello esterno in Politetrafluoroetilene (PTFE) sono confrontate, con un buon
accordo, con i risultati sperimentali. Ciò è ulteriormente supportato da un successivo
confronto tra dati numerici e sperimentali, nel caso in cui l’anello esterno del cuscinetto
è realizzato in Poliammide 6 (PA6).

È importante osservare che le possibili implicazioni della metodologia Boundary El-
ement non si limitano alla meccanica del contatto secco, ma la formulazione integrale
risulta essere molto utile nei problemi di lubrificazione che coinvolgono superfici con-
formi. In modo particolare, si considera il caso di un cuscinetto portante polimerico e
viene evidenziato quanto sia importante definire un’appropriata funzione di Green che
tenga conto della conformità del problema. Infatti, utilizzando la classica funzione di
Green per il caso half-plane si osservano deviazioni significative: questo aspetto è cruciale
durante le fasi progettuali del sistema.

Dunque, si evidenzia come la complessa reologia del materiale viscoelastico sia forte-
mente accoppiata alle perdite viscose del lubrificante, influenzando cos̀ı la capacità di
carico del sistema. In particolare, le distribuzioni di pressione e di spessore del film sono
determinate per diverse configurazioni di contatto, sottolineando come la lubrificazione
viscoelastica sia governata da tre parametri, ossia il numero di Hersey e le velocità
adimensionali dei tribopartner.



Abstract

The present thesis is focused on the development of a Boundary Element formulation
to assess two-dimensional steady-state circular contact problems. In particular, the
methodology paves over an ad-hoc defined steady-state viscoelastic Green’s function,
which takes into account the circular hallmark of the contact domain, typical, for ex-
ample, of a mechanical pin joint. Crucially, it is able to manage any real viscoelas-
tic material, characterized by a continuum spectrum of relaxation times. The contact
problem can be easily formulated in the form of a spatial convolution product between
surface stresses and displacement, which blazes the trail to solving contact problems of
a countless number of engineering-relevant systems, where multiple contacts occur, such
as viscoelastic rolling element bearing. Incidentally, to correctly formulate the contact
problem, the definition of the spatial Green’s tensor is crucial. Specifically, the entries
of such tensor, namely the radial and tangential displacements associated to concen-
trated radial and tangential unit forces, are determined via a complex variable method.
Conversely to the usual method employing the Airy’s stress function, the complex vari-
able method allows, through the definition of appropriate complex potentials, a modus
operandi which does not entail the solution to fresh differential equations whenever the
coordinates are changed.

Once the viscoelastic Green’s function is derived, the conformal contact problem of
a rigid pin in contact with a deformable space with a cylindrical hole is investigated. At
first, the methodology is validated against the analytical solution provided by A. Persson
for a purely elastic case; then, the case of a linearly viscoelastic space is analyzed: as
expected in a viscoelastic contact system, at the leading edge, the pressure distribution
peaks, whilst the displacements are larger at the trailing edge, due to the different
relaxation in the two regions. Indeed, at the trailing edge, the material has been just
deformed and is still relaxing. Moreover, this process is speed-dependent as, at very low
and very high speeds the material enters the rubbery and glassy regions respectively,
where it behaves as a solid elastic body, and the energy dissipation is negligible. The
latter is significant at intermediate speed, where proper viscoelasticity effects arise.

Notably, thanks to the well-known computational efficiency of Boundary Element
methods, the present methodology is employed as a valid and numerical more efficient
alternative to Finite Element approaches to assess the multiple contact problem in a
rolling element bearing, where the raceways are linearly viscoelastic, and the rolling
elements are assumed to be rigid. From an applicative point of view, the assessment
of the contact problem is crucial. In fact, it is shown that the distribution of the load
among the rolling elements deviates significantly with respect to the purely elastic case,
with some rollers eventually losing the contact with the raceways for some speed values.
This has consequences not only on the rolling element durability but may impact the
rotor dynamics of the system supported by the bearing. Finally, to corroborate the
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model, numerical predictions for a rolling element bearing with the outer ring made of
Polytetrafluoroethylene (PTFE) are compared, with good agreement, to experimental
outcomes. This is further supported by a successive comparison between numerics and
experiments, for the outer ring of the bearing is made of Polyamide 6 (PA6).

Crucially, it should be observed that possible implications of the Boundary Element
methodology are not limited to dry contact mechanics, but the integral formulation
could be very useful in lubrication problems involving conformal surfaces. Specifically,
the case of a polymer journal bearing is studied and the importance of the definition of
an appropriate Green’s function to take into account of the conformity of the problem is
highlighted. In fact, making use of the classical half-plane Green’s function significant
deviations are observed in the case of such conforming contact conditions: this aspect is
then critical in design processes.

Furthermore, it is overt that the complex rheology of the viscoelastic material is
strongly coupled with the lubricant viscous losses, thus affecting the bearing capacity
of the system. Hence, the pressure and film thickness distributions for different con-
tact configurations are determined, highlighting that viscoelastic lubrication is governed
by three parameters, i.e., the Hersey number and the dimensionless velocities of the
interacting pair.
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2.10 Friction torque due to viscoelastic rolling contact C̃ = |Ct|/FxR, the
attitude angle θ∗ and the dimensionless friction circumference radius R̃ =
R∗/R as a function of the dimensionless speed ω̃ = ωτ . . . . . . . . . . . 34

2.11 Schematic of the rolling element bearing. . . . . . . . . . . . . . . . . . . . 34

2.12 Schematic of the rolling element bearing with the indication of the total ra-
dial approach between the raceways δr (a); the relative radial approaches
between the j-th rolling element and the inner and outer raceways, re-
spectively δIj and δOj , and the radial deflection of the rings, uI

r and uO
r . . . 36



Table of contents xi

2.13 Schematic of the outer ring radial displacement uO
r , the pressure pO di-

rected along the unit vector nO, normal to the deformed profile(dashed
line), for the outer ring-roller contact, modeled as a cylindrical hole drilled
throughout a viscoelastic infinite space, subject to an isolated load on the
boundary (a); schematic of the inner ring radial displacement uI

r , the
pressure pI directed along the unit vector nI , normal to the deformed
profile(dashed line), for the inner ring-roller contact modeled as an in-
finite viscoelastic cylinder, fixed at the center O, subject to an isolated
load on the boundary (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.14 On the left y-axis, the dimensionless total radial deflection at angular po-
sition ψj , occupied by the j-th rolling element, δ̃j = δj/RO, the dimension-
less outer- and inner-raceway deflections, respectively ũOj = uOr (ψj)/RO
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3.7 The dimensionless film thickness h̃ = h/c (solid blue line) and the di-
mensionless pressure p̃ = p/E0 (solid red line) distributions at different
journal speed ω̃J for a fixed value of the net force Ftot. The calculations
are carried out for a hard-on-soft (HS) configuration, and a fixed ω̃B = 0.2. 74

3.8 In the graph above, the dimensionless friction torque for the journal
C̃J = CJ/|Ftot|RB (green curve), for the bearing C̃B = CB/|Ftot|RB

(in black) on the left y-axis; on the right y-axis, the eccentricity ratio
ϵ. Below, the viscoelastic contribution to total resisting torque for the
bearing C̃v,B = Cv,B/|Ftot|RB (in black) on the left y-axis; the ratio
C̃v,B/CB [%] on the right y-axis. The results are carried out for a hard-
on-soft (HS) configuration and fixed value of the net force Ftot, at different
journal dimensionless speed ω̃J , and ω̃B = 0.2. . . . . . . . . . . . . . . . . 75

A.1 Schematic of the unit vectors n and τ , respectively normal and tangential
to the general element AA′ (inspired by [43]). . . . . . . . . . . . . . . . . 83

A.2 Schematic of a cylindrical hole on an infinite space under isolated tangen-
tial and radial forces applied to the boundary. . . . . . . . . . . . . . . . . 87

A.3 Schematic of an infinite cylinder, fixed at the center, and subject to iso-
lated tangential and radial forces applied to the boundary. . . . . . . . . . 90

A.4 Deformed surfaces as a result of the application of a radial unit force
for different values of the dimensionless speed ω̃ = ωτ . The numerical
results are carried out for a viscoelastic material, characterized by a single
relaxation time τ = 0.01 s, glassy and soft moduli respectively equal to
E∞ = 107 Pa and E0 = 106 Pa, and Poisson’s ratio ν = 0.5. . . . . . . . . 92

A.5 Schematic of a cylinder under diametrically opposite forces on the boundary. 92
A.6 Deformed surfaces as a result of the application of a radial unit force

for different values of the dimensionless speed ω̃ = ωτ . The numerical
results are carried out for a viscoelastic material, characterized by a single
relaxation time τ = 0.01 s, glassy and soft moduli respectively equal to
E∞ = 107 Pa and E0 = 106 Pa, and Poisson’s ratio ν = 0.5. . . . . . . . . 94



Introduction

In the last two decades, an increasing number of researchers have been dedicating consid-
erable efforts to improve our comprehension of the mechanical and tribological behavior
of hard- and soft-viscoelastic materials. Indeed, viscoelasticity is a fascinating object
of study, as it is marked by the well-known theoretical complexity originated by the
complex rheology of such materials. At the same time, this interest is not purely spec-
ulative. Viscoelastic systems are ubiquitous in nature: biological tissues are a simple
and immediate example of soft viscoelastic materials. At different scales, ranging from
cellular structures [1,2] to complex systems, like human skin [3,4] or cartilage [5], these
tissues are, in fact, from a biomechanical point of view, hyperelastic and exhibit a time-
dependent stress-strain constitutive behavior. On the other hand, in industry, several
reasons, related to reduced costs, lighter weights, more flexible structures, are inducing
a change in mechanical design and, specifically, a continuous shift from hard metals to
polymers. Thus, in addition to components traditionally made of rubber-based compos-
ites, like belts [6], rollers, and tires, numerous more systems are now redesigned with
polymer plastics: a particularly significant case of study is related to polymer journal
and rolling element bearings, which are increasingly employed in mechanical systems [7].

Consequently, theoretical and applicative interest has triggered enormous attention
to the field. A crucial aspect in this research trend deals, in particular, with the vis-
coelastic rheology that characterizes polymeric materials: viscoelasticity is associated
with time-dependent stresses and strains, and, most crucially, leads to hysteresis and
energy dissipation. Hysteretic losses need to be carefully considered, especially in con-
tact mechanics problems, as they add up to the interfacial friction contribution, giving
place to the so-called viscoelastic friction. Hence, the countless number of papers focused
on viscoelastic contact mechanics. These date back to the 1960s from the pioneering ana-
lytical study proposed by Hunter [8] for a cylinder in contact with a viscoelastic slab and
the following experimental campaign carried out by Grosch [9]. Later, twenty years ago,
another analytical ground-breaking contribution has been proposed by B.N.J. Persson in
Ref. [10]: the contact mechanics theory has proposed, inter alia, an approach to account
for the contribution given by the roughness to viscoelastic dissipation. Furthermore, in
the last decades, numerical methodologies have been developed to tackle the viscoelas-
tic contact problems [11–16]: most of these are Boundary Element (BE) formulations,
where just the boundary domain is discretized [17–21]. This entails high computational
efficiency and has allowed to carry out very detailed numerical investigations in the field:
these studies have assessed steady-state [22] and reciprocating [23] contact mechanics in
smooth and rough conditions [24–27], normal indentation, and even lubrication prob-
lems, where the so-called visco-elastohydrodynamic regime has been found [23,28,29].

Despite these significant advancements in dry and lubricated viscoelastic contact
mechanics, however, the attention has been so far limited to non-conformal geometries:
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2 Introduction

this means that contacting surfaces do not conform to each other, because of the very
different curvature of the contacting bodies. The classical two-dimensional example is a
cylinder in contact with a half-plane. This contact configuration is doubtlessly impor-
tant, but it is not universal, as conformal contacts are quite common in applications: for
example, the pin joint is a clear conformal contact condition. Interestingly, such a con-
formal configuration has implications also in the case of multiple contacts, e.g., rolling
element bearings: indeed, although each roller may be considered in a non-conformal
contact with the rings, the presence of multiple rolling elements indenting the ring intro-
duces interaction effects related to the finiteness of the radii of the rings and the circular
geometry of the system, thus leading to a sort of conformal-like effect. Furthermore,
conformal problems are common in biomechanics: the hip joint [30] and all the prosthe-
ses [31] are possible examples. For artificial hip joints, the effect of surface roughness on
the real area of contact has been studied numerically using a combined finite element and
boundary element approach [32,33]. Consequently, the theme of conformal contact me-
chanics cannot be ignored. A pioneering contribution has been proposed by A. Persson
in his Ph.D. thesis [34], where, for purely elastic solids, highly conformal geometries have
been investigated. This approach has been further developed in Ref. [35, 36], where the
authors considered elastically similar and dissimilar contacting bodies. Other contribu-
tions to the field can be found in Ref. [37,38], where frictional interfaces have been taken
into account, and in Ref. [39, 40], where the authors proposed a FFT-based conformal
linear elastic contact model for 2D problems with two concentric cylindrical interfaces.
However, no solution is available in the case of viscoelastic rheology for the contacting
bodies. In this case, the problem could be tackled by employing Finite Element Methods
(FEM) [11–13,41], but this would lead to high computational costs, which would be, in
practice, unfeasible when multiple scales are accounted for the analysis. This work aims
at filling this gap about viscoelastic circular contact mechanics, for both conformal and
non-conformal geometries, by introducing an ad hoc developed BE methodology.

The thesis is outlined as follows. Chapter 1 presents a brief introduction to linear
viscoelasticity, providing the reader with the fundamental knowledge this work paves
over. Chapter 2 contains the mathematical formulation, which the numerical approach
relies on, for both conforming and non-conforming circular contacts. As highlighted
later, the critical point of the present approach is the proper definition of the Green’s
functions, which intrinsically take into account the circular hallmark of the contact
domain. Specifically, the complex potentials theory for plane elasticity problems (see
Refs. [42,43]) is employed to derive the expressions of the spatial Green’s functions that
properly describe the contact problems encountered in this thesis. Furthermore, the
isothermal steady-state viscoelastic Green’s function will be, for the first time, presented
for circular contact problems. Then, the Boundary Element (BE) methodology will be
validated, for the elastic conformal contact, with the analytical solution presented by
A.Persson [34]. The analysis is then extended to the viscoelasticity case, and a wide
breadth is given in the assessment of the viscoelastic contribution to friction. The
strength of the present methodology is shown in the assessment of the load distribution
and the hysteretic losses for a polymer rolling element bearing, with linearly viscoelastic
raceways and rigid rolling elements, showing the significant role of viscoelasticity in the
steady-state operation of the bearing: in fact, it will be shown that, for the case of
a single relaxation time material, some of the rolling elements in the load zone, for a
certain range of velocities, do not transmit the contact. This, as extensively explained
later, is related to the memory effect typical of polymeric material.
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Crucially, the methodology has been corroborated experimentally, where a rolling
element bearing with the outer ring made of Polytetrafluoroethylene (PTFE) and, later,
Polyamide 6 (PA6) has been tested at different loading and temperature conditions.
The agreement between the numerical predictions and the experimental outcomes is
good, confirming the goodness of the approach. Finally, in Chapter 3, a BE approach is
introduced to assess the steady-state operations of a polymer journal bearing, where it
will be shown how viscoelasticity clearly affects the system response. In particular, three
different configurations will be investigated: hard-on-soft (HS), where the journal is rigid
and the bearing is linearly viscoelastic, soft-on-hard (SH), where the journal is linearly
viscoelastic and the bearing is rigid, and soft-on-soft (SS), where both the interacting
pairs are linearly viscoelastic. Hence, Appendix A briefly recalls the complex potentials
theory and the expressions of the spatial Green’s functions that will be employed to
assess the contact problems analyzed.
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Chapter 1

Introduction to linear
viscoelasticity theory

As mentioned in the Indroduction, the comprehension of the mechanical and tribological
behavior of soft materials is attracting interdisciplinary efforts from researchers world-
wide: as a matter of fact, soft systems are ubiquitous in nature [1–5], and their ever-
encroaching role in industry is overt. Indeed, a continuously increasing shift from hard
metals to polymers is observed: for example, polymeric materials are now commonly
employed as power transmission components because of their advantageous features in
terms of lighter weights, resistance to environmental conditions, and reduced costs in
manufacturing. Among these components, made of polymers and polymer composites,
let us recall gears [44], belts [6], bearings [45], and tires [13,46]. In addition, a major role
in industry has being currently played by high-temperature polymer coatings [47]: in
industrial, automotive, pharmaceutical, and electronics parts, they are widely employed
to ensure anti-wear performance and durability of the coated parts. On the other hand,
the use of polymer coatings is not restricted to high-temperature applications, but, on
the contrary, has an interesting perspective also at very low temperatures, where self-
lubricating polymers can provide crucial results [48, 49]. Therefore, a comprehensive
understanding of viscoelasticity is needed. A fundamental contribution has been sup-
plied by Hunter [8], Grosch [9], B.N.J. Persson [10, 14] and Christensen [50, 51], who
furnished a consistent and wide-breadth description of the linear theory of the viscoelas-
tic behavior of materials. In particular, the need for such a theory is driven by the
fact that polymer materials exhibit mechanical responses, which are out of reach of the
theories of elasticity and viscosity, as they have a capacity to both store and dissipate
energy. It is well-known that the former theory does not take into account energy dis-
sipation, whereas a Newtonian viscous fluid does not imply a capacity to store energy.
Interestingly, studying the response of a viscoelastic material to a suddenly applied uni-
form distribution of surface tractions, it can be seen that it undergoes an instantaneous
deformation followed by a flow process that may not be limited in magnitude as time
grows, therefore exhibiting both an instantaneous effect and creep hallmarks. Thus,
viscoelastic materials are marked by time-dependent behavior, and, crucially, their me-
chanical response is not only determined by the current state of stress but also by the
complete stress history: this characteristic is known as memory effect.

Hence, we can now introduce the isothermal viscoelastic constitutive relationships.
Consider the undeformed configuration of a general deformable solid and a fixed reference
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6 Introduction to linear viscoelasticity theory

frame attached to it. Then, with respect to this configuration, we can specify the
displacement vector as u(t′) = x(t′)−X, with x and X denoting the coordinates of the
undeformed and deformed configuration respectively, t′ is the time variable, −∞ < t′ < t,
where t specifies the current time. Thus, the theory of viscoelasticity is referred to as
infinitesimal if the displacements are small with respect to the characteristic dimension
of the body and if the deformation is infinitesimal, i.e. ϵ = supt′ |∂ui(t′)/∂Xj | ≪ 1 at all
times t′ [51]. The indices i and j follow the usual Cartesian tensor notation. Furthermore,
it is important to recall that the term deformation, when applied to a continuous body,
refers to changes in the relative distances of the points of this body. This definition clearly
distinguishes pure deformation and rigid-body motion, the latter being characterized by
no variations in the mutual distances of the points of the continuum body. Under
these conditions, we can introduce the strain tensor εij = (∂ui(t

′)/∂xj + ∂uj(t
′)/∂xi)/2,

where the differentiation is carried out with respect to the deformed configuration, since
in the infinitesimal theory it is immaterial to discern between undeformed and deformed
configuration coordinates.

A proper definition of stress is of tantamount importance. In particular, the force
acting on the infinitely small surface element dS has the form F = σdS, where σ is
the traction per unit area or the stress vector. The traction represents the force acting
between the parts of the continuous body adjacent to either side of the surface element
dS. To distinguish between these two elements of the body, the unit vector n, normal to
the area dS, is defined: the traction F, acting on the area in question, is understood as
the force which the part lying on the positive side of a surface element exerts on the part
lying on the negative side [43], e.g., when detaching a finite volume V from the body,
the positive direction of the normal unit vector is chosen as the one that it is outward
with regards to V . It is evident that the stress vector depends on the spatial coordinate
of the general surface element considered, and, crucially, on its orientation, i.e. on the
direction of the normal unit vector n. Clearly, in dynamics, stress is also a function of
time. As well established [43,52,53], the application of the balance of linear momentum
to a small tetrahedron leads to the definition of the stress tensor σij : it is a second-order
tensor defined through the transformation which relates the components of the stress
vector to the orientation of the surface element, namely σi = σijnj . Furthermore, under
the assumption that the angular momentum of a small-volume element is balanced, the
stress tensor σij is shown to be symmetric, i.e. σij = σji.

Now, the hypothesis that the current value of the stress tensor depends upon the
complete past history of the components of the strain tensor is formulated through the
following expression [51]:

σij(t) =
∞
ψij
s=0

(εkl(t− τ), εkl(t)) (1.1)

where ψij is a linear tensor valued functional which transforms each strain history εij(t)
into a corresponding stress history σij(t), with −∞ < t <∞. Notice the dependence of
the linear functional ψij upon the instantaneous elasticity response of the material, that
is εkl(t).

Under the assumption that the strain history is continuous and the functional is
linear, by making use of the Riesz representation theorem 1 we can rephrase Equation

1Every linear functional can be written as a Stieltjes integral of the form
∫ b

a
f(x)dα(x), where f(x)

is a continuous function, and α(x) is a fixed function of bounded variation in the closed interval [a,b].
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(1.1) as a Stieltjes integral:

σij(t) =

∫ ∞

0
εkl(t− τ)dGijkl(τ) , (1.2)

in which G is a fourth-order tensor such that Gijkl(t) = 0 for −∞ < t < 0 and
each component is of bounded variation in every closed subinterval of −∞ < t < ∞
[51, 54]. Moreover, because of the symmetry of stress and strain tensors, we have
Gijkl(t) = Gjikl(t) = Gijlk(t). Equation (1.2) also highlights that the constitutive rela-
tion is unaffected by any shift in the time scale, i.e. we have time translation invariance.
Furthermore, taking εkl(t) = 0 for t < 0 together with the assumption that Gijkl and its
first derivative are continuous on the interval 0 ≤ t <∞, Equation (1.2) can be written
as:

σij(t) = Gijkl(0)εkl(t) +

∫ t

0
dτ εkl(t− τ)

dGijkl(τ)

dτ
, (1.3)

and, making use of the change of variable rule λ = t− τ the following is obtained:

σij(t) =

∫ t

0
dλ Gijkl(t− λ)

dεkl(λ)

dλ
. (1.4)

Now, the constitutive relation derived can be considered the formulation of Boltzmann’s
superposition principle: the current state is determined by the superposition of the
responses to the complete spectrum of increments of strain. The integrating functions
Gijkl(t) are known as relaxation functions and are mechanical properties of the material.
If the roles of stress and strain are reversed, it is possible to retrieve a complementary
relation:

εij(t) =

∫ t

0
dλ Jijkl(t− λ)

dσkl(λ)

dλ
, (1.5)

in which Jijkl(t) are the so-called creep functions, obeying the causality principle, that
is Jijkl(t) = 0 for t < 0, and Jijkl(t) = Jjikl(t) = Jijlk(t).

To exploit the relationship between creep and relaxation functions, by making use of
the Laplace transformation of Equations (1.4) and (1.5), it can be seen that Ḡ(s)J̄(s) =
1/s2, with Ḡ(s) and J̄(s) being the Laplace transform of the generic relaxation function
G(t), and the generic creep function J(t) [55]. By taking the inverse transform, and
using the convolution theorem, it is possible to retrieve∫ t

0
dτ J(t− τ)G(τ) =

∫ t

0
dτ G(t− τ)J(τ) = t, (1.6)

or, alternatively

J(0)G(t) +

∫ t

0
dτ G(t− τ)

dJ(τ)

dτ
= 1. (1.7)

It is interesting now to determine any restrictions which may be imposed upon the
constitutive relations for a particular type of memory effect, known as fading memory,
which has been extensively examined in the studies of Volterra [56] and Coleman [57,58].
A simple definition of such an effect is the following [51]: the current value of a field
variable, that has a linear functional type dependence upon the complete past history
of a second field variable, depends more strongly upon the recent history than upon the
distant history of the second variable. Therefore, this dependence is determined through
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a weighting function assigning a continuously decreasing dependence as the past events
are continuously more distant from the current time. Looking at Equation (1.3), it is
evident that the slopes of the relaxation functions weight the dependence of the current
stress upon the past history of strain. Thus, it is sufficient that the magnitudes of the
slopes of the relaxation functions continuously decrease with time, that is:∣∣∣∣dG(t)dt

∣∣∣∣
t=t1

≤
∣∣∣∣dG(t)dt

∣∣∣∣
t=t2

(1.8)

for t1 > t2 > 0. Clearly, the fading memory hypothesis is satisfied by the restrictions on
the creep functions: ∣∣∣∣dJ(t)dt

∣∣∣∣
t=t1

≤
∣∣∣∣dJ(t)dt

∣∣∣∣
t=t2

(1.9)

for t1 > t2 > 0.

1.1 Steady-state constitutive relations

Let us consider a viscoelastic body subjected to steady-state harmonic oscillation con-
ditions. In particular, let us examine the case in which the strain history is specified as
ε(t) = ε0 exp(iωt), with ε0 being the amplitude and ω the frequency of oscillation. As
presented in Ref. [51], the relaxation function G(t) can be decomposed into two parts,
that is G(t) = G̃+ Ĝ(t), the latter vanishing as t → ∞. Thus, making use of Equation
(1.4), the following expression for the stress is obtained:

σ(t) = G̃ε0 exp(iωt) + iωε0

∫ t

−∞
dτ Ĝ(t− τ) exp(iωτ), (1.10)

that, with the change of variable ξ = t− τ becomes

σ(t) =

[
G̃+ ω

∫ ∞

0
dξ Ĝ(ξ) sin(ωξ) + iω

∫ ∞

0
dξ Ĝ(ξ) cos(ωξ)

]
ε0 exp(iωt). (1.11)

Coherently with the definition of the steady state conditions for the strain history, the
stress can be cast as σ(t) = G∗(ω)ε0 exp(iωt), where

G∗(ω) = G̃+ ω

∫ ∞

0
dξ Ĝ(ξ) sin(ωξ) + iω

∫ ∞

0
dξ Ĝ(ξ) cos(ωξ) (1.12)

is termed complex modulus. Henceforth, it can be decomposed into its real and imaginary
parts, such that G∗(ω) = G′(ω)+G′′(ω). The former is usually referred to as the storage
modulus and it is equal to

G′(ω) = G̃+ ω

∫ ∞

0
dξ Ĝ(ξ) sin(ωξ), (1.13)

while the so-called loss modulus G′′(ω) is equal to

G′′(ω) = ω

∫ ∞

0
dξ Ĝ(ξ) cos(ωξ). (1.14)

Interestingly, integration by parts of these helps understand what happens at fre-
quencies approaching zero and infinity. Indeed, at zero frequency, we have G′(0) = G̃ =
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Figure 1.1: The real part of the viscoelastic complex modulus, G′(ω) = ReG∗(ω) (solid
black line on the left) and the imaginary part of the viscoelastic complex modulus,
G′′(ω) = ReG∗(ω) (solid blue line on the right), as function of the frequency ω.

G(t)|t→∞ and G′′(0) = 0, while at infinite frequency the real and imaginary moduli are
G′(∞) = G̃+ Ĝ(0) = G(t)|t→0 and G′′(∞) = 0. Notably, as the frequency of excitation
becomes very large, the material behaves as an elastic solid, since the imaginary part of
the complex modulus vanishes; at very small frequencies the material behaves either as
an elastic solid or as a viscous fluid. Therefore, a viscoelastic fluid behaves elastically
for very fast processes and viscously for very slow processes, while a viscoelastic solid
behaves elastically when it is subject to very fast or very slow frequencies of excita-
tion. Schematic representations of the storage and loss moduli for a typical viscoelastic
material with a single relaxation time are qualitatively depicted in Figure 1.1.

Notably, it is possible to write the stress-strain relation in an alternative form, that
is

σ(t) = |G∗(ω)|ε0 exp(iωt+ δ(ω)), (1.15)

with δ(ω) = tan−1(G′′(ω)/G′(ω)). This representation better highlights the lag between
the steady-state harmonic strain and stress.

1.2 Thermoviscoelasticity

Viscoelastic materials, as explained in the previous sections, do not conserve energy, so
a proper derivation of a general linear theory of thermoviscoelasticity is necessary. This
derivation is based upon the balance of energy and the entropy production inequality,
as presented by Christensen and Naghdi [50]. Crucially, since the analyses carried out
in this thesis assume isothermal conditions, some of the implications and restrictions in
deducing an isothermal theory are examined. Let us consider the load balance of energy
for infinitesimal theory, that is:

ρr − ρ(Ȧ+ Ṫ S + T Ṡ) + σij ε̇ij −Qi,i = 0, (1.16)

with ρ being the mass density, r being the heat supply function per unit mass, and
provides the means of either adding or removing heat by an external agent. Moreover, A
is the Helmholtz free energy per unit mass, S the entropy per unit mass, T is the absolute
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temperature, and Qi are the Cartesian components of the heat flux vector Q measured
per unit area per unit time. Furthermore, the local entropy production inequality, often
referred to as the Clausius-Duhem inequality, is given by:

ρṪS − ρr +Qi,i −Qi(T,i/T ) ≥ 0, (1.17)

It is evident that the free energy is a functional of both strain and temperature history,
and cannot be considered to be a linear functional. Making use of the Stone-Weierstrass
approximation theorem, under the assumption that εij(t) and T (t) are continuous on
the interval −∞ < t < ∞, and εij(t) → 0 and T (t) → T0 as t → −∞, the real
continuous scalar-valued functional of εij(t) and T (t) may be uniformly approximated by
a polynomial in a set of real, continuous, linear functionals of εij(t) and T (t). Then, the
Riesz representation theorem can be employed, and these linear functionals are expressed
in terms of Stieltjes integrals in which the integrating functions are of bounded variation.
The complete formulation can be found in Ref. [51]. In particular, the authors obtain
the following inequality:

Λ−Qi(θ,i/T0) ≥ 0, (1.18)

where θ(t) = T (t)− T0, with T0 being the base temperature, and Λ represents the rate
of dissipation of energy and is given by

Λ =− 1

2

∫ t

−∞

∫ t

−∞
dτdη

∂

∂t
Gijkl(t− τ, t− η)

∂εij(τ)

∂τ

∂εkl(η)

∂η
+

+

∫ t

−∞

∫ t

−∞
dτdη

∂

∂t
φij(t− τ, t− η)

∂εij(τ)

∂τ

∂θ(η)

∂η
+

+
1

2

∫ t

−∞

∫ t

−∞
dτdη

∂

∂t
m(t− τ, t− η)

∂θ(τ)

∂τ

∂θ(η)

∂η
.

(1.19)

We recall that the mechanical properties, i.e. the integrating functions Gijkl(t, t
′),

φij(t, t
′), and m(t, t′) obey causality: they vanish as t < 0, t′ < 0, while they are

assumed to be continuous for positive arguments.
Then, considering a particular process such that θ,i = 0, i.e. uniform temperature

field, Equation (1.17) becomes Λ ≥ 0, which is also known as dissipation inequality,
where Λ now is rephrased as:

Λ = −1

2

∫ t

−∞

∫ t

−∞
dτdη

∂

∂t
Gijkl(t− τ, t− η)

∂εij(τ)

∂τ

∂εkl(η)

∂η
, (1.20)

which expresses the thermodynamical restriction that the rate of dissipation of energy
must be non-negative. Furthermore, non-negative work requirement is common in con-
tinuum mechanics: in linear isothermal viscoelasticity, Gurtin and Herrera [59] have
made use of the requirement that the work done to deform the material from the vir-
gin state must fulfill the nonnegative work relation

∫ t
0 dτ σij(τ)∂εij(τ)/∂τ ≥ 0. Hence,

making use of Equation (1.16) and Equation (1.17), under isothermal conditions, we
find:

−ρȦ+ σij ε̇ij ≥ 0. (1.21)

Now, performing integration of (1.21), we can write:

−ρA+

∫ t

0
dτ σij(τ)

∂εij(τ)

∂τ
≥ 0, (1.22)
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Figure 1.2: General form of viscoelastic behavior of polymer: on the left, the real part of
the viscoelastic complex modulus, G′(ω) = ReG∗(ω) and, on the right, the loss tangent
tan δ = G′′(ω)/G′(ω) as function of the frequency ω.

Recognizing that the left-hand side of (1.21) corresponds to the rate of dissipation of
energy Λ, we have that the non-negative work requirement can be expressed as:∫ t

0
dτ Λ(τ) ≥ 0. (1.23)

with the Helmholtz free energy per unit mass, that is the stored energy, A being equal
to

A =
1

2

∫ t

−∞

∫ t

−∞
dτdη Gijkl(t− τ, t− η)

∂εij(τ)

∂τ

∂εkl(η)

∂η
. (1.24)

Some considerations about (1.22) and (1.23) are then needed: accepting the thermody-
namical requirement Λ ≥ 0, from (1.22) we observe that ρA ≥ 0 implies non-negative
work; on the contrary, non-negative work does not imply ρA ≥ 0. Therefore, requiring
ρA ≥ 0 is a stronger and physically meaningful condition than requiring non-negative
work. Thus, investigating the effects of discontinuous strain, εij(t) = ε̄ijH(t), with H(t)
being the Heaviside step function, the requirement of non-negative stored energy, that
is, then, ρA ≥ 0, leads to Gijkl(t, t

′) ≥ 0, while Equation (1.20) requires that the slope
of the relaxation function must be negative, and the fading memory hypothesis also
requires that the second derivative, with respect to time, of the relaxation function is
non-negative, that is the relaxation function is concave up [50,55].

Now, we can focus on the very strong dependence upon the temperature that the
mechanical properties, appropriate to the linear theory of viscoelasticity, generally ex-
hibit. Specifically, the thermoviscoelasticity theory permits mechanical properties to be
dependent on a fixed base temperature T0, but any dependency on infinitesimal temper-
ature deviations from T0 is necessarily ignored. To include a temperature dependence
effect based upon a continuously changing total temperature, some modifications have
to be made.

Before proceeding, proper terminology has to be introduced. For example, let us
take as representative the complex modulus G∗(ω) (see Figure 1.2). Notably, the high-
frequency or short-time range is referred to as the glassy region, while the low-frequency
or long-time region is referred to as the rubbery region. Furthermore, the region where
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Figure 1.3: Temperature dependence of G′′(ω)/G′(ω) (inspired by [51])

the greatest dependence upon temperature is observed, i.e. the region where the curves
exhibit the maximum magnitude of slope, is the so-called transition region. The corre-
sponding temperature range is designated as the glass transition temperature Tg, which
necessarily depends upon the frequency of measurement of the complex modulus, as
shown in Figure 1.3. In this region, viscoelastic properties are dominated by the re-
arrangement of molecular segments, which are sufficiently short that entanglements of
molecules or cross-links between them play a relatively minor role. Molecules with side
chains tend to exhibit the transition at a progressively higher frequency for constant
temperature, as the side chain length increases. Moreover, the transition region is char-
acterized by a very large peak of the loss tangent, known as the α peak, as shown in
Figure 1.2.

The concept of a glass transition temperature is important in a wide range of vis-
coelastic material applications that include changing temperature conditions. Hence, to
better define Tg, let us consider a stress-free sample of material subject to a uniform and
changing temperature field. A measurement of the volume change from some initial vol-
ume has the characteristic shown in Figure 1.4: the temperature at which the slope has
a discontinuity is referred to as the glass transition temperature. The slope discontinu-
ity accounts for the sharp transition between rubbery and glassy regions. Furthermore,
the additional volume above this temperature is considered to be free volume, or voids
in the molecular scale. Hence, Figure 1.4 also caters to a molecular interpretation for
the glassy and rubbery behavior. In fact, at low temperatures, due to the volumetric
shrinking, the polymer backbones have little freedom of movement, and the modulus is
relatively stiff; nevertheless, the loss tangent may present peaks. As depicted in Figure
1.2, in the glassy region, a wide band of relatively small damping is superposed to small
peaks, known as secondary maxima, in the loss tangent. Among these, the peak at the
lowest temperature, the γ peak, is thought to be caused by the flexing or twisting of
segments of the main polymer chain. A β peak may be obtained at higher temperatures,
and thermorheological complexity can be observed if both the α peak and the β peak
are present in the same frequency window [60].

On the other hand, at high temperatures, the individual molecules now have a consid-
erable deal of mobility with very little restriction thanks to the volume expansion, which
is shown macroscopically in a low value for the modulus. Thus, long-chain molecule en-
tanglements control the rubbery behavior, and the asymptotic or equilibrium modulus at
the terminal region depends upon the cross-link density and molecular weight. If given
enough time or thermal activation at a high temperature, molecular chains in polymers
without cross-links can slide over one another, and the behavior, then, resembles that of
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Figure 1.4: Volume as a function of temperature in polymers.

liquids [55]. The main complexity of this definition of the glass transition temperature,
based on free volume changes, is that it is also a time-dependent measurement, as con-
firmed by Kovacs [61]. Therefore, an additional definition of Tg is presented, based upon
the loss tangent [51]. To this regard, as previously pointed out, the loss tangent may
exhibit more than a peak, but there is a local maximum close to the same frequency at
which the largest variation with frequency of the storage modulus, that is, the real part
of the complex modulus, is retrieved. Then, as shown in Figure 1.3 and in Ref. [51],
there is a single space curve connecting the relative maxima of the loss tangent, whose
projection onto the temperature-frequency plane is taken as that of the glass transition
temperature as a function of frequency Tg = f(ω). It is clear how such a relationship is
fundamental to assessing whether a material will respond in a rubbery or glassy manner
at a particular frequency of excitation. It is important to underline that glass transition
temperature may be controlled by adding various constituents, e.g., a plasticizer may be
added to reduce Tg: indeed, small molecules included in plasticizers pierce the polymer
and increase the mobility of individual molecular chain segments [62]. On the other
hand, particulate inclusions tend to slightly raise Tg, as the free volume is reduced in
the vicinity of the interface.

Interestingly, there are materials with a special type of temperature dependence
of mechanical properties known as thermorheologically simple [63–65]. In particular,
the mathematical description of such temperature dependence is formulated in Ref.
[51] for constant temperature states. We indicate with G(t) the relaxation function
at the base temperature T0, and we let the temperature field be changed uniformly, i.e.
independently of the spatial coordinates, such that the relaxation function corresponding
to an absolute temperature equal to T is designated as G(t, T ). Clearly, at the base
temperature T0, we have G(t, T0) = G(t). Changing the independent variable inG(t), it is
possible to write G(t) = L(log10 t). Now, a material is referred to as thermorheologically
simple if it behaves according to the following relationship:

G(t, T ) = L(log10 t+ ψT (T )), (1.25)

with ψT (T ) being a shift function, which obeys the relations ψT (T0) = 0 and
dψT (T )/dT > 0. In particular, Equation (1.25) states that a change in temperature
causes the relaxation function to be shifted along the time axis. This postulate is also
referred to as time-temperature superposition principle.

Now, setting ψT (T ) = log10 aT (T ), we have that aT (T0) = 1 and daT (T )/dT > 0,
and Equation (1.25) can be rephrased as G(t, T ) = L(log10 taT (T )) and, thereafter, we
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have that
G(t, T ) = G(ζ), (1.26)

with ζ = taT (T ). This result explains that the relaxation function at any temperature
T , that is G(t, T ), can be obtained from the relaxation function at the base temperature
T0, i.e. G(t), by replacing t with ζ. For the sake of completeness, the relationship (1.26)
is sometimes taken in the expanded form G(t, T ) = bT (T )G(ζ), with bT (T ) = ρT/ρ0T0,
ρ0 being the initial density. Therefore, together with the shift of the data along the time
axis, which is taken into account from ζ, bT (T ) is responsible for the shifting of the data
along the G axis, due to the change of density and temperature. Usually, this effect is
small compared with the time scale shift, and, hence, neglected.

A similar approach can be used to formulate a proper description of the temperature
dependence of complex moduli: the complex modulus at any temperature T can be
obtained from the complex modulus G∗(ω) at the base temperature by replacing ω with
ω/aT (T ). The same reasoning holds for creep functions.
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1.3 Rheological models

𝐸 [

Figure 1.5: Schematic of the Maxwell model.

In this Section, the most common models of viscoelastic materials are analyzed. Let
us start with the Maxwell model, sketched in Figure 1.5. It is constituted by a purely
elastic spring and a purely viscous damper connected in series. First, we notice that,
from the equilibrium of each component, it is possible to write:

σ(t) = Eεs(t) → ε̇s(t) =
σ̇(t)

E
, (1.27a)

σ(t) = η(ε̇d(t)− ε̇s(t)) = ηε̇d(t)− η
σ̇(t)

E
, (1.27b)

so that we retrieve the following linear differential equation

σ̇(t)

E
+
σ(t)

η
= ε̇d(t). (1.28)

Now, considering an input step strain, the stress σ(t) will be equal to the relaxation
function G(t). Substituting it into Equation (1.28):

Ġ(t) +
1

τ
G(t) = Eδ(t), (1.29)

where τ is the relaxation time and it is equal to τ = η/E.
First, let us integrate both members of Equation (1.29) in the time interval t ∈ [0−, 0+]:∫ 0+

0−
Ġ(t)dt+

∫ 0+

0−

1

τ
G(t)dt = E

∫ 0+

0−
δ(t)dt, (1.30)

where we reckon that the second term of the sum at the left-hand side can be neglected
since the interval of integration is so small that we can consider as null the variation

undergone by the function G(t). Thus we obtain G(0+) − G(0−) = E
∫ 0+

0− δ(t)dt = E
and, finally, recalling causality, the initial condition for the relaxation function can be
found as G(0+) = E. Incidentally, it is possible to understand that, once the input signal
is applied, the damper behaves as a rigid body and, consequently, the system behaves
as an elastic solid.
Now, for t > 0, Equation (1.29) is a homogeneous differential equation, as the Dirac
delta vanishes. In particular, we have:

Ġ(t) +
1

τ
G(t) = 0 (1.31)

and, together with the initial condition G(0+) = E, it is straightforward to determine
the relaxation function G(t), which is equal to

G(t) = E e−t/τH(t). (1.32)
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Figure 1.6: Relaxation function G(t) as function of time for the Maxwell model.
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Figure 1.7: Creep function J(t) as function of time for the Maxwell model.

Equation (1.32) points out a very important property of the Maxwell model: the
relaxation function of the material goes to zero at very large times (see Figure 1.6).
Hence, the Maxwell model resembles a viscoelastic fluid, where the viscous part, i.e. the
damper, can be seen as a Newtonian fluid, and the elastic component, i.e. the spring,
behaves like a solid body.

Now, we analyze the system response to a step stress input, i.e. σ(t) = H(t). Since
the two elements constituting the model are in a series configuration, the total strain
ε(t) is equal to ε(t) = εs(t) + εd(t); consequently the creep function J(t) is equal to:

J(t) =

(
1

E
+
t

η

)
H(t). (1.33)

Thus, the predicted creep response is a straight line, but this form is unrealistic for
primary creep, since it is in contrast to the curves that are observed experimentally.

Now, the response of the system to a circular input function is investigated: moving
to the frequency domain, it is possible to study the behavior of the system by using
the equivalent complex modulus of two viscoelastic materials connected in series, i.e.
1/G∗(ω) =

∑
i 1/G

∗
i (ω), with G

∗
i (ω) being the viscoelastic complex modulus of the i-th
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Figure 1.8: The real part of the viscoelastic complex modulus of the Maxwell model
ReG∗(ω) (solid black line on the left), and the imaginary part of the viscoelastic complex
modulus of the Maxwell model ImG∗(ω) (solid blue line on the right) as function of the
frequency ω.

element the system is composed by. Specifically, for the Maxwell model, we have:

G∗(ω) = E
iωη

E + iωη
= E

iωτ

1 + iωτ
=

Eω2τ2

1 + ω2τ2
+ i

Eωτ

1 + ω2τ2
(1.34)

Figure 1.8 shows the real and imaginary parts of the viscoelastic complex modulus,
as functions of ω, for an arbitrary value of the characteristic time τ . Incidentally, looking
at the real part of the complex modulus, it is possible to notice that the material behaves
as a liquid at very low frequencies, while, at very high frequencies, the material enters
the glassy region, where it behaves like a solid elastic body; instead, at intermediate
frequencies viscoelasticity effects take place and high energy dissipation occurs, as shown
in Figure 1.8 by the imaginary part of G∗(ω), which vanishes at very low- and very high-
frequencies.

Next, let us consider another model: the standard linear solid. It is constituted by
a Maxwell model and a purely elastic spring in parallel, as illustrated in Figure 1.9,
and the total stress applied to the system will be the sum of the stress applied on each
branch. In particular, with reference to Figure 1.9, we can derive the expression for the
relaxation modulus G(t) as:

G(t) = (E0 + E1e
−t/τ )H(t) (1.35)

It is possible to observe a decreasing trend of the relaxation function for increasing times:
for very long times, the spring with stiffness G(t→ ∞) = E0 is the only one reacting to
the applied load, and the system behaves as a solid. On the other hand, as explained
previously, as soon as the stress is applied, the damper behaves as a rigid body, so that
the system behaves again as an elastic solid, though stiffer than it is at long times; indeed,
the equivalent stiffness of the system as t → 0 is equal to G(t → 0) = E0 + E1 = E∞.
This is highlighted in Figure 1.10, where the relaxation function is plotted as function
of time, for an arbitrary value of the characteristic time τ .

To obtain the expression for the creep function, let us analyze the response of the sys-
tem for a step stress input. In particular, it is possible to write the following differential
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Figure 1.9: Schematic of the standard linear solid model.

equation:

J̇(t) +
1

βτ
J(t) =

1

E∞

(
δ(t) +

1

τ
H(t)

)
, (1.36)

where β = E∞/E0. Now, we observe that the particular solution Jp of Equation (1.36)
can be expressed in terms of the system equilibrium as t → ∞; specifically, when the
equilibrium condition is reached, the derivative of J(t) vanishes, so that for t > 0 it is
possible to write J∞/β τ = 1/E∞τ , whence:

Jp = J∞ =
β

E∞
=

1

E0
(1.37)

On the other hand, when t ∈ [0−, 0+], integrating both sides of Equation (1.36):∫ 0+

0−
J̇(t)dt+

∫ 0+

0−

1

βτ
J(t)dt =

∫ 0+

0−

H(t)

τE∞
dt+

∫ 0+

0−

1

E∞
δ(t)dt (1.38)

Then, since the integrating interval is too small to provide appreciable variations of J(t),
it is possible to neglect the corresponding integral and, recalling that the creep function
obeys causality, the initial condition of the system is:

J(0+) =
1

E∞
. (1.39)

Finally, solving the associated homogeneous differential equation

J̇(t) +
1

βτ
J(t) = 0, (1.40)

we retrieve the expression of the creep function for the standard linear solid:

J(t) =

[
1

E0
+

(
1

E∞
− 1

E0

)
e
−
t

βτ
]
H(t) (1.41)

Figure 1.11 illustrates the creep function of the standard linear viscoelastic model as a
function of time, for an arbitrary value of the relaxation time τ .

As for the Maxwell model, let us analyze the response of the standard linear model
when subject to circular functions as input signals. Recalling the expression for the equiv-
alent viscoelastic complex modulus for a parallel configuration, i.e. G∗(ω) =

∑
iG

∗
i (ω),

it is possible to write:

G∗(ω) = E0 + E1
iωτ

1 + iωτ
=

(
E0 + E1

ω2τ2

1 + ω2τ2

)
+ i

(
E1

ωτ

1 + ω2τ2

)
(1.42)
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Figure 1.10: Relaxation function G(t) as function of time for the standard linear solid
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Figure 1.11: Creep function J(t) as function of time for the standard linear solid model.
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Figure 1.12: The real part of the viscoelastic complex modulus of the standard linear solid
model ReG∗(ω) (solid black line on the left), and the imaginary part of the viscoelastic
complex modulus of the standard linear solid model ImG∗(ω) (solid blue line on the
right) as function of the frequency ω.
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Figure 1.13: Schematic of the generalized Maxwell model.

Figure 1.12 illustrates the real and imaginary parts of the viscoelastic complex mod-
ulus, as functions of ω. Observe that at very low- and very high-frequencies the sys-
tem behaves as an elastic solid, with modulus being equal to G∗(ω → 0) = E0 and
G∗(ω → ∞) = E0+E1 respectively, and the energy dissipation is negligible. Instead, at
intermediate frequencies, a transition region, characterized by high energy dissipation,
is observed.

However, real polymers are characterized by a continuous spectrum of relaxation
times, and it is clear that such single relaxation time models are not able to properly
describe real viscoelastic materials. Indeed, a single relaxation time material undergoes
most of its relaxation over about one decade in time scale, hence it undergoes a very
abrupt transition; conversely, real materials relax (or creep) over many decades of time
scales. Therefore, it is possible to consider a model, whose relaxation function is repre-
sented by the sum of a constant and a series of decaying exponential terms: this model
is referred to as the Weichert model or the generalized Maxwell model. Specifically, it
is composed of a purely elastic spring in parallel with as many Maxwell branches as are
needed to approximate the material response satisfactorily (see Figure 1.13). For such
a model, it is then possible to write the expressions of the relaxation function G(t) as

G(t) = (E0 +
n∑

j=1

Eje
−t/τj )H(t), (1.43)

while the viscoelastic complex modulus is equal to:

G∗(ω) = E0 +
n∑

j=1

Ej
iωτj

1 + iωτj
. (1.44)



Chapter 2

Dry circular contacts
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Figure 2.1: Schematic of the rigid pin rolling into a cylindrical hole on a viscoelastic
infinite space.

In this Chapter, an efficient Boundary Element approach for viscoelastic circular
contact mechanics is presented. Crucially, it is valid for both conforming and non-
conforming surfaces. Incidentally, in conforming contacts, the contact area dimension is
not negligible with respect to the characteristic dimension of the contact domain [66,67],
so the half-plane approximation, usually done in non-conforming problems, is not able
to properly assess the contact problem.

Therefore, in the following Sections, particular attention is paid to steady-state con-
tacts, and the crucial point is the derivation of the viscoelastic Green’s function that
intrinsically accounts for the circular domain. In particular, at first the paradigmatic
problem of a pin rolling, with a constant angular velocity ωR, into a cylindrical hole
on a viscoelastic infinite space is considered (see Figure 2.1). Nevertheless, the present
methodology is not limited to single relaxation time materials, as it is able to deal with
any real viscoelastic material, characterized by a wide spectrum of relaxation times.

Furthermore, one of the main purposes of the formulation is to quantify the hys-
teretic dissipation contribution to the overall friction. This is of the utmost importance
in mechanics to provide an enhanced understanding of the behavior of a variety of tri-
bosystems, in which soft materials are involved; consequently, this would lead the way to
tailor the operating characteristics to obtain a specific response of the system. Crucially,

21
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as discussed later, the Boundary Element methodology here introduced is not restricted
to such single contact problems; indeed, it blazes the trail to investigations of multiple
contact problems, such as the rolling element bearing, and lubricated contact problems,
such as the journal bearing, the latter thoroughly discussed in the next Chapter. As
a matter of fact, it will be evident how viscoelasticity strongly affects the response of
these machine elements, and how a clear understanding of these effects is critical in
rotor-dynamics in a large variety of industrial applications.

2.1 Mathematical formulation

As presented in Chapter 1, the creep response of a linear viscoelastic material may be
described through Equation (1.5), namely:

ε(t) =

∫ t

−∞
dτ J(t− τ)σ̇(τ) (2.1)

where ε(t) is the time-dependent strain, σ̇(t) is the time derivative of the stress and J(t)
is indeed the so-called creep function. We recall that the creep function must satisfy
the causality principle: this means that J(t) has to vanish for a time t < 0. The most
general form of J(t) is:

J (t) = H (t)

[
1/E0 −

∫ +∞

0
dτ C (τ) exp (−t/τ)

]
, (2.2)

where H(t) is the Heaviside step function, and the real quantity E0 is the rubbery
modulus (i.e. the low-frequency modulus) of the viscoelastic material, C(t) is a positive
function known as the creep (or retardation) spectrum, and τ is the relaxation time.
As discussed beforehand, real viscoelastic materials are characterized by a continuously
distributed relaxation times spectrum, though, in numerical simulations, a discrete form
of the creep compliance in Equation (2.1) is generally preferred. Hence, we write:

J (t) = H (t)

[
1/E0 −

n∑
k=1

Ck exp (−t/τk)

]
, (2.3)

or, alternatively, considering that J (t = 0) = 1/E∞, where E∞ is the glassy modulus
(i.e. the high-frequency modulus) of the material, as

J (t) = H (t)

[
1/E∞ +

n∑
k=1

Ck (1− exp (−t/τk))

]
. (2.4)

Now, let us start defining the geometry under investigation. Specifically, we are
focusing on the contact problem involving a pin in a bushing: as we assume plane strain
conditions, the system is studied as two-dimensional and, as sketched in Figure 2.1, can
be modeled as a circular punch placed in a cylindrical hole on an infinite space. Now,
in order to show in a clearer way the paradigmatic features of this system, the pin,
and the space are considered respectively as rigid and deformable. We note that the
system is rotationally invariant. Hence, recalling the elastic-viscoelastic correspondence
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Figure 2.2: Schematic of a cylindrical hole drilled throughout a viscoelastic infinite space,
subjected to plane strain conditions. An isolated load is applied to the boundary of the
hole.

principle [22,55,68–70] 1, the displacement u = urer + uθeθ can be related to the stress
σ = σrer + σθeθ, through the following integral equation:

u(s, t) =

∫ t

−∞
dt′

∫ 2πR

0
ds′ J(t− t′)G(s− s′)σ̇(s′, t′), (2.5)

where s = Rθ and s′ = Rθ′, with R being the hole radius, t is the time and, most
importantly, G (s) is the spatial Green’s tensor. Incidentally, in Equation (2.27), we
observe that the characteristic velocity at which the phenomenon occurs is assumed
much smaller than the wave propagation speed in the viscoelastic medium: this implies
that all the inertial effects can be neglected. According to the polar reference system
sketched in Figure 2.2, we have defined er as the radial unit vector and eθ the tangential
one.

Now, moving from the complex potentials theory, extensively treated by Stevenson
[42] and Muskhelishvili [43], and briefly presented in the Appendix, all the different
components of this tensor have been calculated, and can be found in Appendix A.2.

In the following developments, we will neglect tangential stresses σθ, and we will
focus only on the radial displacement ur at the interface. Recall that the coupling
between normal and tangential stresses may become critical in applications in which
the thickness of the viscoelastic tribopartner is extremely low: in this case, a certain
deviation from the solution given by the purely normal case may be expected [71, 72].
However, in the application under consideration, this has to be ruled out as the thickness
of the contacting bodies is much larger than each contact patch: as a consequence, we
can consider uncoupled the normal and the tangential problems. Hence, the assumption
of neglecting tangential stresses for the aim of the present analysis is well posed.

1The correspondence principle, also known as the elastic-viscoelastic analogy, states that if a solution
to a linearly elastic problem is known, the solution to its corresponding linearly viscoelastic problem
can be found by substituting each quantity that depends on time with the Laplace transform multiplied
by the transform variable, e.g. p(t) → sp(s), where p(s) denotes the Laplace transform of the function
p(t), and then transforming back to the time domain. Thus, the enormous collection of static solutions
can be converted into quasi-static viscoelastic solutions. However, the principle cannot be employed for
boundary value problems in which the type of boundary condition varies with time at a point on the
surface of the body, such as from specified displacement to prescribed traction.
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Thus, from Equation (2.27) we get the following scalar equation:

ur(s, t) =

∫ t

−∞
dt′

∫ 2πR

0
ds′ J(t− t′)Grr(s− s′)σ̇r(s

′, t′), (2.6)

where Grr can be obtained as

Grr(s) =
1 + ν

2π

[
− κ

κ+ 1
(2 logR+1) cos θ− κ+ 1

2
B(θ) cos θ+ (κ− 1)A(θ) sin θ

]
, (2.7)

with θ = s/R being the angle subtended by the arc s, ν is the Poisson’s ratio, and κ
is the Kolosov’s constant equal to κ = 3 − 4ν and κ = (3 − ν)/(1 + ν) for plane strain
and plane stress problems respectively. Furthermore, the terms A(θ) and B(θ) are equal
to A(θ) = arg(1/2− i/2 cot(θ/2)) and B(θ) = log(2− 2 cos θ) = 2 log(2| sin(θ/2)|).

As shown in Appendix A.2, let us observe that Grr is the purely radial term due
to a normal stress σr equal to a Dirac delta load, i.e., σr = δ (s). Interestingly, Grr

is the sum of two terms: one is the radial component of the mean displacement due
to a radial force, that is, Ḡrr = (κ(1 + ν)/2π (κ+ 1)) (2 logR + 1) cos θ; the other one
is an additional term that varies with the angle and, specifically, is equal to G̃rr =
((κ− 1)A(θ) sin θ − (1/2) (κ+ 1)B(θ) cos θ) (1+ν)/2π. This is usual in two-dimensional
elasticity [66], but, in this case, differently from the case of half-plane problems, we
can quantify the mean term Ḡrr. Physically speaking, this is possible as the system
has a characteristic length scale, that is the radius R: for this reason, the mean term
keeps finite and, thus, could be experimentally measured. Consistently, when R tends to
infinity, also such a mean contribution diverges. Furthermore, notice that, for a Poisson’s
ratio ν = 0.5, the additional term G̃rr is identical to the elastic Green’s function obtained
by Carbone and Mangialardi in Ref. [73,74], properly rotated in a polar reference frame.

Now, by focusing on Equation (2.6), let us observe that we can exchange the order
of integration and rewrite it as:

ur(s, t) =

∫ 2πR

0
ds′Grr(s− s′)

∫ t

−∞
dt′ J(t− t′) σ̇r(s

′, t′), (2.8)

where the term
∫ t
−∞ dt′ J(t− t′)σ̇r(s

′, t′) can be integrated by parts leading to:

ur(s, t) =J(0)

∫ 2πR

0
ds′Grr(s− s′)σr(s

′, t)+

+

∫ t

−∞
dt′

∫ 2πR

0
ds′ J̇

(
t− t′

)
Grr

(
s− s′

)
σr(s

′, t′).

(2.9)

Recalling that the rigid pin is rotating at constant angular velocity ωR, we can write
σr(s, t) = σr(s − ωRt) and ur(s, t) = ur(s − ωRt), where ω is the angular velocity of
the contact patch equal to ω = −ωRR

′/(R − R′), with R′ being the radius of the pin,
as sketched in Figure 2.1. Applying the transformation rule S = s − ωRt and recalling
linearity and rotational invariance, it is possible to write:

ur(S) =

∫ 2πR

0
dS′ Grr(S − S′, ω)σr(S

′), (2.10)

where Grr is the steady-state viscoelastic Green’s function. The latter can be found
by assuming in Equation (2.9) that the stress distribution at the interface is a Dirac-delta
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distribution, moving at a constant angular velocity, that is, σr(s, t) = δ(s− ωRt):

Grr(s− ωRt) =J(0)

∫ 2πR

0
ds′Grr(s− s′)δ(s′ − ωRt)+

+

∫ t

−∞
dt′

∫ 2πR

0
ds′ J̇(t− t′)Grr

(
s− s′

)
δ
(
s′ − ωRt′

)
.

(2.11)

Now, by observing that for ωt > 2π or ωt < 0 we necessarily have δ (s− ωRt) = 0, since
s satisfies the condition 0 < s < 2πR. Thus, we can write:

Grr(s− ωRt) = J(0)Grr(s− ωRt) +

∫ 2π/ω

0
dt′ J̇(t− t′)Grr

(
s− ωRt′

)
. (2.12)

Then, applying the transformation rule t− t′ = λ, we get:

Grr (s− ωRt) = J(0)Grr (s− ωRt) +

∫ t

t−2π/ω
dλ J̇(λ)Grr (s− ωRt+ ωRλ) , (2.13)

where J̇ (λ) =
∫ +∞
0 dτ exp(−λ/τ) (C (τ) /τ). Enforcing periodicity, recalling that

S = s− ωRt, and changing the integration variable λ as λ = τζ, we obtain:

Grr (S) = J(0)Grr (S) +

∫ +∞

0
dτ C (τ)

∫ 2π/ωτ

0
dζ e−ζGrr (S + ωRτζ) . (2.14)

It is interesting to observe that, unlike what happens in a plane system, where
a cartesian reference frame is employed (the reader is referred to Ref. [22]), here the
integration interval for the ζ−variable is finite and, specifically, equal to [0, 2π/ωτ ].
From a physical point of view, this is again due to the intrinsic features of the geometric
domain under investigation: in a half-plane, the contacting surface is infinite, whilst,
in a circular domain, this is finite and the viscoelastic memory effect can be related
to nothing else than the circumference size. The latter is indeed the characteristic
dimension of the system. Let us notice that, recalling that the angular velocity ω can
be expressed as ω = v/(R − R′), with v being the sliding/rolling linear velocity, the
upper limit of integration in Equation (2.14) is 2π(R − R′)/vτ . By taking the limit as
R → ∞, consistently with a system that tends to behave like a half-plane, we retrieve
the same viscoelastic Green’s function obtained by Carbone and Putignano [22]. This
not only corroborates Equation (2.14) but leads, to some extent, to a generalization of
the methodology in Ref. [22].

Once Grr(S) is found, in order to numerically solve the contact problem, we can
discretize the contact domain with N elements, each covering an arc of length 2αR, and,
assuming that for each element the stress is constant and equal to σk = σr(Sk), where
Sk is the angular position of the center of the k-th interval, the radial displacement
ui = ur(Si) at the center of the i-th interval is:

ui =

N∑
k=1

σk

∫ Sk+αR

Sk−αR
dS′ Grr(Si − S′, ω) (2.15)

with the assumption that the discretization step is small enough to consider the stress
σk = σr(Sk) constant on an arc [Sk − αR, Sk + αR].
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Figure 2.3: The undeformed profile (dashed black line) and the magnified deformed
profile (solid black line), with K = 107 being the magnification factor, as a result of
the application of a radial unit pressure distribution in the arc [−αR,αR] for different
values of the dimensionless speed ω̃ = ωτ . The numerical results are carried out for a
viscoelastic material, characterized by a single relaxation time τ = 0.01 s, glassy and
soft moduli respectively equal to E∞ = 107 Pa and E0 = 106 Pa, Poisson’s ratio ν = 0.5,
with α = 7.85 · 10−3 and R = 0.08 m. The axes x̃ and ỹ refer to the normalized x- and
y-coordinates, i.e., x̃ = x/R and ỹ = y/R.

Now, in order to further develop Equation (2.34), let us introduce Lrr(S) as:

Lrr(S) = J(0)Lrr(S) +

∫ +∞

0
dτ C(τ)

∫ 2π/ωτ

0
dz e−z Lrr(S + ωRτz), (2.16)

where

Lrr(S) =

∫ 2πR

0
dS′Grr(S − S′)χr

(
S′) , (2.17)

with χr being a pressure unitary in the arc [−αR,αR] and vanishing outside. The
mathematical details on Lrr(s) can be found in Appendix A.2. Figure 2.3 represents,
in the polar reference system, Lrr(S) for increasing values of the dimensionless speed
ω̃ = ωτ . The deformation is magnified to better appreciate the viscoelastic effects.
Indeed, we observe that the deformed profile is symmetrical at very low-speed and very
high-speed values, where the material enters respectively the rubbery and the glassy
elastic regions. For intermediate velocity, we have the proper viscoelastic effects: the
displacement is larger upon the pressure distribution passage as the material is still
relaxing; hence, the marked non-symmetric trend in Figure 2.3 occurs.

Now, given the definition of Lrr, Equation (2.34) can be rephrased as the following
system of linear equations [22,73,75]:

ui = Lik(ω)σk, (2.18)
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Figure 2.4: Schematic of the radial displacement ur and the resulting deformed sur-
face (black dashed line) with the normal and tangential unit vectors being n and τ
respectively (a); the total force Ftot as the integral of the pressure distribution p, the
viscoelastic friction torque Ct, the friction circumference (solid blue line) and the atti-
tude angle θ∗ (b).

where Lik = Lrr (Si − Sk, ω). Equation (2.36) is, then, solved following the scheme
proposed by Carbone and Putignano [22]. Indeed, although we are dealing with a two-
dimensional problem, we can fix the absolute penetration value, as in Equation (2.6) the
Green’s functions accounts also for the mean displacement that the deformable body
will experience.

Now, once the total penetration is fixed, the displacement distribution in the contact
area is found on a geometrical basis; then, by inverting the relation (2.36), the stress
distribution is determined. Clearly, as in any contact problem, the contact area is not
known a priori: thus, the numerical solver implements an iterative procedure, where,
at each iteration, the elements with negative pressure are removed, and those for which
numerical compenetration occurs are added.

Once the contact solution is known, a crucial point in the present analysis deals with
the viscoelastic contribution to friction. To this aim, without any loss of the generality
for the formulation, let us focus again on the simple case of a pin in contact with the
contour of a cylindrical hole on an infinite space: the key quantity to take into account
is the contact pressure p acting on the pin. This one is equal to |σr| and directed as
reported in Figure 2.4a. In particular, Figure 2.4a includes a magnified view of the
deformed system: the pressure direction is along the unit vector n being normal to the
deformed surface element dl = (R+ ur)dθ/ cosφ, with ur being the radial displacement
and φ the angle between eθ and τ , the latter being the unit vector tangential to the
deformed profile. Consequently, we can write the pressure as:

pn = p (− cosφ er + sinφ eθ). (2.19)

Now, observe that, as ur ≪ R, φ ≪ 1: this implies that cosφ ≈ 1 and sinφ ≈
∂ur/R∂θ, and dl = ds = Rdθ. Then, we can write:

pn = p

(
− er +

1

R

∂ur
∂θ

eθ

)
. (2.20)
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At this point, as sketched in Figure 2.4b, we can focus on the total load Ftot ob-
tained as the integral of the pressure distribution. In particular, let us consider the two
components along the x- and y-axes that are

Fx = −R
∫
Ω
dθ p(θ)

(
cos θ +

1

R

∂ur
∂θ

sin θ

)
(2.21)

Fy = R

∫
Ω
dθ p(θ)

(
− sin θ +

1

R

∂ur
∂θ

cos θ

)
(2.22)

where Ω denotes the contact domain.
Consequently, the total load is |Ftot| =

√
F 2
x + F 2

y .

Now, it is interesting also to quantify the direction of Ftot through the angle θ∗

defined as
θ∗ = arctan(Fy/Fx). (2.23)

This will be referred to as attitude angle, as outlined in Figure 2.4b. Then, we can define
the friction torque as:

Ct = R

∫
Ω
dθ p(θ)

∂ur
∂θ

k, (2.24)

where k = i ∧ j, with i and j being the unit vectors of the x- and y-axis respectively.
Finally, the friction circumference radius, as sketched in Figure 2.4b, is

R∗ = |Ct|/|Ftot|. (2.25)
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2.2 Conformal contact problem
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Figure 2.5: The dimensionless pressure distribution p̃ = p/E0 as a function of the
dimensionless force F̃ = Fx/(E0R). The numerical calculations are carried out for a hole
radius R = 0.08 m, ∆R = 4 · 10−5 m. A very good agreement between the analytical
predictions (black dots) [34] and the numerical calculations (solid line) is observed.

To show the impact and the generality of the Boundary Element formulation de-
veloped above, let us start with the paradigmatic problem of a rigid pin in conformal
contact with a deformable space with a cylindrical hole. The radii of the hole and the
pin are R and R′ respectively. We employ a linear viscoelastic material with a glassy and
a rubbery elastic modulus respectively equal to E∞ = 107 Pa and E0 = 106 Pa, a single
relaxation time τ = 0.01 s and a Poisson’s ratio ν = 0.5. We assume no Coulomb friction
at the interface as our investigation is specifically focused on viscoelastic dissipation: the
latter depends on the solution of the normal problem [22].

As a first step, the methodology is validated against the analytical solution available
in Ref. [34], where A. Persson solves the contact problem for a purely elastic case when
∆R = R − R′ ≪ 1, namely when the pin has almost the same dimension of the hole.
We assume that the center of the pin is free to move along the x-axis only, while it is
constrained along the y-axis.

We numerically study the case with R = 0.08 m, ∆R = 4·10−5 m, and with an elastic
modulus equal to the rubbery modulus E0, for different values of the dimensionless load
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Figure 2.6: Relationship between the load parameter E′∆R/Ftot as function of the
parameter b = tan(α/2), with α being the semi-angle of contact.

F̃ = Fx/(E0R). In Figure 2.5, numerical outcomes and analytical predictions are com-
pared in terms of pressure distribution p̃ = p/E0: the agreement is really good and the
error is always smaller than 0.1%. Incidentally, let us recall that, for this kind of prob-
lem, when the load is very small, the Hertzian limit is approached; on the other hand,
for increasing values of the load, the contact area grows until a limiting arc of contact is
reached [34]. Specifically, for the geometry under investigation, the limit contact angle
is θc=1.24 and is reached for a load F̃ = 2.3 · 10−2; for larger loads, the contact area
cannot grow, namely complete contact occurs. This is shown in Figure 2.6, where the
load parameter E′∆R/Ftot, with E′ being the equivalent Young’s modulus, is plotted
against the parameter b, defined as b = tan(α/2), α being the semi-angle of contact.
In particular, it can be observed that, as soon as we increase the load from very small
values, the problem is linear until a limiting condition is reached, namely the neat-fit
condition E′∆R/Ftot = 0, where the curve presents a vertical line corresponding to a
certain limiting angle θc; for larger loads full contact occurs [35]. Notice that at infinite
loads the neat-fit condition is again retrieved.

Now, we can focus on the conformal contact of a rigid pin rotating, at a constant
speed ω, in a cylindrical hole on a viscoelastic space: the radii R and R′ are respectively
equal to R = 0.08 m and R′ = 0.075 m. Figure 2.7 shows the results of the numerical
simulation, in terms of pressure and displacement distributions. Also, calculations have
been performed for a force acting along the x-direction with a dimensionless value of
F̃ = 3.5 · 10−2, and increasing values of the dimensionless rotational speed ω̃. On
the right column, we report the pressure distribution, the deformed surface, and the
equivalent indenting profile. In detail, for a stationary contact, i.e., for ω̃ = 0, we
observe, for the pressure, a Hertzian-like trend, but, as soon as ω̃ is increased, a peak
appears at the leading edge with the distribution becoming more and more asymmetric.
Correspondingly, at the trailing edge, we observe larger displacement values, where the
material is deformed upon the pin passage and is relaxing and thus a shrinking contact
region. At very high speeds, a new elastic (glassy) regime is reached: as we are keeping
constant the normal force, the contact area reduces and smaller displacements are found.
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Figure 2.7: The undeformed (dashed black line) and the deformed (solid black line)
contour of the hole in contact with the pin (solid orange line) on the left; the deformed
contour (solid black line), the dimensionless pressure distribution p̃ = p/E0 (solid red
line) and the indentation profile (dashed blue line) on the right. The axes x̃ and ỹ, on
the left, refer to the normalized x- and y-coordinates, i.e., x̃ = x/R and ỹ = y/R.
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Figure 2.8: The undeformed (dashed black line) and the magnified deformed contour of
the hole (solid black line), with K = 10 being the magnification factor, for a viscoelastic
material with a single relaxation time τ = 0.01 s, glassy modulus equal to E∞ = 107 Pa,
E∞/E0 = 10, and Poisson’s ratio ν = 0.5. Results are carried out for different values of
the dimensionless speed ω̃ = ωτ and fixed dimensionless force F̃ = Fx/(E0R) = 3.5·10−2.
The axes x̃ and ỹ refer to the normalized x- and y-coordinates, i.e., x̃ = x/R and ỹ = y/R.

All this is qualitatively consistent with what was observed for plane systems in non-
conformal contacts [24], but, for the first time, it is found in a conformal contact vis-
coelastic problem. The latter has its peculiarities including, as previously mentioned, a
limit for the contact area and a finite value for the mean displacement of the deformed
surface. This last aspect is particularly interesting. In fact, on the left column in Fig-
ure 2.7, we can observe the absolute position of the pin in contact with the deformable
viscoelastic counterpart.

From an applicative point of view, this may be crucial in multiple contacts, as occurs,
for example, in needle roller bearings: in this case, although the contact of each rolling
element with the rings can be considered non-conformal, a sort of conformal-like effect
should be observed, due to the finiteness and the circular geometry of the system, and
to the contact interaction between each roller. This allows us to determine how the load
is distributed among the different rollers [67], and is widely investigated in Section 2.3.

Looking more in detail at the magnified shape of the deformed system at different
velocities ω̃ in Figure 2.8, we observe a strongly non-symmetrical shape about the x-
axis. Indeed, in addition to a general shift of the deformed profile due to the finite mean
deformation previously discussed, a larger deformation is found at the trailing edge of the
contact region: this is related to the system viscoelasticity and to the different relaxation
between leading and trailing edges.

As depicted in Figure 2.9, there are, then, consequences on the pressure distribution,
which becomes asymmetric, and, crucially, on the resultant force Ftot of the pressure
distribution at the interface between the pin and the hole. Ftot presents, besides the x-
component that equilibrates the externally applied load, a y-component, which originates
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Figure 2.9: The pressure distribution on the contact area (red line) and the resulting
net force Ftot at different dimensionless speeds ω̃ and fixed dimensionless force F̃ =
Fx/(E0R) = 3.5 · 10−2. The axes x̃ and ỹ refer to the normalized x- and y-coordinates,
i.e., x̃ = x/R and ỹ = y/R.

as a consequence of the viscoelastic hysteretic behavior of the material. Note that we are
dealing with a frictionless interface and, so, no tangential surface stresses due to Coulomb
friction are present at the contact interface, but, due to the viscoelastic dissipation
occurring in the material, the pressure distribution becomes asymmetric, so that the
resultant force Ftot of the pressure distribution generates a resistant torque about the
center of the pin. Indeed, Ftot is tangent to the so-called friction circumference. In
Figure 2.10, we plot the torque C̃ = |Ct|/FxR, the trigonometric tangent of the attitude
angle θ∗ and the radius R̃. These quantities are, clearly, all related to the viscoelastic
dissipation: indeed, for very small and very large velocities, where the material behaves
elastically, they tend to zero, whereas, for intermediate values of the speed, they reach
a maximum.

Ultimately, it has been shown that the numerical methodology is able to provide a
complete contact solution in terms of stress, strain, and friction. It has to be pointed out
that the Boundary Element formulation has, crucially, no limitation in terms of material
properties- it can be applied to any linear viscoelastic material- and geometry. This is
an interesting aspect as, in the deformable ring, multiple contacts at different scales,
ranging from the macro-scale down to the roughness can be managed [76]: this unique
feature is reached thanks to the intrinsic computational efficiency of Boundary Element
approaches which discretize just the boundary of the problem domain.
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Figure 2.10: Friction torque due to viscoelastic rolling contact C̃ = |Ct|/FxR, the at-
titude angle θ∗ and the dimensionless friction circumference radius R̃ = R∗/R as a
function of the dimensionless speed ω̃ = ωτ .

2.3 Multiple contact problem: rolling element bearing

𝑦

𝑥

O

Figure 2.11: Schematic of the rolling element bearing.

The BE methodology presented in Section 2.1 is not only limited to single contacts
but, crucially, it blazes the trail to further studies in multiple contact applications.
Indeed, in this Section, we focus our attention on a component of crucial importance
in mechanical engineering, that is, the rolling element bearing. Referring to Figure
2.11, we consider a structure where the two rings, i.e., the inner one and the outer one,
are linearly viscoelastic, while the rolling elements, assumed as needles, are rigid. Let
us notice that, beyond the importance of the application, this problem has a strong
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theoretical interest as it refers to a circular multiple contacts configuration: indeed, each
contact patch interacts with the others in the circular domain. Incidentally, this is of
utmost importance in many problems in biomechanics: the hip joint [30] and all the
prostheses [31] are just possible examples. Coming back to the rolling element bearing
case, one of the most important functional aspects to monitor is the load distribution
on the rolling elements as it determines the number of active rolling elements where
the external load is applied. A large number of researchers have tried to address this
problem, starting from the pioneering research contribution by Stribeck in Ref. [77]: he
investigated the case of a ball bearing with zero radial clearance and subjected to an
external radial load directed as one of the rolling elements and, later, extended this
solution to the case of a ball bearing with a nominal radial clearance. Other significant
contributions to tackle the problem have been provided by Harris [78]: moving from the
studies of Sjovall [79], he introduced a load distribution factor, thus developing a 2D
model of an elastically-deformable rolling element bearing. Later, in Ref. [80], Lazovic
presented a mathematical model of the load distribution among the rolling elements by
taking into account the influence of the internal radial clearance and the shape of the
races. Another considerable contribution has been recently provided by Tomovic [81,82],
who developed a mathematical model to assess the external radial load necessary for a
roller to take part to the contact. Despite this broad and well-consolidated research in
the field, a clear understanding of the role played by viscoelasticity in this scenario is
still missing, but, at the same time, is getting crucial given the increasing diffusion of
polymer bearings.

Therefore, the goal is to understand how viscoelastic rheology intervenes in deter-
mining the mechanics of the rolling element bearing in terms of load distribution among
the rolling elements and of the overall viscoelastic hysteresis. To this aim, a numerical
analysis relying on the mathematical formulation presented in Section 2.1 for conformal
and non-conformal circular contacts is implemented, and ad-hoc Green’s functions for
both the inner ring-roller and outer ring-roller contacts have been introduced. Crucially,
these Green’s functions intrinsically account for the circular hallmark of the contact do-
main. On this basis, here an efficient Boundary Element methodology to numerically
solve the contact problem in a rolling element bearing is developed.

2.3.1 Problem formulation

Let us consider the multiple contact problem characterizing a rolling element bearing,
where the rolling elements are rigid and the rings are deformable and viscoelastic. Inci-
dentally, let us observe that great efforts have been spent to determine how the bearing
load is distributed among the rollers [67,78,81,82]: to solve this problem, load-deflection
relationships for the rolling elements in contact with the raceways have been developed,
but these analyses have been conducted only for a purely elastic case. As mentioned
before, due to the wide use of polymers in the industry, the aim of this study is to fill
the gap in the field, considering linearly viscoelastic raceways. In particular, we consider
the steady-state rotation of the inner and the outer ring, with the rotational speeds
sufficiently small to avoid roller centrifugal forces or gyroscopic moments of significant
magnitudes: these effects are, thus, neglected.

Focusing on the geometry under analysis, as sketched in Figure 2.12a, the total
approach δr along the loading direction between the two raceways in contact with the
interposed rolling element can be seen as the sum of the penetration between the rolling
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Figure 2.12: Schematic of the rolling element bearing with the indication of the total
radial approach between the raceways δr (a); the relative radial approaches between the
j-th rolling element and the inner and outer raceways, respectively δIj and δOj , and the

radial deflection of the rings, uI
r and uO

r .

element and each ring, i.e., δr = δO + δI , where the subscripts O and I refer to outer-
and inner-raceway respectively. Furthermore, for a rigidly supported bearing subject to
radial load, the total radial deflection at any rolling element angular position, that is
δj = δ(ψj), has been presented in Ref. [67, 78]:

δj = δr cosψj −
1

2
Pd, (2.26)

in which δr is the ring radial shift, which, under the assumption of perfectly vertical
load, occurs at ψ = 0, ψj is the angular position of the j-th rolling element, and Pd is
the diametral clearance, that is equal to Pd = 2(RO −RI −Dr), with RO and RI being
the radii of the outer and inner ring respectively, and Dr is the diameter of the rolling
elements. This definition in Equation (2.26) perfectly fits the system under analysis,
that is, a rolling element bearing with deformable rings and rigid rollers, as shown in
Figure 2.12a, and in details in Figure 2.12b. According to the reference frame adopted,
ψ = 0 corresponds to the angular position of rolling element 1; the other rollers are,
then, numbered according to the schematic in Figure 2.12a.

Now, to correctly define the contact problems and determine how the bearing load
is distributed among the rollers, we have to define the pressure distribution. To this
aim, we move from the mathematical formulation presented Section 2.1, where a fully
general approach to deal with steady-state viscoelastic circular contact problems has
been developed: this relies on the definition of ad-hoc Green’s functions, capturing the
nature of the circular contact domain. Moving from this, to approach the problem under
investigation, let us observe that we can distinguish two different contact conditions: one
refers to the contact between the outer raceway and the rollers, and the other to the
inner ring and, again, the rollers. In the first case, each roller acts as a rigid cylindrical
punch placed inside a circular hole within an infinite viscoelastic space; in the second
one, the rigid punch is in contact with a viscoelastic cylinder. As sketched in Figure
2.13a and 2.13b, and commented later in detail, the two cases will lead to completely
different contact boundary conditions.
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Figure 2.13: Schematic of the outer ring radial displacement uO
r , the pressure p

O directed
along the unit vector nO, normal to the deformed profile(dashed line), for the outer ring-
roller contact, modeled as a cylindrical hole drilled throughout a viscoelastic infinite
space, subject to an isolated load on the boundary (a); schematic of the inner ring
radial displacement uI

r , the pressure pI directed along the unit vector nI , normal to the
deformed profile(dashed line), for the inner ring-roller contact modeled as an infinite
viscoelastic cylinder, fixed at the center O, subject to an isolated load on the boundary
(b).

For the time being, let us focus on the common boundary element formulation which
can be employed for the two cases. First of all, the bearing is studied as two-dimensional,
as we assume plane strain conditions. Then, by recognizing that the system is rotation-
ally invariant, and recalling the elastic-viscoelastic correspondence principle, in the sys-
tem in Figure 2.13, following the mathematical formulation presented in Section 2.1, we
can relate, for both the two different circular contact problems, the total displacement
u and the stress σ, respectively defined in a polar reference frame as u = urer + uθeθ
and σ = σrer + σθeθ through the following integral equation:

u(s, t) =

∫ t

−∞
dt′

∫ 2πR

0
ds′ J(t− t′)G(s− s′)σ̇(s′, t′), (2.27)

where s = Rθ and s′ = Rθ′, R being the characteristic radius of the contact domain,
t is the time and, most importantly, G (s) is the spatial Green’s tensor. Again, as
the characteristic velocity of the phenomenon is negligible with respect to the wave
propagation speed, inertial effects have no relevance in the present analysis and, thus,
are neglected in Equation (2.27).

Now, by moving from the complex potentials theory (see Appendix A for more de-
tails), we can particularize Equation (2.27) for the two contact cases previously described.
In particular, looking at the contact problem involving the outer ring and the rollers,
all the different components of the Green’s tensor have been calculated in the Appendix
A.2. These are now presented for the contact occurring at the inner ring (see Appendix
A.3 for the complete derivation). Given the aim of the present investigation, that is, to
assess the normal contact problem to determine the pressure distribution on each roller,
the tangential stresses σθ are neglected, and the attention is particularly focused just on
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the radial displacement ur at the interface, thus recalling Equation (2.6), we have:

ur(s, t) =

∫ t

−∞
dt′

∫ 2πR

0
ds′ J(t− t′)Grr(s− s′)σ̇r(s

′, t′), (2.28)

where Grr is the purely radial term displacement due to a normal stress σr equal to a
Dirac delta load, i.e., σr = δ(s).

Now, recalling linearity and rotational invariance, together with the assumption that
the stress distribution at the interface is a Dirac-delta distribution moving at a constant
angular speed, that is, σr(s, t) = δ(s− ωRt), it is possible to rewrite Equation (2.28) in
the following steady-state form:

ur(S) =

∫ 2πR

0
dS′ Grr(S − S′, ω)σr(S

′). (2.29)

Grr (S) is the viscoelastic steady-state Green’s function, whose expression is given by
Equation (2.14).

Now, it is crucial to particularize this integral formulation in Equation (2.29) to
each of the two contact problems involved in our analysis. First of all, let us specify
the angular velocity ω. Specifically, we recall that, from a kinematic point of view, the
rolling elements are driven by the cage, which is rotating at constant angular speed ωc

around the origin of the fixed reference frame, shown in Figure 2.11 and coincident with
the geometric center of the bearing. In particular, being ωI and ωO the angular velocities
of the inner ring and the outer ring, ωc is equal to ωc = (ωIRI + ωORO)/(RI + RO).
Consequently, the contact patch at the outer raceway moves with a constant angular
speed equal to ωO,c = ωO −ωc, while for the inner raceway, we have that ωI,c = ωI −ωc.

Hence, we can particularize Equation (2.29) for the outer raceway contact as:

uOr (S) =

∫ 2πRO

0
dS′ GO

rr(S − S′, ωO,c)σ
O
r (S

′) (2.30)

where GO
rr can be found by setting in Equation (2.14) Grr as:

GO
rr(s) =

1 + ν

2π

[
− κ

κ+ 1
(2 logRO+1) cos θ− κ+ 1

2
B(θ) cos θ+(κ−1)A(θ) sin θ

]
, (2.31)

where θ = s/RO is the angle subtended by the arc s and, as presented in Appendix
A.2, the terms A(θ) and B(θ) are equal to A(θ) = arg(1/2 − i/2 cot(θ/2)) and B(θ) =
log(2− 2 cos θ) = 2 log(2| sin(θ/2)|).

On the other hand, for the inner raceway interface, the contact problem can be
described by the following integral equation:

uIr(S) =

∫ 2πRI

0
dS′ GI

rr(S − S′, ωI,c)σ
I
r (S

′) (2.32)

where GI
rr can be found by setting Grr in Equation (2.14) as

GI
rr(s) =

1 + ν

2π

[
1− (κ2 + 1) logRI

κ+ 1
cosϕ−cosϕ−κ+ 1

2
(κ−1)A′(ϕ) sinϕ−κ+ 1

2
B(ϕ) cosϕ

]
,

(2.33)
where ϕ = s/RI is the angle subtended by the arc s previously defined, and A′(θ) =

arg(−1/2− i/2 cot(θ/2)) (see Figure 2.13b).
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Once the Green’s functions are defined, we adopt the numerical scheme proposed
in Section 2.1 to numerically assess the circular contact problem. Specifically, we dis-
cretize the contact domain with N elements, each covering an arc of length 2αR, with
R being the characteristic radius of the paradigmatic circular contact domain; with the
assumption that the discretization step is small enough on an arc [Sk−αR, Sk+αR], Sk
being the angular position of the center of the k-th interval, we can consider the stress
constant and equal to σk = σr(Sk), and write the radial displacement ui = ur(Si) at the
center of the i-th interval as follows:

ui =
N∑
k=1

σk

∫ Sk+αR

Sk−αR
dS′ Grr(Si − S′, ω), (2.34)

where Grr is the corresponding viscoelastic Green’s function in the two cases. Then,
Equation (2.34) can be further developed by using the definition of the function Lrr (see

Equation (2.17)), that is Lrr(S) =
∫ 2πR
0 dS′Grr(S−S′)χr (S

′), with χr being a pressure
unitary in the arc [−αR,αR] and vanishing outside. Hence, with reference to Equation
(2.16), Lrr(S) is equal to:

Lrr(S) = J(0)Lrr(S) +

∫ +∞

0
dτ C(τ)

∫ 2π/ωτ

0
dz e−z Lrr(S + ωRτz). (2.35)

The definition of Lrr leads us to rephrase Equation (2.30) and (2.32) as the following
linear systems [22,73,75]:

{uOi } = [LO
ik(ω)]{σOk } (2.36a)

{uIi } = [LI
ik(ω)]{σIk} (2.36b)

where the indexes I and O refer to the inner and the outer ring respectively; moreover,
the intercorrelation matrix elements Lik are defined as Lik = Lrr (Si − Sk, ω).

Each contact problem can be solved by means of the numerical scheme proposed
in Ref. [83]: given the penetration of each rigid punch in the deformable solid, we can
immediately calculate the displacement distribution in the contact area and, then, by
inverting the relation (2.36), determine the stress distribution σOk and σIk. Clearly, as
in each problem the contact area is not known a priori, we implement an iterative
procedure, where, at each step, the elements with negative pressure are removed, and
those for which there occurs numerical compenetration, are added [84].

However, a relevant piece of information is still missing. In fact, once the total
penetration δr is properly tuned to set the total load supported by the bearing, thanks
to Equation (2.26), we understand how δr applies to each rolling element, but, for the
general j-th rolling element, the relative approaches between this rigid element at the
angular position ψj and the raceways are unknown. These quantities can be defined,
respectively for the outer and the inner ring, as δOj and δIj , and they are clearly related
to δj :

δj = δIj + δOj (2.37)

Determining the set of penetration values for the inner ring and the outer one, i.e., δIj and

δOj , is essential to solve the contact problems. This can be done by imposing the force
balance on each roller. Neglecting second-order terms, we focus on the radial equilibrium:
the radial force component on each roller, interacting on the j-th contact patch ΩI

j with
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the inner ring, i.e., F I
r,j = RI

∫
ΩI

j
dθσIr (θ), is assumed equal to that one in contact with

the outer ring, i.e., FO
r,j = RO

∫
ΩO

j
dθσOr (θ). Interestingly, we have checked, a posteriori,

that the tangential force component is negligible compared to the radial one: thus, the
approximation made is well-posed. Furthermore, let us notice that, without any loss of
generality, we have assumed the rotational speeds are small enough to neglect gyroscopic
moments and centrifugal forces; however, should this assumption become inconsistent
with the application conditions, it is straightforward to include these components in the
radial balance. Finally, we assume that the interaction forces between the cage and the
rolling elements are supposed to be much smaller than the contact forces: thus, these are
not accounted for in this analysis. Thanks to the closing condition on the radial balance
of each roller, it is possible to find the contact solution and determine the stresses on
each roller. It should be noted that a final iteration will be done on δr to ensure that
the total load applied to the bearing is transmitted.

Understanding how the global load distributes among the different rollers is one of
the aims of our analysis. To this extent, it should be noted that a local load can be
transmitted through a rolling element only when the rings are effectively in contact
with the roller and, thus, the radial clearance at the given angular position is filled.
Hence, we can introduce the gap g (ψ) = uOr (ψ) − uIr(ψ) − δ(ψ), with uOr and uIr being
the corresponding radial displacements of the outer and inner raceway respectively, as
depicted in Figure 2.12, and δ(ψ) is the total radial deflection, defined in Equation (2.26).
A roller can transmit load only if, at any point, the gap is equal to zero.

The other crucial focus of the present analysis is related to the viscoelastic contribu-
tion to friction. In particular, similarly to what is presented in Section 2.1, we assume
that the Coulomb friction is negligible. We can find the net forces, per unit length,
acting on each ring, Ftot = Fx+Fy, where Fx = Fx i and Fy = Fy j are the components
along the x- and y-axes respectively, with i and j being the corresponding unit vectors.
Specifically, we can write:

Fx = R

∫ 2π

0
dθ p(θ)n(θ) · i, (2.38)

and

Fy = R

∫ 2π

0
dθ p(θ)n(θ) · j, (2.39)

where R is equal to RO and RI respectively for the outer and the inner ring, and p is
the pressure acting on each ring. In detail, as reported in Figure 2.13, the pressure on
the inner ring pI is equal to |σIr | and is directed along the unit vector nI , that is normal
to the deformed cylinder; on the other hand, the pressure on the outer ring pO, being
equal to |σOr |, is directed along the unit vector nO, that is normal to the deformed hole
(see Figure 2.13).

Now, we can compute the friction torque as:

Ct = R

∫ 2π

0
dθ (P(θ)−O) ∧ p(θ)n(θ), (2.40)

where P(θ) is the point of the deformed profile at angular coordinate θ, and O is the
center of the bearing, coincident with the origin of the fixed reference frame adopted,
as shown beforehand. Finally, it is interesting to quantify the radius of the friction
circumference as R∗ = |Ct|/|Ftot|, and the direction of the net force Ftot with respect
to the radial direction through the so-called friction angle φ∗ = arccos(Fr/Ftot), with Fr

being its radial projection.
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2.3.2 Single relaxation time materials: results and discussion

In order to point out the main capabilities of the Boundary Element methodology de-
veloped, we focus on a rolling element bearing with rigid needle rollers and deformable
linearly viscoelastic rings characterized by a single relaxation time τ = 0.01 s, a rubbery
elastic modulus, i.e., the low-frequency modulus, E0 = 106 Pa, and the glassy elastic
modulus, i.e., the high-frequency modulus, E∞ = 107 Pa, and a Poisson’s ratio ν = 0.5.
With regards to the bearing geometry, we consider a rolling element bearing, in which
the outer raceway has a radius equal to RO = 6 mm, the inner ring has radius RI = 4
mm, and rolling elements with diameter Dr = 2 mm. Hence, the diametral clearance
Pd is Pd = 0 mm and, consequently, the angular extent of the load zone is equal to
ψl = π/2, as shown in [67,78].

Since the main angle is to investigate the viscoelastic contribution to friction, the
interface is assumed to be frictionless, thus assuming that the Coulomb friction is negligi-
ble. Then, numerical calculations have been performed for a constant force acting along
the x−direction with a dimensionless value being equal to F̃ = Fx/E0RO = 6.5 · 10−3,
and increasing values of the shaft speed ωI , while the outer ring is considered fixed, i.e.
ωO = 0. Hence, the relative speeds at the inner raceway contact ωI,c and outer raceway
contact ωO,c are equal to ωI,c = ωI − ωc and ωO,c = −ωc, with ωc = ωIRI/(RI + RO)
being the angular velocity at which the cage is rotating with respect to the center of the
bearing O.

Figure 2.14 presents, as a function of the dimensionless speed ω̃ = ωO,cτ , a set of
dimensionless quantities, related to local displacements and forces, for each of the rolling
elements in the loaded zone, that is, −ψl ≤ ψ ≤ ψl. First of all, we plot the dimensionless
total radial deflection δ̃j = δj/RO, which is the sum of the relative radial approaches
between the rings and the rollers, the latter found by means of an iterative technique,
as explained in Section 2.1. Such a methodology allows us to find the complete contact
solution and, inter alia, also the radial displacement distribution of the rings, being
respectively equal to uOr (ψ) and uIr(ψ). If we define with ψj the angular position of
the j-th roller, that is the position of its centroid, we can introduce and plot, again in
Figure 2.14, the dimensionless displacements ũOj = uOr (ψj)/RO and ũIj = uIr(ψj)/RO:

interestingly, when the j-th rolling element is in contact, ũOj and ũIj coincide with the

dimensionless penetration δ̃Oj = δOj /RO and δ̃Ij = δIj /RO, while are still well defined in
non-contact cases. The latter are monitored by means of the gap g̃j = g (ψj) /RO: when
this is different from zero, contact conditions are lost. Finally, we plot also the local
radial load F̃r,j = Fr,j/E0RO applied to each roller by the internal and the external ring.

Coming to the analysis of the results in Figure 2.14, let us start observing that, for
all the rollers, given the global constant load F̃ , the total radial deflection δ̃j obeys to
a sigmoidal trend, due the stiffening of the viscoelastic material with the speed. Let
us observe that, at very low speeds, the material behaves as an elastic soft solid, while
at very high speeds, where the material resembles a stiff elastic solid, the penetration
strongly decreases. For the other quantities, a more intricate behavior is observed. In
fact, we notice that, in a certain speed interval, the rolling elements 3 and 8 lose the
contact with the rings as the local forces F̃r,3 and F̃r,8 vanish, and the gap g̃3 and g̃8 gets
different from zero. Correspondingly, the displacements ũOj and ũIj have not a monotonic
trend. From a mechanical point of view, contact is lost due to viscoelasticity-induced
deflections of the rings and, consequently, to the viscoelasticity-induced radial clearance
g between the rollers and the raceways: indeed, as we will notice later when observing in
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Figure 2.14: On the left y-axis, the dimensionless total radial deflection at angular
position ψj , occupied by the j-th rolling element, δ̃j = δj/RO, the dimensionless outer-
and inner-raceway deflections, respectively ũOj = uOr (ψj)/RO and ũIj = uIr(ψj)/RO, and
the dimensionless radial clearance g̃j = g(ψj)/RO. On the right y-axis, the dimensionless
radial component of the resultant force, that is, F̃r,j = Fr,j/E0RO for the j-th rolling
element. The numerical results are carried out at a fixed value of the dimensionless force
F̃ = 6.5 · 10−3 at different dimensionless speed ω̃.
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Figure 2.15: The angular position θF of the net force FO
tot as a function of the dimen-

sionless speed ω̃.

detail the deformed rings, this is due to the delay intrinsically introduced when dealing
with a viscoelastic process [23].

For the time being, let us focus on the local forces F̃r,j observing that, although the
global load is constant, the evolution of the contact for the rollers 3 and 8 has relevant
consequences on the bearing load distribution, with all the terms F̃r,j showing a different
trend. As highlighted in Figure 2.15, this has consequences on the angular position of the
global resultant force FO

tot: this will change with the angular speed. As expected, at very
low and very high speeds, we have that θF is null since the material behaves elastically
and a symmetric stress distribution is obtained; on the other hand, at intermediate
speeds, it is interesting to notice that, due to viscoelasticity, the application point of
the net force moves from the perfectly lined position, that is along the x−axis: the
evolution is clearly non-monotonic as dependent on the number of rollers participating
to the contact.

Ultimately, let us observe that, unlike what happens in a purely elastic system, an
additional clearance is induced due to the viscoelastic rheology: this hinders some rollers
from participating to the load transmission, thus affecting the bearing load distribution
and, as a consequence, the angular position of the resultant force.

Now, we can look more in detail at the distribution of displacements and stresses.
Indeed, Figures 2.16, 2.17, 2.18, 2.19, 2.20 show the results in terms of displacements
and pressures at the inner- and outer-raceway contact at increasing shaft angular speed.
In detail, in the left column, we report the deformed contours of the rings, the net forces
Ftot (red arrows), and the extensions of the contact areas (green curves) on the active
rolling elements, i.e. on the rolling elements participating to the contact. In the right
column, we plot the undeformed contours (dashed lines) and the deformed contours of
the races, the latter magnified to better appreciate the viscoelastic effects (solid lines).
Below, we can observe the dimensionless pressure distributions p̃ = p/E0 on each rolling
element in the loaded zone.

For stationary contact, in Figure 2.16, we retrieve a Hertzian-like trend for the pres-
sure distributions, and the resulting forces, Ftot(red arrows), are directed along the load
line, that is the x−axis.
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Figure 2.16: The deformed (solid black line) contour of the raceways, the resultant force
Ftot(red arrow), and the contact areas (green line) for each active rolling element on
the left; the undeformed (dashed black line) and the magnified deformed contour of the
raceways (solid black line), with K = 10 being the magnification factor, on the right.
Results are carried out at ω̃ = 0, and fixed dimensionless force F̃ = Fx/E0RO = 6.5·10−3;
the pressure distribution acting on the rolling elements in the load zone, for the inner
raceway contact (above) and the outer raceway contact (below). The axes x̃ and ỹ refer
to the normalized x− and y−coordinates, i.e., x̃ = x/RO and ỹ = y/RO.
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Figure 2.17: The deformed (solid black line) contour of the raceways, the net force
Ftot(red arrow), and the contact areas (green line) for each active rolling element on
the left; the undeformed (dashed black line) and the magnified deformed contour of the
raceways (solid black line), with K = 10 being the magnification factor, on the right.
Results are carried out at ω̃ = 0.004, and fixed dimensionless force F̃ = Fx/E0RO =
6.5 · 10−3; the pressure distribution acting on the rolling elements in the load zone, for
the inner raceway contact (above) and the outer raceway contact (below). The axes x̃
and ỹ refer to the normalized x− and y−coordinates, i.e., x̃ = x/RO and ỹ = y/RO.
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Figure 2.18: The deformed (solid black line) contour of the raceways, the net force
Ftot(red arrow), and the contact areas (green line) for each active rolling element on
the left; the undeformed (dashed black line) and the magnified deformed contour of the
raceways (solid black line), with K = 10 being the magnification factor, on the right.
Results are carried out at ω̃ = 0.2, and fixed dimensionless force F̃ = Fx/E0RO =
6.5 · 10−3; the pressure distribution acting on the rolling elements in the load zone, for
the inner raceway contact (above) and the outer raceway contact (below). The axes x̃
and ỹ refer to the normalized x− and y−coordinates, i.e., x̃ = x/RO and ỹ = y/RO.
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Figure 2.19: The deformed (solid black line) contour of the raceways, the net force
Ftot(red arrow), and the contact areas (green line) for each active rolling element on
the left; the undeformed (dashed black line) and the magnified deformed contour of the
raceways (solid black line), with K = 10 being the magnification factor, on the right.
Results are carried out at ω̃ = 1.4, and fixed dimensionless force F̃ = Fx/E0RO =
6.5 · 10−3; the pressure distribution acting on the rolling elements in the load zone, for
the inner raceway contact (above) and the outer raceway contact (below). The axes x̃
and ỹ refer to the normalized x− and y−coordinates, i.e., x̃ = x/RO and ỹ = y/RO.
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Figure 2.20: The deformed (solid black line) contour of the raceways, the net force
Ftot(red arrow), and the contact areas (green line) for each active rolling element on
the left; the undeformed (dashed black line) and the magnified deformed contour of the
raceways (solid black line), with K = 10 being the magnification factor, on the right.
Results are carried out at ω̃ = 103, and fixed dimensionless force F̃ = Fx/E0RO =
6.5 · 10−3; the pressure distribution acting on the rolling elements in the load zone, for
the inner raceway contact (above) and the outer raceway contact (below). The axes x̃
and ỹ refer to the normalized x− and y−coordinates, i.e., x̃ = x/RO and ỹ = y/RO.



Dry circular contacts 49

Short Title of the Article

0
0.02
0.04
0.06
0.08
0.1

𝐶
𝐹 = 3.2 ⋅ 10−3

𝐹 = 6.5 ⋅ 10−3

𝐹 = 9.7 ⋅ 10−3

𝐹 = 1.3 ⋅ 10−2

0

0.02

0.04

0.06

0.08

ta
n𝜑

∗

10−5 10−4 10−3 10−2 10−1 100 101 102 103
0

0.02
0.04
0.06
0.08
0.1

�̃�

𝑅
∗

First Author et al.: Preprint submitted to Elsevier Page 1 of 1

Figure 2.21: The friction torque due to viscoelastic rolling contact C̃ = |Ct|/FxRO,
the tangent of friction angle φ∗ = arccos(Fr/Ftot), with Fr being the radial component
of the net force Ftot, and the dimensionless friction circumference radius R̃∗ = R∗/RO

at different values of the dimensionless fixed load F̃ = Fx/E0RO, as a function of the
dimensionless speed ω̃. The dimensionless quantities refer to the outer raceway contact
problem.

As soon as the speed is increased, we notice a peak appearing at the leading edge,
while large displacement values are observed at the trailing edge, where the material is
relaxing and, thus, a shrinking of the contact area occurs. This is evident in Figures 2.17
and 2.18. It is crucial to point out that the leading and the trailing edges observed at the
inner raceway are inverted compared to the outer ring, consistently with the direction of
the speed of the corresponding contact patches. Indeed, while the inner raceway contact
patches move with a constant angular speed ωI,c in a counterclockwise direction, we have
that the contact strips at the outer raceway move with a clockwise angular speed ωO,c.

Crucially, at higher values of the shaft speed, and, specifically, for a dimensionless
speed ω̃ equal to ω̃ = 1.4, in Figure 2.19, we observe that the rollers 3 and 8 are not
in contact anymore, as the material is unable to recover the viscoelastic deformation at
the angular position occupied by these rollers: the penetration is not sufficient, in fact,
to recover the viscoelasticity-induced decrease in the load-bearing capacity of these two
rolling elements. Incidentally, at this stage, the inverted position, for the inner and the
outer ring, of the trailing and the leading edges appears even more evident. Furthermore,
it should be noted that, at very high speeds, an elastic regime is reached again, but this
time it is the glassy one and the material behaves as a stiff elastic solid. Therefore,
since we are keeping constant the normal force, the contact area reduces, and smaller
displacements are retrieved. This is highlighted in Figure 2.20, where, as expected in
the elastic field, all the rolling elements in the load zone are actively participating to the
contact.

Now, as well proved in literature both theoretically and experimentally, the asymme-
try in the pressure distribution, shown previously and related to the hysteretic behavior
of the viscoelastic material, has consequences on the resultant force: the latter is tilted
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with a certain angle with respect to the approach line, which is purely vertical, thus
generating a friction torque Ct around the center of the bearing O. Indeed, as shown
in Section 2.1, Ftot is tangent to the friction circumference, whose radius is equal to
R∗. In Figure 2.21, we plot, with reference to the outer ring contact problem, for dif-
ferent values of the dimensionless fixed load F̃ = Fx/E0RO, the dimensionless friction
torque C̃ = |Ct|/FxRO, the trigonometric tangent of the friction angle φ∗, defined as
the angle Ftot is tilted with respect to the radial direction, i.e., φ∗ = arccos(Fr/Ftot),
and the dimensionless radius of the friction circumference R̃∗ = R∗/RO. As expected, at
very low and very high velocities, where the material behaves as an elastic solid, these
quantities tend to zero, as they are closely related to viscoelastic energy dissipation: this
is negligible in the rubbery and glassy regimes, while reaching its maximum value at
intermediate speeds. Interestingly, as the load is increased, a larger energy dissipation
due to viscoelastic friction is observed: the viscoelastic hysteresis is, indeed, a bulk phe-
nomenon. Furthermore, also the peak of the curves is shifted toward higher frequencies:
this is, inter alia, related to the mutual interaction between the rollers, that is, to the
number of them participating to contact, and, thus, can depend on the load.
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2.3.3 Experimental corroboration
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Figure 2.22: Schematic of the experimental rig (a); test sample assembly constituted by a
Cf53-made precision test shaft and a needle roller bearing with PTFE-based bushing(b).

It is important to notice that the current Boundary Element methodology is not
limited to viscoelastic materials with just one relaxation time, but can be employed for
any linear viscoelastic material to investigate, in terms of stresses, deformation, and
friction, the steady-state operating condition of a rolling element bearing, in which the
viscoelastic raceways are characterized by a large number of relaxation times.

Consequently, to corroborate the methodology, we carry out tribological tests per-
formed on a specific tribometer (Precision Bearing Test Rig 2) at the Austrian Excellence
Centre for Tribology (AC2T research GmbH). Comparable testing on this precision bear-
ing test rig, sketched in Figure 2.22a, was successfully conducted in the past for porous
sinter metal journal bearings [85, 86]. The specific design of the tribometer enables a
multitude of test procedures to be programmed: the test temperature, which can be var-
ied via a controlled resistive heating element, the shaft rotation speed, the normal load,
and the friction torque can be automatically recorded and analysed. For the application
of this thesis, the experimental setup has been particularized as follows. A Cf53 steel
precision test shaft with diameter 8 mm (�8h6), is clamped in the chuck and then driven
by an electric motor. As a test sample, we focus on a simplified version of the bearing
previously studied in the numerical part: a needle roller bearing with a PTFE bushing
mounted in the specimen holder, the latter being connected to a torque transducer via
an air-bearing supported shaft. The bushing has an inner diameter of 12 mm, an outer
diameter of 16 mm, and a length of 12 mm. To complete the test sample assembly a
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Figure 2.23: The viscoelastic modulus master curves for Polytetrafluoroethylene
(PTFE). The storage(black line) and the loss(blue line) moduli, respectively equal
to ReG(ω) and ImG(ω) (a); the viscoelastic modulus shift factors aT as a function
of temperature for Polytetrafluoroethylene (PTFE) (b). The reference temperature is
T0 = 20◦C.

needle roller cage, with 9 needle rollers with a diameter and length being �2 mm and 7.8
mm respectively, is placed between the test shaft and the bushing, as shown in Figure
2.22b.

In order to carry out the numerical-experimental corroboration, it is necessary to
characterize the polymer’s mechanical properties and, specifically, the viscoelastic com-
plex modulus. Hence, the viscoelastic response of the PTFE material has been char-
acterized via the MCR 702 Dynamic Mechanical Analyzer (DMA), manufactured by
Anton Paar, which enables the measurement of the viscoelastic complex modulus in
given frequency and temperature ranges. The characterization is performed on a PTFE
bar, with a cross-section of 3 mm × 3 mm and a length of 25 mm, under torsional
loading over a frequency interval between 0.1 Hz and 10 Hz, and temperatures ranging
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Figure 2.24: The viscoelastic friction torque Ct as a function of the shaft speed N . The
numerical predictions(solid black lines), carried out at a fixed load Fx = 50N and at
different temperatures, T = 30◦C and T = 50◦C, are compared to the measured ones.
The outer ring is made of Polytetrafluoroethylene (PTFE). For the latter, the scatter is
reported.

from −40◦C to 120◦C with 5◦C steps. Figure 2.23a shows the DMA data points and
the resulting fitted complex modulus in terms of storage and loss modulus, ReG(ω) and
ImG(ω) respectively, at a reference temperature T0 = 20◦C. The master curve is con-
structed by making use of the shift factors aT , sketched in Figure 2.23b as a function
of temperature. Hence, the definition of the shift factors aT allows us to retrieve the
complex viscoelastic modulus for any temperature and frequency, being G(ω, T ) defined
as G(ω, T ) = G(aT ω, T0), as treated in Section 1.2.

Within the scope of this study, torque measurements have been carried out with
different settings, by varying the radial load and the temperature. Particularly, tests
have been performed at two different load conditions, Fx = 50N and Fx = 100N, at
T = 30◦C and T = 50◦C.

Figure 2.24 presents the comparison, in terms of the viscoelastic friction torque Ct,
between the numerical predictions and experimental outcomes at a fixed load Fx = 50N
and at different temperatures, T = 30◦C and T = 50◦C. We notice that experimental
data are in very good agreement with the numerical curve. Scatter is generally large
possibly due to wear, other friction contributions, and parasitic effects occurring in
the rig, but we reckon that this does not affect the reliability of the comparison as
the investigation is focused on the purely viscoelastic contribution to friction and its
dependence on the rotational speed.

When increasing the load to Fx = 100N, as shown in Figure 2.25, we obtain a
good agreement for a fixed temperature of T = 30◦C. In fact, the descending trend
of the friction torque, obtained from numerical analysis, matches the descending trend
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Figure 2.25: The viscoelastic friction torque Ct as a function of the shaft speed N . The
numerical predictions(solid black lines), carried out at a fixed load Fx = 100N and at
different temperatures, T = 30◦C and T = 50◦C, are compared to the measured ones.
The outer ring is made of Polytetrafluoroethylene (PTFE). For the latter, the scatter is
reported.

Figure 2.26: PTFE bushing sample after a test conducted for a normal load equal to
100 N and a temperature equal to 50 °C. Scratches and material loss are evident.

of the average experimental data. At T = 50◦C, a certain deviation between numeri-
cal outcomes and experiments appears: this is due to high load and high temperature
conditions, and the consequent high wear. The latter was confirmed by the scratches
detected on the sample after the conclusion of the test, as Figure 2.26 shows.

The same test series has been conducted for a different bushing material, namely
Polyamide 6 (PA6). In particular, a bar, with a cross-section of 3 mm × 3 mm and a
length of 25 mm, has been characterized via the MCR 702 Dynamic Mechanical Analyzer
(DMA), under torsional loading over a frequency interval between 0.1 Hz and 10 Hz,
and temperatures ranging from −20◦C to 120◦C with 5◦C steps. Figure 2.27a shows
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the DMA data points and the resulting fitted complex modulus in terms of storage and
loss modulus, ReG(ω) and ImG(ω) respectively, at a reference temperature T0 = 20◦C,
while Figure 2.27b presents the shift factors aT , as a function of temperature, used to
reconstruct the master curve. Incidentally, by comparison of the numerical predictions
with the experimental outcomes, good agreement is observed for a fixed load of Fx = 50N
and temperature equal to T = 30◦C and T = 50◦C; conversely, large deviations are
observed at T = 80◦C. The agreement is appreciable also for a fixed load Fx = 100N,
and interestingly, while at T = 30◦C a certain offset is noticed, at T = 80◦C the friction
torques predicted are close to those observed experimentally.

Hence, the agreement shown between numerics and experiments for the two poly-
meric materials investigated in the present analysis corroborates the potentialities of the
proposed numerical approach.
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Figure 2.27: The viscoelastic modulus master curves for Polyamide 6 (PA6). The stor-
age(black line) and the loss(blue line) moduli, respectively equal to ReG(ω) and ImG(ω)
(a); the viscoelastic modulus shift factors aT as a function of temperature for Polyamide
6 (PA6) (b). The reference temperature is T0 = 20◦C.
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Figure 2.28: The viscoelastic friction torque Ct as a function of the shaft speed N .
The numerical predictions(solid black lines), carried out at a fixed load Fx = 50N and
at different temperatures, T = 30◦C, T = 50◦C and T = 80◦C, are compared to the
measured ones. The outer ring is made of Polyamide 6 (PA6). For the latter, the scatter
is reported.
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Figure 2.29: The viscoelastic friction torque Ct as a function of the shaft speed N .
The numerical predictions(solid black lines), carried out at a fixed load Fx = 100N and
at different temperatures, T = 30◦C, T = 50◦C and T = 80◦C are compared to the
measured ones. The outer ring is made of Polyamide 6 (PA6). For the latter, the scatter
is reported.
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Chapter 3

Lubricated circular contacts

The importance that soft matter lubrication has gained in the industrial panorama is
indubitable. This marked interest paves over the continuously increasing demand for
new polymers [13,44,47,48], biomedical implants [30,31], soft tissues [87]. In fact, these
materials are characterized by a range of advantageous properties in terms of resistance
to environmental conditions, lighter weight, and reduced costs in manufacturing. Hence,
the continuous shift from metals to polymers occurring in the last decades: seals [88,89],
dampers [90], and polymer bearings [45] are just examples. Nevertheless, due to their
complex rheology, the mechanical response of such materials is often complicated to pre-
dict: indeed, they exhibit a strong time- and temperature-dependent behavior, which
can be modeled as viscoelastic. A clear understanding of the performance of this class of
materials is indeed challenging, especially when other phases are involved as it occurs in
lubricated contacts, but is of the utmost importance. Indeed, in spite of the considerable
efforts in investigating dry contact mechanics involving soft materials [8–10,91], limited
research has been carried out to highlight the mechanisms governing the interactions
at the lubricated interface in the presence of viscoelastic materials [23, 28, 29, 92]. Fur-
thermore, the presence of roughness may exacerbate even more the complexity of the
contact problem [93, 94]. Pioneering studies were carried out by Rohde et al. [95], who
analyzed the effects of viscoelasticity and fluctuating loads on the elastohydrodynamic
squeeze film, and by Elsharkawy [96], who developed a numerical procedure to study the
visco-elastohydrodynamic lubrication (VEHL) line contact problems, based on an iter-
ative Newton-Raphson scheme. Later, Hooke [97] investigated the relationship between
the lubrication behavior and dry contact pressures when soft solids are considered; in
particular, in his analysis he found that the pressure distribution remains close to that
obtained in dry, frictionless contact since the corresponding deformations are very large
with respect to the film thickness. Another contribution has been provided by Scaraggi
and Persson [28], who studied the effects of viscoelasticity and random surface height
fluctuations on the Stribeck curve, on the traction and the separation field at the con-
tact interface of steady sliding line contacts. Furthermore, Putignano and Dini [98–100],
introduced a generalized numerical methodology to capture fluid-solid interactions, ob-
tained by coupling a Boundary Element (BE) approach that deals with the solid vis-
coelastic deformation and a finite difference scheme to model the fluid flow dynamics,
showing good agreement with the experimental outcomes [101]. It is evident that these
interactions occurring at the lubricated interfaces are critical in a variety of contexts,
including power transmission components: indeed, the role of lubrication is fundamental
in rotor dynamics applications, as it reduces the level of wear of the contacting pairs. A
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component of the utmost importance in a variety of industrial applications is the journal
bearing, and specifically, we will analyze how viscoelasticity affects the response of such
bearing, when at least one of the two interacting pairs is viscoelastic.

3.1 Steady-state 1D Reynolds equation

Before dealing with the visco-elastohydrodynamic lubrication (VEHL) problem at hand,
that is the polymer journal bearing, we need first to introduce the Reynolds equation for
lubrication [102], which allows us to describe the lubricant behavior when it is interposed
between two bodies. For the sake of the present work, we will focus on the steady-state
1D form of the Reynolds equation.

Consider the system shown in Figure 3.1, in which body 1 is fixed, while body 2 is
translating with horizontal velocity V = V i, with i being the unit vector of the x-axis.
Furthermore, let us define the fluid film thickness h = h(x), and the length of the slider
along the x-direction L. Let us suppose that, in the z-direction, the slider and the body
2 are infinitely long; in this case, the fluid motion is the same in any section along the
z-axis. In other words, if we call B the length along the z-direction, we have that B ≫ L.
Whence, lateral flux is negligible. However, it should be pointed out that this hypothesis
is introduced to simplify our study and does not hold in reality. Furthermore, we can
say that h ≪ L and this is true also in real cases, since the order of magnitude of h is
about 100 µm or less, while the length L may be of several centimeters or even more. In
addition, let us suppose the fluid is Newtonian, so that we can introduce the rheological
equation that relates the tangential stress tensor T and the strain rate tensor Ė:

T = AĖ. (3.1)

V
𝑥

𝑦

2

1

𝐿

𝑑𝑚
ℎ(𝑥)

Figure 3.1: Schematics of a 1D lubricated system.



Lubricated circular contacts 61

𝑝(𝑥, 𝑦)

𝑝(𝑥, 𝑦 + Δ𝑦)

𝑝(𝑥 + Δ𝑥, 𝑦)
𝑝(𝑥, 𝑦)

𝜏(𝑥, 𝑦)

𝜏(𝑥, 𝑦 + Δ𝑦)

𝜏(𝑥, 𝑦)
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(𝑥, 𝑦) (𝑥 + Δ𝑥, 𝑦)

(𝑥, 𝑦 + Δ𝑦) (𝑥 + Δ𝑥, 𝑦 + Δ𝑦)
2

1

Figure 3.2: Schematics of the pressure and the shear stress acting on the faces of an
infinitesimal volume.

We know that, for an isotropic fluid, all the 81 components of A, which is a fourth-
order tensor, depend on two parameters, which, in the case of Newtonian fluids, are η
and η′, respectively the dynamic and bulk viscosity. However, we will neglect this last
quantity and say that only the dynamic viscosity identifies the rheological relation since
we refer to an incompressible fluid. Furthermore, let us assume that the temperature
is uniform in the fluid film. Clearly, this is an approximation, since we have energy
dissipation due to shear stress and, consequently, heat is produced.

Finally, we are looking at the system by an Eulerian reference frame, as we are in
steady-state conditions, namely the quantities depend only on the spatial coordinates
and not on time.

Now, to write down the equations of motion, we consider an infinitesimal fluid vol-
ume, with a mass dm, as shown in Figure 3.2. We can study this volume assuming it to
be isolated from the rest of the fluid, so that the latter is considered as external to the
system.

Before proceeding, let us make some considerations about the forces acting on such
fluid element. Indeed, by looking at Figure 3.2, the pressure can actually change while
moving between point 1 and point 2 along the y-direction, but it can be shown that this
variation is negligible. In fact, we can say that the force acting on the surface delimited
by 1 and 2 is given by:

∆F = p∆yB. (3.2)

Assuming for simplicity that the pressure distribution on the surface is linear, the relation
becomes

∆F = pavg∆yB, (3.3)

where

pavg =
p1 + p2

2
=
p1 + p1 +∆p12

2
= p1 +

∆p12
2

,

with ∆p12 denoting the variation of pressure between the two points.
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Therefore, the following is obtained:

∆F =

(
p1 +

∆p12
2

)
∆yB = p1∆yB + ������1

2
∆p12∆yB︸ ︷︷ ︸

second-order quantity

. (3.4)

As ∆y → 0, the second-order term can be neglected. Hence, the pressure variation along
the y-direction at the left and at the right faces of the elementary element is negligible.
Analogously, the same reasoning holds for the pressure variation along the x-direction
at the top and at the bottom faces.

Hence, let us consider the equilibrium of the volume along the x-axis:

p(x, y)∆yB − p(x+∆x, y)∆yB + τ(x, y +∆y)∆xB − τ(x, y)∆xB =

= dm ax(x, y) = ax(x, y)ρ(x, y)∆x∆yB,

whence

−p(x+∆x, y)− p(x, y)

∆x
+
τ(x, y +∆y)− τ(x, y)

∆y
= ρ(x, y)ax(x, y). (3.5)

Thus, as ∆x→ 0 and ∆y → 0, we can write

−∂p
∂x

+
∂τ

∂y
= ρax. (3.6)

Analogously, on the y-direction we have

−∂p
∂y

+
∂τ

∂x
= ρay. (3.7)

Notice that in the equations above we do not consider the z-coordinate, since we made
the hypothesis B ≫ L: any quantity is a function of x and y.

Now, the accelerations ax and ay in Equation (3.6) and Equation (3.7) can be eval-
uated respectively as

ax =
d

dt
vx(x, y) = ∇vx · v =

∂vx
∂x

vx +
∂vx
∂y

vy, (3.8)

and

ay =
d

dt
vy(x, y) = ∇vy · v =

∂vy
∂x

vx +
∂vy
∂y

vy. (3.9)

Observe that these are quadratic functions of the velocity and, therefore, are related to
the kinetic energy. Now, let us recall the definition of the Reynolds number
Re = ρvl/η, with v being the flow speed, l is the characteristic linear dimension, ρ and η
are respectively the fluid density and viscosity. More conveniently, we can rephrase this
definition as:

Re =
ρv2

η
v

l

, (3.10)

from which it is overt that the term at the numerator (namely, the dynamic pressure) is
proportional to the kinetic energy per unit volume at a certain point and, then, it is asso-
ciated with the acceleration and the inertial forces, while the term at the denominator is
related to viscous forces. Therefore, the Reynolds number represents the ratio between
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the inertial and the viscous forces. Incidentally, consider the characteristic length to be
h, since, moving along the y direction, we have the most important velocity variation1.

Referring to the system under consideration (see Figure 3.1), the Reynolds number
Re is equal to:

Re =
ρV 2

η
V

h

,

and, since h is very small, we have that Re < 1, i.e. the inertial effects are negligible
and the flow is laminar. Hence, Equation (3.6) and Equation (3.7) can be rewritten,
respectively, as

−∂p
∂x

+
∂τ

∂y
= 0 (3.11)

and

−∂p
∂y

+
∂τ

∂x
= 0. (3.12)

In other words, we can say that all the forces related to the fluid density can be ne-
glected and so we have to consider surface forces only. To this regard, since the fluid is
Newtonian, we can write the relationship between shear stress and strain rate as

τ21 = τ12 = 2ηε̇12, (3.13)

where

ε̇12 =
1

2

(
∂u

∂y
+
∂v

∂x

)
, (3.14)

with u and v being respectively the components of the fluid particle velocity along the
x- and y-axis.

Recalling that the flow is laminar (Re < 1), and that the velocity u varies between
0 and V due to no-slip condition, we can estimate the partial derivatives ∂v/∂x and
∂u/∂y as: ∣∣∣∣∂v∂x

∣∣∣∣ ≃
∣∣∣∣v(L)− v(0)

L

∣∣∣∣ ≃ V h/L

L
=
V h

L2
, (3.15a)∣∣∣∣∂u∂y

∣∣∣∣ ≃
∣∣∣∣u(h)− u(0)

h

∣∣∣∣ = V

h
(3.15b)

whence
|∂v/∂x|
|∂u/∂y|

≃ V h/L2

V/h
=

(
h

L

)2

≪ 1. (3.16)

For this reason, we can rephrase Equation (3.14) as:

ε̇ =
1

2

∂u

∂y
, (3.17)

and the shear stress is equal to

τ = η
∂u

∂y
. (3.18)

1No-slip condition is assumed: in a very short distance the velocity of the fluid varies from 0 near the
body 1 to V close to the body 2.
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Then, from Equation (3.11) and Equation (3.12), we obtain:

−∂p
∂x

+ η
∂2u

∂y2
= 0 (3.19)

and

−∂p
∂y

+ η
∂2u

∂x∂y
= 0. (3.20)

Next, attention is paid to the terms ∂p/∂x and ∂p/∂y. Specifically, by making use
of the Taylor expansion applied on a given function f(y), we can evaluate the second
derivative f ′′(y0) as

f ′′(y0) =
f(y0 +∆y)− 2f(y0) + f(y0 −∆y)

∆y2
+O(∆y2) (3.21)

and, consequently, we have that∣∣∣∣∂2u∂y2

∣∣∣∣ ≃ V

h2
,

∣∣∣∣ ∂2u∂x∂y

∣∣∣∣ ≃ V

hL
, (3.22)

whence ∣∣∂2u/∂x∂y∣∣
|∂2u/∂y2|

≃ V

hL

h2

V
=
h

L
≪ 1. (3.23)

Referring to Equation (3.19) and Equation (3.20), it is overt that the dependence of the
pressure on the coordinate y is negligible, so that we can approximate it as

p = p(x). (3.24)

Hence, Equation (3.19) can be rephrased as:

p′(x) =
dp

dx
= η

∂2u

∂y2
. (3.25)

Equation (3.25) can be then integrated to obtain the velocity field u(x, y) as:

u(x, y) =
1

η
p′(x)

y2

2
+ c1(x)y + c2(x), (3.26)

were it can be noticed that the velocity u is nonlinear in y. To determine the two
constants of integration, we consider no-slip boundary conditions 2

u(x, y = 0) = V (3.27a)

u(x, y = h) = 0 (3.27b)

so that we can express the velocity field u(x, y) as:

u(x, y) = −h
2

2η
p′(x)

y

h

(
1− y

h

)
+ V

(
1− y

h

)
. (3.28)

2These conditions are not exactly true. If we look closely at the surfaces, we can notice a small
relative velocity of the fluid particles with respect to the two bodies. However, this velocity is really
small, so that it is a good approximation to say the fluid adheres to the surfaces. This reasoning does
not always hold: indeed, in microchannels we need to consider the fact that the fluid is sliding with a
very small velocity on the surface.
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In order to achieve a qualitative and quantitative description of the phenomenon, we
have to combine Equation (3.28) with the mass conservation equation. Specifically, since
the density is constant, we can consider the volumetric flow rate constant at each section
x due to mass conservation. To facilitate the calculations, instead of the volumetric
flow rate Q, we will consider the quantity q = Q/B, since the transversal length is not
significant in the one-dimensional case we are dealing with. Then, the mass conservation
equation, in the absence of squeeze, is expressed as:

dq

dx
= 0. (3.29)

By making use of Equation (3.28), we can derive the expression of the flow rate for
the generic section x, namely

q =

∫ h

0
u(x, y)dy = − h3

12η
p′(x) +

V h

2
. (3.30)

By entering the expression of the flow rate q into the mass conservation equation (see
Equation (3.29)), we obtain the Reynolds equation for the one-dimensional case:

d

dx

(
− h3

12η

dp

dx

)
+

d

dx

(
V h

2

)
= 0. (3.31)

In general, if both body 1 and body 2 are moving with a certain velocity, it is possible
to introduce the average velocity

Ṽ =
V1 + V2

2
,

so that Equation (3.30) and Equation (3.31) become, respectively,

q = − h3

12η
p′(x) + Ṽ h (3.32)

and
d

dx

(
h3

12η

dp

dx

)
=

d

dx

(
Ṽ h

)
. (3.33)

Then, the pressure distribution can be determined, provided the boundary conditions

p(x = 0) = pa (3.34a)

p(x = L) = pb (3.34b)

are given.
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3.2 VEHL conformal problem: polymer journal bearing

𝑦

𝑥
𝑅𝐽

𝑅𝐵

O
O′

𝝎𝐽

𝝎𝐵

Figure 3.3: Schematic of the journal bearing.

As previously mentioned in the introduction of this Chapter, journal bearings are
commonly used in various subsystems in engines and power trains, such as for crankshaft
and camshaft: the piston pin-bore bearing and the big-end bearings are just possible
examples [103, 104]. These components are also critical in the aerospace industry, in
the rocker shaft of rocker-arm valve train systems, or in industrial turbines for power
generation [105]. Hence, researchers worldwide made significant efforts to reach a com-
prehensive understanding of the journal bearings performances under different operating
conditions [67,102,106–109]. The theoretical analyses of the elastic distortion of journal
bearings were motivated by the experimental work of Carl [110], who was able to in-
vestigate the impact of elastic deformations, i.e., the cavitation angle rises, the pressure
peak falls, and the minimum film thickness point shifts toward the maximum pressure
location. Higginson [111] analyzed the conditions in a journal bearing with a thin elastic
layer, but the simplified treatment of the elastic problem, assuming the distortions to be
proportional to the locally applied pressure, led to notable discrepancies with the actual
bearing performances. The latter were addressed by Donoghue et al. in Ref. [112], where
the authors provided an effective approach to the elastohydrodynamic problem for an
infinitely long journal bearing in the presence of an isoviscous fluid, achieving extremely
good agreement with experimental results [110]. The problem of the compliant journal
bearing was also investigated by Benjamin and Castelli [113], who faced the elastic prob-
lem with different methods, while Hooke and Donoghue [114] assessed the EHL problem
of soft materials, observing, for an elastomer lined journal bearing, deviations of the
pressure distribution from the Hertzian solution as the eccentricity ratio is increased:
the film thickness becomes negligible with respect to the deformation of the soft sur-
face. Furthermore, relevant studies were carried out by Oh and Huebner [115], who
further explored the lubrication of a finite-length flexible bearing using a finite-element
technique, and by Conway et al. in Refs. [116–118]. In particular, in Ref. [116], the
authors investigated the elasticity effect in an infinitely long bearing, assuming, at first,
that the lubricant is isoviscous and, then, extending the investigation to the case of a
pressure-dependent viscosity. In addition, as made by Higginson [111], the authors made
the hypothesis that the radial deformation linearly depends on the pressure distribution.
On the other hand, in Ref. [117], the lubrication of a long, porous, deformable journal
bearing was also investigated: the response of the bearing, provided the bearing shell
thickness to be much smaller than the peripheral length of the bearing, has been modeled
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as a Winkler foundation. In Ref. [118], the same approach has been used to assess the
performance of a short flexible journal bearing. Furthermore, Profito [119] proposed a
Finite Volume Method based on Elements (FVMbE) scheme to assess statically loaded
journal bearing, with particular attention to the case of a typical internal combustion
engine connecting rod big-end bearing.

Crucially, this huge variety of theoretical and numerical efforts to fully understand
the response of journal bearings has focused on linear elasticity: however, due to the
encroaching role of polymers in the present and coming industrial panorama, special
attention to soft lubrication involving polymer-based materials is needed. To this regard,
several experimental campaigns have been carried out and particular attention has been
paid to water-lubricated rubber journal bearings. Indeed, with respect to oil-lubricated
metal bearings, they can reduce the consumption of lubricating oil and, nonetheless,
friction, wear, and noise. Moreover, these bearings can accommodate misalignments
and are easy to maintain, due to their simple structure. These advantages explain why
water-lubricated bearings are now commonly used in several rotating machineries, such
as in military crafts propulsion systems [120–122].

The level of theoretical understanding for polymer journal bearings and for the re-
lated frictional performances is, however, still insufficient: in particular, a clear assess-
ment of the role played by the viscoelastic rheology associated to the soft bodies is still
missing. Indeed, recent theoretical investigations [98, 99] have shown the existence of a
peculiar viscoelastic-hydrodynamic lubrication (VEHL) regime, where solid viscoelastic-
ity determines a marked difference, in terms of pressure, film thickness and ultimately
friction, compared to classic EHL. This has to be properly evaluated also for journal
bearings. Thus, in this thesis, particular attention is paid on the infinitely long polymer
journal bearing (see Figure 3.3). In particular, our goal is to understand the role of
viscoelastic rheology in the steady-state operations of the bearing. The present method-
ology paves over the mathematical formulation introduced Section 2.1 for conforming
and non-conforming surfaces, where ad-hoc Green’s function for the dry contact between
a rigid pin, rolling about the center of an infinite viscoelastic holed space. Specifically,
the Green’s function takes into account the circular characteristic of the contact domain.
Hence, here we develop a Boundary Element Method (BEM) to numerically assess the
lubricated contact in a journal bearing. Importantly, as it will be shown later, the defini-
tion of such Green’s function is crucial: in fact, the employment of the classical half-plane
Green’s function [22,67,73] would lead to misleading solutions in terms of film thickness
and pressure distribution, thus in terms of the bearing capacity and behavior of the
system. Furthermore, it should be noted that the development of such BE techniques
results in significantly lower computing complexity when compared to Finite Element
approaches. This exacerbates when multiple scales are considered in the analysis [123].

The following results for the polymer journal bearing enlighten the importance of
viscoelasticity on the bearing performances. Three different configurations are investi-
gated. In the hard-on-soft configuration (HS) the shaft is assumed to be rigid and the
bearing is soft. In the soft-on-hard configuration (SH), the shaft is soft and the bearing
is rigid, and, finally, in the soft-on-soft configuration (SS) both the interacting pair are
soft. Hence, we focus on the pressure and film thickness distributions, in the case of
a hard-on-soft configuration, when the journal rotating speed is increased while keep-
ing the angular speed of the bearing constant, showing how the coupling between solid
viscoelasticity and fluid viscous losses significantly affects the bearing response.
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3.2.1 Problem formulation

Lubricated contacts involving deformable bodies are characterized by a strong coupling
between the elastic, or viscoelastic, problem governing the deformation of the bodies
and the Reynolds equations. Specifically, the deformation experienced by the bodies is
governed by the pressure distribution, which is the solution of the Reynolds equations.
The latter is determined by the lubricating film thickness, which intrinsically takes into
account the displacement field of the interacting pair.

Thus, let us focus on the contact problem under analysis and determine the bearing
response under steady-state operating conditions. We move from the mathematical
formulation presented in Section 2.1. This methodology paves over the definition of the
Green’s function, which properly captures the nature of the circular contact domain.

Now, under the assumptions that the solids are homogeneous and the viscoelastic
properties do not show any spatial dependency, recalling that the system is rotationally
invariant and the elastic-viscoelastic correspondence principle, we can express, through
Equation (2.10), the relationship between the radial displacement ur and a purely radial
stress σr in a polar reference frame, i.e.:

ur(S) =

∫ 2πR

0
dS′ Grr(S − S′, ω)σr(S

′), (3.35)

with ω being the velocity of the contact patch, S = s− ωRt and S′ = s′ − ωRt. Recall
that Grr (S) is the so-called viscoelastic steady-state Green’s function, given by Equation
(2.14).

Then, making use of Equation (3.35), we can specify the displacement field for the
bearing profile as:

uBr (S) =

∫ 2πRB

0
dS′ GB

rr(S − S′, ω̄B)σr(S
′), (3.36)

where ω̄B denotes the velocity of the contact patch at the bearing interface.

GB
rr is determined by substituting Grr (S) in the expression of the viscoelastic Green’s

function with the following expression:

GB
rr(s) =

1 + ν

2π

[
− κ

κ+ 1
(2 logRB+1) cos θ− κ+ 1

2
B(θ) cos θ+(κ−1)A(θ) sin θ

]
, (3.37)

with θ = s/RB being the angle subtended by the arc s. More details about the derivation
of the spatial Green’s function in Equation (3.37) can be found in Appendix A.2.

On the other hand, the journal displacement field is described by:

uJr (S) =

∫ 2πRJ

0
dS′ GJ

rr(S − S′, ω̄J)σr(S
′), (3.38)

in which ω̄J is the velocity of the contact patch at the journal interface.

Now, GJ
rr is determined by setting Grr (S) in the expression of the viscoelastic Green’s

function as:

GJ
rr(s) =

1 + ν

2π

[
1− (κ2 + 1) logRJ

κ+ 1
cosϕ−cosϕ−κ+ 1

2
(κ−1)A′(ϕ) sinϕ−κ+ 1

2
B(ϕ) cosϕ

]
,

(3.39)
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in which ϕ = s/RJ . The detailed derivation of GJ
rr(s) can be found in Appendix A.3.

Hence, to numerically solve the contact problem, we adopt the numerical scheme pro-
posed in Section 2.1 and in Ref. [22]: the contact domain is discretized with N elements,
each covering an arc of length 2αR, and together with the assumption the discretization
step is small enough to consider the stress σk constant and equal to σk = σr(Sk), we
can write the displacement of the i-th interval as {ui} = [Lik(ω)]{σk}. Therefore, it is
possible to rephrase Equations (3.36) and (3.38) as the following linear systems:

{uBi } = [LB
ik(ω̄B)]{σk} (3.40a)

{uJi } = [LJ
ik(ω̄J)]{σk} (3.40b)

Furthermore, the intercorrelation matrix elements Lik are defined as Lik = Lrr (Si − Sk, ω),
and Lrr(S) is given by Equation (2.16).

Once the system of linear equations governing the solid viscoelastic problem is set, we
can focus on the equations governing the fluid dynamics of the system. To this regard,
considering isoviscous fluids, and assuming no-slip boundary conditions at both solids
interface, the Reynolds equations in a polar reference frame can be written as [67,94,124]:

∂

∂s

(
h3
∂p

∂s

)
= 12ṽη

∂h

∂s
, (3.41)

where ṽ is the entrainment speed, computed as the average of the peripheral velocities
of the surfaces, namely ṽ = (vB + vJ)/2, in which vB and vJ denote the peripheral
velocity of a generic point on the bearing and on the shaft respectively, namely vB(θ) =
ωB ∧ (PB(θ) −O) and vJ(θ) = ωJ ∧ (PJ(θ) −O′). Moreover, h is the film thickness,
and η is the fluid viscosity. Specifically, the normal displacement of the interacting
pair profiles strongly affects the film thickness distribution. Indeed, we have that h(θ) =
h0+g0(θ)+u

B
r (θ)−uJr (θ), with h0 and g0(θ) being respectively the central film thickness

and the gap between the surfaces of the bodies in the undeformed configuration. For the
system under analysis, that is the journal bearing, g0(θ) = c(1− ϵ cos(θ)) [67,78], where
c is the bearing radial clearance, i.e. c = RB − RJ , and ϵ is the eccentricity ratio, that
is equal to ϵ = e/c, with e being the eccentricity, which is equal to e = |O′ − O|. As
shown in Ref. [67], the previous definition of g0(θ) holds for highly conforming profiles,
i.e. for very small e/RB ratios. When this condition is not met, a proper definition of
the separation g0 is needed. In addition, to take into account hydrodynamic cavitation
in the divergent section, where the lubricant is subject to a tensile stress situation,
Reynolds boundary conditions [67] are employed. Then, Equation (3.41) is attacked
by implementing a finite difference scheme [67, 94], thus obtaining the following vector
equation:

hi = Rik(ṽ, η)σk. (3.42)

Thus, to assess the contact problem, we need to couple the solid mechanics and the
fluid dynamics [26, 67, 94, 96] to determine the pressure distribution satisfying, at the
same time, both Equation (3.40) and Equation (3.42). Specifically, an iterative scheme,
underrelaxed with the Aitken acceleration approach [94,125] is implemented: at each it-
eration, moving from the film thickness estimation h̃n, computed at the previous step, an
estimated stress field σ̃k is obtained by inverting Equation (3.42), and the new displace-
ment field can be determined from Equation (3.40); ultimately, the film thickness h̃n+1

for the following iteration can be computed and the iterative process keeps on running
until the pressure distribution numerically converges in two consecutive iterations.
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Ultimately, it is possible to focus our analysis to the friction losses, which can be
determined as the combination of the viscoelastic hysteretic dissipation and the fluid
losses [67]. Specifically, for each body, we can determine the net force and the total
torque respectively as:

Ftot = Fn + Fτ = R

[ ∫ 2π

0
dθ p(θ)n(θ) +

∫ 2π

0
dθ τ(θ)t(θ)

]
, (3.43)

and

Ct = R

∫ 2π

0
dθ (P(θ)−O) ∧ (p(θ)n(θ) + τ(θ)t(θ)), (3.44)

where P(θ) is the point of the deformed profile at angular position θ, and O is the
center of the bearing, which is coincident with the origin of the reference frame adopted
(see Figure 3.3). Moreover, n(θ) and t(θ) are the unit vectors, respectively normal and
tangential to the deformed contour; ultimately, the viscous shear stresses τ acting on
the bearing surface, i.e. τ = τB, and on the journal surface, i.e. τ = τJ , are obtained
as [67]:

τB(θ) = − h

2RB

∂p

∂θ
− η(vB(θ)− vJ(θ))

h
, (3.45a)

τJ(θ) = − h

2RJ

∂p

∂θ
+
η(vB(θ)− vJ(θ))

h
. (3.45b)

Finally, it is of particular interest to quantify the viscoelastic contribution to friction.
Specifically, it is possible to compute the power related to viscoelastic dissipation Pv,d,
which is equal to:

Pv,d = ωR

∫ 2π

0
dθ p(θ)

∂ur(θ)

∂θ
. (3.46)
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3.2.2 Results and discussion

In this Section, in order to point out the implications of the approach previously devel-
oped, we consider a journal bearing operating in steady-state conditions, where the
bearing has a radius equal to RB = 0.1m, and the radial clearance c is equal to
c = RB − RJ = 5 · 10−4m. In the following analysis, when we refer to soft solids,
we employ a single relaxation time material with glassy modulus E∞ = 100MPa,
E∞/E0 = 100, and relaxation time τ = 1 s.

As a first step, we investigate a classic Elastohydrodynamic lubrication (EHL) prob-
lem: the journal is rigid and the bearing is elastic with elastic modulus being equal to
the rubbery modulus E0, and Poisson’s ratio ν = 0.5, while the fluid is isoviscous with
a viscosity η being equal to η = 0.001Pa · s. As pointed out in Figure 3.4 for a dimen-
sionless net force F̃tot = |Ftot|/E0RB = 2.2 · 10−3, the solution in terms of dimensionless
film thickness and pressure distributions (solid lines), defined respectively as h̃ = h/c
and p̃ = p/E0, is completely different from what we would obtain by solving the classical
non-conformal EHL problem, that is, by employing the usual half-plane Green’s function
to compute the elastic deformation of the solids [66,73,126] (dashed lines). Crucially, we
can conclude that the half-plane approximation is not suitable for lubricated conformal
contact problems and justify the necessity of developing a numerical method properly
tuned. This aspect is of the utmost importance when the bearing response is analyzed,
and it must be carefully taken into account in design processes.
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Figure 3.4: The dimensionless film thickness h̃ = h/c (blue) and pressure p̃ = p/E0 (red)
distributions for a fixed value of the dimensionless resultant force F̃tot = |Ftot|/E0RB =
2.2 · 10−3. The numerical predictions are carried out in EHL regime, where the journal
is rigid and the bearing is elastic, with elastic modulus E = 1MPa and Poisson’s ratio
ν = 0.5, and compared with the solution obtained using the half-plane Green’s function
(dashed lines).
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Figure 3.5: The deformed profile (solid black line), the pressure distribution (solid red
line) and the resulting net force Fnet (red arrow) on the left; the dimensionless film
thickness h̃ = h/c (solid blue line) and the dimensionless pressure p̃ = p/E0 (solid red
line) distributions on the right. The results are carried out for a fixed value of the Hersey
number H = −4.5e − 9 and three different configurations: hard-on-soft (HS), soft-on-
hard (SH) and soft-on-soft (SS), with ω̃B = 0.2 and ω̃J = −0.4. The axes x̃ and ỹ refer
to the normalized x- and y-coordinates, i.e., x̃ = x/RB and ỹ = y/RB.

Now, we can focus on the analysis of the viscoelasticity effects for a polymer journal
bearing. In particular, we investigate three different contact conditions: rigid journal
on soft bearing liner (HS), soft journal on rigid bearing liner (SH), and soft journal
on soft bearing liner (SS). As shown in Figure 3.5, the pressure and film thickness
distributions are dramatically affected by the choice of material pairing: it is thus clear
that viscoelasticity plays a pivotal role. Crucially, this leads to a different attitude angle
of the resulting force (red arrows in Figure 3.5), i.e. the angle the net force generates
with respect to the line of centers [67], and, ultimately, on the angular position of
the application point. Clearly, such a variation in the resultant force has important
consequences on the rotor dynamics of the entire system where the bearing is applied.
Calculations are carried out for dimensionless speeds for the bodies being respectively
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Figure 3.6: The undeformed (dashed lines) and the magnified deformed (solid lines) con-
tours of the journal (black) and the bearing (teal), with K = 50 being the magnification
factor. The calculations are carried out for a soft-on-soft (SS) configuration, with a fixed
value of the Hersey number H = −4.5e − 9, and ω̃B = 0.2 and ω̃J = −0.4. The axes x̃
and ỹ refer to the normalized x- and y-coordinates, i.e., x̃ = x/RB and ỹ = y/RB.

equal to ω̃B = ωBτ = 0.2 and ω̃J = ωJτ = −0.4, while keeping the dimensionless
resultant force F̃tot constant and equal to F̃tot = 2.2 · 10−3: the Hersey parameter H is
then equal to H = ηṽRB/|Ftot| = −4.5e− 9. Thus, starting with the HS configuration,
we observe a clear peak in the pressure distribution at the leading edge due to solid
viscoelasticity. Incidentally, the leading edge of the solid contact corresponds to the flow
outlet, i.e. where the lubricant exits the lubricated contact. Here, we find a minimum
in the film thickness, due to both flow conservation and the viscous resistance against
the instantaneous change of deformation.

When we consider the SH case, we retrieve a very different outcome. Now, the bear-
ing is rigid, while the journal is linearly viscoelastic and, coherently with the kinematics
of the problem, we have that the fluid inlet, i.e. where the fluid is sucked in the contact,
corresponds to the leading edge for the journal: hence, the peak in the pressure distribu-
tion. Finally, in the SS configuration, both the contacting pairs are linearly viscoelastic
and, since the system is now more compliant, the contact region is now larger than
that observed in the previous cases. Furthermore, looking at the pressure distribution,
it is possible to notice two peaks at the inlet and at the outlet of the contact zone,
corresponding to the leading edges of the journal and the bearing respectively. To this
regard, the reader should observe that, for each viscoelastic body, the leading edge is
the region where the contact is initiated and where a larger stiffness and, thus, a larger
pressure are shown [22]. Indeed, as Figure 3.6 shows for the latter case, which refers to
a soft journal on a soft bearing, the location of the leading regions can be elicited from
superposing the undeformed contours (dashed lines) and the deformed contours (solid
lines) of the bodies: the region where the deformed profile, magnified to improve the
readability of the figure, is closer to the undeformed contour corresponds to the leading
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Figure 3.7: The dimensionless film thickness h̃ = h/c (solid blue line) and the dimen-
sionless pressure p̃ = p/E0 (solid red line) distributions at different journal speed ω̃J for
a fixed value of the net force Ftot. The calculations are carried out for a hard-on-soft
(HS) configuration, and a fixed ω̃B = 0.2.

edge zone, while larger displacements are observed at the trailing edge, where the ma-
terial is still relaxing upon the passage of the load. In fact, it is straightforward to find
the leading region for the shaft (in black) at the fluid inlet, i.e. on the right, where the
minimum deviation between deformed and undeformed profile occurs; on the contrary,
for the bearing (in green) this condition is met at the fluid outlet, while large deviations
between the actual (deformed) and the reference (undeformed) profiles are retrieved at
the fluid inlet, which corresponds to the trailing edge. Hence it is clear that, in vis-
coelastic lubricated contacts, besides the Hersey number H, the dimensionless speeds of
the interacting pair, i.e. ω̃B and ω̃J , are fundamental in governing the response of the
system, since they capture the complex rheology of such materials.
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Figure 3.8: In the graph above, the dimensionless friction torque for the journal C̃J =
CJ/|Ftot|RB (green curve), for the bearing C̃B = CB/|Ftot|RB (in black) on the left
y-axis; on the right y-axis, the eccentricity ratio ϵ. Below, the viscoelastic contribution
to total resisting torque for the bearing C̃v,B = Cv,B/|Ftot|RB (in black) on the left
y-axis; the ratio C̃v,B/CB [%] on the right y-axis. The results are carried out for a
hard-on-soft (HS) configuration and fixed value of the net force Ftot, at different journal
dimensionless speed ω̃J , and ω̃B = 0.2.

Now, it is interesting to study the system response when the absolute value of the
shaft angular speed |ω̃J | increases, while keeping fixed the total load F̃tot = 2.2 · 10−3

and the bearing angular speed ω̃B = 0.2. Specifically, we focus on a hard-on-soft (HS)
configuration, where the shaft is considered rigid, while the bearing liner is linearly vis-
coelastic. Crucially, the impact of viscoelasticity effects on the bearing performance is
quite evident, as shown in Figure 3.7. A clear asymmetry in the pressure distribution
occurs due to the different relaxation between leading and trailing edges; in particular,
the leading edge for the bearing is located at the fluid outlet, where a peak in the pres-
sure distribution and, correspondingly, a minimum in the film thickness distribution are
retrieved. As soon as we increase the shaft angular velocity, the fluid load-bearing ca-
pacity increases since more lubricant is entrained in the lubricated contact zone. Hence,
the reduced values of the maximum pressure and the very peculiar film thickness dis-
tributions, the latter characterized by increasing values of the central film thickness h0,
and by a certain degree of asymmetry related to the viscoelastic response of the bearing
material. Ultimately, the upper graph in Figure 3.8 presents, on the left y-axis, the
dimensionless resisting torque for the bearing , i.e. C̃B = CB/|Ftot|RB, and for the
journal, i.e. C̃J = CJ/|Ftot|RB, computed as presented in Section 3.2.1 with respect to
bearing center O. Incidentally, it is of particular interest to highlight the viscoelastic
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contribution to the resisting torque for the bearing, i.e. C̃v,B = Cv,B/|Ftot|RB, directly
obtained by the computation of the power related to the viscoelastic dissipation (see
Equation (3.46)): it is evident how the viscoelastic contribution to the overall bearing
torque is important, especially at low shaft speeds, where we retrieve C̃v,B/CB ≈ 35%.
Indeed, as discussed beforehand, the higher the entrainment speed the higher the load-
bearing capacity of the lubricant, hence the lower levels of deformation of the bearing
liner and, consequently, the lower energy dissipation. Furthermore, on the right y-axis of
the former graph, the eccentricity ratio ϵ as a function of the angular speed of the shaft
|ω̃J | is depicted. In particular, it can be noticed that it follows a monotonic trend and,
coherently with an increasing lubricant entrainment in the lubricated contact zone, we
have higher values of the central fluid film thickness, thus lower values of the eccentricity
ratio.



Conclusions

In this thesis, an innovative Boundary Element methodology has been developed to inves-
tigate two-dimensional steady-state viscoelastic conformal and non-conformal contacts.
These are of the utmost importance as found in a variety of conditions, including, for
example, industrial applications, like pin-joints and rolling element bearings, or biome-
chanical systems, like hip joints. The formulation, which is fully general and able to deal
with real viscoelastic materials, is based on a properly defined steady-state viscoelastic
Green’s function. At first, in order to show the peculiar features of the methodology,
attention is paid on a simple yet paradigmatic conformal contact, that is, the contact of
a pin in a bushing. In this case, the methodology has been validated in the elastic limit
against the analytical solution in literature [34], showing a very good agreement. Then,
the analysis has proceeded with the case of a linearly viscoelastic bushing. Numerical
calculations have been performed for a single relaxation time material and have shown
how viscoelastic effects clearly determines the response of the system at intermediate
speeds, where a certain degree of asymmetry in the pressure and displacement distribu-
tion can be observed. This has dramatic consequences on the net force, which is tilted of
a certain angle with respect to the load line, thus generating a resisting torque around
the pin center. On the other hand, at very low and very high speeds the system behaves
as elastic and symmetric solutions are retrieved, and the resisting torque is clearly null.

Hence, given the generality of the approach, it has been employed to numerically
investigate the steady-state operation of a rolling element bearing, characterized by
rigid rolling elements and deformable linearly viscoelastic rings. The system reduces to
the solution of two contact problems: one deals with the contact of each roller with the
inner ring, the other refers to the contact of the roller with the outer raceway. The
closing condition to correlate the two contact aspects of the bearing mechanics is found
by imposing the force balance on all the rolling elements. First, numerical calculations
have been carried out on a single relaxation time material to show, in a paradigmatic
form, the effect of viscoelasticity in this particular application. Specifically, when looking
at the distributions of pressure and displacements, at very low speeds and very high
speeds, where the material enters the rubbery and glassy region respectively, we have a
symmetric Hertzian-like solution for each roller in contact, while, at intermediate speeds,
we retrieve asymmetric distributions due to viscoelastic energy dissipation occurring in
the material. In particular, the material needs time to recover from its deformed state
at the trailing edge of each contact zone, resulting in larger displacements. For the same
reason, i.e. the viscous resistance against the instantaneous change of deformation, a
pressure peak occurs at the leading edge of each contact zone. Moreover, for kinematic
reasons, the leading and the trailing edges are opposite in the inner and the outer rings,
thus combining in a very peculiar way. As a consequence, there exists a viscoelasticity-
induced radial clearance at intermediate speeds: this significantly affects the bearing
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load distribution. Indeed, unlikely what happens in the elastic case, although placed for
geometric reasons in the load zone, some of the rolling elements do not participate in
the contact. This should be carefully accounted for when studying the dynamics of the
bearing. To this extent, it should be noticed that this aspect of the bearing response
depends on the global load: at higher loads, there is a larger energy dissipation, due to
the hysteretic behavior of the material, and, thus, the overall distribution of the load
among the rollers may change. Furthermore, this can be seen also when looking at the
friction curves and, specifically, at the viscoelastic torque: when increasing the load,
larger friction is obtained, while a shift toward higher frequencies of the viscoelastic
friction peak is observed.

As the formulation is able to deal with real viscoelastic materials with a continuous
spectrum of relaxation times, our approach has been experimentally validated by com-
paring the numerical predictions of the viscoelastic friction torque, with the outcomes of
the tests performed on a tribometer specifically designed to account for measuring the
friction torque in a bearing. The agreement observed is good, provided the complexity
of the measurement and the presence of other sources of dissipation. This confirms the
capability of our formulation.

Ultimately, the integral formulation has been employed to assess the lubricated con-
tact problem of a polymer journal bearing operating in steady-state conditions. Cru-
cially, the aim of this study has been to highlight how viscoelasticity strongly affects
the quantities that characterize the bearing performances, such as pressure, film thick-
ness, and friction. Incidentally, it is shown that a proper definition of the Green’s
functions is needed. In order to highlight that, the journal bearing operations in elasto-
hydrodynamic lubrication (EHL) regime has been analyzed: the shaft is considered rigid,
and the bearing liner is elastic. From the comparison of the distributions of the fluid
film thickness and the pressure, with those obtained by employing the half-plane Green’s
function, considerable deviations have been observed, showing that the half-plane ap-
proximation is not suitable to study such a conforming circular contact problem. Then,
it has been underlined how the contact configuration is critical in determining the sys-
tem response. Three different configurations have been considered, respectively the
hard-on-soft configuration (HS), in which the shaft is rigid and the bearing is linearly
viscoelastic, soft-on-hard configuration (SH), in which the shaft is linearly viscoelastic
and the bearing is rigid, and the soft-on-soft configuration (SS), where both the solids
are linearly viscoelastic: dramatic changes are retrieved in the pressure and fluid film
thickness distributions, thus on friction. In particular, the HS case has been further
investigated, for a fixed value of the net force F̃tot and a constant angular speed of the
bearing ω̃B, while increasing the absolute value of the angular speed of the shaft |ω̃J |,
showing the significant impact of the complex rheology of the viscoelastic bearing on the
system behavior and, crucially, on friction. The latter is the result of the combination
between fluid viscous losses and the viscoelastic hysteretic term. Thus, the resisting
torque for the bearing and the shaft are presented: for increasing values of the shaft
angular velocity, higher values of the friction torque are obtained; conversely, we notice
that the higher the shaft speed, the lower the eccentricity ratio. This is due to higher
values of the central film thickness, as more fluid is entrained in the lubricated contact
region.

Incidentally, the power dissipation related to the hysteretic behavior of the viscoelas-
tic material is also quantified. This, in turn, has allowed us to quantify the contribution
of the viscoelastic torque to the overall friction torque of the bearing. In particular,
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it has been observed that this contribution diminishes as the speed of the journal is
increased, leading to higher values of the entrainment speed. This result is due to the
lower deformation experienced by the material as the capacity of the lubricant to sustain
the load increases.

Ultimately, the results presented in this study underline that, in order to completely
assess visco-elastohydrodynamic lubrication (VEHL) problems, the Hersey number is
not the only parameter governing the system response, but the dimensionless speeds of
the viscoelastic bodies, i.e. ω̃B and ω̃J , have to be taken into account carefully, as they
embody the complex rheology of the materials.

Incidentally, further investigations are ongoing to corroborate the numerical approach
for the VEHL problem of a polymer journal bearing: tests are performed on a specific
tribometer, that is the Precision Bearing Test Rig 2, at the Austrian Excellence Centre
for Tribology (AC2T Gmbh), and the system response is analyzed, at various loads,
for different lubricants and contact configurations. Hence, the comparison between the
numerics and the experiments would shed light on the importance of the hysteretic
behavior of soft materials in such industrial applications.

Furthermore, the Boundary Element methodology developed does not include fric-
tional heating effects, and would be interesting to carry out the thermal analysis of the
contact area. In fact, the knowledge of the temperature distribution in the contact zone
would lead to understanding the impact of frictional heating at different rolling/sliding
speeds, which is a key aspect to take into consideration in optimizing the components
design. The simplest way to face this problem is to consider the mean temperature in
the contact area. Clearly, thermal gradients, and hence, flash temperature effects are
neglected, but this approach would not require important modifications of the method-
ology.
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Appendix A

Elastic displacements in circular
systems

A.1 Complex potentials theory

In this Appendix, we focus on the equations of the plane theory of elasticity when no body
forces are present. In this case, the stresses can be expressed by means of one single
auxiliary function, that is the so-called Airy function. In particular, the equilibrium
equations ∇ · σ + f = 0, with f being the body-force vector, under the conditions
considered, give :

∂σx
∂x

+
∂τyx
∂y

= 0, (A.1a)

∂τyx
∂x

+
∂σy
∂y

= 0. (A.1b)

Looking at the former, it is the necessary and sufficient condition for the existence of a
function A(x, y) such that ∂A/∂x = −τyx and ∂A/∂y = σx. The same reasoning holds
for the second equation: there exists a function B(x, y) such that ∂B/∂x = σy and
∂B/∂y = −τyx. Then, it follows that ∂A/∂x = ∂B/∂y, whence there exists a function
U(x, y), such that A = ∂U/∂y and B = ∂U/∂x. Specifically, the function U is the
aforementioned Airy function, also known as stress function, and allows to express the
stresses as:

σx =
∂2U

∂x2
, σy =

∂2U

∂y2
, τyx = − ∂2U

∂x∂y
. (A.2)

Furthermore, since the stress components are continuous and single-valued, with deriva-
tives being continuous up to the second order, the function U must have continuous
derivatives up to the fourth order and these derivatives, from the second order onwards,
must be single-valued. Then, in absence of body force, it is known that the stress func-
tion has to satisfy the biharmonic equation, i.e. ∆2U = 0, which solutions are the
biharmonic functions [43]. In the following, the displacement components, u and v, are
supposed to be single-valued, continuous, and related to the stress components by the
subsequent relations:

σx = λδ + 2µ
∂u

∂x
, σy = λδ + 2µ

∂v

∂y
, τyx = µ

(
∂v

∂x
+
∂u

∂y

)
, (A.3)
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where λ and µ are the first and second Lamé’s constant respectively, and δ = ∂u/∂x+
∂v/∂y.

Now, let us consider the region S, occupied by the body, to be simply connected,
i.e. any cut joining any two points of its boundary divides it into individual regions;
conversely, if cuts joining points of the boundary may be introduced without dividing it
into separate parts, the region is said to be multiply connected. Combining Equations
(A.2) and (A.3), and introducing the notation P = ∆U , we find:

2µ
∂u

∂x
= −∂

2U

∂x2
+

λ+ 2µ

2(λ+ µ)
P, (A.4a)

2µ
∂v

∂y
= −∂

2U

∂y2
+

λ+ 2µ

2(λ+ µ)
P, (A.4b)

where it is clear that the function P is harmonic. As known from complex function
theory, for any harmonic function it is possible to determine a function, conjugate to it.
Let Q be the harmonic function, conjugate to P , hence satisfying the Cauchy-Riemann
conditions, ∂P/∂x = ∂Q/∂y and ∂P/∂y = −∂Q/∂x. In particular, the function Q is
equal to Q(x, y) =

∫
γ dQ + C, with C being an arbitrary constant, γ an arbitrary path

that does not leave the region S, and dQ = −(∂P/∂y)dx + (∂P/∂x)dy. Thus, we can
introduce the function f(z) = P (x, y) + iQ(x, y), where z is a complex variable defined
as z = x+ iy. Specifically, since the real functions P and Q have first derivatives related
by the Cauchy Riemann conditions, f(z) is holomorphic in the region S. Moreover, we
can define the function φ(z) = p+iq = (1/4)

∫
dz f(z) = Ω(z)/4 [43]. Hence, noting that

φ′(z) = ∂p/∂x+i∂q/∂y = (1/4)(P+iQ), where the first derivatives of the functions p and
q are related by the Cauchy Riemann conditions, we find that P = 4 ∂p/∂x = 4 ∂q/∂y,
and Q = 4 ∂p/∂y = −4 ∂q/∂x. Finally, entering P into Equation (A.4) and integrating
we obtain:

2µu = −∂U
∂x

+
2(λ+ 2µ)

λ+ µ
p+ c1(y), (A.5a)

2µv = −∂U
∂y

+
2(λ+ 2µ)

λ+ µ
q + c2(x), (A.5b)

where c1(y) and c2(x) are the integration constants, and, specifically, represent rigid-
body displacements. Thus, without any loss of generality, we can neglect these terms,
and retrieve the same expressions found by Love [127]:

2µu = −∂U
∂x

+
2(λ+ 2µ)

λ+ µ
p, (A.6a)

2µv = −∂U
∂y

+
2(λ+ 2µ)

λ+ µ
q. (A.6b)

Then, it is straightforward to show that the function U − px − qy is harmonic, that is
∆(U − px− qy) = 0: hence we get U = px+ qy+ p1, with p1 being a harmonic function
in the region occupied by the body. Introducing the function χ(z), the real part of which
is p1, we can then write the function U as:

U = Re(z̄φ(z) + χ(z)), (A.7)

with z̄ = x − iy representing the complex conjugate value of z. Equation (A.7) can be
also rephrased as:

2U = zφ(z) + zφ(z) + χ(z) + χ(z), (A.8)
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Figure A.1: Schematic of the unit vectors n and τ , respectively normal and tangential
to the general element AA′ (inspired by [43]).

and, consequently, the partial derivatives of U have direct physical meaning, we look for
a function f(x, y), defined as f(x, y) = ∂U/∂x+ i∂U/∂y. To come full circle, we have

2
∂U

∂x
= φ(z) + zφ′(z) + φ(z) + zφ′(z) + χ′(z) + χ′(z), (A.9a)

2
∂U

∂y
= i(−φ(z) + zφ′(z) + φ(z)− zφ′(z) + χ′(z)− χ′(z)), (A.9b)

so that, making use of the identity ψ(z) = χ′(z), f(x, y) is equal to:

f(x, y) =
∂U

∂x
+ i

∂U

∂y
= φ(z) + zφ′(z) + ψ(z). (A.10)

Most importantly, notice that if the functions φ(z) and χ(z) are holomorphic functions
of z, Equation (A.8) is representative of a biharmonic function. Indeed, by adding the
differentiation of (A.9a) with respect to the coordinate x, with that of (A.9b) with re-
spect to the coordinate y, it can be shown that ∆U = P = 2(φ′(z)+φ′(z)) = 4Re(φ′(z)),
whence ∆∆U = 0, since ∆U is a harmonic function, the latter being completely deter-
mined by the real part of the function φ′(z).

Now, we can derive the complex representation of displacements and stresses. For
this purpose, let us add Equation (A.5a) to Equation (A.5b), the latter multiplied by i,
so that the complex displacement ũ = u+ iv can be computed as:

2µ(u+ iv) = κφ(z)− zφ′(z)− ψ(z), (A.11)

where κ is the Kolosov’s constant, which is equal to κ = 3−4ν in plane strain conditions,
and κ = (3−ν)/(1+ν) in generalized plane stress conditions. Recall that the first Lamé’s
constant λ has to be replaced by λ∗ = 2λµ/(λ+ 2µ) for plane stress problems.

Next, let us obtain the expression of the stress components by means of the functions
φ(z) and ψ(z). To this aim, with reference to Figure A.1, let us consider a general
element ds AA′, and a right-handed triplet (n, τ ,k), with n and τ being the unit vectors,
respectively normal and tangential to the element under analysis. In particular, we can
determine the projection of the resultant stress, acting on the normal unit vector n, onto
the Cartesian coordinates:

σnx = σn · i, (A.12a)

σny = σn · j, (A.12b)
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with i and j being the unit vectors of the x− and y−axis respectively. Recalling the
expressions of σx, σy, τx,y from Equation (A.2), and observing that n · i = dy/ds,
n · y = −dx/ds, we obtain:

σnx =
d

ds

(
∂U

∂y

)
, σny = − d

ds

(
∂U

∂x

)
, (A.13)

and, in complex form, together with the definition in Equation (A.10),

σnx + i σny = −i d
ds

(
φ(z) + zφ′(z) + ψ(z)

)
. (A.14)

At first, consider the element ds = dy, that is the element is oriented along the y−axis.
In this case, since dz = i dy, σnx = σx, σny = τyx, from Equation (A.14) we retrieve:

σx + i τyx = φ′(z) + φ′(z)− zφ′′(z)− ψ′(z). (A.15)

Analogously, when the element is oriented along the x−axis, we obtain:

σy − i τyx = φ′(z) + φ′(z) + zφ′′(z) + ψ′(z). (A.16)

Hence, adding and subtracting Equations (A.15) and (A.16), while replacing in the latter
i by −i, the following stress representations are obtained [42,43]:

σx + σy = 2(φ′(z) + φ′(z)) = 4Re(φ′(z)), (A.17a)

σy − σx + 2iτyx = 2(zφ′′(z) + ψ′(z)). (A.17b)

Interestingly, the function f(x, y) has a simple mechanical interpretation. Let F =
Fx + i Fy be the resultant force acting on an element AA′ (see Figure A.1) ; making use
of Equation (A.14), we can relate the net force F to the functions φ(z) and ψ(z):

Fx + i Fy =

∫ A′

A
ds (σnx + i σny) = −i[φ(z) + zφ′(z) + ψ(z)]A

′
A , (A.18)

where [ ]A
′

A denotes the increase undergone by the expression in the brackets as the point
moves from A to A′, with A being fixed at all times, and A′ allowed to move. Indicating
with z = x+ i y the coordinates of the point A′, we get:

f(x, y) = i(Fx + i Fy) + C1 = i

∫ A′

A
ds (σnx + i σny) + C1, (A.19)

with C1 being a real constant. Furthermore, the resultant moment about the origin of
the coordinate system can be determined as:

M =

∫ A′

A
ds (xσny − yσnx). (A.20)

Hence, recalling Equation (A.13) and integrating by parts, it is shown that the resultant
moment M is equal to:

M = −
[
x
∂U

∂x
+ y

∂U

∂y

]A′

A

+ [U ]A
′

A . (A.21)
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Recognizing that the term in the square brackets x∂U/∂x + y∂U/∂y = Re(z(∂U/∂x −
i∂U/∂y)) = Re(f(z)), and making use of Equations (A.7) and (A.10), we finally obtain
the following expression:

M = [Re(χ(z)− zψ(z) + zzφ′(z))]A
′

A . (A.22)

Incidentally, for the time being, since we consider a simply connected region S, the
functions φ(z), ψ(z) and χ(z) are single-valued in this region. Thus, if the curve under
investigation is a contour, i.e. if A coincides with A′, the resultant force and moment
will be null.

Now, the question is how far the functions φ(z) and ψ(z) define the state or stress
or the displacements of the points of the body. Let us start analyzing the case in which
the state of stress is given, namely let σx, σy, τyx the components of the stress for a
given state of elastic equilibrium of the body. Then, let us assume that the functions
φ1(z) and ψ1(z) are related to the stress components, so as the functions φ(z) and ψ(z)
(see Equations (A.17a) and (A.17b)). Specifically, from Equation (A.17a) it is clear that
the real part of the functions φ(z) and φ1(z) is identical, and nothing can be said about
the imaginary part, so that we can write φ1(z) = φ(z) + iAz + γ, with A being a real
constant, and γ = α + iβ an arbitrary complex constant. Moreover, from Equation
(A.17b) we find that ψ1(z) = ψ(z) + γ1, where γ1 = α1 + iβ1 is an arbitrary complex
constant. Therefore, the state of stress is not altered if the following substitutions are
made:

φ(z) → φ(z) + iAz + γ, (A.23a)

ψ(z) → ψ(z) + γ1. (A.23b)

Let us then investigate the arbitrariness of these functions if the components of the
displacement, namely u and v, are given. In particular, they completely determine the
state of stress, hence one may not make substitutions different from those in (A.23). In
fact, making use of Equation (A.11), we have:

2µ(u1 + iv1) = 2µ(u+ iv) + i (κ+ 1)Az + κγ − γ1. (A.24)

Thus, exploiting γ and γ1, we recognize that:

2µ(u1 + iv1) = 2µ(u+ iv) + i (κ+ 1)Az + κ(α+ iβ)− α1 − iβ1, (A.25)

so that, considering the real and imaginary parts respectively, we obtain the expression
for the components u1 and v1, i.e.

u1 = u+ um, v1 = v + vm, (A.26)

where um and vm are rigid-body displacements and are equal to um = (−(κ + 1)Ay +
κα − α1)/2µ and vm = ((κ + 1)Ax + κβ + β1)/2µ. This has to be expected, since the
displacements, corresponding to a given state of stress, are uniquely determined apart
from a rigid-body motion. Hence, the substitutions in (A.23) affect the displacements,
unless A = 0, κγ − γ1 = 0.

In addition, it is important to investigate how these functions, relating to a given
state of stress, change under transformation from one set of orthogonal coordinates to
another. First, let us consider the effect of the translation of the origin to a new point
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(x0, y0). Denote the coordinates of a point in the old system with z = x + i y, while
those of the same point in the new frame as z = x1 + i y1, where z = z0 + z1. Indicating
with φ∗(z) and ψ∗(z) the corresponding functions in the new reference frame, Equation
(A.17a) shows that, since the stress components are not affected by a translation, the
following relationship holds:

φ(z) = φ∗(z1) = φ∗(z − z0). (A.27)

On the other hand, making use of Equation (A.17b), we can write:

zφ′′(z)+ψ′(z) = z1φ
∗′′(z1)+ψ

∗′(z1) = zφ∗′′(z−z0)+ψ∗′(z−z0)−z0φ∗′′(z−z0), (A.28)

whence, by Equation (A.27), we obtain

ψ(z) = ψ∗(z − z0)− z0φ
∗′(z − z0). (A.29)

Therefore, Equations (A.27) and (A.29) highlight that the function φ(z) is invariant
under the translation of the origin; conversely, the same cannot be said for the function
ψ(z).

Now, let us consider how a rotation of the axes of the reference frame, while keeping
the origin fixed, affects the functions under analysis. In particular, we have z = z1e

iα,
with α being the angle between the axes x and x1. As before, Equation (A.17a) shows
that:

Re(φ′(z)) = Re(φ∗′(z1)) = Re(φ∗′(ze−iα)), (A.30)

so that, by reckoning that the functions φ′(z) and φ∗′(z) may differ by an imaginary
constant i A, the integration of Equation (A.30) leads to φ(z) = eiαφ∗(ze−iα) + i Az +
a+ i b, with a and b being arbitrary real constants. As shown beforehand, the constants
A, a, and b do not affect the stress distribution. Thus, they can be omitted, and we
have:

φ(z) = eiαφ∗(ze−iα). (A.31)

Hence, referring to Equation (A.17b), the property of invariance of the quadratic form
Λ(ξ, η) = σxξ

2 + 2τyxξη + σyη
2 [43] heeds us to write the following identity

z1φ
∗′′(z1) + ψ∗′(z1) = (zφ

′′
(z) + ψ′(z))e2iα, (A.32)

and, since φ(z) = eiαφ∗(ze−iα) (see Equation (A.31)), we obtain
ψ(z) = e−iαψ∗(ze−iα) + a1 + i b1, with a1, b1 arbitrary real constants. The latter can be
omitted since they do not affect the stress distribution, so that:

ψ(z) = e−iαψ∗(ze−iα). (A.33)

With the aim of investigating circular contact problems, it is of particular interest
to particularize the relationships just derived for a polar reference frame, where
z = x + i y = reiθ, with r being the radius vector and θ the angular position of the
generic point. The complex representation of the displacement (see Equation (A.11))
can be rephrased as:

2µ(ur + i uθ) = e−iθ(κφ(z)− zφ′(z)− ψ(z)), (A.34)

with ur and uθ being the radial and tangential components of the displacement re-
spectively. At the same time, we can specify the complex representation of the stress
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components in a polar reference frame: with reference to Equations (A.17a) and (A.17b),
together with the previous analysis, it is possible to write

σrr + σθθ = 2(φ′(z) + φ′(z)) = 4Re(φ′(z)), (A.35a)

σθθ − σrr + 2iτrθ = 2(zφ′′(z) + ψ′(z))e2iθ. (A.35b)

A more convenient form of Equations (A.34) and (A.35) has been employed by Stevenson
[42] and Rothman [128, 129]. Specifically, recalling the identities φ(z) = Ω(z)/4 and
χ(z) = ω(z)/4 for the displacement components we have:

8µ(ur + i uθ) = e−iθ(κΩ(z)− zΩ′(z)− ω′(z)), (A.36)

while, for the stress components we find

σrr + σθθ =
1

2
(Ω′(z) + Ω′(z)), (A.37a)

σrr − σθθ + 2iτrθ = −1

2

(
zΩ′′(z) +

z

z
ω′′(z)

)
. (A.37b)

Now, we are ready to determine the Green’s spatial functions for the circular contact
problems analyzed throughout this thesis. Although the main interest of this work relates
to purely radial terms, here the expressions for both radial and tangential displacements,
when the system is subject to radial and tangential load, will be furnished.

A.2 Cylindrical hole in an infinite space under isolated
forces on the boundary

O 𝑦

𝑥
e𝑟

e\

\′
𝑅

\

F𝑟 F\

Figure A.2: Schematic of a cylindrical hole on an infinite space under isolated tangential
and radial forces applied to the boundary.

As reported in Figure A.2, the first step deals with the assessment of the elastic prob-
lem for a cylindrical hole loaded with a normal and a tangential force, being respectively
Fr and Fθ. In this case, moving from what has been proposed by Rothman in Ref. [128],
we can make use of Equation (A.36).
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Ω(z) and ω(z) are the two complex potentials, which are functions of a single complex
variable z = R exp(iθ) and are equal to:
Ω(z) = −2F

π
log(z − a1) +

2Fκ

π(κ+ 1)
log z

ω(z) =
2F̄

π
z log(z − a1) +

2

π
(F ā1 − F̄ a1) log(z − a1)−

2F̄ z log z

π(κ+ 1)
− 2

π
F ā1 log z +

2FκR2

π(κ+ 1)z
(A.38)

with Fr and Fθ are the radial and tangential contributions to the total force F applied
at the point a1 = R exp(iθ′), being zz̄ = R2 = a1ā1. Furthermore, µ is the second Lamé’s
constant, µ = E/2(1 + ν).

Now, for θ′ = 0, developing the aforementioned relations based on the complex
potentials, the radial and tangential displacements due to the radial force component
Fr, respectively defined as urr and urθ, are:

urr(s, Fr) =
Fr

4µπ

[
− κ

κ+ 1
(2 logR+1) cos θ−κ+ 1

2
B(θ) cos θ+(κ−1)A(θ) sin θ

]
(A.39)

urθ(s, Fr) =
Fr

4µπ

[
κ

κ+ 1
(2 logR+1) sin θ+

κ+ 1

2
B(θ) sin θ+ (κ− 1)A(θ) cos θ

]
(A.40)

where θ = s/R is the angle subtended by the arc s. Furthermore, the terms A(θ)
and B(θ) are equal to A(θ) = arg(1/2 − i/2 cot(θ/2)) and B(θ) = log(2− 2 cos θ) =
2 log(2| sin(θ/2)|).

Incidentally, if we define the total displacement as u = urrer + urθeθ, we observe
that we have a mean term being equal to ū = −κFr(2 logR + 1)/4µπ (κ+ 1) and an
additional one that varies with the angle ũ = ((κ− 1)A(θ)− (κ+ 1)B(θ)/2)Fr/4µπ.
Please notice that, for a Poisson’s ratio ν = 0.5, the additional term ũ is identical to the
elastic Green’s function obtained by Carbone and Mangialardi in Ref. [73, 74].

Furthermore, for a tangential force Fθ, the radial and tangential displacements, de-
fined as uθr and uθθ are:

uθr(s, Fθ) =
Fθ

4µπ

[
− κ

κ+ 1
(2 logR+1) sin θ− κ+ 1

2
B(θ) sin θ−(κ−1)A(θ) cos θ

]
(A.41)

uθθ(s, Fθ) =
Fθ

4µπ

[
− κ

κ+ 1
(2 logR+1) cos θ−κ+ 1

2
B(θ) cos θ+(κ−1)A(θ) sin θ

]
(A.42)

Now, we can employ the aforementioned solutions to define the following tensor L,
necessary to the numerical solution of the contact problem:

L(s) =

∫ 2πR

0
ds′G(s− s′)χ(s′), (A.43)

where the distributed load χ is χ = χrer + χθeθ , with χr and χθ being unitary in
an arc of length 2αR and vanishing outside, and G is the Green’s tensor associated to
a concentrated unit force and equal to:

G(s) = 2µ(1 + ν)

[
urr(s, 1) urθ(s, 1)
uθr(s, 1) uθθ(s, 1)

]
(A.44)

with urr, urθ, uθr, uθθ previously given in this Section. Notice that we have multiplied
by a factor 2µ(1+ν), i.e., the Young’s modulus, to correctly introduce the spatial Green’s
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tensor in Equation (2.27). Equation (A.43) can be solved analytically by extracting the
Cauchy principal value as:

Lrr(s) =
1 + ν

2π

[
− κ

κ+ 1
(2 logR+ 1)C1(θ) + (κ− 1)A1(θ)−

κ+ 1

2
B1(θ)

]
(A.45)

Lrθ(s) =
1 + ν

2π

[
κ

κ+ 1
(2 logR+ 1)S1(θ) + (κ− 1)A2(θ) +

κ+ 1

2
B2(θ)

]
(A.46)

Lθr(s) =− 1 + ν

2π

[
κ

κ+ 1
(2 logR+ 1)S1(θ) + (κ− 1)A2(θ) +

κ+ 1

2
B2(θ)

]
(A.47)

Lθθ(s) =
1 + ν

2π

[
− κ

κ+ 1
(2 logR+ 1)C1(θ) + (κ− 1)A1(θ)−

κ+ 1

2
B1(θ)

]
(A.48)

where,

A1(θ) = cos(θ − α)

[
θ − α

2
+
π

2

(
1− 2H(θ − α)

)]
− 1

2
(sin(θ − α)− sin(θ + α))+

− cos(θ + α)

[
θ + α

2
+
π

2

(
1− 2H(θ + α)

)]
− π(H(θ + α)−H(θ − α))

(A.49)

A2(θ) = sin(θ + α)

[
θ + α

2
+
π

2

(
1− 2H(θ + α)

)]
− 1

2
(cos(θ − α)− cos(θ + α))+

− sin(θ − α)

[
θ − α

2
+
π

2

(
1− 2H(θ − α)

)]
(A.50)

B1(θ) = −2α−sin(θ + α)(1−log(2− 2 cos(θ + α)))+sin(θ − α)(1−log(2− 2 cos(θ − α)))
(A.51)

B2(θ) = cos(θ + α)(1− log(2− 2 cos(θ + α))) + log(1− cos(θ + α))+

− cos(θ − α)(1− log(2− 2 cos(θ − α)))− log(1− cos(θ − α))
(A.52)

C1(θ) = sin(θ + α)− sin(θ − α) (A.53)

S1(θ) = cos(θ − α)− cos(θ + α). (A.54)
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A.3 Isolated forces on the boundary of a cylinder with
central fixing
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Figure A.3: Schematic of an infinite cylinder, fixed at the center, and subject to isolated
tangential and radial forces applied to the boundary.

Hence, we focus on the elastic problem for an infinite cylinder loaded with normal
and tangential forces, respectively Fr and Fθ. In this scenario, sketched in Figure A.3, we
can employ the complex representation for the displacement of Equation (A.36), where
the complex potentials Ω(z) and ω(z) in the complex variable z = R exp(iθ) are given
by [129]:

Ω(z) = − 2

π
F log zr −

2F0 log z

π(κ+ 1)
− 1

2πa21
(F̄ a1 + F ā1)z +

2F̄0z
2

πa21(κ+ 1)

ω(z) =
2z

π
F̄ log zr +

2

π
(F ā1 − F̄ a1) log zr +

2κF̄0z log z

π(κ+ 1)
+

2iG0

π
log z

(A.55)

where Fr and Fθ are the radial and tangential contributions to the total force F
applied at the point a1 = R exp(iθ′), being zz̄ = R2 = a1ā1.

Following the same reasoning of the previous Section, for θ′ = 0, developing the
aforementioned relations based on the complex potentials, the radial and tangential
displacements due to the radial force component Fr, respectively defined as urr and urθ,
are:

urr(s, Fr) =
Fr

4µπ

[
1− (κ2 + 1) logR

κ+ 1
cos θ−cos θ−κ+ 1

2
+(κ−1)A′(θ) sin θ−κ+ 1

2
B(θ) cos θ

]
(A.56)

urθ(s, Fr) =
Fr

4µπ

[
− 1− (κ2 + 1) logR

κ+ 1
sin θ+(κ−1)A′(θ) cos θ+

κ+ 1

2
B(θ) sin θ− sin θ

]
(A.57)

where θ = s/R is the angle subtended by the arc s. Furthermore A′(θ) = arg(−1/2−
i/2 cot(θ/2)) and B(θ) = log(2− 2 cos θ) = 2 log(2| sin(θ/2)|).

Incidentally, if we express the total displacement u as u = urrer + urθeθ, we reckon
a mean term being equal to ū = (1− (κ2 + 1) logR)/4µπ (κ+ 1), and an additional one
varying with the angle
ũ = ((κ− 1)A′(θ) sin θ − ((κ+ 1)/2)B(θ) cos θ − cos θ − ((κ+ 1)/2))Fr/4µπ.
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Furthermore, for a tangential force Fθ, the radial and tangential displacements, de-
fined as uθr and uθθ are:

uθr(s, Fθ) =
Fθ

4µπ

[
1− (κ2 + 1) logR

κ+ 1
sin θ − (κ− 1)A′(θ) cos θ − κ+ 1

2
B(θ) sin θ − sin θ

]
(A.58)

uθθ(s, Fθ) =
Fθ

4µπ

[
1− (κ2 + 1) logR

κ+ 1
cos θ + (κ− 1)A′(θ) sin θ − κ+ 1

2
B(θ) cos θ + cos θ

]
(A.59)

Then, the Cauchy principal values are given by:

Lrr(s) =
1 + ν

2π

[
1− (κ2 + 1) logR

κ+ 1
C1(θ)+(κ−1)A3(θ)−

κ+ 1

2
B1(θ)−C1(θ)− (κ+1)α

]
(A.60)

Lrθ(s) =
1 + ν

2π

[
− 1− (κ2 + 1) logR

κ+ 1
S1(θ)+(κ−1)A4(θ)+

κ+ 1

2
B2(θ)−S1(θ)

]
(A.61)

Lθr(s) =
1 + ν

2π

[
1− (κ2 + 1) logR

κ+ 1
S1(θ)− (κ− 1)A4(θ)−

κ+ 1

2
B2(θ)− S1(θ)

]
(A.62)

Lθθ(s) =
1 + ν

2π

[
1− (κ2 + 1) logR

κ+ 1
C1(θ) + (κ− 1)A3(θ)−

κ+ 1

2
B1(θ) + C1(θ)

]
(A.63)

where,

A3(θ) = cos(θ + α)

[
θ + α

2
− π

2

(
1− 2H(θ + α)

)]
− 1

2
(sin(θ + α)− sin(θ − α))+

− cos(θ − α)

[
θ − α

2
− π

2

(
1− 2H(θ − α)

)]
− π(H(θ + α)−H(θ − α))

(A.64)

A4(θ) = sin(θ − α)

[
θ − α

2
− π

2

(
1− 2H(θ − α)

)]
+

1

2
(cos(θ − α)− cos(θ + α))+

− sin(θ + α)

[
θ + α

2
− π

2

(
1− 2H(θ + α)

)]
(A.65)

while the other functions have been introduced in the previous Section.

Figure A.4 represents, in the polar reference system, the function Lrr(S), defined
in Equation (2.16), for a linearly viscoelastic material with a single relaxation time at
increasing values of the dimensionless speed ω̃ = ωτ . The deformed contour, properly
magnified to better appreciate the asymmetric nature of the displacement field when
viscoelasticity arises, is superposed to the undeformed contour (dashed lines). Indeed,
at very low-speed and very high-speed values, where the material enters respectively
the rubbery and the glassy elastic regions, we observe a symmetrical deformation field;
conversely, a non-symmetric trend in the pressure and displacement distributions is
evident for intermediate velocities as proper viscoelasticity effects occur. Indeed, since
the material is still relaxing upon the load passage, larger deformations are observed at
the trailing edge.
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Figure A.4: Deformed surfaces as a result of the application of a radial unit force for
different values of the dimensionless speed ω̃ = ωτ . The numerical results are carried out
for a viscoelastic material, characterized by a single relaxation time τ = 0.01 s, glassy
and soft moduli respectively equal to E∞ = 107 Pa and E0 = 106 Pa, and Poisson’s
ratio ν = 0.5.

A.4 Cylinder under diametrically opposite forces on the
boundary

O 𝑦

𝑥
e𝑟

e\

\′
𝑅

\

F𝑟

F𝑟

Figure A.5: Schematic of a cylinder under diametrically opposite forces on the boundary.

Now, let us consider two isolated, diametrically opposite, equal forces, |F1| = |F2| =
|Fr|, are applied at the boundary of a cylinder. This case study has been extensively
tackled in literature [43,52,130–133] and might be of particular interest in analyzing the
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contact problem in a rolling element bearing, where the rolling elements are deformable,
and the raceways are rigid. Specifically, we extend the reasoning done in the previous
Section, with F0 and G0 being null:

Ω(z) = − 2

π

2∑
k=1

Fk log zk −
z

2πa2

2∑
k=1

F̄kak + Fkāk

ω(z) =
2z

π

2∑
k=1

F̄k log zk +
2

π

2∑
k=1

(Fkāk − F̄kak) log zk

(A.66)

where z = R exp(iθ), zk = z − ak and zz̄ = R2 = akāk, k = 1, 2, with ak = R exp(iθ′k),
being θ1 = θ′ and θ2 = π+ θ′. For the sake of simplicity let us assume θ′ = 0. Recalling
the equilibrium condition

∑
k Fk = 0 and making use of Equation (A.36), we get the

following radial and tangential displacements:

urr(s, Fr) =
Fr

4µπ

[
κ+ 1 + (κ− 1)A′′(θ) sin θ +

κ+ 1

2
(B(θ)− B′(θ)) cos θ

]
(A.67)

urθ(s, Fr) =
Fr

4µπ

[
− (κ− 1)A′′(θ) cos θ − κ+ 1

2
(B(θ)− B′(θ)) sin θ

]
(A.68)

where A′′(θ) = θ/2 − A(θ), B′(θ) = log(2 + 2 cos(θ)). Moreover, as presented in
Section A.2, the terms A(θ) and B(θ) are equal to A(θ) = arg(1/2 − i/2 cot(θ/2)) and
B(θ) = log(2− 2 cos θ) = 2 log(2| sin(θ/2)|).

Incidentally, we can define the spatial functions Lrr(s) and Lrθ(s) as:

Lrr(s) =
1 + ν

2π

[
(κ+ 1)2α+ (κ− 1)A5(θ) +

κ+ 1

2
B3(θ)

]
(A.69)

Lrθ(s) =
1 + ν

2π

[
(κ− 1)A6(θ)−

κ+ 1

2
B4(θ)

]
(A.70)

where:

B3(θ) =− 4α+ sin(θ + α)[log(2− 2 cos(θ + α))− log(2 + 2 cos(θ + α))]+

+ sin(θ − α)[log(2 + 2 cos(θ − α))− log(2− 2 cos(θ − α))]
(A.71)

A5(θ) =π

[
1

2
cos(θ − α)(1− 2H(θ − α)) +H(θ − α)−H(θ + α)+

− 1

2
cos(θ + α)(1− 2H(θ + α))

] (A.72)

B4(θ) = cos(θ − α)[log(2− 2 cos(θ − α))− log(2 + 2 cos(θ − α))]+

+ cos(θ + α)[log(2 + 2 cos(θ + α))− log(2− 2 cos(θ + α))]+

+ log(1− cos(θ + α)) + log(1 + cos(θ + α))+

− log(1− cos(θ − α))− log(1 + cos(θ − α))

(A.73)

A6(θ) =
π

2
[sin(θ + α)(1− 2H(θ + α))− sin(θ − α)(1− 2H(θ − α))] (A.74)
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Figure A.6: Deformed surfaces as a result of the application of a radial unit force for
different values of the dimensionless speed ω̃ = ωτ . The numerical results are carried out
for a viscoelastic material, characterized by a single relaxation time τ = 0.01 s, glassy
and soft moduli respectively equal to E∞ = 107 Pa and E0 = 106 Pa, and Poisson’s
ratio ν = 0.5.

Ultimately, Figure A.6 represents, in the polar reference system, Lrr(Θ) for a single
relaxation time material at increasing values of the dimensionless speed ω̃ = ωτ . The
deformation is magnified to better appreciate the viscoelastic effects. Indeed, at inter-
mediate speeds we retrieve strong asymmetric pressure and displacement distributions,
due to the different relaxation processes occurring at the leading and trailing edge of the
contact. On the contrary, at very low speeds and very high speeds, the material behaves
like a solid elastic body, and symmetric pressure and displacement fields are obtained.
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https://doi.org/10.1103/PhysRevE.93.043003
https://doi.org/https://doi.org/10.1098/rspa.2014.0392
https://doi.org/https://doi.org/10.1016/j.jmps.2018.02.005
https://doi.org/https://doi.org/10.1016/j.jmps.2018.02.005
https://doi.org/10.1016/j.jmps.2019.03.024
https://doi.org/10.1016/j.jmps.2020.104273
https://doi.org/10.1016/j.jmps.2020.104273
https://doi.org/https://doi.org/10.1016/j.triboint.2013.12.011
https://doi.org/https://doi.org/10.1016/j.jmps.2019.103748
https://doi.org/https://doi.org/10.1016/j.jmps.2019.103748
https://doi.org/10.3390/app112311170
https://doi.org/10.1177/0954411918810044
https://doi.org/10.1177/1350650111406776
https://doi.org/10.1177/1350650113476606


98 References

[35] M. Ciavarella, P. Decuzzi, The state of stress induced by the plane frictionless
cylindrical contact. i. the case of elastic similarity, International Journal of Solids
and Structures 38 (2001) 4507–4523. doi:10.1016/S0020-7683(00)00289-4.

[36] M. Ciavarella, P. Decuzzi, The state of stress induced by the plane frictionless
cylindrical contact. ii. the general case (elastic dissimilarity), International Journal
of Solids and Structures 38 (26) (2001) 4525–4533. doi:https://doi.org/10.

1016/S0020-7683(00)00290-0.

[37] M. Ciavarella, A. Baldini, J. Barber, A. Strozzi, Reduced dependence on loading
parameters in almost conforming contacts, International Journal of Mechanical
Sciences 48 (9) (2006) 917–925. doi:https://doi.org/10.1016/j.ijmecsci.

2006.03.016.

[38] J. Blanco-Lorenzo, J. Santamaria, E. G. Vadillo, N. Correa, A contact mechanics
study of 3d frictional conformal contact, Tribology International 119 (2018) 143–
156. doi:https://doi.org/10.1016/j.triboint.2017.10.022.

[39] S. Liu, W. Wayne Chen, Two-dimensional numerical analyses of double conforming
contacts with effect of curvature, International Journal of Solids and Structures
49 (11) (2012) 1365–1374. doi:https://doi.org/10.1016/j.ijsolstr.2012.

02.019.

[40] S. Liu, Numerical simulation of double conformal contacts involving both in-
terference and clearance, Tribology Transactions 56 (5) (2013) 867–878. doi:

10.1080/10402004.2013.806686.

[41] S. Ilincic, G. Vorlaufer, P. A. Fotiu, A. Vernes, F. Franek, Combined finite element-
boundary element method modelling of elastic multi-asperity contacts, Proceed-
ings of the Institution of Mechanical Engineers, Part J: Journal of Engineering
Tribology 223 (5) (2009) 767–776. doi:10.1243/13506501JET542.

[42] A. C. Stevenson, Complex potentials in two-dimensional elasticity, Proceedings
of the Royal Society of London. Series A. Mathematical and Physical Sciences
184 (997) (1945) 129–179. doi:https://doi.org/10.1098/rspa.1945.0015.

[43] N. I. Muskhelishvili, et al., Some basic problems of the mathematical theory of
elasticity, Vol. 15, Noordhoff Groningen, 1953.

[44] S. Yousef, 16 - polymer nanocomposite components: A case study on
gears, in: J. Njuguna (Ed.), Lightweight Composite Structures in Transport,
Woodhead Publishing, 2016, pp. 385–420. doi:https://doi.org/10.1016/

B978-1-78242-325-6.00016-5.

[45] H. Koike, K. Kida, E. Santos, J. Rozwadowska, Y. Kashima, K. Kanemasu,
Self-lubrication of peek polymer bearings in rolling contact fatigue under radial
loads, Tribology International 49 (2012) 30–38. doi:https://doi.org/10.1016/
j.triboint.2011.12.005.

[46] F. Farroni, M. Russo, R. Russo, F. Timpone, A physical-analytical model for a
real-time local grip estimation of tyre rubber in sliding contact with road asperities,
Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Auto-
mobile Engineering 228 (8) (2014) 955–969. doi:10.1177/0954407014521402.

https://doi.org/10.1016/S0020-7683(00)00289-4
https://doi.org/https://doi.org/10.1016/S0020-7683(00)00290-0
https://doi.org/https://doi.org/10.1016/S0020-7683(00)00290-0
https://doi.org/https://doi.org/10.1016/j.ijmecsci.2006.03.016
https://doi.org/https://doi.org/10.1016/j.ijmecsci.2006.03.016
https://doi.org/https://doi.org/10.1016/j.triboint.2017.10.022
https://doi.org/https://doi.org/10.1016/j.ijsolstr.2012.02.019
https://doi.org/https://doi.org/10.1016/j.ijsolstr.2012.02.019
https://doi.org/10.1080/10402004.2013.806686
https://doi.org/10.1080/10402004.2013.806686
https://doi.org/10.1243/13506501JET542
https://doi.org/https://doi.org/10.1098/rspa.1945.0015
https://doi.org/https://doi.org/10.1016/B978-1-78242-325-6.00016-5
https://doi.org/https://doi.org/10.1016/B978-1-78242-325-6.00016-5
https://doi.org/https://doi.org/10.1016/j.triboint.2011.12.005
https://doi.org/https://doi.org/10.1016/j.triboint.2011.12.005
https://doi.org/10.1177/0954407014521402


References 99

[47] K. Friedrich, Polymer composites for tribological applications, Advanced Industrial
and Engineering Polymer Research 1 (1) (2018) 3–39. doi:https://doi.org/10.
1016/j.aiepr.2018.05.001.

[48] R. Fusaro, Self-lubricating polymer composites and polymer transfer film lu-
brication for space applications, Tribology International 23 (2) (1990) 105–122,
special Issue: Space Tribology. doi:https://doi.org/10.1016/0301-679X(90)

90043-O.

[49] D. E. Brewe, H. W. Scibbe, W. J. Anderson, Film-transfer studies of seven ball-
bearing retainer materials in 60 R (33 K) hydrogen gas at 0.8 million DN value,
Vol. 3730, National Aeronautics and Space Administration [for sale by the Clear-
inghouse . . . , 1966.

[50] R. M. Christensen, P. M. Naghdi, Linear non-isothermal viscoelastic solids, Acta
Mechanica 3 (1) (1967) 1–12.

[51] R. Christensen, Theory of viscoelasticity: an introduction, Elsevier, 2012.

[52] S. Timoshenko, J. Goodier, Theory of Elasticity, 2nd Edition, McGraw-Hill Book
Company, 1951.

[53] L. D. Landau, E. M. Lifshitz, A. M. Kosevich, L. P. Pitaevskii, Theory of elasticity:
volume 7, Vol. 7, Elsevier, 1986.

[54] F. Riesz, B. Nagy, Functional Analysis, Dover Books on Mathematics, Dover Pub-
lications, 2012.

[55] R. Lakes, Viscoelastic Materials, Cambridge University Press, 2009. doi:10.1017/
CBO9780511626722.

[56] V. Volterra, E. T. Whittaker, Theory of functionals and of integral and integro-
differential equations, Dover publications, 1959.

[57] B. D. Coleman, V. J. Mizel, A general theory of dissipation in materials with
memory, Archive for Rational Mechanics and Analysis 27 (1967) 255–274.

[58] B. D. Coleman, Thermodynamics of materials with memory, Tech. rep., MELLON
INST PITTSBURGH PA (1964).

[59] M. E. Gurtin, I. Herrera, On dissipation inequalities and linear viscoelasticity,
Quarterly of applied mathematics 23 (3) (1965) 235–245.

[60] J. Heijboer, Secondary loss peaks in glassy amorphous polymers, International
Journal of Polymeric Materials and Polymeric Biomaterials 6 (1-2) (1977) 11–37.
doi:10.1080/00914037708075218.

[61] A. J. Kovacs, La contraction isotherme du volume des polymères amorphes, Jour-
nal of polymer science 30 (121) (1958) 131–147.

[62] L. H. Sperling, Sound and vibration damping with polymers: Basic viscoelastic
definitions and concepts, ACS Publications, 1990.

https://doi.org/https://doi.org/10.1016/j.aiepr.2018.05.001
https://doi.org/https://doi.org/10.1016/j.aiepr.2018.05.001
https://doi.org/https://doi.org/10.1016/0301-679X(90)90043-O
https://doi.org/https://doi.org/10.1016/0301-679X(90)90043-O
https://doi.org/10.1017/CBO9780511626722
https://doi.org/10.1017/CBO9780511626722
https://doi.org/10.1080/00914037708075218


100 References

[63] H. Leaderman, Elastic and creep properties of filamentous materials, Ph.D. thesis,
MassaChusetts Institute of Technology (1941).

[64] J. D. Ferry, Mechanical properties of substances of high molecular weight. vi.
dispersion in concentrated polymer solutions and its dependence on temperature
and concentration, Journal of the American Chemical Society 72 (8) (1950) 3746–
3752.

[65] F. Schwarzl, A. Staverman, Time-temperature dependence of linear viscoelastic
behavior, Journal of Applied Physics 23 (8) (1952) 838–843.

[66] J. Barber, Elasticity, Online access with purchase: Springer, Springer Netherlands,
2002.

[67] B. J. Hamrock, B. Jacobson, S. R. Schmid, Fundamentals of Fluid Film Lubrica-
tion, Taylor & Francis Inc, 2004.

[68] E. Lee, Stress analysis in visco-elastic bodies, Quarterly of applied mathematics
13 (2) (1955) 183–190.

[69] C. Putignano, Oscillating viscoelastic periodic contacts: A numerical approach,
International Journal of Mechanical Sciences 208 (2021) 106663. doi:https://

doi.org/10.1016/j.ijmecsci.2021.106663.

[70] W. W. Chen, Q. J. Wang, Z. Huan, X. Luo, Semi-analytical viscoelastic contact
modeling of polymer-based materials, Journal of Tribology 133 (4) (oct 2011).
doi:10.1115/1.4004928.

[71] R. Bentall, K. Johnson, An elastic strip in plane rolling contact, International
Journal of Mechanical Sciences 10 (8) (1968) 637–663.

[72] N. Menga, G. Carbone, D. Dini, Exploring the effect of geometric coupling on
friction and energy dissipation in rough contacts of elastic and viscoelastic coatings,
Journal of the Mechanics and Physics of Solids 148 (2021) 104273.

[73] G. Carbone, L. Mangialardi, Adhesion and friction of an elastic half-space in con-
tact with a slightly wavy rigid surface, Journal of the Mechanics and Physics of
Solids 52 (6) (2004) 1267–1287. doi:https://doi.org/10.1016/j.jmps.2003.

12.001.

[74] G. Carbone, L. Mangialardi, Analysis of the adhesive contact of confined layers by
using a green's function approach, Journal of the Mechanics and Physics of Solids
56 (2) (2008) 684–706. doi:https://doi.org/10.1016/j.jmps.2007.05.009.

[75] G. Carbone, M. Scaraggi, U. Tartaglino, Adhesive contact of rough surfaces: Com-
parison between numerical calculations and analytical theories, The European
Physical Journal E 30 (1) (sep 2009). doi:https://doi.org/10.1140/epje/

i2009-10508-5.

[76] C. Putignano, L. Afferrante, G. Carbone, G. Demelio, A new efficient numerical
method for contact mechanics of rough surfaces, International Journal of Solids and
Structures 49 (2) (2012) 338–343. doi:https://doi.org/10.1016/j.ijsolstr.
2011.10.009.

https://doi.org/https://doi.org/10.1016/j.ijmecsci.2021.106663
https://doi.org/https://doi.org/10.1016/j.ijmecsci.2021.106663
https://doi.org/10.1115/1.4004928
https://doi.org/https://doi.org/10.1016/j.jmps.2003.12.001
https://doi.org/https://doi.org/10.1016/j.jmps.2003.12.001
https://doi.org/https://doi.org/10.1016/j.jmps.2007.05.009
https://doi.org/https://doi.org/10.1140/epje/i2009-10508-5
https://doi.org/https://doi.org/10.1140/epje/i2009-10508-5
https://doi.org/https://doi.org/10.1016/j.ijsolstr.2011.10.009
https://doi.org/https://doi.org/10.1016/j.ijsolstr.2011.10.009


References 101

[77] R. Stribeck, et al., Ball bearings for various loads, Trans. ASME 29 (4) (1907)
420–463.

[78] T. A. Harris, Rolling bearing analysis (2007).

[79] H. Sjovall, The load distribution within ball and roller bearings under given exter-
nal radial and axial load, Tekniks Tidskrift Mek. (9) (1933).
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[85] S. Eder, D. Bianchi, I. Neacşu, G. Vorlaufer, An experimental and signal analysis
workflow for detecting cold-induced noise emissions (cold squealing) from porous
journal bearings, Mechanical Systems and Signal Processing 115 (2019) 60–69.
doi:https://doi.org/10.1016/j.ymssp.2018.05.047.
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