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Facilitating domain wall injection in magnetic nanowires by electrical means
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We investigate how to facilitate the injection of domain walls in chiral ferromagnetic nanowires by electrical
means. We calculate the critical current density above which domain walls are injected into the nanowire
depending on the material parameters and the source of interaction including spin-transfer torques as well
as spin-orbit torques. We demonstrate that the Dzyaloshinskii-Moriya interaction can significantly reduce the
required critical current to inject the types of domain walls favored by the Dzyaloshinskii-Moriya interaction.
We find that in chiral magnets it is only possible to shed a single domain wall by means of spin-orbit torques, as
they modify the ground state orientation of the system. In contrast, for spin-transfer torque-induced shedding of
domain walls, we show that there exist two different critical current densities for the two different domain wall
chiralities, respectively. Additionally, for the consecutive creation of domain walls by means of spin-transfer
torques, we find that the interaction between the domain walls cannot be neglected and even may lead to the
pairwise annihilation of consecutive domain walls with opposite chiralities.
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I. INTRODUCTION

(Meta)stable magnetic configurations in ferromagnetic ma-
terials have attracted a lot of attention due to their promising
applications for spintronic devices [1–5]. In particular, due
to their particlelike behavior and stability [6–9], magnetic
domain walls are considered as key elements for (potential)
spintronics based devices such as magnetic sensors [10], the
race track memory [11,12], magnetic logic [13], domain-wall-
based magnonic nanocircuitry [14], or the implementations
of artificial neurons [15] and synapses [16]. Therefore, con-
trollable low power electrical means are needed to create
magnetic domain walls [12,17–20].

In ferromagnetic materials domain walls can be injected
electrically at inhomogeneities which for example occur natu-
rally at the edges of a magnetic nanowire [19]. The generic
principle behind this creation mechanism is that a spin-
polarized current exerts spin torques on the magnetic system,
thereby, in particular, inducing a twisted state in the inho-
mogeneity region, see Fig. 1(b). Above a certain threshold
current density jc, the current induced spin torques will be
so strong that the twisted generated spin structure will tear
off and travel dynamically along the wire [12,17–20]. Note
that this fundamental principle is independent of detailed
microscopic mechanisms such as the origin of the inhomo-
geneity, the source of the spin torques, etc. For example,
the periodic domain wall injection by means of spin-transfer
torques (STTs) [21–23] has been predicted in a simple model
considering exchange and anisotropy interaction only. In this
model the critical current density as well as the magnetiza-
tion profiles have been calculated, and the production period
was shown to behave as T ∼ ( j − jc)−1/2 with a universal
exponent being independent of micromagnetic details [19].

Furthermore, recently the injection of domain walls via spin-
orbit torques (SOTs) [24,25] was experimentally observed
in nanomagnets subject to chiral interactions [20]. A similar
design has also been considered to inject domain walls in
ferromagnetic insulators using magnons [26].

Magnets in which inversion symmetry is broken, typi-
cally allow for chiral interactions such as the Dzyaloshinskii-
Moriya interaction [27,28]. Besides stabilizing a rich set of
chiral spin structures [4,25,29–32], chiral interactions allow
for the required synchronous motion of multiple domain walls
by magnetic fields [25,33–35].

In this work we provide a detailed theory for the injection
threshold current of domain walls in chiral magnets including
the effects of STTs and SOTs. We show that twisting terms,
such as chiral interactions, simplify the injection of domain
walls in the sense that a they reduce the critical current density
needed for domain wall creation. We find that for SOTs, it
is only possible to inject a single domain wall. For injecting
another domain wall, switching the main magnetization direc-
tion along the wire back to its original state is required first.
For the STT-induced creation, we find a domain-wall-chirality
dependent critical current density. This causes a difference in
the period for the creation of two consecutive domain walls
with opposite chirality. We further study the dynamics of the
shedded domain walls and derive a simple model in terms of
their collective coordinates for their mutual interaction.

This paper is organized as follows: In Sec. II we present
the model for a semi-infinite chiral ferromagnetic nanowire
subject to current-induced spin torques. In Sec. III A we derive
the threshold currents above which domain walls are injected
into the nanowire, taking into account the DMI, STTs, and
SOTs. In Sec. IV we study the domain wall dynamics of
shedded domain walls. We derive the asymptotic interaction
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FIG. 1. Ground states of the magnetic semi-infinite nanowire
with fixed magnetization direction at the boundary for different DMI
strengths. In (a) there is no DMI, in (b) and (c) the DMI strength
is below and above the critical value D2

c = 2Jλ, respectively. The
chiral interaction induces an additional twist of the magnetization
along the wire. Above the critical value, a helical state forms the
ground state [30,31,36]. The colors represents the y component of
the magnetization.

of domain walls at long distances, which lead to an oscillatory
yo-yo effect like distance dependence between the moving
domain walls. Finally, we summarize our results in Sec. V

II. MICROMAGNETIC MODEL

For the injection of domain walls in nanowires we consider
a semi-infinite ferromagnetic nanowire with an easy axis
along the wire, see Fig. 1. The magnetization at one end of
the wire is pinned perpendicular to the easy axis, which we
will denote as ẑ axis in the following. The pinning may be due
to a local inhomogeneity or an external local interaction, such
as a strong magnetic field. The energy for this system is given
by [37]

E [m] =
∫ ∞

0
dx

[
J

2
(∂m)2 + λ

(
1 − m2

x

) + Dm · (x̂ × ∂m)

]
,

(1)

where m = M/Ms is the unitary magnetization and Ms is
the saturation magnetization, J , λ, and D are the exchange,
anisotropy, and Bloch DMI strengths, respectively, and ∂ ≡
∂/∂x. The energy associated with the presence of a single chi-
ral domain wall with domain wall width � = J/

√
2Jλ − D2

is given by EchiralDW = 2J/� [37]. For a DMI strength larger
than a critical value, D > Dc ≡ √

2Jλ, the ground state
changes from a ferromagnetic to a helical state [30,31,36], as
the DW energy becomes smaller than the energy of the ferro-
magnet which is zero in this model, see Fig. 1. As the focus of
this work is to study domain wall creation in a ferromagnetic
background, we consider D < Dc in the following.

The dynamics of the magnetization in the presence of
a spin-polarized current is given by the Landau-Lifshitz-
Gilbert-Slonczewski (LLGS) equation [21]

ṁ = −γ m × Heff + αm × ṁ − τSTT − τSOT, (2)

where γ is the gyromagnetic ratio, α is the Gilbert damping
parameter, and

Heff = − 1

Ms

(
δE [m]

δm

)

= 1

Ms
(J∂2m − 2Dx̂ × ∂m + 2λ mxx̂) (3)

is the effective magnetic field. The STT and SOT terms are
given by [38–42]

τSTT = v ∂m − βv m × ∂m, (4a)

τSOT = τDL[ξm × σ + m × (m × σ)]. (4b)

Both torque terms constitute a fieldlike term, which conserves
energy, and a nonconservative dampinglike term. By conven-
tion, one denotes by β the ratio between the dampinglike
and fieldlike terms for STTs and similarly by 1/ξ for SOTs
[40–42]. These torques are induced by spin currents which
have different origins.

For STTs [21–23,40,43] an electric current passes through
a ferromagnetic material and thus becomes spin polarized.
The resulting spin velocity v is proportional to the electric
current density jSTT and given by [40]

v = PμB

eMs(1 + β2)
jSTT, (5)

where P is the current polarization, μB is the Bohr magneton,
and e is the electron charge. We consider v to be positive, to
allow for shedding of domain walls along the wire.

SOTs are induced by the spin Hall [44,45] or the Rashba-
Edelstein [46,47] effect. These effects occur naturally at inter-
faces between ferromagnets and heavy metals or topological
insulators [48,49]. Here the spin-polarized current is gener-
ated perpendicular to the electrical current and the normal
direction n̂ of the interface between the materials σ = n̂ ×
jSOT. The proportionality constant τDL depends on the details
of the materials as [42]

τDL = γ h̄ θHall

2Mse l
, (6)

where h̄ is the reduced Planck constant, θHall is the spin Hall
ratio, and l is the thickness of the ferromagnetic layer.

III. CREATION OF DOMAIN WALLS BY SPIN CURRENTS
IN CHIRAL MAGNETIC WIRES

In this section we present our analytical and numerical
results for the domain wall creation by spin currents in chiral
magnetic nanowires subject to STTs or SOTs, and provide
the derivation of the threshold current densities above which
domain wall injection takes place.

For the numerical parts, we considered a wire with 1024
lattice sites separated at 3 nm each. To lock the direction
of the magnetization at the boundary, we applied a strong
magnetic field, Bext = 107 A/m, to the first 100 lattice sites,
along the z direction, i.e., perpendicular to the direction of the
wire. The micromagnetic simulations were performed using
an internal version of MicroMagnum [50], with magnetiza-
tion saturation Ms = 6.0 × 105 A/m, exchange constant J =
2.6 × 10−11 J/m, and uniaxial anisotropy strength λ = 1.0 ×
104 J/m3, if not explicitly stated otherwise. For the STTs we
used a spin current polarization of P = 0.56 and for the SOTs
we used θHall = 1. To numerically obtain the threshold current
densities, we employed the method of nesting intervals, i.e.,
we screened the current strengths for the injection of domain
walls with fixed material parameters, thereby confining the
interval in which the critical current density is located. The
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FIG. 2. Depiction of periodic domain wall creation by STTs in
a semi-infinite chiral nanowire. The color code represents the x
component of the magnetization. The shedding periods are different
for tail-to-tail (T1) or head-to-head (T2) domain walls, due to the
DMI. The distances between two consecutive domain walls are
initially proportional to the period of creation, however, change in
time due to the different velocities of consecutive chiral domain
walls, see Sec. IV. The graph on the bottom shows the time evolution
of the mx component of the magnetization over time for a single point
of the nanowire away from the origin.

intervals in our numerical simulations corresponded to �
0.1% of the expected analytically calculated value.

A. Spin-transfer torques

STTs allow for the periodic creation of domain walls,
which in the presence of DMI, leads to two different shedding
periodicities, see Fig. 2. Within this part we derive the STTs
induced critical current density jSTT

c by similar means as
developed in Ref. [19]. Projecting Eq. (2), (i) into the direction
along the wire x̂, and (ii) onto m × ∂m yields the following
two conditions for the existence of a stable static solution,

∂

[
J x̂ · (m × ∂m)+D

(
mx + vMs

2Dγ

)2]
= βvMs

γ
x̂ · (m×∂m),

(7a)

∂

(
J

2
(∂m)2 + λm2

x

)
= βvMs

γ
(∂m)2. (7b)

The above expressions on the left hand side, correspond to the
angular and linear momenta of the magnetic configuration.
As expected, in the presence of a nonconservative torque
(i.e., β �= 0), neither the linear momentum nor the angular
momentum are conserved along the wire direction.

1. Limiting case: Absence of dampinglike torques

For simplicity we first consider β = 0, where the two
momenta are conserved, and the system is fully analytically

solvable. Comparing the expressions of the respective con-
served momenta at both ends of the wire, i.e., at x = 0 where
m = ẑ, and at x → ∞ where the m = ±x̂ and ∂m = 0, we
obtain

−∂my|x=0 = D

J
± v

Ms

γ J
, (8a)

(∂m)2|x=0 = 2λ

J
. (8b)

Note that the sign in Eq. (8a) depends on the direction of m
at infinity. Furthermore, exploiting the general relation m ⊥
∂m at x = 0 yields (∂m)2|x=0 = (∂mx )2|x=0 + (∂my)2|x=0. By
combining 0 < (∂mx )2 = 2λ/J − (∂my)2 with Eq. (8a), we
obtain as a condition for having a static solution(

Ms

γ
v ± D

)2

< 2Jλ. (9)

Note that for v = 0 this equation is automatically fulfilled in
the ferromagnetic state where D < Dc = √

2Jλ. The equation
above demonstrates that a static solution exists only for cur-
rents below the critical spin velocity vc given by

vc = γ

Ms
(
√

2Jλ ∓ D), (10)

corresponding to the critical current density

jSTT
c = eMs

PμB
vc = γ e

PμB
(
√

2Jλ ∓ D). (11)

The different signs correspond to the different types of domain
walls, head-to-head and tail-to-tail. Notice that each of these
types will have a different sense of rotation, i.e., helicity,
given by the DMI. Since they have different energies due
to the chiral interaction, for a given current strength, they
require different amounts of time to be injected into the wire.
We have confirmed our analytic calculations by means of
micromagnetic simulations. In particular, we find that the
critical current depends linearly on the DMI strength D up
to the point when the system decays to the helicoidal state, as
shown in Fig. 3.

2. Including dampinglike torques

To obtain the critical current for the nonconservative case,
i.e., β �= 0, we integrate Eqs. (7) over the nanowire, see
Appendix A. The critical current depends on the material
parameters as well on the exact magnetization configuration
m at the critical current, for the calculation of the profiles see
Appendix B. Here we illustrate the result for the simpler case
D = 0, where we obtain

jSTT
c (β ) = eMs(1 + β2)

PμB

× βEexch +
√

(βEexch)2 + 2λJ (±1 + βEhel )2

(1 + β|Ehel|)2
,

(12)

where Eexch = (J/2)
∫ ∞

0 dx (∂m)2 is the exchange energy,
and Ehel = ∫ ∞

0 dx x̂ · (m × ∂m) is the helicity energy of the
domain wall texture m which solves Eq. (7). Note that the
helicity energy breaks inversion symmetry and thus prefers a
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FIG. 3. Critical current density for domain wall creation by STTs
for β = 0 as a function of DMI strength. The DMI energetically
favors one type of domain wall, corresponding to different ground
states at infinity. Thus, while it facilitates the creation by lower
current densities, it enhances it for the other domain wall type. The
gray dashed line corresponds to D = 0, when the energy of both
types of domain walls are the same.

rotational sense, as is done by the STT terms which deflect
the magnetic state out of the x-z plane. Furthermore, it has the
same structure as the DMI term Ehel = −EDMI/D, from which
one can gain energy by twisting the magnetic configuration.
By noticing that the integrants of Eexch and Ehel are always
positive for the given boundary conditions, we can obtain
the general behavior for the critical current dependence as a
function of β. The current initially decreases for small β until
it reaches its global minimum value. For higher β the critical
current increases monotonically, see Fig. 4.

For chiral systems, i.e., D �= 0, we find that the critical
current density is reduced, as expected, since the system is
pretwisted, see Fig. 4. As a function of β we find the same
trend, first it reduces until it reaches its global minimum and
then increases again. We further observe that the position of
the minimum is shifted to smaller β, see Appendix A 1.

B. Spin-orbit torques

SOTs act directly on the magnetization m, and not on the
gradient in contrast to STTs. As a consequence, the presence
of SOTs lifts the degeneracy of the ground state of a nanowire
with an easy axis, fixing it along the direction of the applied
spin current, while the ferromagnetic state in the opposite
direction becomes a metastable state [20,24,25,51]. Thus,
given a spin current along the easy axis, it is possible to switch
the magnetization from the metastable state, antiparallel to
the spin current, to the ground state, parallel to the spin
current, and produce a single domain wall, see Fig. 5. To
obtain a consecutive domain wall creation, it is necessary to
either switch the boundary conditions or the direction of the
current [20].

In this section we derive the minimal current necessary
to inject a domain wall given the setup shown in Fig. 5.
We consider the spin current along the easy axis, i.e., σ =
jSOTx̂, and an initial metastable ferromagnetic configuration at
infinity, m = −x̂. This design can be achieved by considering

FIG. 4. Critical current density as a function of the nonadiabatic
spin-torque strength β for (a) both possible ground states at infinity
for D = 0 and (b) for m = x̂ at infinity and D = 0.5Dc. The critical
current density has a global minimum value for β > 0. In (a) we
observe that the dependence on β is the same for both ground states
at infinity. In (b) we show that jSTT

c is overall smaller than for D = 0.
Also, for |D| > 0, the position of the minimum shifts to smaller β.

a nanowire stacked on top of a heavy metal such that the
wire is oriented along x̂, and the electric current in the heavy
metal is oriented along ŷ [52]. By the same methodology as in
Sec. III A, we obtain

∂
{
J[x̂ · (m × ∂m)] − D

(
1 − m2

x

)} = jSOTτ̃
(
1 − m2

x

)
, (13a)

∂

(
J

2
(∂m)2 + λm2

x + ξ jSOTτ̃mx

)
= jSOTτ̃ x̂ · (m × ∂m),

(13b)

where we have introduced τ̃ = τDLMs/γ to shorten the
notation.

1. Limiting case: Absence of dampinglike torques

The limit of neglecting the nonconservative contribution
to SOTs corresponds to setting τDL → 0 while keeping ξτDL

finite, see Eq. (4b). This corresponds in Eqs. (13) to τ̃ → 0
and ξ τ̃ being finite, such that the right-hand sides of Eqs. (13)
vanish and the left-hand sides are conserved. Comparing the
conserved quantities at x = 0 and x → ∞ we obtain the
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FIG. 5. Sketch of the domain wall production by SOTs in a semi-
infinite chiral nanowire. The color code represents the x component
of the magnetization. Initially, at infinity we have the state at m =
−x̂, corresponding to the metastable state for a spin current σ =
jSOTx̂. After some time, the domain wall is created and travels such
that in the end one obtains m = x̂ corresponding to the ground state
for the same spin current.

following critical current:

jSOT
c = 2el

ξ h̄θHall

(
λ − D2

2J

)
. (14)

In the absence of chiral interactions, the critical current
depends predominantly on the anisotropy strength, while in
a chiral system, it is determined by a combination of the
DMI strength, the exchange interaction, and the anisotropy
strength. Again, we notice that for D � Dc = √

2Jλ there is
no static solution with an applied current as the system decays
to the helicoidal state. We have confirmed our analytical
solution by micromagnetic simulations, where the results are
shown in Fig. 6. We would like to point out that the current in
Eq. (14) corresponds to the instability of the metastable state
and is independent of the direction of the fixed magnetization.
Numerically we checked that in the presence of stray fields,

FIG. 6. Dependence of the critical current density jSOT
c on (a) the

anisotropy strength λ for D = 0; (b) the exchange interaction
strength J for D = 0; (c) the DMI strength for ξ = 15; and (d) the
ratio of field vs dampinglike torque ξ for D = 0. The other parame-
ters are chosen to be l = 3 nm and θHall = 1. The analytic solution,
Eq. (14), which is valid in the limit ξ → ∞, is plotted for comparison
as a solid line.

FIG. 7. Sketch of a pair of domain walls. To the left we have a
tail-to-tail domain wall, described by m1, and to the right a head-
to-head domain wall, described by m2. The magnetization between
the domain walls can be approximated by the effective superposition
of the two domain walls. At distances much bigger than the domain
wall width, each domain wall can be considered as a rigid object
described by the collective coordinates Xi and φi.

the critical current (i) is slightly lowered below the instability
one, and (ii) is depending on the orientation of the fixed
magnetization at the end of the wire.

2. Including dampinglike torques

For the full model, considering both contributions to SOTs,
Eq. (4b), we proceed analogously to the STTs case. Integrat-
ing over the semi-infinite nanowire and solving for the current
density, we obtain that jSOT

c increases for ξ → 0. Moreover,
the critical current is finite for ξ = 0, see Fig. 6(d). In the
absence of DMI, the critical current is given by

jSOT
c = 2elJλ2

h̄θHall

(Ehel − ξ +
√

(Ehel − ξ )2 + 2
Jλ

E2
ani

E2
ani

)
, (15)

where Eani = λ
∫ ∞

0 dx(1 − m2
x ) is the anisotropy energy, for

details see Appendix A. Also, for the calculation of the
profiles of the magnetic texture below jSOT

c see Appendix B.
Overall, we find that the critical currents for SOTs standard

parameters are lower than those for STTs, and therefore SOTs
should facilitate a domain wall creation.

IV. LONG-RANGE MAGNETIC DOMAIN
WALL INTERACTION

In chiral magnets, domain walls shedded by STTs annihi-
late in pairs upon traveling along the nanowire, see Fig. 8. This
can be explained by two facts, both originated in the opposite
chirality of consecutive injected domain walls: (1) consecutive
domain walls have different velocities and therefore one is
chasing another [37]; and (2) besides the translational motion
of each domain wall, the magnetization of each of the walls
also precesses. Consecutive domain walls rotate in opposite
directions such that at certain periods of time it is easier for
them to annihilate.

For our analysis we simplify the description of the two
domain walls to the case when they are far apart from
each other, see Fig. 7. In this case, i.e., when the distance
between two domain walls is much bigger than their do-
main wall width, we consider the chiral domain walls as
rigid objects. Each domain wall can be approximated by
the solution of a single domain wall such that the follow-
ing ansatz is a good approximation for the whole magnetic
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configuration:

m ≈
⎧⎨
⎩

m1, if x � X1,

m1 + m2 − x̂, if X1 � x � X2,

m2, if x � X2,

(16)

with [37]

mi = ± tanh[(x − Xi )/�]x̂

+ cos[
(x − Xi ) + φi]ŷ + sin[
(x − Xi ) + φi]ẑ
cosh[(x − Xi )/�]

(17)

and 
 = D/J . The positive sign labels the domain wall with
i = 1 being a tail-to-tail domain wall, and the minus sign
corresponds to i = 2 being a head-to-head domain wall. Fur-
thermore, Xi are the center positions of the domain walls, with
their relative distance X −

12 ≡ X2 − X1 � �, and φi are their
azimuthal angles.

Using this ansatz, we obtain from Eq. (1) the interaction
energy between the domain walls

E12 ≈ −JX −
12 e

−X−
12

�

�2
(
2�2 + 1) cos(
X −

12 − φ−
12), (18)

where φ−
12 = φ2 − φ1 is the phase difference of the two

domain walls, which we can define in between 0 and π .
Notice that the domain walls rotate in opposite directions.
The magnitude of the interaction energy decays exponentially
as a function of the distance between the two domain walls.
Moreover, the interaction is attractive or repulsive depending
on the interplay of φ−

12 and X −
12.

We describe the dynamics of the domain wall pair by
considering them as rather rigid objects. Within the collective
coordinate approach [6,9,53], we obtain the following equa-
tions of motion (for the derivation, see Appendix C):

Ẋi = ± γ

Ms

∂ (E12 + ESTT)

∂φi
+ γXi , (19a)

φ̇i = ∓γ�

Ms

∂ (E12 + ESTT)

∂Xi
+ γφi , (19b)

where E12 is the interaction energy between the domain walls
and ESTT = −vφ−

12Ms/γ . From these we obtain the following
equations of motion for the total and relative collective param-
eters:

Ẋ +
12 = 2

�2

(v�2 − J̃e−X −
12/� sin(
X −

12 − φ−
12))

(1 + α2)
, (20a)

Ẋ −
12 = 2α

�2

(−v
�3 + J̃e−X −
12/�g sin(
X −

12 − φ−
12))

(1 + α2)
, (20b)

φ̇+
12 = 2J̃ge−X −

12/�

�3
(cos(
X −

12 − φ−
12) + 
� sin(
X −

12 − φ−
12)),

(20c)

φ̇−
12 = 2αg

�3(1 + α2)
[v�2 − J̃e−X −

12/�(
� cos(
X −
12 − φ−

12)

− sin(
X −
12 − φ−

12))], (20d)

where X +
12 = X1 + X2 corresponds to the center of mass, φ+

12 =
φ1 + φ2 to the total phase, we define J̃ = Jγ /Ms, and g =
(
2�2 + 1) is a constant that depends on the shape of the
domain walls and we chose β = 0 for simplicity. We observe

FIG. 8. Simulation and analytical results for the interaction of
two domain walls moving in a wire showing their (a) relative distance
X −

12 (relative angle φ−
12) on the right (left) y axis, and (b) center of

mass X +
12 (total angle φ+

12) on the right (left) y axis. Here we shifted
φ+

12 by 2π . In this setup, a tail-to-tail domain wall is chasing the
slower head-to-head domain wall, so the distance shrinks in time.
Notice that φ−

12 and X +
12 have a rather constant slope, as shown in

Eqs. (20). The yo-yo-like behavior of the two domain walls, reveals
that the interaction is attractive or repulsive depending on the relative
angle and distance between them, see Eq. (18). At large distances
between the domain walls, the numerical result agrees very well
with the analytical calculations which have been derived under the
assumption that the domain walls are far apart from each other. For
this simulation we used a DMI strength of D = 2.5 × 10−5 J/m2,
damping parameters α = 0.5, β = 0, and the current is j = 2.5 ×
1011 A/m2.

that the center of mass of the domain walls X +
12 moves forward

at a rather constant speed with a small oscillation while the
distance between the domain walls X −

12 decays with time with
a small oscillation due to the interaction. The phase difference
φ−

12 presents a similar behavior with a constant change plus
an oscillation whose amplitude decays with the distance. We
notice that 
� = D/

√
2Jλ − D2 � 1 for small D � Dc. The

total phase oscillates around 0 due to the interaction. Overall,
we observe an yo-yo-like approaching of the domain walls
caused by the interaction of the domain walls and their rela-
tive constant velocity. Micromagnetic simulations corroborate
with the analytical calculations, see Fig. 8.

V. DISCUSSION AND CONCLUSION

In this paper we obtained the minimal electrical current to
inject domain walls in semi-infinite chiral magnetic nanowires
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with a pinned magnetization at the end. We have demonstrated
that it is possible to significantly reduce the necessary current
by increasing the DMI. We also considered SOTs instead
of STTs, which usually is associated with a more efficient
manipulation of magnetic textures [20,24,25]. Moreover, for
the STTs case, we showed that the presence of nonadiabatic
torques may reduce even further the critical current. While for
the STTs one is able to periodically inject domain walls into
the system, for SOTs, we showed that it is possible to only
inject one domain wall with a fixed configuration.

In the periodic injection of domain walls by STTs, we no-
tice that due to the presence of DMI, consecutive domain walls
present different velocities and annihilate at some distance
from the point of injection. This annihilation is preceded by
a yo-yo-like approximation of the domain walls due to their
mutual interaction. The distance between them oscillates as
the interaction alternates between an attractive and a repulsive
potential depending on their relative distances and azimuthal
angles. The annihilation of domain walls has been studied
previously for nonchiral domain walls in Ref. [54], where
there is no oscillatory behavior.

The injection of domain walls can be achieved by applying
currents above the critical current derived in this paper. While
our calculations are performed for a constant current, from
our results follows directly that domain walls can also be
created by current pulses, provided the pulse length is longer
than the time required for the domain wall injection. An
important remark is that, the higher the applied current, the
smaller is the time taken for the injection of the domain
walls [19]. While, as described in the STT case, a constant
current leads to the periodic injection of domain walls, a pulse
current may be preferred experimentally to avoid further Joule
heating. Furthermore, the combination of current pulses above
and constant currents below the the critical current threshold
allows us to control the positions of the domain walls as
they can be moved with lower currents without injecting new
ones.

We compared our analytical calculations to micromagnetic
simulations and provided a solid understanding of the injec-
tion and interaction of chiral domain walls. The demonstrated
decrease in the required electrical current density is essential
for the design of more efficient domain wall based devices.
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APPENDIX A: INEQUALITY CONDITION FOR THE
EXISTENCE OF STABLE STATIC SOLUTIONS FOR THE

HALF DOMAIN WALL CONFIGURATION

In this Appendix we present the inequalities that allow for
the calculation of the critical current in the general case.

1. STTs

For β �= 0 we integrate Eqs. (7) from x = 0 to x → ∞ and
obtain

−J∂my|x=0 − D ∓ vMs

γ
= βvMs

γ
Ehel, (A1a)

J

2
[(∂mx )2 + (∂my)2]|x=0 − λ = βvMs

γ

2

J
Eexch, (A1b)

where Eexch = (J/2)
∫ ∞

0 dx (∂m)2 is the exchange energy, and
Ehel = ∫ ∞

0 dx x̂ · (m × ∂m) is the helicity energy. Moreover,
we used the boundary conditions m(x = 0) = ẑ, and at x →
∞ we apply m = x̂ and ∂m = 0. In analogy to the simple
case, we now exploit the general relation m ⊥ ∂m to isolate
∂my|x=0 in the first equation. Substituting this expression into
the second equation, as well as noticing that (∂mx )2 > 0, we
obtain the following inequality:

λ − 1

2J

(
D + vMs

γ
(±1 + βEhel )

)2

+ βvMs

γ

2

J
Eexch > 0.

(A2)

Notice that the total sign of Ehel depends of the configuration
at infinity, such that Ehel = ±|Ehel| for m = ±x̂ at infinity.
From which we obtain the critical value for v. For D = 0, the
inequality above simplifies to

λ − 1

2J

(
vMs

γ
(1 + β|Ehel|)

)2

+ βvMs

γ

2

J
Eexch > 0. (A3)

At the critical current Eq. (A3) turns into an equality, which
solving for the critical current leads to Eq. (12) from the main
text.

2. SOTs

In this section we present the full inequality that allows for
the calculation of the critical current for SOTs in the general
case. We follow the same steps as in the subsection above.
First we integrate Eqs. (13) from 0 to ∞ and obtain

J∂my|x=0 + D = − jSOTτ̃
Eani

λ
, (A4a)

J

2
[(∂my)2 + (∂mz )2]|x=0− λ + ξ jSOTτ̃ = jSOTτ̃Ehel, (A4b)

where we introduced τ̃ = τDLMs/γ to shorten the notation
and we used that m ⊥ ∂m, m(x = 0) = ẑ, and m(x → ∞) =
−x̂. Analogously to the case above, we obtain the following
inequality:

λ + (Ehel − ξ ) jSOTτ̃ − 1

2J

(
D + jSOTτ̃

Eani

λ

)2

> 0. (A5)

From which we obtain the critical value for jc. If we consider
D = 0 we obtain the simplified inequality

λ + jSOTτ̃ (Ehel − ξ ) − 1

2J

(
jSOTτ̃

Eani

λ

)2

> 0, (A6)

from which the roots yield the critical current, i.e., Eq. (15)
from the main text.
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APPENDIX B: MAGNETIC PROFILE BELOW THE
CRITICAL CURRENT

In this Appendix we calculate explicitly the magnetization
profile in the presence of STTs and SOTs at a constant current
below the critical current in the semi-infinite nanowire setup
of the main text. For this we define the gradient of the
magnetization as

∂m ≡ 
(x)x̂ × m + �(x)m × (x̂ × m), (B1)

where 
(x) and �(x) define the shape of the magnetic config-
uration. We have therefore that

(∂m)2 = (
2 + �2)
(
1 − m2

x

)
, (B2a)

x̂ · (m × ∂m) = 

(
1 − m2

x

)
. (B2b)

Notice that |mx| � 1.

1. STTs

To calculate the magnetic profile for STTs with β = 0 we
substitute (B1) into Eqs. (7) and obtain

(J
 − D)(1 + mx ) + vMs

γ
= 0, (B3a)


2 + �2 = 2λ

J
. (B3b)

Substituting 
 from the first equation into the second one and
using � = ∂mx/(1 − m2

x ), we get

(∂mx )2(
1 − m2

x

)2 = 2λ

J
− 1

J2

(
vMs

γ (1 + mx )
− D

)2

. (B4)

The static half-domain wall profile in the presence of STTs,
with applied current densities below the critical one, can be
obtained by integrating above equation over the nanowire
starting at infinity up to the position x′,∫ m′

x

0

dmx

(
1 − m2

x

)√[
2Jλ −

(
vMs

γ (1+mx ) − D

)2] = x′

J2
. (B5)

Solving this integral equation for mx yields the profile of the
magnetic texture below the critical current.

2. SOTs

Analogously, for SOTs with vanishing nonadiabatic
torques, we obtain from Eqs. (13),


 = D

J
, (B6a)

J

2

(
�2 + D2

J2
− λ

)
(1 − mx ) + ξ τ̃ j = 0. (B6b)

From these expressions we then obtain the magnetic texture’s
profile in the presence of SOTs for spin currents below the
critical current density∫ m′

x

0

dmx

(
1 − m2

xbig)

√(
λ − D2

J2

)
(1 − mx ) − 2ξ τ̃ j

J

= x′. (B7)

APPENDIX C: COLLECTIVE COORDINATE APPROACH

In this Appendix we provide the details for the dynamics
of two interacting domain walls described by Eqs. (19) in the
main text. Let us first consider a single domain wall which
moves as a rigid object, i.e.,

ṁ = −Ẋ∂m ± φ̇x̂ × m, (C1)

where, as in the main text, X and φ are the position and az-
imuthal angle of the magnetization at the center of the domain
wall. The ± sign characterizes the type of domain wall, tail-to-
tail (+) or head-to-head (−). In the following we consider the
case where Ẋ is positive for both domain walls. The tail-to-tail
domain wall, however, is faster then the head-to-head do-
main wall, and their center magnetizations rotate in opposite
directions.

The dynamical parameters X and φ are called collective
coordinates and are conjugated by a Poisson bracket for which
we can describe a Hamiltonian formalism [9]. Within this
formalism we can easily take into account the interaction be-
tween two domain walls. In order to obtain the Poisson brack-
ets of the collective coordinates, we need to derive the Berry
phase dependence on the collective coordinates X, φ for the
domain wall profile given in Eq. (17). In the spherical coordi-
nates, m = sin θ (cos ϕŷ + sin ϕẑ) + cos θ x̂, the Berry phase is
given by

SB = Ms

γ

∫
dx[1 − cos θ (X, φ)]ϕ̇. (C2)

Substituting cos θ = ± tanh (x − X/�) as well as ϕ =

(x − X ) + φ, and expanding on X and φ we obtain

SB ≈ ∓ γ

Ms�
X φ̇ (C3)

as the leading order term in terms of the collective co-
ordinates. This implies that the equations of motion are
given by

Ẋ = ± γ

Ms

∂E (X, φ)

∂φ
+ γX , (C4a)

φ̇ = ∓γ�

Ms

∂E (X, φ)

∂X
+ γφ, (C4b)

where E is the total energy of the system and

γX = ∓
(

βv
� + γα

Ms
(φ̇� − Ẋ
�)

)
, (C5a)

γφ = ± γ

Ms

[

2�2 + 1

�

(
αẊ − βvMs

γ

)
− αφ̇
�

]
(C5b)

are the dissipation terms.
The total energy for the current-driven pair of rigid domain

walls is given by the interaction between the domain walls and
a term due to STTs,

E (X1, X2, φ1, φ2) = E12(X1, X2, φ1, φ2) + ESTT, (C6)

with ESTT = Msv(φ1 − φ2)/γ . Substituting the energy (C6)
into the equations of motion, Eqs. (C4), and solving the
system for Xi, φi while setting β = 0 leads to Eqs. (19) of the
main text.
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