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A B S T R A C T

Industrial plastic parts, made of semi-crystalline polymers, are often produced by injection molding. In this process the
melt undergoes a complex deformation and cooling history which results in an inhomogeneous distribution of spherulites
in the component. The different size and shape of the spherulites induce local variations of the elastic properties in the fi-
nal part. To evaluate these inhomogeneities in an isotactic polypropylene (α-iPP) component accurately, a 3D multi-scale,
integrated simulation approach has been developed. At first, a coupled mold filling and heat transfer analysis is achieved
at the macro-scale and the predicted velocity and temperature fields are transferred to the micromodel. Then, a 3-D mi-
crostructure evolution model is developed, where the nucleation of spherulite germs and their growth are described. To
evaluate their effective mechanical properties a two-level homogenization scheme has been adopted. At the nano-scale,
the effective properties of the lamella build of crystalline and amorphous phases are determined. In this study, not only the
radial growing lamella of amorphous and crystalline phases is homogenized, but also its “cross hatched” lamellar struc-
ture. At the micro-scale, the spherulite microstructure is homogenized via a 3D radial distribution of equivalent lamellae
around its mono-crystal center. Finally, the application of the developed homogenization scheme allows the prediction
of the distribution of effective mechanical properties over the component thickness in different sections of the staggered
component.

© 2016 Published by Elsevier Ltd.
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1. Introduction

The manufacturing of high quality injection molded parts requires
a deep understanding of the link between material properties, process
parameters and product design. The behavior of a semi-crystalline
polymer during the injection molding process and the quality of the fi-
nal part are significantly influenced by the microstructure formed dur-
ing the filling and cooling process. In contrast to pure amorphous ther-
moplastics, the molecular chain of semi-crystalline polymers (SCP)
is partly arranged in periodic patterns during solidification. During
the solidification process, plate shaped arrangements of the mole-
cules, called lamellae, develop through the folding of the polymer
chains. These lamellae are built by the amorphous and crystalline
phases, which have the same chemical but different physical prop-
erties. They are characteristic for most of the semi-crystalline poly-
mers (Mischler and Baltra-Calleja, 2012). In the solidified melt, the
lamellae can be arranged to superstructures of different shape, for
instance in a radial configuration, named spherulite, or, in presence
of highly oriented melt, to shish-kebab structures (Janeschitz-Kriegl,
2010). The radial superstructure appears mainly in PE and PP ther-
moplastics. The diameter

* Corresponding author. Fax: +4904924138578.
Email address: g.laschet@access.rwth-aachen.de (G. Laschet)

of the spherulites varies from few microns up to several millimeters.
This diameter depends, besides the considered material, on the local
boundary conditions during solidification. During the injection mold-
ing process, the boundary conditions vary strongly so that the shape
and size of the spherulite vary significantly as well (see Fig. 1). This
inhomogeneity of the spherulites affects the properties of the compo-
nent, which need to be determined accurately.

In order to predict valuable, local effective mechanical proper-
ties of an injection molded part, we have to develop not only a suit-
able homogenization scheme, which takes into account the lamella
plate structure at the nano-scale and their radial distribution in each
spherulite at the microscale, but also to link this homogenization
scheme within an integrative, multiscale approach (see Fig. 2). At
first, a coupled mold filling and heat transfer analysis has to be per-
formed at the macro-scale in order to specify the local velocity and
temperature fields.

These fields are extracted and transferred to the microstructure
evolution simulation, which describes the crystallization process. The
developed simulation model of the injection molding process is briefly
reviewed in Section 2 and more detailed in references (Spina et al.,
2014a, 2014b; Spekowius et al., 2016).

Concerning the crystallization process of SCP, the literature is
broad. Yamamoto (2009) realizes an extensive review of such mod-
els and presents results for quiescent crystallization, under flow or
large deformation, for different polymers. Raabe (2004) uses a cel

http://dx.doi.org/10.1016/j.mechmat.2016.10.009
0167-6636/© 2016 Published by Elsevier Ltd.
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Fig. 1. Light microscopies of α-iPP microstructures produced by injection molding. Large spherulites are observed in the plate core (bottom); whereas fine spherulites are located
behind an amorphous skin layer (top). On the right microstructure zoom, thin interfaces between spherulites are identified.

Fig. 2. Multiscale simulation chain in order to predict microstructure dependent effec-
tive material properties.

lular automaton to calculate the growth of spherulites in a polymer
melt under quiescent conditions. Later, he extended his model to con-
sider also weak shearing (Raabe and Godora, 2005). Charbon and
Swaminarayan (1998) calculate spherulite formation in a temperature
field using a front tracking method. Pantani et al. (2005) analyze the
effect of the injection molding process on the crystallization process.
They implement a quiescent crystallization model to predict the mor-
phology after the injection process and show that simulations neglect-
ing the flow effect on the crystallization process leads to too large
spherulites, not observed in the experiment. Our research goal is to
compute the local microstructure evolution up to a scale of few mi-
crons by taking into account not only thermally induced quiescent
nucleation but also flow induced nucleation via the reptation model
of Doi and Edwards (1988) and to describe the spherulite growth
speed via the Hoffman et al. (1976) model. The developed microstruc-
ture model, detailed in Spekowius et al. (2016), is briefly outlined
in Section 3. It differs also from the previous developed model in
Michaeli et al., 2012, where only thermally induced quiescent nucle-
ation is taken into account and the flow induced contribution is there
neglected.

Semi-crystalline polymers, such as isotactic PP or polyethylene
(PE) are considered in the literature as heterogeneous materials and
mean-field micromechanical models like Lee et al. (1993) and Van
Dommelen et al. (2003) have been developed to predict their large
strain elasto-viscoplastic behavior. Very little work has been done
at the small strain level (Nikolov et al., 2002). Bédoui et al. (2006)
have developed two specific micro-models for their elastic behav-
ior, where either the crystalline phase or a two-phase inclusion are
dispersed in the amorphous phase randomly. Gueguen et al. (2010)
develop a three-phase model by a generalization of the double-in

clusion model. They distinguish the tied amorphous phase, which
is in direct contact with the crystalline phase, from the free amor-
phous phase around the lamellae. In their large strain model
Brusselle-Dupend and Cangémi (2008) distinguish also the tied amor-
phous phase, which is viscoplastic, from the free amorphous phase,
which remains elastic. Uchida and co-workers (Uchida et al., 2010;
Uchida and Tada, 2013) present a nano-, micro- to macroscopic mod-
elling of the viscoplastic deformation behavior of semi-crystalline PE.
In their multiscale approach a laminar composite model and a finite
element based homogenization method are used to relate the mechani-
cal behavior of SCP from the nano- to the micro-scale and an isotropic
spherulite model is introduced to perform the link between the mi-
cro- and the macro-scale. Recently, Oktay and Gürses (2015) develop
a dedicated 2.5D spherulite model for polyethylene (PE) and perform
the characterization of their micromechanical deformation by using a
viscoplastic crystal plasticity model for the crystalline phase.

To our knowledge, only in our previous publications (Michaeli et
al., 2012; Laschet et al., 2012) the crystallization results are used as
direct input to predict the effective mechanical properties of SCP. In
Michaeli et al. (2012), the asymptotic homogenization method is ap-
plied directly to the spherulites, assembled in few classes according
to their crystallinity degree; whereas in Laschet et al. (2012) a first
variant of the two-level homogenization scheme has been presented.
Our goal here is to improve this scheme by taking the crimping of
the molecular chain into account in the derivation of the crystalline
phase, by modelling the twisting and the branching of lamellae, ob-
served experimentally by Li et al, (2001) and by revisiting the ra-
dial spherulite model. In contrast to the initial model (Laschet et al.,
2012), where each lamella orientation is specified randomly, here only
the first lamella orientation of a spherulite is chosen randomly, all
other orientations will be define in a deterministic way, as outlined
in Section 4. Moreover, this section reports also the derivation of the
amorphous and crystalline phase properties and the definition of the
different RVE designs of the lamellae. Finally, in Section 5 the devel-
oped integrative multiscale simulation procedure is used to predict the
variation of the effective elastic properties over the thickness in two
sections of a staggered α-iPP plate.

2. Simulation of the injection molding process

In the multiscale simulation of effective material properties, the
first important step is to simulate is the manufacturing process. It
plays a major role as it defines the temperature and the pressure un
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der which the thermoplastic melt solidifies. For the simulation of the
injection molding process the flow and cooling behavior of the melt
has to be calculated accurately. Thereby many factors as the unsteady
melt flow with a moving flow front, the contact between the non-New-
tonian viscoelastic melt and the air inside the cavity, the phase change
during the process and the heat transfer at the mold wall have to be
considered. The complexity rises if 3D flows in complex geometries
have to be calculated.

The description of incompressible viscous Navier–Stokes flows is
based on the equations of mass, momentum and energy conservation.
Let Ω denote the physical domain, then the following equations are
valid within Ω:

with the velocity field u, the density ρ, the pressure p, the viscous
stress tensor , the external forces Fext, the temperature T, the thermal
conductivity k, the latent heat of crystallization ΔHc, the relative de-
gree of crystallization ξ and the absolute maximum degree of crystal-
lization . The relative degree of crystallinity on the macroscale is
calculated using a simple Kolmogorov-Avrami–Evans approach, com-
bined with the rate of crystallization by Nakurama et al. (1973), ac-
cording to the following equations:

where the degree of crystallization ξ is a function of the Avrami expo-
nent n and of the overall non-isothermal kinetic rate constant K(T).

The macro-scale description of the degree of crystallization is nec-
essary to take into account the influence of the heat of crystallization
on the local temperature. Of course, it has not the accuracy as it can
have within the microstructure simulation on the microscale. How-
ever, investigations by Spina et al. (2014a) showed that the calculated
crystallization degrees are sufficient accurate to be used in macroscale
models. In addition to the influence on the temperature, the degree of
crystallization ξis also used in the description of thermophysical prop-
erties via expression:

where f is a general thermos-physical property (e.g., the heat capac-
ity or the thermal conductivity). Eq. (4) is a simple mixture rule
of the pure phase properties (e.g. amorphous famoprh and crystalline
fcrys). For a semi-crystalline polymer, like α-iPP, ξ ranges from 0 to
1; whereas the absolute maximum crystallization degree is de

pendent on the cooling rate. Under ideal conditions, the value is
equal to zero for very high cooling rates, whereas for very low cooling
rate is equal to 1. However, the value of under real process condi-
tions is equal to 0.53 because the crystalline and amorphous phases co-
exist in a semi-crystalline material. Note that these properties are not
the finally calculated effective properties, expressed via the developed
multi-scale simulation approach. They do not take the local spherulite
distribution into account. In addition, some material properties cannot
be computed by this simple mixture rule. In particular, the density is
not expressed via Eq. (6) but via a cooling rate dependent, modified
2-domain Tait model. The viscosity of the melt is also computed via
a specific model, in which the entanglement effects of the molecular
chains are neglected. The melt viscosity is linked with the stress tensor
via expression:

whereby the amorphous viscosity ηamorph is described by a simple
cross-LF approach and B is the Einstein coefficient. B and φsph are fit-
ting parameters, which take implicitly the spherulite volume into ac-
count.

In addition to the pure polymer flow, the multiphase aspect of the
flow problem must be considered well. For this, the domain Ω is di-
vided into sub-domains Ωi. One subdomain is created for the initially
presented air in the cavity, one for the plastic melt. The progression of
the flow front is described by an iso-surface with a distance function
that describes the distance between the air and the melt (Osher and
Sethian, 1988). This iso-surface is calculated by means of the level-set
method in which the phase variable ϕ describes the current phase state.
In the case of ϕ > 1/2 there is locally polymer melt and for ϕ > 1/2 air.
The flow front simply is defined by ϕ > 1/2. The temporal evolution of
the flow front is given in the shared domains Ωmelt and Ωair, according
to Olsson and Kreiss (2005):

The parameter ε describes the thickness of the transition region be-
tween the two fluids, and κSdenotes a stabilization term.

The Eqs. (1)–(8) have been implemented in the CFD (Computa-
tional Fluid Dynamics) and the HT (Heat Transfer) modules of the
multiphysics finite element program COMSOL (2014). After the defi-
nition of the boundary conditions, which include the temperatures and
velocities at the borders of the domains Ωi, the velocity, the temper-
ature, the pressure and the flow front curve are calculated. Note that
the information about the material parameters used in the COMSOL
model as well as the friction and interface heat transfer coefficients are
reported in Spina et al. (2014b).

Finally, the calculated flow and temperature fields were converted
into the VTK file format of the open source visualization toolkit
Paraview (2014) and transferred to the microstructure evolution model
(see Fig. 2). Note that the calculated pressure profiles are neglected in
the further simulation of the crystallization process. This is due to the
fact, that at the microscale the melt is assumed to be incompressible.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)
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3. Simulation of the microstructure evolution

The calculation of the solidification process and the prediction of
the resulting microstructure constitute the second step in the simu-
lation chain (see Fig. 2). Here the method of the cellular automata
was used, whereby the phase state of a small melt volume depends
on the state of the adjacent volumes. This requires the definition of
a Representative Volume Element (RVE) and its subdivision into a
high-resolution mesh of voxels (Wienke et al., 2013). Each hexahe-
dron describes a small melt volume with typical sizes of 1 µm³ to
1000 µm³, whose boundary conditions (temperature and flow field)
are calculated from interpolations of the previously calculated temper-
ature and velocity fields at the corner nodes of the RVE. The tempera-
ture is interpolated linearly and the velocity fields are interpolated us-
ing B-splines. The phase state of each voxel is described by a binary
value which is zero for the liquid phase and one for the solid phase.
Goal of the microstructure evolution model is the computation of the
phase state evolution.

The simulation of the solidification process is based on an
event-based methodology. Hereby, the nucleation and the growth
events are distinguished. The tasks of the nucleation and the growth
model are to calculate the time at which the events occur. Hereby a
nucleation model based on a theory of Lauritzen and Hoffmann (1960)
is adopted:

where is the nucleation rate, which indicates the number of new
nuclei per time and volume, C is a material-specific constant, kB the
Boltzmann constant, Q the activation energy of the nucleus, ΔG the
Gibbs free energy per unit volume and Kn a material constant describ-
ing the geometry of the nucleus. The exponent n takes the values 1 or
2, depending on the temperature regime in which the nucleation oc-
curs. The model parameters C, Q, n and Kncan be calibrated by means
of isothermal experiments; whereas T is known via the boundary con-
ditions and interpolated between the corner points of the microscale
mesh. Only the Gibbs free energy ΔG needs to be calculated by micro-
scopic models. In the present approach the Gibbs free energy is com-
posed of a purely temperature-dependent term, characterizing quies-
cent nucleation, and a flow-dependent term: . This
Gibbs energy decomposition constitutes a clear improvement of the
previous model (Michaeli et al., 2012), which neglects the flow depen-
dent contribution. The quiescent term ΔGq can be easily derived from
steady state conditions by:

where Tm, 0 corresponds to the equilibrium melting temperature.
The flow-dependent part ΔGf has to be calculated by taking into ac-

count the polymer-polymer interaction. It exists different approaches
to reflect this interaction in the simulation; one of these approaches
is the reptation model of Doi and Edwards (1988). The neighboring
polymers of a polymer chain are considered as obstacles that con-
fine the cylindrical area in which a polymer chain can move freely
(see Fig. 3). Based on this observation, functions can be set up that
describe the influence of the flow field on a polymer chain, lead-
ing to the following expression for the flow induced con

Fig. 3. Reptation model of Doi and Edwards for the polymer-polymer interaction in
flow dependent melts. Left: polymer chain confined in a cylindrical shape. Right: move-
ment of the chain in a creeping manner.

tribution to the Gibbs free energy (Coppala et al., 2001):

where μ(t, t′) is the memory function of Doi and Edwards, c the entan-
glement, E (t, t′) defines the deformation tensor of the chain between
the times t′ and t and u is a unit vector.

The non-linear viscoelastic behavior of the plastic melt and thus
the interaction between the polymer chains are described by following
memory function μ(t, t′):

The sum is executed only for odd values of i. The material parame-
ter τd, named disengagement time, describes the relaxation behavior of
the polymer. This parameter is linked to the molecular weight of the
entanglement Me and to the zero shear viscosity η0(T) by:

The zero shear viscosity can be easily determined via rheological
measurements. Thus, the disengagement time τd can be expressed by
quantities, measured at the macroscale. This is a clear advantage of the
implemented reptation model.

The integration of the nucleation rate (9) allows the computation
of the number of active nuclei per unit volume at any time, NV(t). By
choosing the integration intervals small enough, this number can be
used in a Monte–Carlo step of the developed Cellular Automaton to
calculate the spatial distribution of active nuclei by comparing NV(t)
to an uniformly distributed random number R (see Spekowius et al.,
2016). The nucleation model depends on the local temperature and ve-
locity field which are computed in the macroscale simulation (see Eqs.
(1)–(3)). As these fields change over time and location, there is also
a locally varying nucleation rate and thus spherulite nucleation. Based
on this nuclei repartition at a given time in the RVE, the crystal growth
is simulated. Only the radial growth is taken into account, since this
growth type describes the formation of spherulites. The crystal growth
can be described with the Hoffman, Davis and Lauritzen model (1976)
in which a layer growth process is computed by averaging the nucle-
ation process on an existent surface:

(9)

(10)

(11)

(12)

(13)

(14)
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Here, the term describes the temperature dependence

of the rate at which new polymer chain segments solidifies. The tem-
perature T∞ corresponds to a hypothetical temperature at which no
movement of the molecular chains exists. This temperature varies
from material to material and is usually 30–60 K below the glass tran-
sition temperature. κG and v0 are material parameters, which in accor-
dance with experimental measurements, can be considered as constant
parameters.

Currently, two algorithms are implemented in the in-house code,
SphaeroSim, for the calculation of the crystal growth process (see Fig.
4):

- Monte–Carlo method (Raabe, 2004): for each cell in the crystal
growth front a probability is calculated and converted to a phase
change in a Monte–Carlo step.

- Ray tracing algorithm: for each cell in the growth front a time for
phase change is calculated by integrating the growth front along a
path starting in the spherulite center. To perform this integration,
the intersection points with the cell boundaries are determined. The
time to achieve phase change of a cell is determined when the front
reaches the far side intersection point of the cell.

One evident difference between the two algorithms used for the
simulation of the crystal growth was the final spherulite shape. In fact,
the stochastic nature of the Monte–Carlo method leads to spherulite
shapes which are not smooth. The ray tracing algorithm has no random
number contribution and thus leads to obviously smoother spherulites
(Spekowius et al., 2016). This method, which is more time consum-
ing as it involves numerical path integration, will be used here as pre-
cise forecast of the spherulite shape, if desired. Neglecting flow and
athermal influences is a simplification which is often sufficient (see
e.g. Koscher and Fulchiron, 2002 or Lee and Kamal, 1999). However,
it is questionable how general this simplification holds. A considera-
tion of flow on the crystal growth would require a micro description of
the crystallization only with a nucleation model. This would dramat-
ically increase the computational time as the layer averaging used in
the growth model cannot be applied anymore.

Together, the nucleation and the growth model allow the calcu-
lation of the evolution of the spherulite microstructure during the
solidification process. Application results are presented in Section
5. In a final step, the boundaries between individual spherulites are

marked as interface layers in order to be considered as an individual
phase in the subsequent calculation of the effective mechanical prop-
erties. The so calculated final microstructure is exported to the homog-
enization tool HOMAT (Laschet and Apel, 2010; Laschet et al., 2012)
via the standardized VTK exchange format.

4. Homogenization of semi-crystalline thermoplastics

The third and last step of the simulation chain is the calculation of
the effective mechanical properties of the previously determined inho-
mogeneous microstructure of the SCP. These thermoplastics are built
at the microscale by an agglomeration of spherulites, which are sepa-
rated by a thin interface layer (see Fig. 1 right). Each spherulite grows
radially from its mono-crystalline nucleus and consists of twisted
lamellae of crystalline and amorphous phases. Each crystalline part of
such lamella corresponds to a folded molecular chain, which for the
isotactic PP is helicoidal (see Fig. 5). As shown by Li et al. (1999),
secondary nucleation on a lamella can occur during spherulite grow-
ing as well as joining of two lamellae (see Fig. 6).

This brief zoom through the scales of an isotactic PP describes
the complexity of its microstructure, which has to be homogenized
accurately. Additionally, the fact that the amorphous and crystalline
phases are not separable increases the challenge for the homogeniza-
tion scheme. Indeed, it is not possible to produce bulk specimens of
pure crystalline and pure amorphous phases. Therefore, an individual
characterization of the mechanical properties of each phase is not pos-
sible, so that their determination is delicate.

4.1. Mechanical properties of the amorphous and crystalline phases

In order to get the mechanical properties of the amorphous phase
of α-iPP, we follow Bédoui et al. (2006), who assume that at the
room temperature this phase is isotropic and in a rubbery-elastic state.
The shear modulus G of this phase is related to the molecular mass
between entanglements Me by following relation: Gamoph = ρRT/Me,
where ρ is the amorphous phase density, T the temperature and R
the ideal gas constant. The value of Me is set to 7 kg/mol (Fetters
et al., 2007). This leads to Gamorp = 0.3 MPa and consequently to
Eamorph = 0.9 MPa. The amorphous phase is quasi-incompressible with
a Poisson coefficient of ν = 0.49993. These elastic, rubber-like prop-
erties specifies following Hooke matrix for the

Fig. 4. Illustration of the Monte–Carlo approach (top) and of the ray-tracing algorithm (bottom).
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Fig. 5. Zoom in the morphological composition of an isotactic polypropylene component.

Fig. 6. Growth of lamellae and spherulites of a semi-crystaline polymer by AFM (Li et al., 1999). Left: J2 = joining of a growing lamella with an existing lamella. J3 = joining of op-
posite growing lamellae. S = branching of lamellae by secondary nucleation and B = bending of a lamella. Right: zoom of area around J3 with S1 = start of daughter lamella embryo.

pure amorphous phase:

To derive the mechanical properties of the crystalline phase, we
start with the theoretical Hooke matrix of Tashiro et al. (1992), ob-
tained by molecular dynamics simulations. Their results outlined the
significant 3-D anisotropy of the Young modules of the crystalline
phase, due to the important anharmonic torsional vibrational modes of
the methyl groups. Their Hooke matrix defines the basis of the derived
monoclinic Hooke matrix for the pure crystalline phase (see Eq. (16).
Indeed, this phase presents only one symmetry plane perpendicular to
the molecular chain (direction c in Fig. 7 left) and the predicted Young
modulus in chain direction is very high: 42,440 MPa.

However, these are idealized properties of a mono-crystalline
straight α-iPP molecular chain. But, in spherulites and even in ultra

high strength drawn PP films, there always exists an interface with tied
amorphous molecules. Kamazewa et al. (1979) used a simple compos-
ite model of serial and parallel connection of tied amorphous and crys-
talline region to link the apparent Young modulus to the pure crys-
talline one. Based on the X-ray diffraction measurements of Sawatari
and Matsuo (1986) and using Kamezawa et al.’s approach, an appar-
ent chain modulus of Ec = 21,240 MPa is derived. This value was used
in our previous simulations (Laschet et al., 2012), but it neglects the
fact that the molecular chain is folded in a crystalline phase (see Fig.
7 right).

In order to take into account the crimping of the molecular chain
in a simplified way, two chain parts are distinguished: the straight
one with Ec as Young modulus and the folded part, having a reduced
Young modulus of Ec/4. Note that the analogy between the stiffness of
a folded chain with a woven yarn is used here in order to specify the
adopted reduction factor (Ivanov et al., 2010). By assuming that both
folded parts have a volume fraction of vf = 0.3, we get the following
serial mixture rule:

(15)
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Fig. 7. Left: the crystalline monobloc of isotactic PP at the atom scale. Right: folding of the molecular chain in the growing direction and definition of the local axis system (E1, E2,
E3).

Moreover, as the packing of the folded chains is higher in the growth
direction E1 than in the perpendicular direction E2, due to larger mole-
cular forces in direction E1, the corresponding stiffness is also higher.
Therefore, we adopt a Young modulus E1, which is 40% larger than
E2. All these considerations and assumptions are incorporated in the
following Hooke matrix of the crystalline phase, expressed in the local
axis system (E1, E2, E3):

This Hooke matrix improves the theoretical stiffness tensor of
Tashiro et al. (1992) for the crystalline phase.

4.2. Two-level homogenization scheme

A spherulite has essentially a quasi-radial distribution of twisted
crystalline lamellae and of amorphous molecules between them (see
Fig. 8) around its mono-crystal nucleus. As the nano- and the mi-
cro-scales can be separated, we introduce therefore firstly in Laschet
et al. (2012) a two-level homogenization scheme for semi-crystalline
thermoplastics such as for the isotactic PP:

• Nanoscale: homogenization of the lamellae formed by the crys-
talline phase and the amorphous layer taking or not possible branch-
ing due to secondary nucleation and or lamellae joining into ac-
count;

• Microscale: homogenization of the polyspherulite microstructure
with thin interfaces between the individual spherulites. In each
spherulite a radial distribution of equivalent lamellae around its
mono-crystal center is assumed.
To perform these two homogenization steps, a first order homog-

enization scheme, based on an asymptotic expansion method

Fig. 8. Left: 3D spherulite observed by atomic force microscopy (AFM). Right: lamel-
lae in an α-iPP spherulite (Bédoui et al., 2006).

(Sanchez-Palencia, 1980) is used. This method, detailed elsewhere
(e.g. in Laschet and Apel, 2010), is briefly summarized hereafter.

4.3. The asymptotic homogenization method

This method starts with a formal asymptotic expansion of the peri-
odic displacement and temperature fields, uh and Th with the scale ra-
tio ε, defined by y = x/ε on the Representative Volume Element (RVE)
of the heterogeneous material:

where x expresses the macroscopic, global variable, which measures
the low variation of the mean value of the considered property from
RVE to RVE; whereas y specifies the periodic microscopic variable,
which describes the strong variation of the property within each RVE.

The scale ratio ε has a small value and depends if we consider the
nano- to microscale transition or the transition between the micro- and
the macroscale. The Hooke matrix of the heterogeneous lamella or
of the semi-crystalline polymer is assumed to be a periodic function,
whose first order asymptotic expansion is given by:

The serial developments (17) and (18), the differential operator
and the following stress definitions:

where ur specifies either u0 or u1 and Ekl and ekl are the macroscopic
and microscopic strains expressed either in terms of x or y respec-
tively (Laschet and Apel, 2010); are introduced in the static equilib-
rium equations leading to a system of differential equa-
tions, sorted with respect to the scale ratio ε:

(16)

(17)

(18)

(19)

(20)
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These differential equations are homogeneous. As the Hooke ma-
trix is positive definite, eij(u

0) = 0 and u0(x,y) = u(x). Thus, the first
term of the serial expansion, u0, depends only on the macroscopic
variable x and not on the microscopic one.

This system is linear in y. Its solution is composed of the homoge-
neous solution: plus a special solution of type:

where with rs = xx, yy, zz, xy, xz, yz are periodic

microscopic displacement fields induced by the initial macrostains
, which are taken unitary in elasticity.

At next, the special solution (22) is introduced in the system (21)
and then the initial macrostrains are extracted from the system,
leading to following system:

A variational formulation is applied to the differential system (23)
in order to determine the unknown displacement fields ζrs (Guedes and
Kikiuchi, 1999). Using a 3D finite element discretization of the RVE,
the nodal values Zrs of these fields are solution from the following dis-
cretized RVE problems (see e.g Laschet and Apel, 2010):

where:

• K(T0) is the elastic stiffness matrix of the RVE;
• gim,H are implicit surface tractions, which are induced by the jump

of the Hooke matrix at the phase boundaries;
• gΔH are implicit body forces, which are induced by the variation of

the Hooke matrix within each material phase of the RVE.
3. ε0 term: The solution of this term leads to the definition of follow-
ing effective Hooke matrix of the considered heterogeneous mater-
ial:

where T0 is the mean temperature on the RVE, |Y| the volume of the
RVE and ers (ζrs) the microscopic total strains.

Note that expression (25) constitutes an improvement of the vol-
ume averaging Hooke matrix, given simply by the first term of Eq.
(25).

Eventually, in order to get the effective engineering properties, the
predicted Hooke matrix (23) is symmetrized and then inverted. From
the obtained flexibility matrix , the effective orthotropic Young
modules (EX, EY, EZ), and shear modules (GXY, GXZ, GYZ) and the
effective Poisson coefficients (νXY, νXZ, νYZ) are derived in the RVE
axis system (eX, eY, eZ) (Nemat-Nasser and Hori, 1999).

4.4. Homogenization of the crystalline/amorphous lamella at the
nanoscale

In a lamella the spatial distribution of the amorphous and crys-
talline phase has to be defined on the nanoscale. The goal is to de-
sign the best possible approximation of the lamellar structure within
spherulites of an injection molded specimen. In particular, the pro-
portion of the pure crystalline phase has to correspond to the de-
gree of crystallization ξ = 53%, measured by differential scanning
calorimetry. Based on SEM micrographs of α-iPP in Mischler and
Baltra-Calleja (2012, page 259) and observations of Bédoui et al.
(2006), the geometry of a plane unit cell, named crux2D, is specified
(see Fig. 9). The mean length of the lamella is set to 1500 nm and
the width of the crystalline phase wc to 60 nm; whereas the width of
the amorphous phase (w = 65.2 nm) respects ξ = 53%. Moreover, the
α-iPP lamella is twisted by angle of nearly 6° over the specified length
(Assoiline et al., 2001). To simply model the lamella twist, we define
an equivalent flat crux2D design with a larger thickness of 21.6 nm in-
stead of the initial 15 nm. In this design the volume fraction of each
phase and the global lamella volume are well respected.

The plate-like crux2D design improves the previous simple
bi-lamella models (Laschet et al., 2012) not only by modelling the
lamella twist but it allows also a proper application of the periodic
boundary conditions in the E1–E2 plane (see Fig. 7.right) and a bet-
ter fixation of the rigid body modes. The last two points are impor-
tant as they affect the quality of the numerical homogenization re-
sults directly. Indeed, the homogenization of a lamella composed of an
incompressible, low stiff amorphous phase with a highly anisotropic
crystalline phase is a challenging numerical task. Special mixed finite
elements with area bubble functions (Mahnken et al., 2008) are used
to handle with the quasi-incompressibility of the amorphous phase.

In a second, more complex design, named skew3D, the forma-
tion of branches due to secondary nucleation is integrated firstly in a
lamella design (see Fig. 10). The basis of this new design constitutes
the design crux2D.

Castelein et al. (1997) measured by scanning force microscopy
that the new branches formed an angle of 80.4° with the principal
lamella direction. This constraint is taken into account as well as an

Fig. 9. Plate-like design crux2D of crystalline/amorphous lamella. The total width of the crystalline phase (dark color) is set to 60 nm, whereas the width of amorphous phase (grey
color) is 65.2 nm, according to the crystallization degree ξ = 53%.

(21)

(22)

(23)

(24)

(25)
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Fig. 10. RVE design skew3D with forward and backward branches. Left: definition of the two branches in the plane E1–E3. Middle: whole RVE with amorphous phase enveloping
the crystalline branches. In light grey is represented in the right figure the primary growing crystalline lamella.

observation of Li et al. (1999): branches in growth direction are nearly
four times longer than secondary branches in backward direction, due
to limited material supply because most of the molecular chains are
trapped by adjacent lamellae. The design skew3D has the same crys-
tallization degree as design crux2D. The secondary branches have
been skewed by an angle of 45° in the plane E2–E3 (see Fig. 7 right),
perpendicular to the growth direction E1, as shown in Fig. 10 right.
Thus, directions E2 and E3 play the same role; whereas without skew-
ing, direction E3 becomes stiffer as the branching angle lies in the
plane E1–E3. Moreover, in contrast to the design crux2D, the whole
crystalline phase is enveloped by the amorphous phase, so that 3D pe-
riodic boundary condition can be specified on the RVE.

With the Hooke matrices (15) and (16) for the amorphous and crys-
talline phases respectively, we obtain by asymptotic homogenization
for both lamella designs following effective Hooke matrices (in MPa)
of the α-iPP lamella in the local axis system (E1, E2, E3):

The effective Hooke matrix of design crux2D is quasi monoclinic
and presents a pronounced anisotropy due to the folded chain ori-
ented in direction E3 in the crystalline phase. Compared to the pure
crystalline phase one, this anisotropy is reduced. The effective Hooke
matrix of design skew3D is full anisotropic. In Table 1 the effec-
tive Young and shear modules for both designs of the α-iPP lamella,
expressed in the local axis system (E1, E2, E3), are outlined. As
the crystallization degree (ξ = _53%) is identical for both lamella
designs, the volume averaging Hooke matrix, corresponding to the
1st term of Eq. (25), is the same for both designs. The deduced
Young and shear modules are reported also in Table 1. For

Table 1
Effective Young and shear modules [MPa] of both lamella designs crux2D and skew3D
in the local axis system and the corresponding volume averaging values.

Design E1 E2 E3 G12 G13 G23

crux2D 1615.85 968.57 6997.79 25.17 649.53 29.94
skew3D 1657.24 1260.51 6029.75 508.38 558.17 679.81
vol. avrg. 1831.97 1356.50 7331.14 647.88 648.34 758.12

each design, they allow to quantify the accuracy increase due to the
1st order homogenization correction terms via Eq. (25).

Design crux2D predicts stronger stiffness in folded chain direction
E3 than the design skew3D due to the absence of an amorphous/crys-
talline interface with a normal in E3 direction. Due to its construction
with a skew angle of 45° in the plane E2-E3, design skew3D provides
also a larger Young modulus E2 than design crux2D, so that the over-
all anisotropy of the equivalent lamella is reduced mainly in E2 and
E3 directions:

• skew3D: ΔE1,m = −44.4%; ΔE2,m = −57.7%; ΔE3,m = 102.2% with
Em = 2982.5 MPa

• crux3D: ΔE1,m = −49.4%; ΔE2,m = −69.7%; ΔE3,m = 119.1% with
Em = 3194.1 MPa

with deviation definition:
The predicted effective shear modules confirm the reduced global

anisotropy of design skew3D against the design crux2D: maximum
deviation ΔG23,skew = 16.8% against ΔG13,crux = 176.5% ! Indeed, only
2D periodic boundary conditions (B.C.) are applied in the plane E1–E2
of RVE crux2D, out-of-plane displacements become large, inducing
unphysical, large corrections to the volume averaging values via ex-
pression (25). Therefore, design skew3D outperforms design crux2D
not only physically, due to modeling of observed secondary branches
in a spherulite, but also numerically.

4.5. Homogenization of a polyspherulite microstructure

At the microscale, the objective is to predict the effective me-
chanical properties of polyspherulite microstructures, predicted by
SphaeroSim by using the 3D crystallization model, described in
Section 3. The homogenization tool HOMAT reads the final solidified
microstructure (see Fig. 2 and 11 left) and needs two additional ingre-
dients to perform their homogenization:

• The 3D radial spherulite model to describe accurately the equiva-
lent behavior of each spherulite individually;

(26)
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Fig. 11. Left: Spherulite microsture calculated by SphaeroSim and located at the top skin in the 3 mm section of the staggered α-iPP plate. Right: Definition of the local axis system
(e1, e2, e3) in Gauss point G1 and (e1”, e2”, e3”) in Gauss point G2.

• The mechanical properties of the thin boundary layer between
spherulites. In the present work, this thin layer is considered firstly
as an individual phase and is discretized with a thickness of one cell
in Fig. 11.left.
(A) The 3D radial spherulite model: The effective lamella is dis-

tributed radially around the spherulite center in practice as follows:
in each Gauss point of the finite element discretization, the normal-
ized vector PG - C is expressed (see Fig. 11.right). This vector defines
the growth direction of the crystalline/amorphous lamella and corre-
sponds to the direction e1 of the local lamella axis system.

As currently no reliable experimental information exists on how the
crystalline lamella is oriented in the plane perpendicular to its growth
direction, the local directions e2 and e3 are specified randomly in the
1st Gauss point of a spherulite. In order to improve the initial model
(Laschet et al, 2012), the directions in the next Gauss points are ex-
pressed now in a deterministic way rather randomly as physically
there exists an unknown orientation relationship between neighbor-
hood lamellas:

• At first, the growth directions e1 and e1’ of the Gauss points G1 and
G2 (see Fig. 11.right) are expressed in spherical coordinates (r, θ,
φ) respectively. Then a rigid body rotation of the local axis system
(e1, e2, e3) of Gauss point G1 to Gauss point G2 is achieved, defining
thus the intermediate, local system (e1’, e2’, e3’). Angle dβ specifies
this rotation:

• In the perpendicular plane ΠG2 defined by the intermediate unit
vectors e2’ and e3’ (see Fig. 11.right) an additional rotation α is
then applied around the common normal e1’ = e1”. Different coarse
and fine discretizations of an idealized spherulite with central nu-
cleus have shown that this angle has to be specified in the range
α ∈ [65°–85°] in order to get a quasi-isotropic elastic equivalent
behavior of the idealized spherulite. This angle varies

linearly within its validation range with the distance of the consid-
ered Gauss point Gi to the spherulite center C via expression:

where PGmax is, for each spherulite, the largest distance to its center.
This way, we take into account the twisting of the lamella in the

3D spherulite and the local axis system (e1”, e2”, e3”) in the considered
Gauss point Gi is specified in a deterministic manner.

Then, the Hooke matrix of the equivalent lamella, expressed in
the local axis system of each Gauss point, is rotated to the original
RVE axis system (eX, eY, eZ), which has been chosen parallel to the
structural axis system of the injection molding process (see Fig. 11).
Note that at a larger distance from the spherulite center, the number
of Gauss points in the spherulite increases also. Thus, the nucleation
of secondary or tertiary branches of lamella in the spherulite is taken
implicitly into account by the specification of more Gauss points at a
certain distance from the spherulite center than nearby. In each Gauss
point, a lamella with its own orientation, defined by Eqs. (27) and (28),
is assumed to be located there. Moreover, the subsequent asymptotic
homogenization calculation takes via the implicit body forces gΔH (see
eq. 24) the variation of the lamella orientation within each spherulite
into account. This is an advantage of the developed homogenization
scheme.

(B) The spherulite boundary (SB) is considered here as an individ-
ual isotropic phase dotted with its own elastic properties. As presently
there is no experimental characterization of the spehrulite boundary
available in the literature, their specification is delicate. Here a resid-
ual degree of crystallization of ξSB = 33% is assumed due to the
fact that in reality folded molecule chains end in the thin bound-
ary layer. Applying a simple mixture rule, we get following elas-
tic properties:
and .

(27)

(28)
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5. Application: multiscale simulation of an injection molded step
plate of α-iPP

As an example of the developed integrative simulation chain, the
injection molding process of a staggered plate made of isotactic
polypropylene type 505P, SABIC AG, Bergen op Zoom, Netherlands,
is considered here. The geometrical configuration of the stepped com-
ponent, designed for a welding application, is given in Fig. 12. It
has been selected because it has different thicknesses ranging from
1 mm to 4 mm. In each of the stairs different cooling and flow con-
ditions exist, which affect the formation of the spherulite microstruc-
tures directly and thus also the mechanical properties in each step. A
comprehensive characterization of the macroscopic thermophy-sical
properties of this α-iPP can be found in Spina et al. (2014b). To
calculate the microstructure dependent effective elastic properties of
injection molded parts, a multi-scale

simulation chain of three simulation tools has been set up, which op-
erate at three distinguish scales: macro-, micro- and nanoscale.

5.1. 3D mold filling and heat transfer analysis

Real process parameters are adopted for the 3D coupled mold fill-
ing and transient heat transfer simulation with the multiphysics FE
code COMSOL: an inlet flow of 25 cm3/s, a pressure level of 70%
of the maximum injection pressure of 120 MPa, a pressure time of
20 s and a cooling time of 40 s. The mold wall temperature was set
to 40 °C; whereas a melt temperature of 220 °C has been adopted.
To compute accurately the filling progress P2 + P1 Taylor–Hood ele-
ments with quadratic shape functions for the velocity field and the free
surface field, ϕ and linear functions for the pressure and temperature
fields are used. The mesh size of the mold cavity used in the mold fill-
ing analysis was 100 µm.

The 3D melt front in section S3 is shown in Fig. 13. As each plate
stair has a uniform cross-section, a steady state velocity profile was

Fig. 12. Geometrical configuration of the 505P polypropylene staggered plate.

Fig. 13. Flow front advancement in the stepped α-iPP plate for a given inlet velocity and zero outlet pressure.
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developed after a short transient time. The obtained velocity profile
points out that the polymer melt undergoes a fountain flow effect with
a higher velocity at the centerline than at both mold walls, The flow
front is not pure symmetrical but slightly shifted to the upper mold
wall as the flow entrance is near this wall. In addition to the veloc-
ities and the position of the flow front, the temperature distribution
is also necessary for the calculation of the solidification process. The
temperature increases at the mold wall during the filling and the hold-
ing phase from 40 °C to 50 °C. The temperature profile in the middle
plane of the staggered plate is shown in Fig. 14 and is induced by dif-
ferent heat fluxes at the steel walls and at the filling front. The polymer
in contact with both mold walls freezes rapidly due to the high local
thermal gradient, creating thus a thin insulating layer and inducing a
quasi-constant temperature in the core; whereas the air/melt heat flux
cooled the melt but not enough to solidify the melt.

5.2. Microstructure evolution simulation

As illustrated in Fig. 11 four cross sections have been defined
in the middle of each stair of the plate. The crystallization process
is predicted at the microscale in each of these cross sections. In the
3 mm section 10 RVE's of extension 300 µm3 are defined over the
cross section thickness. They are all located in the middle of the Z

axis. Each cubic RVE is discretized by 120 cells per direction, leading
to a model with 1728,000 cells. Thus, each RVE cell has an extension
of 2.5 µm3. The 2 mm section is discretized by 7 RVE's of same ex-
tension over its thickness, except the central one with an extension of
300*200*300 µm3. These RVE's are also located in the middle of the
Z axis (Z = 15 mm).

Fig. 15 left shows the microstructure over the cross-section at sec-
tion S3 within the light microscope. A fine structured layer is observed
in the core, which is surrounded by two layers with larger spherulite
diameters. Two fine structured layers appear at the mold wall. They
are the result of the steep cooling gradients; whereas the interplay of
flow and temperature results in the structure of the other layers. The
microstucture evolution during solidification in the five observed lay-
ers is also predicted with the developed in-house tool SphaeroSim (see
Fig. 15 right). The expected solidification progress from the mold wall
to the core occurs throughout the entire crystallization process. The
core area solidifies within a few seconds resulting in a finer structure.
The predicted diameters are in a range up to a diameter of 32 µm,
which is in agreement to the observation (see Fig. 16).

Fig. 17 shows the solidified spherulite microstructure in the core
area at section S2. Again, the calculated diameters of 40 µm are in
good agreement to the corresponding micrograph.

Moreover, this good agreement can be confirmed by comparing
spherulite diameters at different positions over the wall-thickness

Fig. 14. 2D temperature and velocity profiles in the middle plane (Z = 15 mm) of the α-iPP plate.

Fig. 15. Left: polarized light microscopy of section S3: Right: microstructure evolution during solidification. The predicted five layer structures are also observed experimentally in
the microscopy image.
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Fig. 16. Comparison of the spherulite diameter close to the mold wall at section S3.

Fig. 17. Comparison of the spherulite diameter in the core area of section S2. To distin-
guish the different spherulites a random color has been assigned to each one, which is
shown in the bottom right.

(see Fig. 18) with computed results of the macro- and micro-models.
In particular the values closer to the mold walls are computed at 1.0 s
at locations S2 and S3.

The variation of the spherulite diameters is a direct result from
the temperature and velocity fields, which change over the wall-thick-
ness. The experimental validation of the microstructure

Fig. 18. Comparison of the spherulite diameters of section S2 (3 mm) and S3 (2 mm).

simulation was only done for the spherulite diameter because it is di-
rectly accessible via polarized light microscopy figures of thin cut-
tings. Other quantities like the volume fraction of the spherulites or its
total number require indirect measurement techniques which usually
require further extrapolations or crystallization models itself.

For each location over the cross sections 2 and 3 mm the so-
lidified microstructure is transferred to the homogenization program
HOMAT. Note that in both plate sections, both extremal RVE's in di-
rect contact with the mold wall are not transferred as their microstruc-
ture is very fine with a lot of spherulites having only one cell exten-
sion! In the VTK exchange files the spherulites and their boundaries
are written and in a separate file, the center of each spherulite.

5.3. Prediction of effective elastic properties

At first, the cellular automaton cells are converted to linear hexahe-
dron elements and 2D periodic BC in directions eX and eY are applied
on all RVE's of sections S2 and S3 to perform the asymptotic homog-
enization analyses. The effective elastic properties of both lamella de-
signs, crux2D and skew3D, are retained in the homogenization runs
in order to quantify their impact on the overall effective properties of
the α-iPP plate. The predicted effective Young modulus in the flow di-
rection, EX, is drawn over the thickness of section S3 for both lamella
variants in Fig. 19. The experimentally measured Young modulus of
a PP plate of thickness 3 mm, Eexp = 1721 MPa is outlined as refer-
ence. The predictions of the design skew3D are obviously closer to
the experimental value than the predictions of design crux2D. Indeed,
only a maximum deviation of 1.38% is noted for the RVE located at
Y = −1.95 mm; whereas design crux2D induces a maximum deviation
of −14.01% for the RVE located at the top plate skin (Y = −0.45 mm).
This result underlies that the lamella design skew3D outperforms the
crux2D one. Therefore, a detailed analysis has been achieved only for
design skew3D.

At Fig. 20, the variation of the predicted effective modules in the
structural axis system is given for both plate sections S2 and S3.
The 2-level homogenization scheme predicts an orthotropic equiva-
lent behavior in both plate sections with always EY < EX < EZ. Like-
wise, this anisotropy tendency is corroborated by the experimentally
measured mean Young modules in the flow direction, Ex, exp and in
the thickness direction Z, Ez,exp for the plate section S3. Note that
later Young modulus is derived from an acoustic experiment via re-
verse engineering. Moreover, a significant asymmetry behavior over
the plate thickness is predicted in both sections. The Young mod

Fig. 19. Effective Young modulus EX in flow direction, predicted by designs crux2D
and skew3D, and the experimentally measured Young modulus.
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Fig. 20. Variation of the effective Young modules over the thickness of sections S3 and
S2 predicted with lamella design skew3D.

ules at the top plate skin are smaller, thus inducing a locally more

flexible behavior, than the modules predicted at the other skin. This
different local stiffness over the plate sections S2 and S3 can be ex-
plained by the different cooling behavior at the two mold walls (see
Fig. 21) and the resulting microstructure variations. Indeed, at the top
skin the cooling gradient is high, leading to a significant undercooling;
whereas at the bottom skin with its steps, not only the gradient is lower
but also, due to melt flow recirculation, the polymer is reheated before
it solidifies. This different cooling behavior induces not only different
microstructures at top and bottom mold walls but also a stiffer elas-
tic behavior at the bottom skin. The local re-heating identified in both
curves was caused by the release of the latent heat of crystallization
ΔHC (see Eq. (3)) during the crystallization process.

The comparison of the variation of the Young modules over sec-
tions S2 and S3 indicates clearly that section S2 presents lower over-
all stiffness than section S3 due to its finer spherulite microstruc-
ture. Indeed, as shown in Fig. 22, due to stronger cooling in section
S2 the number of spherulites per volume unit in each RVE is there
larger than in section S3. This finer microstructure induces a signifi-
cant increase of the spherulite boundaries, as shown in Fig. 22 right:

Fig. 21. Cooling curves in section S2 at two points P1 and P2 near both mold walls.

Fig. 22. Left: number of spherulites per unit volume [100 µm3] in sections S2 and S3. Right: volume fraction of spherulite boundaries in the RVE's defined over the thickness of
sections S2 and S3.
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Vf,SB varies around 33.2% in section S2; whereas it varies around
24.6% in section S3. As the spherulite boundary is weaker than a
spherulite itself, it is obvious that the homogenization runs predict a
more flexible behavior of the 2 mm section than of the 3 mm one.

Important is to comment the anisotropic effect of the above results.
The different cooling and flow conditions in sample points lead to dif-
ferent nucleation and growth speeds so that the number of spherulites
and their shape are very different near both tool walls and in the
plate center. Moreover, in the investigated stepped preform the up-
per and lower walls present also different cooling behavior (see Fig.
21). Therefore, local variations of mechanical properties over the plate
cross sections are expected. The homogenization analysis evaluates
the effective properties of 10 RVE's (section S3) or 7 RVE's (section
S2) over the plate thickness respectively and determines for each of
them its specific anisotropy. The origin of the anisotropy lies clearly in
the mechanical behavior of the crystalline phase of i-αPP: the folded
molecular chain of helicoidal type. Its Hooke matrix (see Eq. (16)) is
monoclinic and presents a strong anisotropy. Therefore, independent
of the adopted design (with or without secondary branches), the effec-
tive properties of the lamella are anisotropic. Moreover, at the RVE
level, implicit surface tractions are generated at the spherulite bound-
aries between adjacent spherulites and volume forces due to the Hooke
matrix variation within each spherulite, induced by different lamella
orientation in each Gauss point (see Fig. 11). These forces (see Eq.
(24)) induce microscopic displacement and strain fields on each RVE,
which are used in the evaluation of the effective Hooke matrix (see Eq.
(25)) and are responsible for the anisotropy of each calculated RVE
over the plate cross sections.

The effective shear modules, outlined in Fig. 23 left, corrobo-
rate the Young modules results: section S2 is more flexible than
section S3 and a pronounced orthotropic equivalent behavior with
GXY < GYZ < GXZ is predicted. An asymmetric variation of the shear
modules over both cross sections is also observed. Otherwise, in-
dependent of the shear plane, the corresponding modulus is slightly
larger in the center of the cross sections than at both skins. Eventually,
the effective Poisson coefficients are draw in Fig. 23 right over the
thickness of sections S3 and S2 respectively. Poisson coefficients νXZ
and νYZ, having transverse direction Z in common, are quite similar
and their values are much larger than the in plane Poisson coefficient
νXY, whose mean value is 0.333 in section S3 and 0.3365 in section
S2. The mean values of νXZ are 0.457 (S2) and 0.441 (S3) and of νXZ
are 0.456 (S2) and 0.449 (S3) respectively. Due to finer microstruc-
ture with a larger spherulite boundary, the impact of the incompress-
ible amorphous phase is more pronounced in section S2 than in section
S3, explaining so the slightly larger mean values in section S2 than in
section S3.

6. Conclusions

An integrative, multiscale simulation approach for the derivation
of inhomogeneous mechanical properties in semi-crystalline polymer
components has been presented and successfully applied to the mold
injection of a stepped α-iPP plate. The boundary conditions for the
crystallization process were calculated using a multiphase filling and
cooling simulation. A crystallization model was implemented on the
macro- and micro-scale to predict the changes of crystallization degree
and the evolution of spherulite (nucleation and growth) during cool-
ing. Both quiescent and shear-induced crystallization were computed
and validated with experimental data. The application of the step plate
shows that a COMSOL - SphaeroSim link is able to predict the effects
of process parameters on the spherulite's morphology and their pre-
dicted diameters are correct. In the subsequent homogenization step,
a dedicate two-level homogenization scheme has been extended suc-
cessfully. Indeed, the crimping of the crystalline molecular chain, the
twisting of the lamellae and the possible formation of branches due to
secondary nucleation are taken firstly in the design of the lamella into
account. This two-level homogenization scheme allows the accurate
determination of the influence of the lamella design and of the crys-
talline properties on the effective properties of spherulitic microstruc-
tures. In the 3D radial spherulite model, the definition of the lamella
orientations perpendicular to the radial growth direction has been re-
visited: these orientations are specified only in the 1st discretization
point randomly; whereas in all other points they are expressed in
a deterministic way. The concept of an interface boundary between
spherulites as independent isotropic phase has been introduced. The
developed multiscale approach allows to derive microstructure de-
pendent inhomogeneous material properties in injection molded parts.
The orthotropic results are in the range of expected values. Moreover,
this investigation shows the importance of the process-related temper-
ature field on the microstructure formation and, subsequently, on the
asymmetrical variation of effective mechanical properties in sections
of the analyzed staggered α-iPP plate. The calculation of elastic prop-
erties of injection molded parts made of PP is seen as a possible ap-
plication field. However, the models are physical motivated and allow
a direct transfer to other processing methods, like extrusion. Thus, the
application domain becomes larger.

In future work, the presented integrative multiscale scheme will
be extended to derive effective thermal properties and the effective
viscoplastic behavior of α-iPP. Moreover, in analogy to the method
suggested by Boettger et al. (2009) for metals, an iterative, self-con-
sistent scheme will be developed in order to use not only

Fig. 23. Variation of effective shear modules and Poisson coefficients over the thickness of sections S3 and S2 predicted with lamella design skew3D.
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the predicted effective properties in the mold filling and heat trans-
fer analysis but also to correlate the heat release at the micro- and
macro-scale. In addition, an adaptation of the lamella model to the
specific characteristics of other semi-crystalline polymers, as HDPE,
PET and PLA, will be a subject of future researches.
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