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Abstract: This paper deals with a positioning system based 

on a dielectric electro-active polymer membrane. The motion is 
generated by the deformation of the membrane caused by the 
electrostatic compressive force between two compliant 
electrodes applied on the surface of the polymer. The paper 
proposes a detailed electro-mechanical nonlinear model of the 
system, which is subsequently used to develop (in both time 
and frequency domains) various model-based feedback control 
laws. Accurate modeling is useful to compensate the nonlinear 
behavior of the actuator (caused by the material characteristics 
and geometry) and obtain PID controllers providing precise 
tracking of steps or sinusoidal reference signals. The various 
design strategies are compared on various experimental tests. 

 
Index Terms- Smart Materials, Electro-Active Polymers, 

Precision Motion Control, PID, Mechatronics. 

I. INTRODUCTION 
MART materials such as piezoelectric ceramics, 
magnetostrictives, thermal or magnetic shape memory 

alloys have shown to be an effective means to achieve 
increased accuracy and efficiency standards while reducing 
weights in many application fields, ranging from positioning 
systems to vibration dampers.  

Electro-Active Polymers (EAPs) are a relatively newer 
class of smart materials reacting to electrical or chemical 
stimuli with a deformation that, in some cases, can be 
several orders of magnitude higher than that obtained with 
common materials such as piezoelectric ceramics. Dielectric 
EAP (DEAP) are a specific type of EAP in which 
controllable deformation is generated by an elastic 
polymeric material subject to compressive electrostatic 
forces between compliant electrodes applied on its surface. 
DEAP are attractive because of their lightweight, high 
energy density, fast response and low costs. Prototypes of 
DEAP pumps [1]–[4], valves [5], [6], speakers [7], [8], 
robots [9]–[11], lens element actuators [12]–[14] and 
micropositioning stages [15] have been documented in 
recent literature. On the other hand, there are many 
technological issues that still need to be properly addressed 
to make this material competitive in industrial applications, 
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such as the amount of voltage needed to obtain the 
deformation and the dependence of the response to 
temperature and fatigue. It has been remarked that the 
design of feedback control systems is a possible way to 
partly overcome these limitations, but to date most of the 
recent research efforts on DEAP still focus on material static 
and dynamic characterization [16]–[18], and on the accurate 
analysis of the underlying physical phenomena [19]–[26]. 
Among the few recent contributions exploring the role of 
feedback control in DEAP-based devices, it is useful to 
mention [27], which develops an embedded DEAP sensing 
and actuation system where the capacitance is calculated in 
real time and the resulting feedback is fed to a PID 
controller. Similarly, in [28], Randazzo et al. explored the 
controllability of a rotational joint driven by two DEAP 
arranged in an antagonistic configuration,  and implemented 
a closed loop control for regulating both angular position 
and force. Sarban and Jones used a DEAP tubular actuator 
for realizing active vibration isolation by an internal model 
controller with gain-scheduling [29] and with an adaptive 
feedforward approach [30]. In [31], Wilson et al. compared 
the performance of a biomimetic, cerebellar-inspired 
controller with a conventional adaptive control scheme on a 
DEAP actuator, showing how the first strategy outperforms 
the second when the actuator characteristics change 
significantly.  

This paper aims at contributing to this research direction, 
presenting a model of an innovative, miniaturized, precise 
positioning system based on an annular DEAP membrane, 
and analyzing the effects of various model-based control 
schemes. In particular, the model is more general, detailed 
and accurate with respect to those used in related literature, 
as it considers the particular geometry of the membrane to 
be taken into account and it directly incorporates the effects 
of the mass-spring preloading elements. Moreover, the 
model is used to develop a number of alternative model-
based PID laws (including some nonlinear variants), which 
are implemented and compared on an experimental bench in 
a wide range of operative conditions. The resulting study 
contributes to better assess the actual potentialities and 
limitations of DEAP as an alternative technology for low 
cost positioning. This paper is also an extension of the 
preliminary ideas presented in the conference paper [32]. 

The reminder of this paper is organized as follows. 
Section II develops the model of the considered device, 
while Section III focuses on model validation and parameter 
identification. Section IV considers the control design 
problem, and formulates a number of alternative approaches 
in time and frequency domains. The experimental 
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comparison of the closed loop systems is provided in 
Section V, while Section VI provides the concluding  
remarks.  

II. DEAP ACTUATOR MODEL 
The device considered in this paper is based on the 

circular DEAP membrane shown in Fig. 1, while a sketch of 
the membrane in the undeformed resting condition and in 
the deformed condition is shown in Fig. 2 (a) and (b), 
respectively. The same membrane shape has also been 
considered in [17], although with partly different materials.  
The outer frame and the inner circular plate are made of 
rigid plastic (in green), while the 50 µm DEAP silicon 
membrane (in gray) is sandwiched between compliant 
electrodes. In particular, the membrane is pre-stretched 
during the production process, and once completed, the 
carbon grease electrodes are screen-printed all over the 
annular area of the polymeric film.  

 

 
 
Fig. 1.  The DEAP annular membrane. 
 

 
Fig. 2. DEAP membrane geometry in the undeformed (a) and deformed 
configuration (b). 
 

A mass and a linear spring are connected to the moving 
part of the membrane, and constitute the actuator’s load. The 
actuator out-of-plane stroke and actuation force can be tuned 
by choosing different loading elements, such as masses, 
linear and nonlinear springs (as discussed in [33]). When a 
voltage is applied to the electrodes, it generates a pressure 
known as Maxwell Stress [34] that compresses the material 
in the thickness direction, producing a radial expansion and 
the subsequent actuation motion shown in  Fig. 3. 

In the following section, we develop a dynamic model 
composed of a set of nonlinear, time-invariant differential 
equation describing the dynamic relationship between the 
input voltage and the output actuator displacement. The goal 
of the model is describing accurately the behavior of the 
device, both in transient and steady state performances, for 
various values of the load parameters in terms of mass and 
spring stiffness and pre-compression. The model extends the 
preliminary ideas presented in [24].  

 
 

 
Fig. 3.  Actuation mechanism, input voltage off (a) and on (b). 

 

A. Mechanical dynamics 
The model considers the voltage applied to the membrane 

u as input and the vertical displacement d as output (Fig. 3). 
The vertical force equilibrium on the biasing mass can be 
expressed as follows 

 ( )( ) ( , , )sin 0s s s DEAPm d g k d d d F u d th q+ + - + + =!! ! ,  (1) 

where m is the mass of the load (the mass of the central rigid 
plate is neglected), g is the gravitational acceleration, FDEAP 
is the polymer reaction force, t is time, θ is the deflection 
angle of the membrane, ks is the load spring stiffness and ds 
represents the spring pre-compression. To consider the non-
ideal behavior of the spring, we introduce a further 
contribution ηs modeling a small viscous damping 
phenomenon. 

To take into account the particular shape of the polymeric 
membrane, it can be observed that the DEAP reaction force 
acting on the inner plastic plate is given by the product of 
the radial stress of the material, hereafter indicated with 
σr(d,u,t), times the cross-sectional area. Therefore, it holds 

 
 ( , , ) 2 ( , , )DEAP rF d u t rz d u tp s= , (2) 

 
where z is the actual material thickness and r is the radius of 
the inner rigid frame. The dependence of FDEAP and σr from 
time t in (2) is introduced to indicate that the link with the 
variable d and u is dynamic. Since the Poisson ratio of the 
silicone is 0.5, it is realistic to assume that the DEAP 
material volume remains constant during excitation, and the 
relation between variables z and d can be easily obtained by 
simple geometrical considerations. In particular, it can be 
shown (see [24] for further details) that  
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where z0 and l0 are the initial values of the thickness z and 
radial length l indicated in Fig. 2. Substituting (3) into (2), 
and rewriting the sine as the ratio of d and l, the force 
generated by the DEAP can be rewritten as follows: 
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B. Material behavior model 
The model of the smart material analyzes the dependency 

of the radial stress in (4) to the applied voltage. Clearly, the 
model can be extended to other types of membranes by 
adapting (4) to the specific geometry of the DEAP. Here it is 
assumed that the electrodes mechanics can be neglected due 



to their small thickness in comparison to the thickness of the 
silicon. The development of this part of the model is based 
on the free-energy approach proposed by Suo et al. [35]. 
The approach determines the relationships between 
electrical and mechanical variables with a reasoning based 
on free-energy functions. More specifically, this part of the 
model is obtained in two steps. First the energy approach is 
used to determine the static relations between electrical and 
mechanical quantities, and then the equations are modified 
to take into account the dynamics introduced by material 
viscoelasticity.  

For the circular geometry, the state of deformation of the 
membrane is described by the radial, circumferential and 
thickness stretches, denoted as λr, λc, and λz, respectively 
[36]. A pre-stretch also exist into the DEAP membrane 
because of its manufacturing process, and to take it into 
account, the following quantities are defined [37]: 

 
 , ,r tot r r prel l l= , (5) 

 , ,c tot c c prel l l= , (6) 

 , ,z tot z z prel l l= . (7) 
 
The symbol λi,tot represents the total stretch in the i-th 

principal direction, and is equal to the product of the 
actuation stretch λi and the (constant) pre-stretch λi,pre. Since 
the material is incompressible in each state of deformation, 
the following equality holds 

 
 , , , , , , 1r tot c tot z tot r c z r pre c pre z prel l l l l l l l l= = = . (8) 

 
By assuming that the membrane deformation follows a 

truncated-cone geometry (as depicted in Fig. 2), the 
circumferential actuation stretch is constant and equal to 1 
(the same cannot be stated a priori for the circumferential 
pre-stretch, due to the lack of detailed information on the 
manufacturing process of the membrane). Due to this 
assumption, it holds  
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It can be noted that the product of the three quantities 

above, in conjunction with the effects of incompressibility 
stated by (8), confirms the result given in (3). The free-
energy density function W can be obtained as the sum of 
deformation and electric charge energies. Thus, 
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where the first contribution represents the deformation 
energy by means of an Ogden hyperelastic model [37], µi 
and αi are material constitutive parameters and N is the 
number of terms in the Ogden energy function. The quantity 
D appearing in the second energetic term is the electrical 
displacement, namely the charge density over the electrodes 

surfaces assuming an ideal behavior of the DEAP, ε0 is 
vacuum permittivity and εr is the relative permittivity of the 
polymeric material. The thickness stretch in (12) can be 
eliminated due to the incompressibility assumption (8) as 
suggested in [35], i.e.,  
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Then, the actual radial stress σr and the actual electric field 
E can be obtained by differentiating the (13) as follows: 
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After differentiation, one obtains 

 

 ( ) 2
0

1

i i

N

r i r i r r
i

Ea as b l g l e e-

=

= - -å , (16) 

 
where 
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Finally, substituting the electrical field E with the ratio of 

voltage and thickness, i.e., 
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the (16) can be rewritten as 
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According to (20), the radial stress depends directly only 

on the actuation radial stretch λr and on the square of the 
applied voltage u. The effects of pre-stretches are lumped 
into coefficients βi and γi (see eq. (17)-(18)), and results in a 
non-zero stress appearing when no voltage is applied (u = 0) 
and the membrane is in its undeformed state (λr = 1). 
Equation (20) well describes the hyperelasticity and the 
electro-mechanical coupling effects of DEAP, but it does 
not take into account material viscoelasticity. This motivates 
the next step of the material modeling procedure.  

A possible way to take into account the effects of 
viscoelasticity is interpreting (20) by considering the total 
radial stress equal to the sum of two terms: an elastic 
contribution σe due to the stretch and a Maxwell stress σm 
due to the electromechanical coupling. Thus, 

 
 r m es s s= + . (21) 



 
In (21), σm is the Maxwell stress and is given by 
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while the σe term is modeled as a dynamic viscoelastic 
process. The effects of viscoelasticity can be effectively 
described by spring-dashpot rheological model [39]. In 
particular, the nonlinear model in Fig. 4 (the nonlinearity 
consists only in the parallel spring labeled as “Ogden 
spring”) is used to describe the dynamics of σe.  

 
 

Fig. 4. The viscoelastic model, a nonlinear version of a standard linear solid 
model. 
 
The complete the viscoelastic model is then provided by 
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where σe is the steady state value of σe under constant 
voltage excitation u ≡ u, which can be computed as follows 
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where the underlined variable indicate the constant value 
under static conditions. Equations (21)-(24) 
equation reference goes here are coherent with (20) at steady 
state, and also describe the dynamics of the viscoelastic 
process during the transient response. 

 

C. Complete actuator model 
For control design purposes, 

equations
Errore. L'origine riferimento non è stata trovata. (4), 
(21)-(24) can be merged so as to obtain the complete third-
order, nonlinear, time-invariant, state-space model shown in 
equation (27) at the bottom of the page. Model state vector 
x(t) is defined as 
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while the nonlinear function s(x2), introduced to obtain a 
more compact notation, is defined as  
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The parameters aij are summarized in Table I. The 
identification of the unknown values of these parameters is 
discussed in the next section. 
 

TABLE I 
DEAP MODEL COEFFICIENTS 

Parameter Explicit equation 

a11 ke/ηe 
a21 ksds/m - g 
a22 ks/m 
a23 ηs/m 
a24 2πrz0/ml0 
a25 ke 
a26 ε0εr/z0

2 

 
III. PARAMETER IDENTIFICATION AND MODEL VALIDATION 

The effectiveness of the model developed in the previous 
section is assessed on the experimental platform shown in 
Fig. 5, consisting of DEAP membrane, mass and spring load 
(experiments are carried out with three different load 
springs, whose stiffness and damping coefficients are 
indicated hereafter as ks1, ks2, ks3 and ηs1, ηs2, ηs3 
respectively), a TREK 610E voltage amplifier (max 
applicable voltage = 10 kV, max current = 2 mA), a 
Keyence LK-G37 laser displacement sensor (0.15 µm 
resolution), A Futek LSB-200 load cell (1 µN resolution) 
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controlled with a linear actuator (Aerotech, model ANT-
25LA) and a Zaber LA-28A linear actuator connected to the 
load spring to modify the pre-compression and apply load 
disturbances.  

The known or measurable parameters of the DEAP 
testing bench are summarized in Table II. The remaining 
parameters of the model, namely the Ogden model order N 
and coefficients αi, βi and γi for i=1,…,N, the coefficients of 
the viscoelastic model ke and ηe, the springs damping 
coefficients ηs, and the relative permittivity εr must be 
identified with appropriated methods. When recording the 
system dynamics with a computer-based DAQ system, a 
first order low-pass filter (with a time constant equal to 
6.4ms) is included in cascade with the DEAP actuator model 
in each simulation to model the behavior of the data 
acquisition hardware.  
 

  
 

Fig. 5. The DEAP actuator system, picture (left) and sketch (right). 
 

TABLE II 
KNOWN ACTUATOR SYSTEM COEFFICIENTS 

Coefficient Value Unit 

z0 40 µm 
l0 4.75 mm 
r 6.25 mm 
ε0 8.85·10-12 F/m 
g 9.81 m/s2 
m 7.10 g 
ks1 0.05 N/mm 
ks2 0.22 N/mm 
ks3 0.34 N/mm 

 
Only a subset of the unknown parameters, i.e., εr, αi, βi 

and γi, influences the quasi static behavior of the material 
and therefore is identified first with a set of ad hoc 
experiments in which the load spring is removed and the 
linear motor is directly connected to the DEAP membrane, 
to change the position while no voltage is applied to the 
electrodes. The linear motor applies a very slow (5 mHz) 
sinusoidal motion for static characterization (other tests with 
slower signals led to the same results). Once force and 
displacement measurements are available, stress and strain 
are reconstructed by means of the model equations. In this 
paper, to limit the complexity of the identification 
algorithm, the Ogden model order and exponents are 
selected a priori, basing on preliminary information. In 
particular, we set N = 3 and coefficients αi equal to the three 
lowest even integers to replicate the expected convex 

behavior of the modeled functions. The remaining unknown 
coefficients εr, βi and γi are identified by using a standard 
least square algorithm [40]. The results of this identification 
are summarized in Fig. 6. The overlap between the 
experimental and model behaviors is satisfactory. A small 
hysteresis introduced by the mechanical behavior of the 
compliant electrodes is observed (also in tests with slower 
signals) between the two variables, but the resulting error 
seems sufficiently minor to avoid the introduction of further 
components in the model. The coefficients values of this 
identification stage are reported in Table III.  
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Fig. 6.  Static model identification, experimental (blue) and model (red). 
 

The remaining model parameters appearing in the force 
equilibrium equation 
Errore. L'origine riferimento non è stata trovata.and in 
the viscoelastic model (23) only affect the transient 
behavior, and therefore they are identified by means of 
nonlinear optimization techniques. In particular, while the 
viscoelastic model coefficients characterize material 
inherent damping, the coefficients ηs1, ηs2 and ηs3 describe 
the different damping contributions introduced by each 
spring, and are identified separately. First an Amplitude 
Modulated Pseudo Random Binary Signal (APRBS) input 
signal with a maximum switching frequency of 30 Hz, 
amplitude in the range 0 – 2.5 kV and a duration of 60 s is 
applied when the actuator is pre-loaded with the spring ks2 
and pre-stretched in order to obtain a membrane static pre-
deflection of 2 mm. This permits to identify the viscoelastic 
model coefficients and the spring damping ηs2. Then, the 
remaining spring damping coefficients ηs1 and ηs3 are 
determined, in conjunction with the previously identified 
material viscoelastic coefficients, by matching the system 
response to a square wave input signal. Several iterations of 
these two steps allow to characterize each unknown 
coefficient. Fig. 7 shows the system response and the 
resulting best-fit model. Also the results of this part of the 
identification procedure are satisfactory, as the model 
reproduces fairly well the underdamped dominant behavior 
visible in Fig. 7 for the APRBS training signal.  

Validation is performed with a biased sine sweep of 
linearly increasing frequency up to 50 Hz and amplitude 
ranging from 0 to 1.5 kV, and the results are shown in the 
frequency domain. In particular,  Errore. L'origine 
riferimento non è stata trovata.Fig. 8 shows results for 
several validation tests, performed for three different springs 
(see Table II) and three different membrane pre-deflections 



for each spring. It can be noticed how the model shows a 
good ability to predict the natural frequency as it varies from 
20 to 45 Hz, under different biasing conditions. 
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Fig. 7.  APRBS identification test, experimental (blue) and model (red) 
output displacement. 
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Fig. 8.  Sine sweep (from 0 to 1.5 kV) response spectrum for different 
springs and DEAP pre-deflections, experimental (blue) and model (red). 

 
TABLE III 

IDENTIFIED MODEL PARAMETERS 

Coefficient Value Unit 

α1 2 - 
α2 4 - 
α3 6 - 
β1 -7.05 MPa 
β2 3.72 MPa 
β3 -0.54 MPa 
γ1 -17.58 MPa 
γ2 21.06 MPa 
γ3 -7.57 MPa 
εr 3.92 - 
ke 0.48 MPa 
ηe 4.37 kPa·s 
ηs1 6.48·10-6 N·s/mm 

ηs2 21.86·10-6 N·s/mm 
ηs3 30.48·10-6 N·s/mm 

IV. CONTROLLERS DESIGN 
The main control design objective for the considered 

prototype is to obtain a fast and accurate tracking of steps 
signals of various amplitude. Saturation of control action for 
long time intervals and chattering must be avoided to 
prevent excessive stress to the hardware. In particular, the 
applied voltage cannot exceed the range 0 - 2.5 kV. The 
selected closed loop reference model has second order 
underdamped dynamics with damping factor δ = 0.8 (a 
typical design choice to avoid resonating behaviors) and a 
variable natural frequency ωn used to tune the closed loop 
time constant τcl. The design is performed in continuous 
time, and the implementation is carried out in the digital 
domain with trapezoid rule and sampling time of 1 ms, and 
anti-windup algorithms. In order to reduce the high-
frequency effects introduced by the derivative action, all the 
PID controllers described in the next sections are cascaded 
with a linear first order filter whose time constant τf is 
considered as a further design parameter [41]. The controller 
transfer function has therefore the following form: 
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Design criteria for the considered controllers are 

discussed in the next subsections, and the final parameters 
of the resulting controllers are summarized in Table IV at 
the end of the section. 

 

A. Standard PID design 
The first controller is a standard linear PID. The design is 

based on a linear model of the DEAP actuator obtained by 
linearization of the model (27) around a predefined 
equilibrium point corresponding to a constant input u. After 
linearization, the first order dynamics introduced by the 
laser displacement sensor (as discussed in Section III) is 
added to the open loop plant transfer function. 
Independently of the chosen equilibrium point, it can be 
easily proven that the linearized model is characterized by 
two dominant complex poles, two stable real poles and one 
minimum phase zero. Since the zero is always located very 
close to one of the real poles, their mutual cancellation 
reduces the order of the model without causing significant 
losses of model accuracy or closed-loop performance. Fig. 9 
shows the Bode diagram for three different voltage levels u, 
corresponding to the minimum, intermediate and maximum 
applicable voltage. It can be noted that the static gain of the 
linearized model decreases for decreasing values of the 
equilibrium voltage, until the linearized model degenerates 
in an uncontrollable model for u = 0. 

The free parameters of the PID controller are chosen so 
that the two zeros of the controller cancel the complex poles 
of the linearized model, and the residual dynamics leads to a 
closed loop function with the predefined damping and 
natural frequency, which is chosen in order to achieve the 
closed loop time constant τcl = 56 ms.  



This control will be hereafter referred to as PID/TD (PID 
designed in Time Domain). For all the controllers, the value 
of the voltage at which the linearization is performed will be 
indicated in brackets. 

B. Nonlinear PID design 
Among the various causes of nonlinearity in the DEAP 

actuator, the analysis of (27) reveals that both static and 
dynamic behaviors of the displacement are influenced by the 
square of the voltage. A straightforward approach to limit 
the effects of this nonlinearity is to cancel it by inverse 
compensation in controller output law. This is obtained with 
the scheme in Fig. 10, in which the controller output is 
computed as the square root of the output of the linear PID, 
i.e. 

 1/2( )u f w w= = . (29) 
  
The design of the PID law in this case is obtained by 

considering f(w) as part of the controlled plant, performing 
linearization of the dynamics between w and y, and using the 
same criteria described in the previous subsection to choose 
the controller gains. 
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Fig. 9.  Linearized model bode diagram, different voltages (note the linear 
scale for the Amplitude diagram). The resonances are caused by a couple of 
complex poles having the following damping coefficients: δ = 0.028 (1.25 
kV), δ = 0.055 (2.5 kV). 

 
 

 
 
Fig. 10.  PID plus nonlinear compensation block diagram. 

 
The Bode diagram of the new linearized model, evaluated 

for different input voltages, is shown in Fig. 11. The static 
nonlinearity cancellation leads to a strong reduction of the 
differences between the models at various operating points. 
Note that, differently from Fig. 9, to better analyze the 
effects of nonlinearity cancellation, we include the further 
model obtained by linearization around the intermediate 
constant input voltage equal to 1.77 kV. To isolate the 
effects of nonlinearity cancellation, the PID is tuned using 

the same design criterion adopted for the previously 
described controller (closed loop time constant τcl = 56 ms). 
This controller will be referred to as NPID/TD (Nonlinear 
PID design in time domain). A second version of this 
controller is also considered in the comparison.  More 
specifically, by hand-tuning, it has been observed that the 
best tradeoff in terms of closed loop response time, 
oscillations, and saturation avoidance can be obtained by 
imposing a closed loop time constant τcl = 23 ms. This 
second version of the controller will be referred to as 
NPID/TDO (Nonlinear PID design in Time Domain with 
Optimized tuning). 
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Fig. 11.  Compensated linearized model bode diagram, different voltages. 
The resonances are caused by a couple of complex poles having the 
following damping coefficients: δ = 0.020 (0 kV), δ = 0.028 (1.25 kV), δ = 
0.036 (1.77 kV), δ = 0.055 (2.5 kV). 
 

C. Nonlinear robust PID design 
The compensation by inverse cancellation of input 

nonlinearity contributes to mitigate its effects on the closed 
loop performance in a wide range of operating point, but it 
does not provide specific guarantees about the performance 
degradation caused by the remaining nonlinearities. A 
possible way to overcome this limitation is describing the 
controlled system as a family of linear models, obtained by 
linearization at various equilibrium points, and using robust 
control tools to perform the controller design. The method 
will be applied in conjunction with the static nonlinearity 
cancellation described in the previous subsection. In 
particular, in this section we use the standard direct loop-
shaping H∞ robust control design approach (see [42] for a 
comprehensive introduction). The system is described with 
the following multiplicative uncertainty  

 
 ( ) ( ) ( ) ( )1 i nG s s w s G sé ù= + Dë û , (30) 

 
where Gn(s) is the nominal transfer function (obtained by 
linearization around u = 1.77 kV), wi(s) is a shaping transfer 
function and Δ(s) is a random perturbation transfer function 
such that ||Δ(s)||∞ < 1. As Δ(s) varies, G(s) describes the 
whole linearized model set. Fig. 12 shows a shaping 
function wi(s) which includes all the linearized models in the 
considered voltage range. In order to take into account on 
unmodeled high frequency uncertainties, the system 



robustness is tested with an upper bound of the actual wi(s) 
(in red in Fig. 12). 

The design approach consists of properly choosing loop-
shaping filters for closed-loop sensitivity and 
complementary sensitivity in order to guarantee the desired 
closed-loop properties under given model uncertainty, and 
then solving the design problem with numerical methods 
[42]. A condition based on the µ-norm upper bound is used 
to establish robust stability and performance of the 
uncertainty set independently on how fast the function G(s) 
is perturbed [43]. After preliminary reasoning based on 
standard robust design criteria, the two sensitivity functions 
shown in Fig. 13 are selected as final filters. The H∞ 
controller is numerically tuned imposing a low-sensitivity 
bandwidth greater than 3.25 Hz and no resonance peaks in 
the complementary sensitivity. The resulting H∞ controller 
has a frequency response that is shown in Fig. 14Errore. 
L'origine riferimento non è stata trovata., together with a 
reduced order approximation of the controller at low 
frequencies, performed with a PID with low-pass filtered 
derivative action. The closed loop transfer functions 
obtained with the reduced order controller are also shown in 
Fig. 13. The reduced order controller will be referred to as 
NPID/H∞D (Nonlinear PID with H∞ design). 
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Fig. 12.  Uncertainty set shaping function (blue) and upper bound (red).  
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Fig. 13.  H∞ Sensitivity (left) and Complementary Sensitivity (right) Bode 
diagrams, comparison between original controller (blue) and PID 
approximation (green). 
 

D. Sinusoidal tracking with  resonant PI control 
In addition to the previous controllers which are mainly 

designed for position regulation, and basing on internal 

model design criteria, a controller suitable to track harmonic 
references is considered in this subsection for applications 
of the DEAP membrane in pumps or other vibrating devices. 
In order to improve the tracking performance without 
increasing controller complexity, the following PI-Resonant 
(PIR) controller is proposed (still applying the nonlinearity 
compensation of the previous subsection): 

 

 ( ) 2 2
i r

PIR p
r

k k sG s k
s s w

= + +
+

. (31) 

 
Differently from the PID in (28), the first order filter is 

unnecessary for this controller. If ωr in (31) is set equal to 
the target frequency, this controller ensures perfect tracking 
at steady state for a linear plant. If the reference signal is a 
biased sinewave, the integral term permits also the tracking 
of the continuous component. The controller is tuned with 
an optimization algorithm that minimizes the L2 norm of the 
tracking error for the desired reference profile. The 
controller will be referred to as NPIR (Nonlinear PI + 
Resonant design). 

-40

-20

0

20

40

60
M

ag
ni

tu
de

 [d
B]

 

 

100 101 102 103
-180

0

180

360

Ph
as

e 
[d

eg
]

Frequency [Hz]  (Hz)

H¥

H¥, eq. PID

 
    

-40

-20

0

20

40

60
M

ag
ni

tu
de

 [d
B]

 

 

100 101 102 103
-180

0

180

360

Ph
as

e 
[d

eg
]

Frequency [Hz]  (Hz)

H¥

H¥, eq. PID

 
 

Fig. 14.  H∞ controller Bode diagram, original controller (blue) and low-
frequency PID approximation (green). 

 
TABLE IV 

CONTROLLERS COEFFICIENTS 

PID Controller kp ki kd τf 

PID/TD(1.25 kV) 0.017 60.54  0.002 0.02 
PID/TD(2.5 kV) 0.013 23.63 0.001 0.02 
NPID/TD(0 kV) 0.034 165.05 0.005 0.02 
NPID/TD(1.25 kV) 0.044 151.35 0.004 0.02 
NPID/TD(1.77 kV) 0.052 138.78 0.004 0.02 
NPID/TD(2.5 kV) 0.067 118.15 0.003 0.02 
NPID/TDO(1.77 kV) 0.121 321.69 0.009 0.005 
NPID/H∞D(1.77 kV) 0.266 366.29 0.011 0.005 

PIR Controller kp ki kr ωr 

PIR(5 Hz, 1.77 kV) -5.810 53.39 66.34 5·2π 
PIR(15 Hz, 1.77 kV) -0.8674 211.47 195.98 15·2π 

V. SIMULATION AND EXPERIMENTAL RESULTS 
This section summarizes the experimental results of the 

controllers described in the previous section. Each plot 
compares experimental results (blue) and simulation (red) 
results in terms of actuator displacement (upper, the dashed 



line represents the set-point), tracking error and input 
voltage (the black line represent the voltage bounds). The 
experimental setup is the same used for model identification 
and shown in Fig. 5. The results of the PID/TD is shown in 
Fig. 15, for u = 1.25 kV. The response of this controller is 
satisfactory if the system operates in the neighborhoods of 
the equilibrium point, and it becomes excessively under or 
overdamped in other regions due to system nonlinearities. 
Similar results are obtained by tuning the controller on 
different equilibrium points. The figure also compares the 
simulated and experimental closed loop performances, 
showing a good agreement between the signals. Fig. 16 
shows the performance of the NPID/TDO controller. The 
effect of this compensation on the control performance are 
evident.  
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Fig. 15.  PID/TD, tuned on the linearized model at 1.25 kV. 
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Fig. 16.  NPID/TDO, with nonlinearity compensation, tuned on the 
linearized model at 1.77 kV, optimized tuning.  

 
The response of the optimized PID is also very close to 

the PID tuned with the H∞ design, shown in Fig. 17. In the 
tracking error plot in Fig. 17, a curve labeled as “bound” is 
also drawn, which corresponds to the response of the 
performance matrix producing an upper bound of µ-norm 
smaller than 1 (robust performance condition). The tracking 
error converges to zero always faster than this signal. A 

comparison of tracking errors for the best controllers of each 
type is reported in Fig. 18, while experimental results for a 
disturbance rejection test for NPID/TDO and NPID/H∞D are 
shown in Fig. 19. The linear actuator is moved at constant 
velocity to a desired final position (see Fig. 5), changing the 
biasing spring pre-compression ds in order to simulate a load 
disturbance, which is efficiently compensated by the control 
system. Finally, the performance of the NPIR control for a 
15 Hz reference is shown in Fig. 20. When a sine sweep 
reference is applied, the tracking error reaches its minimum 
when the input is at the resonance frequency ωr, proving the 
effectiveness of this type of controller. The steady-state 
error peak is 14.89 µm. Table V summarizes the 
performance comparison using  the L2 norm of the tracking 
error (||e||2), the average steady state error (mean(e,ss)) and 
the average steady state error during control input saturation 
(mean(e,ss,sat)). The quantity in brackets represents the 
equilibrium voltage of the linearized plant used for the 
design. The NPID/H∞D shows the best performance in terms 
of all the proposed indices. NPID/TDO on the other hand 
performs very close to NPID/H∞D, which is much more 
demanding in terms of manual and numerical design effort. 
In order to reduce the emphasis on the transient error 
occurring during reference step changes, Table VI shows the 
results of the same controllers while tracking a low-pass 
filtered step reference. The chosen reference filter is a 
second order linear filter with unitary gain and a double pole 
pf = -50. In this further test, the error peak (||e||∞) is also 
considered in the comparison. The faster controllers, namely 
NPID/TDO and NPID/H∞D, exhibit the smaller error peaks 
(275 and 260 µm respectively), while the other controllers 
exhibit significantly worse performance. 
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Fig. 17.  NPID/H∞D, with nonlinearity compensation, tuned on the 
linearized model at 1.77 kV. 

VI. CONCLUSIONS 
This paper has developed a model of a positioning system 

based on a DEAP annular membrane, and proposed a 
number of model-based feedback controllers. The 
experimental comparison suggests that a simple cancellation 
of the nonlinearity on the main input of the system (the 
applied voltage) contributes to significantly improve the 
performances of controllers designed by means of 



linearization, reaching in many cases the maximum level of 
precision allowed by the considered sensor. This approach 
can be combined with other robust control design tools, such 
as H∞ design, to obtain extremely accurate tracking 
performance along with a quantitative characterization of 
the effects of the residual uncertainties in the model. The 
case of sinusoidal reference tracking has also been 
satisfactorily addressed with another variant of the PID 
including a resonant term. In conclusion, the development of 
appropriately tuned linear strategies permits to obtain 
satisfactory performances on the particular type of DEAP 
actuator considered in this paper.  

The paper leaves many interesting research directions 
open for further investigations. One challenging issue 
regards the introduction of further nonlinear elements in the 
system, such as bistable springs, to obtain larger 
deformations with the same voltage range [33]. The 
introduction of these components strongly increases the 
need of nonlinear feedback controllers motivating further 
research in this direction. Even though this paper has partly 
considered the problem of robustness with respect to model 
uncertainties, the study of the reaction of both polymer and 
electrodes on long-time use (e.g., time-varying damping, 
creep phenomena) and the ability of feedback control to 
address these changes is another important research 
direction. As also pointed out in [44], a further research step 
which could dramatically influence the penetration of 
DEAPs in mechatronic industry concerns the development 
of self-sensing approaches, in which the deformation of the 
membrane (and therefore the position of the load) is 
estimated by measures of electrical quantities, such as the 
capacitance, avoiding the need of position sensors in the 
control loop. The accurate modeling and compensation of 
the nonlinearities, as well as the analysis of closed loop 
performances carried out in this paper are certainly useful 
steps in the direction of this challenging goal. 
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TABLE V 
PID CONTROLLERS PERFORMANCE 

Controller ||e||2 

[mm·ms0.5] 
mean(ess) 
[µm] 

mean(ess,sat) 
[µm] 

PID/TD(1.25 kV) 6.87 0.60 0.75 
PID/TD(2.5 kV) 9.06 8.85 4.65 
NPID/TD(0 kV) 6.89 0.15 1.65 
NPID/TD(1.25 kV) 7.07 0.15 1.95 
NPID/TD(1.77 kV) 7.24 0.15 2.25 
NPID/TD(2.5 kV) 7.67 0.30 3.15 
NPID/TDO(1.77 kV) 4.92 0.15 .075 
NPID/H∞D(1.77 kV) 4.65 0.15 0.60 

 
 
 
 
 
 
 

 
 
 
 

TABLE VI 
PID CONTROLLERS PERFORMANCE, 

FILTERED REFERENCE 

Controller ||e||2 

[mm·ms0.5] 
||e||∞ 

[µm] 
mean(ess) 
[µm] 

mean(ess,sat) 
[µm] 

PID/TD(1.25 kV) 5.52 410  0.15 0.15 
PID/TD(2.5 kV) 8.16 446 10.35 6.60  
NPID/TD(0 kV) 5.62 380 0.15 1.95 
NPID/TD(1.25 kV) 5.80 386 0.15 1.50 
NPID/TD(1.77 kV) 6.05 392 0.15 1.95 
NPID/TD(2.5 kV) 6.55 404 0.45 3.75 
NPID/TDO(1.77 kV) 3.28 275  0.15  0.90 
NPID/H∞D(1.77 kV) 3.00 260 0.15  0.75  
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Fig. 18. Tracking error comparison for different controllers, PID/TD(1.25 
kV), NPID/TDO(1.77 kV) and NPID/H∞D(1.77 kV), experimental data. 
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Fig. 19. Disturbance rejection comparison, experimental results, 
NPID/TDO(1.77 kV) and NPID/H∞D(1.77 kV). 
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Fig. 20.  NPIR, with nonlinearity compensation, Sine sweep input around 
15 Hz. 
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