
1.  Introduction
The microwave and antenna systems designers are constantly involved in the optimal design of electromagnetic 
devices of increasing complexity. This is typically one of the most difficult problems to solve since it involves a 
large number of parameters, complex constraints, and objective functions with more than one optimum (Mescia 
et al., 2017). Moreover, in many cases, the optimization problem is non–linear and more challenging issues occur, 
especially when many local optimal solutions exist (Fornarelli et al., 2009; Yurtkuran, 2019).

Since the objective function is generally a multimodal one and considering that it is very difficult for determin-
istic algorithms to find the global optimal solution, many metaheuristic algorithms have become increasingly 
popular because of their potential in solving large-scale problems efficiently in a way that is impossible by using 
deterministic approaches. Compared to other nature-inspired optimization algorithms the swarm-inspired ones 
are gaining popularity within the electromagnetic research community and among electromagnetic engineers as 
design tool and problem solvers. In fact, they are able to efficiently find global optima without being trapped 
in local extrema as well as to address nonlinear and discontinuous problems characterized by great numbers of 
variables (Garg, 2014; Jin & Rahmat-Samii, 2007). However, according to the fact that there is no universal opti-
mizer that can solve all optimization problems, a variety of swarm intelligence–based optimization algorithms 
have been developed. They include particle swarm optimization (PSO), ant colony optimization, cuckoo search, 
cockroach swarm optimization, firefly algorithm, bat algorithm, artificial fish swarm algorithm, flower pollina-
tion algorithm, artificial bee colony, wolf search algorithm, gray wolf optimization (Hassanien & Emary, 2016). 
As a result, the choice of a proper algorithm is a key issue especially considering that a general rule not exist, yet.

As in all swarm intelligence-based metaheuristic algorithms, the PSO is based on the general concept pertain-
ing interaction and information exchange between multiple agents. In particular, it consists of population with 
members that locally interact each other following simple rules having some randomness. These interactions 
yield a collective intelligence resulting in a more organized and directive behavior than that of a stand alone 
individual. Since its introduction, PSO has received considerable attention by electromagnetic community as a 
powerful intelligent optimization method (Ciuprina et al., 2002; Jin & Rahmat-Samii, 2008; Robinson & Rahmat-
Samii, 2004). The PSO paradigm has been successfully applied to solve different electromagnetic design prob-
lems because of its flexibility, efficiency, highly adaptability, implementation easiness, and many distinct features 
in different types of optimizations (Goudos et al., 2018; Greda et al., 2019; Mescia et al., 2011, 2014; Palma 
et al., 2014; Rehman et al., 2019; Xu & Fu, 2020). The PSO scheme provides better results in a faster and cheaper 
way with fewer parameter adjustments. Moreover, because its gradient–free mechanism the PSO is able to manage 

Abstract  In this paper, an improved quantum-behaved particle swarm optimization (QPSO) approach for 
modeling antenna impedance is illustrated. In the proposed study, the enhanced weighted quantum particles 
swarm optimization (EWQPSO) is introduced with the aim to achieve local convergence acting on a reduced 
number of free parameters. To verify the performance of the proposed EWQPSO, several tests involving 
Ipersphere, Alpine, De Jong, Zakharov, Salomon functions were carried out. The obtained results demonstrated 
that the convergence is achieved more quickly by the EWPSO than other optimization algorithms based on 
QPSO. A lumped element equivalent circuit was designed to model the terminal impedance of a broadband 
planar sinuous antenna in the frequency range from 1 to 3 GHz. The developed EWQPSO algorithm is then 
used to recover all the parameters characterizing the equivalent circuit. The resulting circuit exhibited a good 
impedance fidelity over the whole frequency range.

MESCIA ET AL.

© 2022. The Authors.
This is an open access article under 
the terms of the Creative Commons 
Attribution License, which permits use, 
distribution and reproduction in any 
medium, provided the original work is 
properly cited.

Quantum Based Particle Swarm Optimization for Equivalent 
Circuit Design of Terminal Antenna Impedance
L. Mescia1  , G. Mevoli1, and P. Bia2

1Department of Electric and Information Engineering, Politecnico di Bari, Bari, Italy, 2Design Solution Department, 
Elettronica SpA, Rome, Italy

Key Points:
•	 �Quantum–inspired PSO for solving 

complex electromagnetic problems
•	 �Lumped element equivalent circuit for 

modeling the driving point antenna 
impedance

•	 �Effective methodology for 
synthesising broadband equivalent 
circuits

Correspondence to:
L. Mescia,
luciano.mescia@poliba.it

Citation:
Mescia, L., Mevoli, G., & Bia, P. 
(2022). Quantum based particle swarm 
optimization for equivalent circuit design 
of terminal antenna impedance. Radio 
Science, 57, e2022RS007433. https://doi.
org/10.1029/2022RS007433

Received 22 JAN 2022
Accepted 23 APR 2022

Author Contributions:
Conceptualization: L. Mescia
Data curation: L. Mescia
Formal analysis: L. Mescia, P. Bia
Investigation: G. Mevoli
Methodology: L. Mescia
Software: P. Bia
Validation: G. Mevoli
Visualization: L. Mescia
Writing – original draft: L. Mescia

10.1029/2022RS007433
RESEARCH ARTICLE

1 of 13

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-2339-1214
https://doi.org/10.1029/2022RS007433
https://doi.org/10.1029/2022RS007433
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2022RS007433&domain=pdf&date_stamp=2022-05-24


Radio Science

MESCIA ET AL.

10.1029/2022RS007433

2 of 13

very complex fitness functions with a limited number of control parameters. Due to the stochastic behavior, the 
classical PSO algorithms should need a lot of iterations to get a meaningful result. However, the current research 
on PSO has shown that it is easily trapped into local optima looking for the global optimum of difficult optimiza-
tion problems. Thus, to overcome the unnecessary computational load, current research activities are focused on 
the refinements of the methods to create a good balance between precision, reliability and computational loads. 
In this regard, quantum inspired PSO was proposed to address such limitations and, in general, for treating a class 
of problems encountered in electromagnetic engineering (Fahad et al., 2021; Sun et al., 2011). A variant of QPSO 
was successfully developed to perform a systematic and detailed study of a new class of dielectric lens antennas 
(Bia et al., 2015; Mescia et al., 2016). A modified quantum inspired particle swarm optimizer was proposed for 
global optimization in the study of electromagnetic design problems (Rehman et al., 2019). An extended version 
of QPSO was coupled with fractional calculus-based FDTD algorithm to study the propagation of the electro-
magnetic waves inside arbitrary dispersive dielectric materials (Caratelli et al., 2016; Piro et al., 2016). Moreover, 
modified QPSO algorithms was proposed for global optimizations of electromagnetic inverse problems (Bia 
et al., 2016; Mescia et al., 2017; Rehman et al., 2018).

In many areas of electromagnetism, and in particular when analyzing antenna systems, it is of great importance 
to have a simple lumped–constant equivalent circuit to model the terminal behavior and receiving properties of 
radiating structures over a broad frequency range. In fact, it can provide computational convenience and physical 
insights into the operation and design of a broadband antenna. Moreover, the equivalent circuit would be useful 
to perform circuit simulations involving mixed frequency and time domains as well as simulations of antenna 
systems including nonlinear devices (Huang et al., 2021; Kim & Ling, 2005). As it is well known, a simple equiv-
alent circuit can be used to model the driving-point antenna properties in narrow bands of frequencies around its 
resonance region. On the other hand, it is not easy to devise an equivalent circuit containing frequency dependent 
elements able to provide a broadband representation of the driving-point impedance function. Because of these 
modeling challenges, in this paper we describes an effective methodology pertaining the synthesis of broadband 
equivalent circuits with frequency and time invariant elements. Our task was to synthesize an equivalent circuit 
consisting of a finite number of lumped and linear elements, whose behavior at the feed terminals is a good 
approximation of the broadband frequency domain data concerning antenna simulations. To this aim, a quan-
tum–inspired version of the PSO algorithm, namely the enhanced weighted quantum PSO (EWQPSO) has been 
specifically adopted to estimate and to optimize the equivalent circuit parameters for the best impedance fidelity. 
In this regard, our algorithm was tested considering the driving-point impedance calculated using the full–wave 
simulations of a conventional sinuous antenna in the frequency range from 1 to 3 GHz.

2.  Methodology
This section provides a mathematical model of the social interactions of swarms, including conventional, quan-
tum inspired and the proposed EWQPSO algorithm. The main issues regarding the problem of the network 
synthesis having a driving-point impedance/admittance function equal to a specified transcendental one are illus-
trated, too. Moreover, the Brune, Miyata, Butt and Duffin synthesis procedures are briefly outlined.

2.1.  Optimization Algorithm

To better understand the proposed particle swarm methodology, a brief introduction on how conventional PSO 
works is given.

PSO is a swarm intelligence algorithm that mimic the social behavior of a swarm of bees or a flock of birds 
(Hassanien & Emary, 2016; Kennedy & Eberhart, 1995). If M denotes the swarm size and N the dimensionality 
of the search space, each individual i, 1 ≤ i ≤ M, called particle, is initialized with random position xi = (xi1, xi2, 
…, xiN) and velocity vi = (vi1, vi2, …, viN). Each particle adjusts its trajectory in the N-dimensional search space 
keeping track of the location corresponding to its best fitness value, called personal best, as well as the location 
corresponding to the best fitness value found by the whole swarm, called global best. In particular, the velocity 
vin and position xin of each particle are updated according to the following equations.

𝑣𝑣𝑖𝑖𝑖𝑖(𝑡𝑡 + 1) = 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖 (𝑡𝑡) + 𝑐𝑐1𝑟𝑟1

[

𝑥𝑥
𝑏𝑏

𝑖𝑖𝑖𝑖
(𝑡𝑡) − 𝑥𝑥𝑖𝑖𝑖𝑖(𝑡𝑡)

]

+ 𝑐𝑐2𝑟𝑟2 [𝐺𝐺𝑛𝑛(𝑡𝑡) − 𝑥𝑥𝑖𝑖𝑖𝑖(𝑡𝑡)]� (1)
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𝑥𝑥𝑖𝑖𝑖𝑖 (𝑡𝑡 + 1) = 𝑥𝑥𝑖𝑖𝑖𝑖(𝑡𝑡) + 𝑣𝑣𝑖𝑖𝑖𝑖(𝑡𝑡 + 1)� (2)

where 1 ≤ n ≤ N identifies the parameter to be optimized, t is the iteration counter, 𝐴𝐴 𝐴𝐴
𝑏𝑏

𝑖𝑖𝑖𝑖
 and Gn are the personal 

and global best positions, respectively. The inertia weight w controls the current particle movement as well as 
the algorithm convergence. Large values of w improve exploration, while smaller values result in a confinement 
within an area surrounding the global maximum. r1 and r2 are two random positive numbers uniformly distributed 
in the range [0, 1], c1 and c2 are two positive constants, known respectively as cognitive and social parameter, 
which determine the convergence speed of the particles to 𝐴𝐴 𝐴𝐴

𝑏𝑏

𝑖𝑖𝑖𝑖
 and Gn. At each next iteration, the 𝐴𝐴 𝐴𝐴

𝑏𝑏

𝑖𝑖𝑖𝑖
 and Gn have 

to be updated with the current position and velocity minimizing the fitness function f. In particular, the personal 
best position of each particle is updated using the equation

��
��(� + 1) =

{

��
��(�) if � [��� (� + 1)] ≥ � [��� (�)]

��� (� + 1) if � [��� (� + 1)] < � [��� (�)]
� (3)

and the global best position is defined as

𝐺𝐺𝑛𝑛(𝑡𝑡 + 1) = argmin𝑓𝑓
[

𝑥𝑥
𝑏𝑏

𝑖𝑖𝑖𝑖
(𝑡𝑡 + 1)

]

� (4)

The PSO search performance may be degraded from stagnation and convergence to local minima since an 
improper balance between the local and global searches can occur. In fact, the particles located close to the local 
optimum solution could became inactive since their velocities could get close to zero. As a result, the PSO algo-
rithm would be trapped in an undesired state of slow evolution. Such limitation becomes more restrictive when 
PSO is applied to complex electromagnetic problems characterized by large search spaces and multiple local 
optima. Moreover, the convergence speed is an important aspect to assess in these problems since the numerical 
evaluation of the fitness function generally takes a considerable amount of time. To solve such difficulties, the 
quantum–behaved particle swarm optimization algorithm was proposed (Sun et al., 2004). This algorithm permits 
all particles to move under the principles of quantum mechanics instead of the classical Newtonian dynamics 
imposed in PSO. In this way, the information about the velocity of the particles is no longer used as well as a good 
balance between local and global searches can be obtained. As a result, QPSO has a reduced number of control 
parameters, this making it easier to implement with a faster convergence rate, as well as it has a stronger search 
ability when applied to complex electromagnetic problems.

In the QPSO, the state of a particle is identified by the wave function, which is a solution of the Schrödinger 
equation instead of position and velocity. In this way, the exact values of xin and vin cannot be determined simul-
taneously, and it is only possible to learn the probability of the particle appearing in position xin from probability 
density function. In particular, assuming that each particle move in the search space with a δ potential on each 
dimension, its movement is modeled according to the following iterative equation

���(� + 1) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

���(�) +
���(�)
2

ln
(

1
���

)

if ��� ≥ 0.5

���(�) −
���(�)
2

ln
(

1
���

)

if ��� < 0.5
� (5)

where the location pin of the potential energy distribution is given by

𝑝𝑝𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝜉𝜉𝑖𝑖𝑖𝑖(𝑡𝑡)𝑥𝑥
𝑏𝑏

𝑖𝑖𝑖𝑖
(𝑡𝑡) + [1 − 𝜉𝜉𝑖𝑖𝑖𝑖(𝑡𝑡)]𝐺𝐺𝑛𝑛(𝑡𝑡)� (6)

and the standard deviation of the distribution Lin can be calculated as

𝐿𝐿𝑖𝑖𝑖𝑖(𝑡𝑡) = 2𝛽𝛽 |𝑥̄𝑥𝑛𝑛(𝑡𝑡) − 𝑥𝑥𝑖𝑖𝑖𝑖(𝑡𝑡)|� (7)

In Equations 5 and 6 uin, sin and ξin are random numbers uniformly distributed in [0, 1], respectively. The number 
uin results from the process of collapsing the quantum state to the classical one. The ξin parameter quantifies the 
probability of the i − th particle appearing in its personal best position (Cai et al., 2008). Moreover, sin results 
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from the employment of the Monte Carlo inverse method to obtain the position function. The mean best position 
𝐴𝐴 𝐴𝐴𝐴𝑛𝑛 , that is the mean of the personal best positions of all particles, is given by

𝑥̄𝑥𝑛𝑛(𝑡𝑡) =
1

𝑀𝑀

𝑀𝑀
∑

𝑖𝑖=1

𝑥𝑥
𝑏𝑏

𝑖𝑖𝑖𝑖
(𝑡𝑡)� (8)

The parameter β is called contraction–expansion coefficient. In particular, considering that the number of itera-
tion and the population size are common requirements, it is the only parameter that can be tuned to control the 
convergence speed of the QPSO algorithm.

By an inspection of Equation 8 it is clear that each particle affects in the same way the mean of the personal 
best positions. In this way, each particle has equal importance compared to the others and in some cases the 
corresponding searching approach can be reasonable. On the other hand, based on general rules of real-life social 
culture, the equally weighted mean position could represent not the best choice since some particles can have a 
greater importance than others. To this aim, a control method based on the promotion of the particle importance 
has been developed (Xi et al., 2008). In such approach, the particle has a weighted coefficient linearly decreasing 
with the corresponding fitness function. The closer is the fitness function to the optimal value, the larger is the 
weight of the particle. As a result, the best position can be calculated as

𝑥̄𝑥𝑛𝑛(𝑡𝑡) =
1

𝑀𝑀

𝑀𝑀
∑

𝑖𝑖=1

𝛼𝛼𝑖𝑖𝑥𝑥
𝑏𝑏

𝑖𝑖𝑖𝑖
(𝑡𝑡)� (9)

where the weighting coefficient αi linearly ranges from 1.5, for the best particle, down to 0.5 for the worst one 
(Xi et al., 2008). The resulting algorithm is called Weighted Quantum-Behaved Particle Swarm Optimization 
(WQPSO) and it shows a better convergence efficiency than the QPSO.

The convergence speed is important in electromagnetic problems since every run of the objective function takes 
a considerable amount of time. As a result, any effort to reduce the computational time characterizing the whole 
optimization process is much relevant. Within this framework, and, in particular, to further improve the conver-
gence rate of the WQPSO algorithm, we have developed an enhanced weighting methodology where the compu-
tation of the mean best position is carried out by directly embedding the information associated with the error 
function. The resulting EWQPSO algorithm is based on the following adaptive update equation:

�̄�(�) =
∑�

�=1 Δ�(�)��
��(�)

∑�
�=1 Δ�(�)

� (10)

where

Δ�(�) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 −
 [��(�)]

max { [�1(�)] ,  [�2(�)] ,… ,  [�� (�)]}
Minimization problem

1 −
min { [�1(�)] ,  [�2(�)] ,… ,  [�� (�)]}

 [��(�)]
Maximization problem

� (11)

𝐴𝐴  is the error function and 𝐴𝐴 𝐏𝐏𝑖𝑖(𝑡𝑡) =
[

𝑥𝑥
𝑏𝑏

𝑖𝑖1
(𝑡𝑡), 𝑥𝑥𝑏𝑏

𝑖𝑖2
(𝑡𝑡),… , 𝑥𝑥

𝑏𝑏

𝑖𝑖𝑖𝑖
(𝑡𝑡)
]

 . In this way, the particles close to the optimum value 
will stochastically guide the movements of the whole swarm. Moreover, the absorbing boundary condition has 
been implemented and, in particular, every particle which flies outside the search range in one specific dimension 
is going to be moved back at the boundary of the search range along that dimension (El-Abd & Kamel, 2007; 
Mescia et al., 2017; Xi et al., 2008).

2.2.  Equivalent Circuit Model

Generally, the impedance/admittance of an electromagnetic structures having distributed constant, such as for 
example antennas, can be exactly represented at all frequencies by transcendental functions satisfying specific 
conditions. So, with reference to the problem of the network synthesis, it is useful to determine a network 



Radio Science

MESCIA ET AL.

10.1029/2022RS007433

5 of 13

comprising lumps of constant resistance, inductance, conductance and capacitance whose driving–point imped-
ance/admittance function is equal to the specified transcendental one at all frequencies (real and complex). A way 
to solve this problem is based on a well-known proposition of function theory providing a tool for breaking up 
a transcendental function into an infinite series of simple fractions. The resulting series representation provides 
a means of determining the network having in general an infinite number of branches (Pearson & Wilton, 1981; 
Streable & Pearson, 1981). However, in order to ensure that the function is the impedance/admittance of a phys-
ically realizable linear and passive electric circuit structure it has to be a positive real function (PRF) satisfying 
the following restrictions:

1.	 �the structure shall be stable or equivalently every natural mode of oscillation dies away exponentially;
2.	 �the natural oscillations are real function of the time;
3.	 �if a sinusoidal current flows at the driving–point terminals of the equivalent structure, the average real power 

delivered to it will be positive

Let Y(s) be the complex function, modeling the driving–point admittance and s = σ + jω the independent complex 
variable. Let p1, p2, … be the poles of Y(s), except for the point at infinity which is an essentially singular point, 
and A1, A2, … be the residues at the poles where

0 < |𝑝𝑝1| ≤ |𝑝𝑝2| ≤ |𝑝𝑝3| ≤ ⋯ ≤ |𝑝𝑝𝑛𝑛| 𝑛𝑛 → ∞� (12)

Then the following series development for Y(s) can be given (Streable & Pearson, 1981):

𝑌𝑌 (𝑠𝑠) = lim
𝑁𝑁→∞

𝑁𝑁
∑

𝑛𝑛=−𝑁𝑁

(

𝐴𝐴𝑛𝑛

𝑠𝑠 − 𝑝𝑝𝑛𝑛
+

𝐴𝐴𝑛𝑛

𝑝𝑝𝑛𝑛

)

� (13)

where, by virtue of restriction 2, the terms in the series (13) occur in pairs with conjugate complex poles and 
residues, that is, 𝐴𝐴 𝐴𝐴−𝑛𝑛 = 𝑝𝑝

∗
𝑛𝑛 and 𝐴𝐴 𝐴𝐴−𝑛𝑛 = 𝐴𝐴

∗
𝑛𝑛 . The network will contain an infinite number of branches connected in 

parallel each one representing the pairs of terms, although a finite number may be used if it is desired to represent 
only specific modes. This truncation has to be done in a such way to maintain the PRF characteristics. However, if 
the admittance of all the branches are PRF any finite sum of admittance terms will be a PRF. Synthesis techniques 
for obtaining a network representation for a rational function, such as the one comprising a pair of terms in the 
series (13), are well known.

By using the Brune synthesis, every PRF can be realized as the driving-point impedance of an RLC circuit. The 
poles and zeros of the PRF can be anywhere in the left half of the complex plane. It is a canonical realization 
characterized by a number of lumped elements equal to the number of coefficients of the impedance function 
(Wing, 2008). The Brune synthesis can be only applied to minimum-reactance and minimum-susceptance func-
tion. So, it requires a series of preliminary steps aimed to remove any and all poles and zeros on the jω axis, 
including the point s = 0 and s = ∞. Anyway, the Brune synthesis generates a ladder network containing an 
undesirable element appearing either as a perfectly coupled transformer or a negative inductance. Neither of these 
elements is realizable without the use of active device. Miyata method eliminates the need of ideal transformers. 
It is based on the split of the real part of a given minimum reactive driving point impedance into a sum of even 
function. This synthesis is used for the real part of an impedance with all non-negative coefficients. If there 
are negative coefficients, it introduces surplus factors (Miyata, 1955). However, even if the Miyata synthesis 
procedure is more practical its implementation is more complicated because no single format of the synthesis 
is applicable to a general PRF (Wing, 2008). Moreover, an inherent difficulty lies in the requirement that the 
additive components have to be positive for each angular frequency. The Bott-Duffin method is another general 
procedure to synthesize a PRF as the impedance/admittance of a circuit composed of only resistors, capacitors 
and inductors, without transformers (Wing, 2008). For some PRF, the networks obtained by applying this proce-
dure are minimal both in number of reactive elements and resistors among series-parallel networks (Hughes & 
Smith, 2014). Moreover, the Bott-Duffin procedure, in combination with some simple network transformations, 
can be used to produce all of the series-parallel networks containing exactly six reactive elements and two resis-
tors which realize any specified biquadratic minimum function. Due to these features and its capabilities to the 
automated implementation, the Butt -Duffin method has been used in this work. Thus the equivalent circuit 
resulting from application of this procedure is given in Figure 1.
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3.  Numerical Results
3.1.  Mathematical Test

In order to test the performance of the proposed EWQPSO in terms of convergence rate, precision, and robustness 
five benchmark functions, as tabulated in Table 1, were considered (Jamil & Yang, 2013; Neculai, 2008). We 
choose these functions because they provide a balance of uni-modal and multi-modal behavior as well as their 
non-linearity and many local minima around the global minimum point. Moreover, for all these functions the 
global minimum is f(x) = 0 placed at x = (0, …, 0).

The Ipersphere function is the simplest one and it is continuous, convex and unimodal. The Alpine function is 
non-convex, non-continuous, differentiable and separable. The modified fourth De Jong function exhibits the 
global minimum in a narrow parabolic valley. However, even if this valley is easy to find, the convergence to 
the minimum is difficult. The Zakharov function is a representative of the plate–shaped functions. It has no 
local minima except the global one. The Salomon function is continuous, differentiable, non–separable, scal-
able and  multimodal. The minimum searching problem regarding the considered test functions is considered 
by changing both the domain dimension N and the swarm size M. The maximum generation value is set to 
tmax = 500 + 10N. The performance of the EWQPSO algorithm was then compared with those of QPSO and 
WQPSO in terms of global standard deviation and mean value by considering 100 independent runs. The consid-
ered fitness function is the root mean square error.

A number of investigations were performed by changing the number of particles N  =  5, 10, 15, 20 and the 
contraction–expansion coefficient in the range from 0.5 to 50. This investigation was carried out with the aim of 
analyzing the effect of these free parameters on the searching capabilities of the optimization algorithm in terms 
of accuracy and convergence speed. The obtained results are summarized in Table 2. The outcomes of Table 2 
reveal that the developed EWQPSO algorithm is characterized by improved global searching capability as well as 
better performance in terms of convergence and accuracy as compared to standard QPSO and WQPSO. In fact, by 
an inspection of the obtained numerical results it can be inferred that for each test function the proposed EWQPSO 

finds the global minimum with an accuracy at least 10 5 times better than the 
QPSO and WQPSO. In the case of the Alpine function, the EWQPSO exhib-
its the better performance providing a value of 1.48 × 10 −12 that is about 
10 7 times less than that found by QPSO and WQPSO. In addition, the vari-
ance values obtained by the EWQPSO algorithm are the smallest. This result 
confirms the enhanced searching ability of the EWQPSO. Figure 2 shows the 
convergence plots of the different optimization algorithms for each test func-
tion. In particular, the best objective function value, in a logarithmic scale, 
is reported using a domain dimension N = 20 and a population of M = 30 
particles. The performed analysis illustrates that the proposed EWQPSO, in 
addition to search the optimal solution with better accuracy, is characterized 
by a faster convergence speed since it requires a lower number of iterations to 
find the minimum. In fact, for all the test functions the plot corresponding to 
the EWQPSO is always below the others. As an example, in the case of the 
Alpine function the EWQPSO finds the minimum value of about 10 −4 with 
about 500 fewer iterations then those used by the WQPSO.

Figure 1.  Equivalent circuit based on Bott–Duffin realization.

Type II Type I

Function name Expression Input domain

Ipersphere 𝐴𝐴 𝐴𝐴 (𝑥𝑥) =
∑𝑁𝑁

𝑖𝑖=1
𝑥𝑥
2
𝑖𝑖
  xi ∈ [−100, 100]

Alpine 𝐴𝐴 𝐴𝐴 (𝑥𝑥) =
∑𝑁𝑁

𝑖𝑖=1
|𝑥𝑥𝑖𝑖sin (𝑥𝑥𝑖𝑖) + 0.1𝑥𝑥𝑖𝑖|  xi ∈ [−10, 10]

De Jong 𝐴𝐴 𝐴𝐴 (𝑥𝑥) =
∑𝑁𝑁

𝑖𝑖=1
𝑖𝑖𝑖𝑖

4
𝑖𝑖
  xi ∈ [−100, 100]

Zakharov
𝐴𝐴

𝑓𝑓 (𝑥𝑥) =
∑𝑁𝑁

𝑖𝑖=1
𝑥𝑥
2
𝑖𝑖
+

(

∑𝑁𝑁

𝑖𝑖=1
0.5𝑖𝑖𝑖𝑖𝑖𝑖

)2

+

(

∑𝑁𝑁

𝑖𝑖=1
0.5𝑖𝑖𝑖𝑖𝑖𝑖

)4
 

xi ∈ [−10, 10]

Salomon

𝐴𝐴

𝑓𝑓 (𝑥𝑥) = 1 − cos

(

2𝜋𝜋

√

∑𝑁𝑁

𝑖𝑖=1
𝑥𝑥
2
𝑖𝑖

)

+0.1

√

∑𝑁𝑁

𝑖𝑖=1
𝑥𝑥
2
𝑖𝑖

 

xi ∈ [−100; 100]

Table 1 
Test Functions
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3.2.  Equivalent Circuit Synthesis

After the preliminary analysis aimed to demonstrate that the EWQPSO can efficiently extend the solution qual-
ity and convergence behavior of the QPSO, the developed optimization algorithm has been used to evaluate 
the lumped element values characterizing the equivalent circuit whose driving–point admittance function well 
approximate the antenna admittance calculated using the Ansys Electronic Suite (Ansys Electronics, n.d.). To this 
aim, a two arms sinuous antenna printed on a RT/duroid®5880 laminate was simulated in the frequency range 
1–3 GHz (DuHamel, 1987; Mescia et al., 2022). Other parameters characterizing the antenna are the number of 
cells p = 12, the angular width α = π/2, the angular spacing δ = π/4, the grow rate τ = 0.78, and the radius of the 
outermost cell R = 29 mm. Figure 3 illustrates the sketch of the antenna and Figure 4 (see blue curve) shows the 
real and imaginary part spectrum of the driving–point admittance 𝐴𝐴 𝑌𝑌  , calculated using the electromagnetic tool. 
By an inspection of the plot pertaining the real part of 𝐴𝐴 𝑌𝑌  , five resonances (two well resolved and three overlapped) 
can be identified. As a result, the equivalent circuit illustrated in Figure 1 can be inferred. The type II four element 
circuit is selected to match the antenna admittance in the highest part of the spectrum. On the other hand, the 
five  circuits of type I are used to model the antenna resonances when the operating frequency increases.

The developed EWQPSO algorithm is employed with the aim to obtain values of parameters minimizing a 
specific fitness function. In particular, the algorithm is performed by setting a swarm composed by M = 1200 
particles, whose position vector of the i − th particle consists of N = 24 elements, each one corresponding to a 
lumped element characterizing the equivalent circuit illustrated in Figure 1. The maximum number of iteration 
was fixed to t = 10 4, whereas the fitness function was computed by considering the deviation of the values yielded 
by the EWQPSO from those calculated using the electromagnetic tool. In particular, it was evaluated by consid-
ering the error function

𝑗𝑗 =
1

𝐿𝐿

√

√

√

√

𝐿𝐿
∑

𝑙𝑙=1

(

𝑌𝑌𝑙𝑙𝑙𝑙 − 𝑌𝑌𝑙𝑙

)2� (14)

Function N

QPSO WQPSO EWQPSO

Mean std Mean std Mean std

Sphere 5 6.79 × 10 −94 6.74 × 10 −93 2.28 × 10 −93 2.11 × 10 −92 6.35 × 10 −110 3.66 × 10 −109

10 9.80 × 10 −88 5.67 × 10 −87 3.77 × 10 −86 2.99 × 10 −85 5.93 × 10 −98 1.84 × 10 −97

15 3.22 × 10 −77 1.18 × 10 −76 8.24 × 10 −76 3.64 × 10 −75 3.72 × 10 −83 3.03 × 10 −82

20 9.74 × 10 −67 5.75 × 10 −66 1.57 × 10 −65 1.14 × 10 −64 1.43 × 10 −71 4.09 × 10 −71

Alpine 5 5.04 × 10 −5 1.39 × 10 −4 5.76 × 10 −5 1.70 × 10 −4 2.24 × 10 −6 1.71 × 10 −5

10 6.42 × 10 −5 3.60 × 10 −4 2.76 × 10 −5 1.34 × 10 −4 5.26 × 10 −7 5.15 × 10 −6

15 6.24 × 10 −7 5.10 × 10 −6 1.67 × 10 −4 1.56 × 10 −3 1.07 × 10 −4 1.07 × 10 −3

20 2.63 × 10 −5 2.20 × 10 −4 3.29 × 10 −4 2.32 × 10 −3 1.48 × 10 −12 1.34 × 10 −11

De Jong 5 1.21 × 10 −175 0 1.48 × 10 −172 0 7.69 × 10 −202 0

10 2.85 × 10 −144 2.85 × 10 −143 1.63 × 10 −144 1.10 × 10 −141 4.58 × 10 −158 4.06 × 10 −157

15 5.44 × 10 −118 3.12 × 10 −117 4.17 × 10 −117 2.47 × 10 −116 2.52 × 10 −123 1.76 × 10 −122

20 6.02 × 10 −95 3.05 × 10 −94 1.42 × 10 −92 1.09 × 10 −91 8.80 × 10 −99 3.77 × 10 −98

Zakharov 5 5.30 × 10 −7 5.28 × 10 −6 8.02 × 10 −10 4.96 × 10 −9 8.60 × 10 −14 3.63 × 10 −13

10 5.24 × 10 −7 1.55 × 10 −6 7.26 × 10 −6 6.95 × 10 −5 1.65 × 10 −9 9.22 × 10 −9

15 1.43 × 10 −4 9.30 × 10 −4 1.60 × 10 −5 1.02 × 10 −4 8.20 × 10 −8 2.11 × 10 −7

20 5.02 × 10 −4 1.68 × 10 −3 2.77 × 10 −4 1.09 × 10 −3 5.98 × 10 −6 2.07 × 10 −5

Salomon 5 9.41 × 10 −52 3.69 × 10 −51 5.04 × 10 −51 2.26 × 10 −50 1.63 × 10 −61 9.50 × 10 −61

10 1.19 × 10 −49 3.42 × 10 −49 9.12 × 10 −49 1.92 × 10 −48 3.28 × 10 −57 5.91 × 10 −57

15 2.28 × 10 −45 3.08 × 10 −45 2.10 × 10 −44 4.39 × 10 −44 2.47 × 10 −51 3.97 × 10 −51

20 1.13 × 10 −40 1.52 × 10 −40 4.02 × 10 −39 2.98 × 10 −38 1.88 × 10 −45 3.33 × 10 −45

Table 2 
Performance Comparison of EWQPSO, QPSO and WQPSO Algorithms
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where L is the number of points the entire frequency range has been sampled, Ylj and 𝐴𝐴 𝑌𝑌𝑙𝑙 are the driving–point 
admittances of the equivalent circuit illustrated in Figure 1 calculated using EWQPSO and Ansys Electronic 
Suite, respectively. In Equation 14, j and l correspond to the particle and frequency sample, respectively.

The search range of the variable corresponding to the lumped circuit element was roughly fixed such that the 
minimum of the fitness function is expected. First, a narrow band model based on bandwidths, center frequency 
or resonant frequencies of antenna is used to roughly estimate the component values. With reference to the RLC 
tanks indicated as Type I, the series capacitor value was selected to match the antenna reactance at a frequency 
much lower than the resonant one. Thus, the effect of the parallel resonant RLC network may be ignored. On 

Figure 2.  Comparison of the convergence plots. (a) Ipersphere, (b) Alpine, (c) De Jong, (d) Zakharov, (e) Salomon test 
functions.
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the other hand, the component values of the RLC circuit are estimated at the 
resonant frequency at which the reactance of the antenna vanishes. This esti-
mation is useful for evaluating the search range of each particle in such a way 
the EWQPSO algorithm can find the optimal values of the lumped elements. 
After all parameters characterizing the admittance function were estimated, 
a local adjustment of the component values was made using EWQPSO to 
ensure the best fit of the input admittance with that of the antenna around 
each resonant frequency.

This preliminary investigation only serves as an approximation for the mode-
ling of driving–point admittance. In fact, for frequencies higher than 1.8 GHz 
the antenna exhibited a challenging behavior characterized by three strongly 
overlapped resonances (see Figure  4). As a result, it is essential a further 
adjustment of all the lumped element values to increase the accuracy of input 
admittance matching over the whole frequency range. In order to support 
this claim, in Figure 5 are plotted the admittance of each branch forming the 
equivalent circuit reported in Figure 1, and the whole driving-point admit-
tance (black curve). All the curves were obtained using the narrow band 
model and the local EWQPSO adjustment. The red curve is the same reported 

in Figure 4. By an inspection of Figure 5 it can be observed that the real and imaginary parts of the driving-point 
admittance, in the highest part of the spectrum, practically coincide with those of the type II RLC circuit. On the 
other hand, it has a negligible effect on the driving-point admittance in the lowest part of the spectrum. However, 
due to its fairly broadband admittance, the type II circuit is also used to improve the admittance matching at 
intermediate frequencies. As expected, a discrepancy between the optimal and narrow band admittance can be 
detected in the highest part of the spectrum. So, to improve the accuracy of the equivalent circuit synthesis 
procedure the EWQPSO was executed again with the aim to perform a global optimization of all the component 
values minimizing the error function over the whole frequency range. Once the best results were obtained, the 
mean and standard deviation of the lumped elements characterizing the equivalent circuit were calculated by 
considering 100 independent runs of the EWQPSO algorithm. The obtained results are summarized in Table 3. 
Moreover, in Figure 4 are reported the real and imaginary part of the driving-point admittance corresponding to 
the mean values of the lumped elements. It is worthwhile to note the very good agreement between both real part 
(see Figure 4a) and imaginary part (see Figure 4b) of the admittance calculated using the electromagnetic tool 
(blue curve in Figure 4) and the one recovered using the developed EWQPSO algorithm (red curve in Figure 4).

The contraction-expansion coefficient β influences the exploration searching ability of the particles. A large 
value of β result in greater population diversity making possible a more global search of the EWQPSO algorithm 

Figure 3.  Sketch of the sinuous antenna with radius R = 29 mm, α = π/2, 
δ = π/4 and τ = 0.78.

Figure 4.  (a) Real and (b) imaginary part of the driving-point admittance versus the frequency evaluated using both the 
electromagnetic tool (blue curve) and enhanced weighted quantum particles swarm optimization (EWQPSO) algorithm (red 
curve).
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(global exploration). On the other hand, lower values of β cause a more focused exploration of the search space 
(local exploration). Suitable selection of β can provide a balance between global and local exploration ability 
and thus save the iterations number to find the optimum. In order to investigate this important issue, a number 
of simulations changing the contraction-expansion coefficient were carried out. Figure 6 shows the maximum, 
minimum and mean error characterizing the whole swarm versus the iteration time and for β = 0.5, β = 10 and 
β = 50. By an inspection of the obtained results, it is clear that the searching capabilities of the whole swarm 
improves as β increases. In fact, in contrast to β = 0.5 and β = 5, when β = 50 the maximum, minimum and mean 
errors converge to the same value, thus confirming that almost all the particles find the same optimal solution. 
It can be also observed that the calculation method with β = 50 can make the convergence speed of EWQPSO 
faster. In this case, the EWQPSO needs of about 700 iterations to reach the minimum error value of 10 −4, which 
is about half the number of iterations required by the algorithm having β = 0.5. Finally, it can be inferred that 
the EWQPSO with β = 50 exhibits better global search capabilities in comparison to EWQPSO with β = 0.5 and 
β = 5 as well as it provides a better optimal result.

4.  Conclusions
A modified QPSO-based method for solving complicated electromagnetic optimization problems was illustrated. 
The applicability of the EWQPSO was investigated with the aim to synthesize the lumped element circuit of the 
feed–point antenna impedance. The proposed approach was first compared with both the standard and weighted 
QPSO. The outcomes on standard test functions highlight that the EWQPSO method has better global searching 
capability and faster convergence speed. The optimization problem was formulated with the aim of improving the 
fit between the input admittance of the equivalent circuit and the feed–point antenna admittance calculated using 

Figure 5.  Driving-point admittance spectrum (black curve) and admittance spectrum of each branch calculated using the 
narrow band model and the local enhanced weighted quantum particles swarm optimization (EWQPSO) adjustment. Optimal 
driving-point admittance spectrum (red curve). (a) Real part and (b) imaginary part.

Cr1(pF) Cr2(pF) Rr1(kΩ) R12(Ω) Lr1(nH)

branch Mean std Mean std Mean std Mean std Mean std

1st 0.2 4.33 × 10 −9 – – 1.62 4.22 × 10 −15 49.8 4.83 × 10 −14 11.87 3.11 × 10 −14

2nd 1.03 3.75 × 10 −15 0.87 2.95 × 10 −15 68.88 6.84 × 10 −13 – – 63.14 2.39 × 10 −13

3rd 0.23 1.43 × 10 −8 0.47 1.43 × 10 −8 44.47 2.32 × 10 −9 – – 102.07 8.71 × 10 −12

4th 0.08 2.57 × 10 −13 9.33 2.08 × 10 −8 35.84 3.38 × 10 −10 – – 125.40 4.87 × 10 −6

5th 0.08 1.8 × 10 −16 2.52 2.22 × 10 −13 10 3.38 × 10 −10 – – 84.5 4.02 × 10 −7

6th 0.07 1.66 × 10 −14 0.6 2.99 × 10 −15 6 1 × 10 −14 – – 75 2.57 × 10 −13

Table 3 
Mean and Standard Deviation Values Pertaining the Lumped Elements of the Equivalent Circuit Reported in Figure 1
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and electromagnetic tool in a specific frequency range. The values of the lumped elements forming the equivalent 
circuit was considered as the design variables for EWQPSO numerical tool. Final results show a perfect match of 
the simulated admittance plot with the one resulting from the EWQPSO optimization, demonstrating the efficient 
use of the algorithm to synthesize equivalent circuits. Moreover, it was found that a contraction–expansion coef-
ficient β = 50 guarantees the better balance between the global and local search abilities. The proposed approach 
allows an easy incorporation of any changes in design parameters without necessitating any major changes to 
current framework, making it robust, generic and flexible. As a result, the EWQPSO could be a favorable alter-
native for global optimization in the study of electromagnetic design problems.

Data Availability Statement
No data come from previously published sources, and all simulation results are obtained with the software Matlab 
Suite as well as Ansys Electronic Suite. The data are deposited in a public accessible domain and can be found in 
the link https://zenodo.org/record/6405941#.YkbrfChBxPY.
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