
28 April 2024

Repository Istituzionale dei Prodotti della Ricerca del Politecnico di Bari

Optimization approaches in distributed systems / Volpe, Gaetano. - ELETTRONICO. - (2024).
[10.60576/poliba/iris/volpe-gaetano_phd2024]

This is a PhD Thesis

Original Citation:

Optimization approaches in distributed systems

Published version
DOI:10.60576/poliba/iris/volpe-gaetano_phd2024

Terms of use:
Altro tipo di accesso

(Article begins on next page)

Availability:
This version is available at http://hdl.handle.net/11589/264760 since: 2024-01-31

Politecnico di Bari

LIBERATORIA PER L’ARCHIVIAZIONE DELLA TESI DI DOTTORATO

Al Magnifico Rettore
del Politecnico di Bari

Il/la sottoscritto VOLPE GAETANO nato a TERLIZZI (BA) il 10/05/1983

residente a BISCEGLIE (BT) in via G. BOVIO, 459 e-mail: gaetano.volpe@poliba.it

iscritto al 3° anno di Corso di Dottorato di Ricerca in INGEGNERIA ELETTRICA E DELL’INFORMAZIONE ciclo 36

ed essendo stato ammesso a sostenere l’esame finale con la prevista discussione della tesi dal titolo:

OPTIMIZATION APPROACHES IN DISTRIBUTED SYSTEMS

DICHIARA

1) di essere consapevole che, ai sensi del D.P.R. n. 445 del 28.12.2000, le dichiarazioni mendaci, la falsità negli atti e l’uso
di atti falsi sono puniti ai sensi del Codice penale e delle Leggi speciali in materia, e che nel caso ricorressero dette
ipotesi, decade fin dall’inizio e senza necessità di nessuna formalità dai benefici conseguenti al provvedimento emanato
sulla base di tali dichiarazioni;

2) di essere iscritto al Corso di Dottorato di ricerca in INGEGNERIA ELETTRICA E DELL’INFORMAZIONE ciclo 36,
corso attivato ai sensi del “Regolamento dei Corsi di Dottorato di ricerca del Politecnico di Bari”, emanato con D.R.
n.286 del 01.07.2013;

3) di essere pienamente a conoscenza delle disposizioni contenute nel predetto Regolamento in merito alla procedura di
deposito, pubblicazione e autoarchiviazione della tesi di dottorato nell’Archivio Istituzionale ad accesso aperto alla
letteratura scientifica;

4) di essere consapevole che attraverso l’autoarchiviazione delle tesi nell’Archivio Istituzionale ad accesso aperto alla
letteratura scientifica del Politecnico di Bari (IRIS-POLIBA), l’Ateneo archivierà e renderà consultabile in rete (nel
rispetto della Policy di Ateneo di cui al D.R. 642 del 13.11.2015) il testo completo della tesi di dottorato, fatta salva la
possibilità di sottoscrizione di apposite licenze per le relative condizioni di utilizzo (di cui al sito
http://www.creativecommons.it/Licenze), e fatte salve, altresì, le eventuali esigenze di “embargo”, legate a strette
considerazioni sulla tutelabilità e sfruttamento industriale/commerciale dei contenuti della tesi, da rappresentarsi
mediante compilazione e sottoscrizione del modulo in calce (Richiesta di embargo);

5) che la tesi da depositare in IRIS-POLIBA, in formato digitale (PDF/A) sarà del tutto identica a quelle
consegnate/inviate/da inviarsi ai componenti della commissione per l’esame finale e a qualsiasi altra copia depositata
presso gli Uffici del Politecnico di Bari in forma cartacea o digitale, ovvero a quella da discutere in sede di esame finale,
a quella da depositare, a cura dell’Ateneo, presso le Biblioteche Nazionali Centrali di Roma e Firenze e presso tutti gli
Uffici competenti per legge al momento del deposito stesso, e che di conseguenza va esclusa qualsiasi responsabilità
del Politecnico di Bari per quanto riguarda eventuali errori, imprecisioni o omissioni nei contenuti della tesi;

6) che il contenuto e l’organizzazione della tesi è opera originale realizzata dal sottoscritto e non compromette in alcun
modo i diritti di terzi, ivi compresi quelli relativi alla sicurezza dei dati personali; che pertanto il Politecnico di Bari ed
i suoi funzionari sono in ogni caso esenti da responsabilità di qualsivoglia natura: civile, amministrativa e penale e
saranno dal sottoscritto tenuti indenni da qualsiasi richiesta o rivendicazione da parte di terzi;

7) che il contenuto della tesi non infrange in alcun modo il diritto d’Autore né gli obblighi connessi alla salvaguardia di
diritti morali od economici di altri autori o di altri aventi diritto, sia per testi, immagini, foto, tabelle, o altre parti di cui
la tesi è composta.

BARI, 15 dicembre 2023 Firma

Il/La sottoscritto, con l’autoarchiviazione della propria tesi di dottorato nell’Archivio Istituzionale ad accesso aperto del
Politecnico di Bari (POLIBA-IRIS), pur mantenendo su di essa tutti i diritti d’autore, morali ed economici, ai sensi della
normativa vigente (Legge 633/1941 e ss.mm.ii.),

CONCEDE

• al Politecnico di Bari il permesso di trasferire l’opera su qualsiasi supporto e di convertirla in qualsiasi formato al fine
di una corretta conservazione nel tempo. Il Politecnico di Bari garantisce che non verrà effettuata alcuna modifica al
contenuto e alla struttura dell’opera.

• al Politecnico di Bari la possibilità di riprodurre l’opera in più di una copia per fini di sicurezza, back-up e
conservazione.

BARI, 15 dicembre 2023 Firma

http://www.creativecommons.it/Licenze

DEPARTMENT OF
ELECTRICAL AND INFORMATION ENGINEERING

PH.D. PROGRAM IN
ELECTRICAL AND INFORMATION ENGINEERING

SSD: ING-INF/04 - SYSTEMS AND CONTROL ENGINEERING

Final Dissertation

OPTIMIZATION APPROACHES IN
DISTRIBUTED SYSTEMS

by

Gaetano Volpe

A thesis submitted for the degree of
Doctor of Philosophy

External Reviewers:
Prof. Giuseppe Franzè

Prof. Antonio Ferramosca

Supervisor:
Prof. Agostino M. Mangini

Ph.D. Program Coordinator:

Prof. Mario Carpentieri

Cycle XXXVI - November, 1st 2020 - October 31st 2023

To my beloved wife Francesca
and my beautiful kids

Giuseppe and Alessandro.

Acknowledgements

The last three years have been a life changing experience for me. What
I have learned in undertaking this Ph.D. at the Polytechnic University of
Bari is of inestimable value. Doing a research in any topic is not a trivial
job and learning a good scientific methodology is the main key to achieve
results.

My journey to become a good researcher is still long but the people I
have encountered during my Ph.D. have helped me to do the first steps to-
wards the right direction. To this, I wish first to thank my supervisor, Prof.
Agostino Marcello Mangini. His suggestions and corrections in conducting
my research and writing manuscripts, together with his incredible knowl-
edge and skills as both researcher and professor, have led me to publish my
papers and value my research.

At the same time, the mentorship of Prof. Maria Pia Fanti, head of the
Laboratory of Control and Automation, has been unvaluable. Having been
supported by a so well reputed and long experience professor in Automation
and Control has been an honour for me. I have admired her continuous
effort in research and her dedication to every member of the laboratory.

I wish to thank my beloved wife Francesca ad my two beautiful kids
Giuseppe and Alessandro. Every single moment dedicated to research, es-
pecially overnight or in the weekend, is a moment not spent with them and
finding a good balance between family and work is not always easy. To
this, without the strong support and patience of my family, I would have
not been ever able to achieve my goals.

I wish to thank also my parents and my brother Francesco. They always
pushed me to complete my studies and supported me in hard times.

Last but not least, I’m always grateful to my two additional brothers:
Roberto De Gennaro and Nino Barile. Since almost twenty years, their
suggestions and the continuous exchange of opinions are enriching me and
pushing to improve more and more.

Contents

Contents i

Preface iii

List of Publications v

1 Introduction 1

I Optimal Algorithms and Blockchain Applica-
tions in Manufacturing and Power Systems 5

2 Blockchain, Docker & DRL Preliminaries 6
2.1 Blockchain and Smart Contracts 6
2.2 Ethereum & Hyperledger Fabric 8
2.3 Dockers, Containers and Cloud Storage 9
2.4 Deep Reinforcement Learning 10

3 Design of a Tasks Orchestration Platform in Ethereum
with ANN 11
3.1 Introduction . 11
3.2 Digital Processes . 16
3.3 The Proposed Platform Structure 17
3.4 Case Study: Ophthalmic Lenses Manufacturing 24
3.5 Conclusion . 33

4 Optimal Task Assignment Problem with DRL in Hyper-
ledger Fabric 34
4.1 Introduction . 34
4.2 Related Work . 38
4.3 System Model . 42
4.4 DRL-Based Task Assignment Process 45

i

CONTENTS ii

4.5 Performance Evaluation . 51
4.6 Conclusion . 57

5 An Incentive Platform in Ethereum for Energy Manage-
ment 58
5.1 Introduction . 58
5.2 Stable Coins . 61
5.3 The Proposed System . 62
5.4 The Reward and Penalty Scheme 65
5.5 Case Study . 69
5.6 Conclusion . 72

II Swarm Algorithms in Manufacturing 73

6 Flexible Job Shop Sequencing Problem with TCPN and
PSO 74
6.1 Introduction . 74
6.2 Basics of Timed Coloured Petri Nets 76
6.3 TCPN Model of a Manufacturing Plant 78
6.4 Job Sequencing by PSO . 82
6.5 Case Study . 86
6.6 Conclusion . 89

III Multi-Agent Systems for Autonomous Vehi-
cles 90

7 A Cooperative DRL Approach for Autonomous Intersec-
tion Management 91
7.1 Introduction . 91
7.2 Problem Formulation . 94
7.3 Multi-agent DRL Optimization Approach 96
7.4 Case Study . 100
7.5 Conclusion . 103

8 Conclusion 104

References 122

Preface

This thesis is submitted in partial fulfilment of the requirements for the
degree of Doctor of Philosophy in Electrical and Information Engineering
at the Polytechnic University of Bari. The research presented in this disser-
tation was conducted at the Laboratory of Control and Automation of the
Polytechnic University of Bari under the supervision of Professors Agostino
Marcello Mangini and Maria Pia Fanti, between November 2020 and Oc-
tober 2023. Most parts of this thesis have been published in International
Journals and Conference Proceedings over the last three years.

My main research activity, described in Part I, has been focused on the
implementation of the optimal task assignment problem in manufacturing
environments, in distributed and decentralized systems and, in particular,
in Blockchain contexts. To this purpose, I have designed two decentralized
collaborative platforms to deliver and orchestrate complex software tasks,
equipped with machine learning based runtime prediction algorithms. The
original results of this work, including a concrete case study conducted at
DAI Optical Industries, an ophthalmic lenses production company based
in Molfetta (Bari), Italy, are reported in Chapters 3 and 4 and have been
published in [1], [2] and [3], whose I am the first author.

During my Blockchain studies, I have also been involved in the develop-
ment of an incentive platform for energy management, described in Chapter
5 and published in [4], and in the design of an original modular architecture
for Quantum-Safe Blockchain [5].

In the second-half of my research, described in Parts II and III, I have
explored the use of Timed Coloured Petri Nets (TCPN) to simulate mass
production systems and I have designed a Swarm-based algorithm to solve
the well known Flexible Job Shop Scheduling Problem (FJSSP). The results
of this work are reported in Chapter 6 and have been published in [6].

Moreover, thanks to my involvement in the IN2CCAM project, funded
by the EU Horizon 2020 programme, I had the opportunity to approach the
autonomous driving domain and, in particular, the problem of autonomous
intersection management at unsignalized intersections. The results of this

iii

iv

still on-going work are partially reported in Chapter 7 and have been pub-
lished in [7] and [8].

The findings of this research activity are summarized in Chapter 8 to-
gether with an outlook on future developments and research directions. The
full list of publications written by the author is reported hereafter.

List of Publications

International Journals

[1] Gaetano Volpe, Agostino Marcello Mangini, and Maria Pia Fanti. An ar-
chitecture combining blockchain, docker and cloud storage for improving
digital processes in cloud manufacturing. IEEE Access, 10:79141–79151,
2022. doi: 10.1109/ACCESS.2022.3194264.

[2] Gaetano Volpe, Agostino Marcello Mangini, and Maria Pia Fanti. A
deep reinforcement learning approach for competitive task assignment
in enterprise blockchain. IEEE Access, 11:48236–48247, 2023. doi: 10.
1109/ACCESS.2023.3276859.

International Conferences

[1] Gaetano Volpe, Agostino Marcello Mangini, and Maria Pia Fanti. An ar-
chitecture for digital processes in manufacturing with blockchain, docker
and cloud storage. In 2021 IEEE 17th International Conference on Au-
tomation Science and Engineering (CASE), pages 39–44, 2021. doi:
10.1109/CASE49439.2021.9551633.

[2] Gaetano Volpe, Agostino Marcello Mangini, and Maria Pia Fanti. Job
shop sequencing in manufacturing plants by timed coloured petri nets
and particle swarm optimization. IFAC-PapersOnLine, 55(28):350–355,
2022. ISSN 2405-8963. doi: https://doi.org/10.1016/j.ifacol.2022.10.
365. URL https://www.sciencedirect.com/science/article/pii/

S2405896322024028. 16th IFAC Workshop on Discrete Event Systems
WODES 2022.

[3] Giuseppe Olivieri, Gaetano Volpe, Agostino Marcello Mangini, and
Maria Pia Fanti. A district energy management approach based on
internet of things and blockchain. In 2022 IEEE Intl Conf on Depend-
able, Autonomic and Secure Computing, Intl Conf on Pervasive Intelli-
gence and Computing, Intl Conf on Cloud and Big Data Computing, Intl

v

https://www.sciencedirect.com/science/article/pii/S2405896322024028
https://www.sciencedirect.com/science/article/pii/S2405896322024028

vi

Conf on Cyber Science and Technology Congress (DASC/PiCom/CB-
DCom/CyberSciTech), pages 1–6, 2022. doi: 10.1109/DASC/PiCom/
CBDCom/Cy55231.2022.9927910.

[4] Gaetano Volpe, Agostino Marcello Mangini, and Maria Pia Fanti. A co-
operative drl approach for autonomous traffic prioritization in mixed
vehicles scenarios. In 2023 IEEE 19th International Conference on
Automation Science and Engineering (CASE), pages 1–6, 2023. doi:
10.1109/CASE56687.2023.10260615.

[5] Marco Fiore, Federico Carrozzino, Marina Mongiello, Gaetano Volpe,
and Agostino Marcello Mangini. A blockchain-based modular ar-
chitecture for managing multiple and quantum-safe encryption algo-
rithms. In 2023 9th International Conference on Control, Decision
and Information Technologies (CoDIT), pages 598–601, 2023. doi:
10.1109/CoDIT58514.2023.10284090.

[6] Francesco Paparella, Gaetano Volpe, Agostino Marcello Mangini, and
Maria Pia Fanti. Collision avoidance strategy for autonomous inter-
section management by a central optimizer algorithm. In 2023 IEEE
International Conference on Systems, Man, and Cybernetics (SMC),
2023 (to appear).

1 Introduction

The Industry 4.0 paradigm has paved the way for the development of ef-
ficient computational and storage infrastructures in manufacturing plants.
In fact, the ability of perform multiple complex tasks in short time in a
production flow and provide efficient communications between machines
and servers is crucial to improve throughput, quality and provide constant
monitoring to prevent faults and ensure business continuity and resilience
[9].

In this context, the contribution of Cloud Computing is essential. In
Cloud Computer paradigm, computational and storage resources are located
in multiple geographical positions and are consumed by the users in a variety
of business models, such as Software-as-a-Service (SaaS), Platform-as-a-
Service (PaaS) and Infrastructure-as-a-Service (IaaS) [10]. In SaaS, the user
simply utilizes and manage a one or more applications, while the provider
takes care of bug fixes and maintenance of the underlying infrastructure.
On the contrary, in PaaS and IaaS, the user is involved in managing a
part of the infrastructure such as administering virtualization and storage
resources (IaaS) or deploy code to pre-set environments (PaaS).

Cloud Computing suppliers often provide their services from their data
centres in a distributed fashion. A distributed system is simply any environ-
ment where multiple computational units are working on a variety of tasks
and components, all spread across a network [11]. Components within dis-
tributed systems split up the work, coordinating efforts to complete a given
job more efficiently than if only a single device ran it. Although the compu-
tational effort is split across multiple nodes, in distributed systems there is
often a centralized leader that acts as a coordinator and takes the decisions.
On the contrary, in decentralized systems, a subset of distributed systems,
there is no single point where the decision is made. Every node makes a
decision for its own behaviour and the resulting system behaviour is the
aggregate response.

A variety of well known optimization problems can be performed in dis-
tributed and decentralized systems using classical and Artificial Intelligence

1

2

(AI) based algorithms. Classical approaches pertain mostly on linear and
non-linear minimization problems whereas, in AI, both machine-learning
approaches, such as Artificial Neural Networks (ANN) and Deep Reinforce-
ment Learning (DRL), and swarm intelligence algorithms such as Particle
Swarm Optimization (PSO) are widely employed.

The main research direction of this thesis is to investigate the implemen-
tation of optimization algorithms in distributed systems in a variety of fields.
In Part I, the applications of such algorithms in different Blockchain-based
environments is presented. A Blockchain is a special case of a decentralized
system whose main purpose is to record transactions, such as in a ledger,
and allow their verification by all nodes joining a peer-to-peer network,
without the need of a central authority [12]. Transactions are grouped in
blocks and all blocks are connected each other in a tamper-proof chain.
Moreover, each node holds a copy of the ledger and all nodes must reach a
sort of agreement to add a new block to the chain.

The first investigated problem addressed in Chapters 3 and 4 is the op-
timal task assignment in Manufacturing as part of a production workflow.
Some examples of such tasks are optimization problems, data mining algo-
rithms, heavy file format conversion (e.g. video and audio file) and 3D ren-
dering. In more detail, in Chapter 3 a collaborative decentralized Ethereum-
based platform to deliver such complex software tasks is proposed. In the
introduced scheme, software tasks are delivered as Docker images, requested
by manufacturers, orchestrated by a Smart Contract and, finally, assigned
to Docker -based process runners. The task assignment is performed by a
ANN that predicts the runtime of each requested task for each agent and
selects the one with the shortest predicted execution time. The main advan-
tage of the proposed solution is the combination of Blockchain with other
cloud-based technologies and Deep Learning techniques to standardize pro-
cess delivery in a secure, scalable and tamper-proof context. Preliminaries
on Blockchain, Docker and Smart Contracts are provided in Chapter 2.

In Chapter 4, the same concept is deeply extended and the platform is
implemented in HyperLedger Fabric, an enterprise oriented Blockchain, as
a optimal auction and bidding scheme. While the task assignment proce-
dure is still driven by a Smart Contract, the main advancement compared
to the previous work is that the performance prediction algorithm is on-
line rather than offline. In detail, the proposed algorithm is based on DRL
and allows agents to incrementally learn how to predict runtime of software
tasks in their current load state as they collect new experiences. The algo-
rithm is able to learn theoretically every kind of task. Moreover, compared
to previous approaches in literature, it does not assume any preliminary
information in advance.

3

To conclude Part I, an incentive platform for energy management based
on Blockchain is presented in Chapter 5. The proposed Ethereum-based
platform stores real-time consumption data of users in a district and per-
forms user clustering and rating by a k-means algorithm. Then, based on
each user’s assigned class, a penalty-reward scheme based on a minimization
problem is applied to calculate users invoices amount. The entire process
is performed on the Blockchain in a secure and tamper-proof environment.

In Part II, the use of Swarm algorithms in Manufacturing is investi-
gated. More in detail, in Chapter 6, a framework based on Timed Coloured
Petri Nets (TCPN) to model mass production systems is introduced. In this
context, the problem of job scheduling optimization, that is known in liter-
ature as Flexible Job Shop Scheduling Problem (FJSSP), is solved by the
implementation of a Particle Swarm Optimization (PSO) algorithm. The
contribution of this work is the complementary use of TCPN, for system
simulation, and PSO to solve the NP-hard FJSSP problem, maximize the
throughput and minimize machine waiting time. Due to the intrinsic nature
of PSO, the proposed algorithm can be implemented in a parallel fashion
in a distributed environment, for example in a GPU-based environment, to
improve efficiency and speed up convergence time.

Part III deals with autonomous vehicles and the problem of autonomous
intersection management. More specifically, in Chapter 7, a novel Multi-
agent Cooperative DRL approach for autonomous intersection management
at unsignalized intersections under prioritized mixed traffic scenarios is pro-
posed. The proposed scheme includes three different vehicles categories:
Connected Automated Vehicles, i.e. CAVs, that act as agents in the DRL
algorithm implementation, Connected Priority Vehicles (CPVs), such as
ambulances or police cars, that are connected but driven by humans and
Regular Vehicles (RVs), that are neither connected or automated. Each
agent updates its state at each time step and receives a global reward. The
main goals of the system are to optimize traffic flow, ensure emergency
vehicles priority, prevent collisions and reduce crossing times. The main
contribution of this work are the novel state representation, that is only
partially observable by the agents due to the presence of unconnected ve-
hicles, the structure of the global reward function and the approach based
on Proximal Policy Optimization (PPO) to determine the best policy. Also
in this case, a parallel DRL training of the agents can be performed in a
distributed system context.

Summing up, in this thesis, Deep Reinforcement Learning as optimiza-
tion and control technique, shows great flexibility in different domains as
well as the possibility to be easily implemented in a distributed infrastruc-
ture such as a Blockchain-based system. On the contrary, it is shown that

4

the use of traditional Artificial Neural Networks is limited by their offline
fashion that normally requires a full dataset to perform the training. In
addition, Swarm Intelligence Algorithms, such as PSO, represent a good al-
ternative for NP-hard optimization problems in some cases and, compared
to traditional iterative methods, can be trained in a parallel fashion in a
distributed system.

Chapter 8 concludes the thesis and gives an outlook for future research
directions.

Part I

Optimal Algorithms and
Blockchain Applications in
Manufacturing and Power

Systems

5

2 Blockchain, Docker & DRL
Preliminaries

2.1 Blockchain and Smart Contracts

Blockchain is essentially a ledger whose architecture is distributed rather
than centralized. Its main purpose is to record transactions, signed at least
by the issuer, and allow their verification by all nodes joining the peer-to-
peer network, without the need of a central authority [12].

As the name itself suggests, the ledger is made by a chain of blocks,
in which each block stores a certain number of transactions. The chain is
guaranteed to be tamper-proof as each block is connected to the previous
one by including its Secure Hash Algorithm (SHA) SHA-256 in the header
[13].

As the order in which the blocks are connected is relevant for the trans-
actions history, all nodes must reach a sort of agreement whenever a new
block has to be added to the chain. For this purpose, many different con-
sensus mechanisms have been studied in recent years [14].

In a Blockchain, there is also the possibility to enforce a specific agree-
ment between two or more parties during a transaction. In this case, one
or more Smart Contracts are employed [15]. A Smart Contract is a small
algorithm coded in the Blockchain in languages such as Solidity [16] and
Vyper [17] that is executed when specific trggering conditions are met.

Moreover, Blockchains can be public or private. Public blockchains
are also called permissionless, in the sense that an authorization is not
required to join the network as a node or as a user. On the one hand, these
blockchains have a very high resilience and trust rate because they are
maintained by a great number of stakeholders in the world. However, due
to the high level of decentralization and the high computing power required
to reach consensus, they have some limits in scalability and performance
[18]. Conversely, private blockchains require an authorization to join the
network. Although the level of decentralization is reduced, the intrinsic

6

2.1. BLOCKCHAIN AND SMART CONTRACTS 7

trust between the nodes in this case allows to avoid mining in reaching
consensus and, thus, prevents scalability issues.

2.2. ETHEREUM & HYPERLEDGER FABRIC 8

2.2 Ethereum & Hyperledger Fabric

As of today, many different software solutions exist to implement a Blockchain.
In this regard, Ethereum platform has represented the first real paradigm
change as it introduced the concept of Smart Contract, allowing applica-
tions to be executed in the Blockchain [19]. In regard to the Ethereum
platform, Smart Contracts are executed in the so-called Ethereum Virtual
Machine (EVM), which is one its core components.

Hyperledger Fabric is an enterprise-grade Blockchain platform which
has great advantages, compared to other platforms such as Ethereum, in
terms of transactional privacy, flexibility and data-query capabilities [19].
Since it is mainly designed for permissioned networks, a new node must be
authorized to join the network by another node with appropriate permis-
sions. In the same way, a user can be granted access to all of part of the
data according to its role. Moreover, in order to ease deployment, it lever-
ages on a series of single micro-services based on Docker [20] containers.
The list of services includes peer, Certification Authority (CA) and orderer,
each with a specific role. A CouchDB [21] no-sql database is often used to
deploy the ledger, while Smart Contracts are called Chaincodes. Some of
the most popular languages are supported to develop chaincodes including
Java, NodeJs and GoLang. Finally, on consensus layer, Hyperledger Fabric
supports practical leader-based algorithms, such as RAFT [22], in which a
recognized leader node publishes the blocks while all other nodes verify and
validate transactions.

2.3. DOCKERS, CONTAINERS AND CLOUD STORAGE 9

2.3 Dockers, Containers and Cloud Storage

Docker is a client-server platform on which multiple applications can be run
in isolated environments called containers on the same host [23]. Contain-
ers are different from regular virtual machines in the sense that they do
not need an hypervisor, but they leverage the kernel of the host operating
system. However, a full life-cycle management is provided within the plat-
form, including actions such as create, start, stop and destroy and features
such as collecting metrics.

Each container is run on the top of a Docker image, which is a template
built according to a list of instructions included in a Dockerfile. Each of
those instructions is a single layer that is added to the image filesystem.
For each image a unique fingerprint can be indicated by calculating a single
SHA-256 hash that considers all of its layers.

Docker images are typically stored in a registry, which is essentially
a repository that allows users to pull or push images according to their
permissions and to store multiple versions of a single image identified by
different tags.

Cloud Storage is one of the most popular cloud technologies and it is
offered by some of the major providers, such as Amazon and Microsoft by
the S3 1 service and the Azure Blob Storage2 platform respectively. It is
essentially a data storage service [24] that enables users to store their files
in the Cloud.

1https://aws.amazon.com/s3/
2https://azure.microsoft.com/en-us/services/storage/blobs/

https://aws.amazon.com/s3/
https://azure.microsoft.com/en-us/services/storage/blobs/

2.4. DEEP REINFORCEMENT LEARNING 10

2.4 Deep Reinforcement Learning

DRL is a technique that combines traditional RL and deep learning. One
of the first approaches of DRL was DQN for Atari games [25], in which
a deep neural network (DNN) was used as the function approximator in
the place of traditional Q-learning [26]. A more recent application is Deep
Deterministic Policy Gradient (DDPG) [27], which is designed for scenarios
with exponentially large continuous action space.

Two specific applications of DRL for optimal task assignment in Blockchain
and Autonomous Intersection Management for Autonomous Vehicles are
extensively described in Chapters 4 and 7 respectively.

3 Design of a Tasks
Orchestration Platform in
Ethereum with ANN

3.1 Introduction

In this chapter, the first of two works dedicated to the problem of op-

timal software tasks assignment in Blockchain environments in Man-

ufacturing is presented. In the proposed approach, the Blockchain is

the base platform for tasks orchestration while the optimal assign-

ment of tasks is supported by the prediction of task runtime per-

formed by an Artificial Neural Network (ANN). The ANN is trained

using a dataset of past tasks executions in different time frames and

various load conditions.

Cloud Computing significantly changed the way industries do their busi-
ness today [10]. In 2020, enterprise spending on cloud infrastructure services
amounted to almost 130 billion U.S. dollars, while in 2011 it was only 3.5
[28]. In manufacturing industry, the adoption of cloud technologies lead to
the new paradigm of Cloud Manufacturing [29], which enables companies to
provide and receive services over Internet via an intelligent service-oriented
architecture.

Decentralization is a key factor both in Cloud Computing and Cloud
Manufacturing as distributed architectures improve services reliability, scal-
ability and performance when compared to traditional on-premise central-
ized approaches [29]. Similarly, security is also a key concern in these con-
texts as data elaborated in the cloud may be compromised, altered or stolen
and the integrity of services could be severely affected [30].

Blockchain, as a secure ledger for storing transactions, plays a strategic
role in modern distributed architectures and the recent literature has shown
a great interest about this revolutionary technology over the last decade. A

11

3.1. INTRODUCTION 12

systematic review provided in [12], shows that Blockchain based application
have been adopted in many business domains: from popular financial ap-
plications, such as cryptocurrencies, to completely different fields, such as
Business and Industry, IoT, Governance, Education , Health, and Privacy
& Security.

Smart Contracts are typically the core component on which most of
these applications are based. A comprehensive summary of smart contracts
and their most popular applications is provided in [31].

Among all business domains, a specific attention in recent literature has
been given to the application of Blockchain in Business & Industry [12].
In detail, as described in the taxonomy provided in [32], a well structured
class of Industry 4.0 applications are already implemented. Moreover, the
authors describe the adoption of Smart Contracts in fields such as Internet-
Of-Things, Supply Chain, Manufacturing and Energy. However, in [33],
the challenges and the current status of Blockchain in manufacturing are
surveyed and the relative research paths for the near future are suggested
by the authors.

Some specific solutions for Engineering and Manufacturing are detailed
in [34]. The reviewed applications are designed for specific purposes such
as increasing the efficiency of the manufacturing process, protecting data
validity and enhancing communications inside and outside the organization.

The Blockchain, as a tool that could be employed by all the management
stakeholders of a product life-cycle is argued in [9] by describing different
purposes, such as making deals and sharing information about products. In
their work, the authors review the state-of-the-art literature in the field from
both the manufacturing system perspective and product life-cycle manage-
ment perspective. In general, when sustainable manufacturing in Industry
4.0 is concerned, the Blockchain is considered as a concrete enabler for cur-
rent Enterprise Resource Planning and Manufacturing Execution Systems
solutions.

As an example of such application, in [35], a decentralized task exe-
cution model for Industrial-Internet-of-Things (IIoT) environments named
ManuChain is suggested. The proposed architecture has a dual layer ar-
chitecture and it is based on a permissioned Blockchain and specifically
designed Smart Contracts. More recently, in [36], the authors introduce
a Blockchain based security service architecture for Cloud Manufacturing
environments, that facilitates authentication and privacy protection in de-
centralized 5G IIoT contexts.

Collaborative Business Process Management (BPM) in Blockchain do-
main is discussed in [37]. In their systematic review, the authors show
that, among others, papers about process implementation & execution and

3.1. INTRODUCTION 13

process modeling phases are the most representative.
In this context, a common research topic is the translation in Smart

Contracts of processes defined according to the well known Business Process
Model and Notation (BPMN) [38]. In [39], an open source BPM system
named Caterpillar, is suggested. The solution includes a BPMN to Smart
Contract compiler to perform the translation in automatic fashion.

Concerning the Cloud Manufacturing, the existing Blockchain based
solutions already satisfy some of the most critical requirements such as de-
centralization and security. Furthermore, compared with other distributed
architectures, the Blockchain is known to have a greater performance when
those features are concerned. In addition, in several business domains, a
Blockchain peculiar feature such as the immutability of transactions clearly
enhances their credibility while, at the same time, the unnecessity of trusted
third parties makes easier to verify contents and improves the reliability of
a given platform [12].

Moreover, in [40], the advantages of using Blockchain in such environ-
ments and, specifically, for Additive Manufacturing and 3D printing is no-
ticeable. In that respect, the authors observe that preserving the intellec-
tual property to secure CAD models is a critical issue in such context and
that the Blockchain technology can be efficiently implemented to license the
models and secure the whole manufacturing process. In addition, in [41],
a concrete example of a Blockchain and Smart Contract based architecture
for Additive Manufacturing is proposed with the specific purpose of enforc-
ing agreements between design and 3D printing companies and preserve the
intellectual property of design files.

However, it is often required that modern platforms satisfy other im-
portant requirements in the context of collaboration. In particular, they
need to be standardized and flexible in order to be easily implemented. As
suggested in [29] and [10], most of the existing solutions about the devel-
opment of virtualization and servitization technology are still weak and,
consequently, fail to fit those requirements.

This research focuses on particular manufacturing processes that pro-
duce pieces in small lots or in single unit, such as ophthalmic lenses or 3D
printed products. Such types of manufacturing procedures require specific
digital processes, computational intensive tasks and raise standardization,
cybersecurity and intellectual property preservation issues.

Cloud solutions and standardized frameworks can enable different actors
to effectively provide, update and consume any kind of process delivered
as a service. The absence of such standard framework in current related
literature makes it hard to flexibly integrate a generic software logic in such
environments and impacts on servitization process.

3.1. INTRODUCTION 14

Motivated by this open issue, this work proposes a decentralized, dis-
tributed, cybersecure and collaborative platform to improve digital pro-
cesses in Cloud Manufacturing environments. The proposed platform is
based on Ethereum [42], which is one of the most popular Blockchain im-
plementations, and Smart Contracts. In addition, different actors such as
Process Owner, Process Consumer and Process Runner cooperate in the
platform to handle process life cycle and effectively execute digital business
processes.

Differently from previous solutions, such as [41], that consider only
Blockchain as enabling technology, the main contribution of the research
is using Docker, Cloud Storage and Deep Learning in the Manufacturing
Sector, integrated with Blockchain, in order to solve the problem of stan-
dardizing the processes, ensuring flexibility and security, preserving intel-
lectual property, and enabling scalability. Such requirements are addressed
by the following technologies in an innovative approach.

First, we integrate in the proposed Blockchain platform two popular
cloud technologies: Docker [23] and Cloud Storage [24]. Docker is a container-
based platform to run applications in isolated environments from lightweight
and self-contained images and it has great advantages in terms of perfor-
mance, scalability, and portability over traditional virtual machines [20].
While Docker in a typical Blockchain architecture is only employed to run
the components of the Blockchain itself, in the proposed platform, the pro-
cess logic is delivered to the runners right in terms of a Docker image,
which includes both the application and its dependencies. To the best of
our knowledge, it is the first time that Docker is used in Cloud Manufac-
turing and in a Blockchain environment in this specific role to provide a
flexible and distributed computational environment.

Second, each Docker image is identified by a unique digest that is stored
and updated in the chain by the Process Owner through a Smart Contract.
Since the Blockchain is tamper-proof in nature, by storing the digest in
the chain, consumers and runners are always guaranteed to use the latest
version of the process as deployed by the Process Owner, thus preserving
the integrity of the execution. Moreover, in order to keep the Blockchain
not too heavy, we rely on traditional Cloud Storage platforms to store and
retrieve instances related input and output files.

Third, since in Cloud Manufacturing task scheduling plays a fundamen-
tal role [43] and the allocation of physical resources such CPU and memory
in a shared Cloud Computing environment is generally variable, we intro-
duce a task assignment problem with a deep learning approach to predict
process run-time that is based on past Docker containers metrics. In this
way, given an instance request in a specified time band, we are able to

3.1. INTRODUCTION 15

choose the fastest runner.
The proposed blockchain platform including Docker and Cloud storage

is implemented in a real case study of ophthalmic lenses manufacturing.
Thanks to the flexibility of Docker technology, we show that the proposed
platform combines the great advantages of existing Blockchain based so-
lutions in Cloud Manufacturing in terms of reliability, performance, and
cybersecurity with a completely different service deployment approach. In
fact, in this environment any process that can be packed in a Docker image
can be easily and safely implemented. Hence, a more effective collaboration
between owners, runners and consumers can be achieved with no integration
overhead for new processes.

The results of this research have been published firstly in [3] in their
embryonic form and, successively, in [1], in which we provide a detailed
description of the platform architecture and large implementation details
about the case study regarding ophthalmic lenses manufacturing. In partic-
ular, the task assignment problem and the related deep learning approach
are described by focusing on the lens surface calculation step. Moreover,
we discuss the specifications of the process implementation on the proposed
platform highlighting the related benefits in terms of cybersecurity, relia-
bility and performance compared to the traditional solutions.

In Chapter 2, some basic concepts related to Blockchain, Smart Con-
tracts, Docker, Cloud Storage have been introduced. The remainder of this
chapter is organized as follows: In Section 3.2, the concept of Digital Process
and Time Predicition Algorithm is explained. In Section 3.3, we introduce
the platform architecture describing in detail its principal components, use
cases, smart contracts and client applications involved. In section 3.4, we
present a real case study regarding ophthalmic lenses manufacturing. Fi-
nally, section 3.5 concludes the chapter.

3.2. DIGITAL PROCESSES 16

3.2 Digital Processes and Time Prediction

Algorithm

In this work, a digital process is defined as a software task that is typically
made of a computationally intensive algorithm. The task requires one or
more input files and produces a certain number of output files to be used
in the following steps of a manufacturing process.

In addition, we refer to a Time Prediction Algorithm as a function to
predict the amount of time needed to complete tasks on a specified envi-
ronment that we call Process Runner. For this purpose, a deep learning
approach based on an Artificial Neural Network (ANN) is introduced. The
proposed ANN is trained by considering the past metrics collected from
process runners after each task execution.

3.3. THE PROPOSED PLATFORM STRUCTURE 17

3.3 The Proposed Platform Structure

In this section, we introduce a novel practical approach for implementing
BPM in the Blockchain by leveraging on the features of two of the most
popular cloud technologies: Docker and Cloud Storage. This platform is
specifically designed for manufacturing environments, nevertheless other
implementations are viable.

Based on Dumas BPM life-cycle [44], we suggest the use of Docker in
process execution phase, supposed that the process to be executed is a digi-
tal process. Moreover, we store process inputs and outputs in a traditional
cloud storage and we use Blockchain and Smart Contracts for process im-
plementation and monitoring. We also introduce a basic task assignment
problem based on execution time prediction performed through an ANN
trained with past process runs metrics.

Figure 3.1: Platform Architecture & Use Cases

The proposed platform architecture is described in Fig. 3.1. The core of
the platform, in the central part of the scheme, is a Consortium Blockchain
built on Ethereum. It implements two main use cases: Create Process and
Consume Process, that represent the process life-cycle which is orchestrated
by the Process Smart Contract.

Given the consortium nature of the Blockchain, we decided to use Proof-
of-Authority consensus algorithm [45]. More in detail, Create Process is
related to the creation of a new process and Consume Process describes a
single instance life-cycle.

3.3. THE PROPOSED PLATFORM STRUCTURE 18

In addition, four client applications are also provided for the purpose of
interacting with the Blockchain: the Process Client Application that imple-
ments the main use cases, the Process Runner Application that interacts
with the Docker based process runners, the Permission Granting Applica-
tion that listens for events on the Process Smart Contract and orchestrates
the permissions on the Cloud Storage and, finally, the Data Mining Ap-
plication that collects metrics about past instances and updates the ANN
weights on a dedicated Oracle Smart Contract.

Components and Use Cases

In this subsection, the main components of the platform are described in
detail. We identify five main entities in the platform related to the process
life-cycle:

1. Process Owner: It represents the entity that created the process
core logic and coded the related algorithm. An owner usually delivers
a process to the platform that can be requested by multiple consumers.

This entity is involved in the following use case:

Create Process: It is the action of creating the process in the
chain. First, the Process Owner packs the algorithm files in
a Docker image along with all dependencies, then it sends the
image to a Docker registry and finally executes the CreateProcess
function.

2. Process Consumer: It represents the entity that needs to perform
an instance of the digital process for its business purposes.

3. Process Runner: It provides the computational resources to execute
the process instance by running the related image in a container.

4. Permissions Granting Application (PGA): this component as-
signs and revokes permissions on files in the Cloud Storage.

These last three components are involved in the following use case:

Consume Process: First, the Process Consumer requests a
new instance of the process by invoking the ProcessInstance func-
tion, then a Process Runner is assigned by the Smart Contract
and the instance is finally executed. Both the Process Consumer
and the Process Runner need to interact with the Cloud Storage
for storing and retrieving instance inputs and outputs, therefore

3.3. THE PROPOSED PLATFORM STRUCTURE 19

the PGA plays its role by assigning and revoking the related
permissions.

5. Data Mining Algorithm: It is the external component that col-
lects past instances metrics from the chain and trains the execution
time prediction ANN for each registered runner and for each known
process on a regular time basis. At the end of each training, it pushes
updated weights for each runner to the Oracle Smart Contract in the
Blockchain.

Smart Contracts

The whole process life-cycle relies on two Smart Contracts developed in
Solidity programming language:

Process Smart Contract

It stores data of processes, runners and instances. In addition, it provides
CreateProcess and ProcessInstance functions that, in the proposed plat-
form, represent the two main transactions of the Blockchain. As shown
in Listing 3.1, the Process model includes the relevant Docker image name
(optionally with its tag) and the docker SHA-256 digest that ensures the in-
tegrity of the execution, effectively encoding the process logic in the Smart
Contract and in the Blockchain. Consequently, when the Process Owner
invokes the CreateProcess function in the Smart Contract, it creates a new
unique process identified by the related Docker image digest. The Process
Runner is therefore allowed to use only that image when it is assigned a
new instance. Should it retain a different version in its local repository, it
must preliminary pull the required image from the remote registry before
executing the instance.

pragma sol idity 0 . 8 . 1 ;

contract Process {
enum Proce s s In s tanceS ta t e
{Placed , Assigned , Completed , Refused }
uint public t o t a lP r o c e s s e s ;
uint public t o t a lP r o c e s s I n s t an c e s ;
Process [] public p ro c e s s e s ;
Proce s s In s tance []
public p ro c e s s I n s t an c e s ;

struct Account {

3.3. THE PROPOSED PLATFORM STRUCTURE 20

int256 balance ;
bool accountType ;

}
struct Process {

string dockerImage ;
// Docker SHA-256 Hash

bytes dockerId ;
uint c l i c kFe e ;
address owner ;
ProcessRunner [] runners ;

}
struct ProcessRunner {

address runner
}
struct Proce s s In s tance {

uint proce s s Id ;
address runner ;
address consumer ;
uint executionTime ;
uint execut ionFee ;
uint t o ta lFee ;
bytes inputId ;
bytes outputId ;
Proce s s In s tanceS ta t e s t a t e ;

}
function c r ea t eProc e s s (. . .)
function proc e s s In s t anc e (. . .)
. . .

Listing 3.1: Solidity code snippet for Process Smart Contract

The ProcessInstance function is depicted in the Unified Modeling Lan-
guage (UML) [46] activity diagram in Fig. 3.2. When the consumer requests
a new process instance, it stores the inputs in its area on the Cloud Storage.
At the same time, the ProcessInstance function selects the fastest Process
Runner by predicting the execution time for each registered available run-
ner based on the weights stored in the Oracle Smart Contract. Since each
runner is set for events listening on the Smart Contract, it becomes aware
of the assignment and decides to accept or refuse the task by executing an
auxiliary function. If it accepts, it is immediately granted the needed per-
missions on the cloud Storage by the PGA to retrieve the instance inputs.
Once the inputs are available, the process instance is executed in a Docker
container with the requested image. At the end of the execution, the Smart
Contract is notified and the outputs are stored on the Cloud Storage to

3.3. THE PROPOSED PLATFORM STRUCTURE 21

be finally retrieved by the consumer. On the contrary, if the first assigned
runner refuses, the Smart Contract is notified and next fastest runners are
attempted until one of them accepts or there are no more available runners.
In the latter case, the instance ends and the consumer is notified so that it
can try again at a later time.

Figure 3.2: ProcessInstance Function UML Activity Diagram

3.3. THE PROPOSED PLATFORM STRUCTURE 22

Oracle Smart Contract

The Oracle Smart Contract is used to store the calculated weights of each
ANN trained on past instance metrics. The weights are updated on a
regular time basis. The whole process is implemented in the Data Mining
Application described in Section 3.3.

Client Applications

The interaction of the components with the Blockchain and the Smart Con-
tracts is carried out by using client applications that invoke functions in the
Smart Contract and listen to the chain events.

In this work, we introduce four applications:

1. Process Client Application: it implements Create Process and
Consume Process use cases and interacts with the Cloud Storage to
store instance inputs and retrieve instance outputs. It could be also
connected with third-party applications to exchange files and data.

2. Process Runner Application: it implements Consume Process use
case and interacts with the Docker host to pull requested images from
the registry and run the instance container for process execution. It
also interacts with the Cloud Storage to retrieve instance inputs and
store instance outputs.

3. Permission Granting Application - PGA: it listens for chain
events and assigns and revokes permission on instance inputs and
outputs for consumers and runners.

4. Data Mining Application: it collects past instances metrics by
querying the Process Smart Contract on a regular time basis. Each
observation in the training dataset includes the day of the week and
the time band (hour of day) as input, while the actual running time
in seconds is collected as output. Those features are depicted in Table
3.1. After building the dataset, a single multilayer perceptron ANN
(MLP) for each runner and for each process is trained by using stan-
dard backpropagation. MLP is a class of feedforward artificial neural
network composed of multiple layers of perceptrons with a threshold
activation and it is widely used for regression problems where, given a
set of inputs, a real-valued quantity is to be predicted. After training,
the calculated weights are pushed to the Oracle Smart Contract to
be used for future instances running time prediction. In this way, al-
though a machine learning approach is adopted, the task assignment

3.3. THE PROPOSED PLATFORM STRUCTURE 23

process is deterministic and can be easily integrated in a Blockchain
based architecture.

Table 3.1: Time Prediction ANN Dataset Details

Feature Domain Description

dayOfWeek 1 ≤ x ≥ 7, x ∈ Z Day of the week, Sun-Sat

hourOfDay 0 ≤ x ≥ 23, x ∈ Z Hour in which instance has
been requested

runningTime R>0 Actual execution time (Output)

3.4. CASE STUDY: OPHTHALMIC LENSES MANUFACTURING 24

3.4 Case Study: Ophthalmic Lenses

Manufacturing

In this section, we present an implementation of the proposed architecture
in ophthalmic lenses manufacturing. Indeed, the manufacture of ophthalmic
lenses is a typical production of single, specific pieces, each one made on
the basis of a unique medical prescription. Moreover, the lenses production
requires high amount of data and complex optimization. On the other
hand, cybersecurity issues must be considered to secure the ownership of
the lenses design and implementation software. For this reason, the selected
case study reflects the requirements to apply the proposed technology and
allows us to enlighten the benefits of the Blockchain architecture.

The process of lens manufacturing is typically made of five steps in se-
quence: Calculation, in which the lens surface to be machined is computed,
Surfacing, Polishing, Coating and, finally, Edging.

In this work, we focus on Calculation, which is a pure digital process.
A typical lens calculation software is called Lens Design System (LDS).

Lens Design System

A LDS takes the patient’s ophthalmic prescription as input, which is typi-
cally called a job, and performs a mathematical calculation that produces
the data to be sent to a CNC machine to realize a surface on the back of a
semi-finished lens. We depicted the process using BPMN notation [38] as
shown in Fig. 3.3.

Take Patient’s Prescription

Prepare Job Input File

Make Calculation

Write Job Output Files

Figure 3.3: Lens Design System Process

In the eye care industry the exchange of data between machines and
systems is regulated by a standard published by the Vision Council of

3.4. CASE STUDY: OPHTHALMIC LENSES MANUFACTURING 25

America, an US based organization that includes almost all the relevant
players. The name of this standard is Data Communication Standard and
the current version is 3.12 [47].

Listing 3.2 shows a typical job input file including prescription data
along with other relevant manufacturing parameters.

JOB=1111
DO=B
REQ=LDS
LNAM=LensDesignName ; LensDesignName
SPH=+1.00;+1.00
CYL=+0.0;+0.00
AX=0.0 ; 0 . 0
ADD=2.0 ; 2 . 0
CRIB=60;60
LIND=1.5 ; 1 . 5
FRNT=5.00 ;5 .00
MINEDG=1.0 ; 1 . 0

Listing 3.2: LDS Job Input File

Each parameter is identified by a record label followed by a record separator,
which is invariably the ”=” sign, and then by actual field values for right
and left eyes, separated by a semicolon ”;”. Table 3.2 shows the meaning
of the most relevant labels included in the presented case study.

Table 3.2: DCS Record labels description

Record Label Description

LNAM Name of lens style

SPH Rx Sphere power (diopters)

CYL Rx cylinder power (diopters)

AX Prescribed cylinder axis

ADD Addition power for multifocal lenses (diopters)

CRIB Lens diameter (mm)

LIND Refraction index of lens material

FRNT Blank true front curve for power calculations
(diopters)

MINEDG Minimum edge thickness of finished lens cut to shape
(mm)

GBASEX Generator base curve (diopters)

GCROSX Generator cross curve (diopters)

The type of lens surface to be calculated is set by the LNAM label
value and in some cases, such as for progressive lenses, it heavily affects

3.4. CASE STUDY: OPHTHALMIC LENSES MANUFACTURING 26

the calculation time. In fact, while conventional single vision lenses have a
spherical or toric shape and can be easily computed, when it comes to pro-
gressive lenses, a differential geometry problem has to be solved to compute
the resulting freeform surface. These problems are often computationally
intensive and thus require several seconds of processing.

In the case of conventional geometric shapes the output file, which is
called the LMS file, simply includes the radius of the sphere or of the torus.
On the contrary, in case of freeform surfaces, an additional file is needed
which describes the whole surface through a square matrix and it’s called
the SDF file. In Listing 3.3 and 3.4 an example of both files is provided.

JOB=1111
DO=B
REQ=LMS
LNAM=LensDesignName ; LensDesignName
CRIB=60;60
LIND=1.5 ; 1 . 5
GBASEX==4.43;=4.43
GCROSX==4.60;=4.60

Listing 3.3: LMS Job Output File

REQ=SDF
JOB=1111
SURFMT=1;R;B; 8 5 ; 8 5 ; 8 4 ; 8 4
. . .
ZZ=16 . 6 8 8 ; 1 6 . 1 7 6 ; 1 5 . 6 8 2 ; 1 5 . 2 0 6 ; . . .
ZZ=16 . 3 1 0 ; 1 5 . 8 0 0 ; 1 5 . 3 0 8 ; 1 4 . 8 3 3 ; . . .
. . .

Listing 3.4: SDF Job Matrix File - 84x84 mm - step 1mm

3.4. CASE STUDY: OPHTHALMIC LENSES MANUFACTURING 27

Implementation

This subsection proposes an implementation of a LDS system based on the
presented architecture. Firstly, we identify the actors of the case study as
follows: Process Owner is the Lens Designer, Process Consumer is the Lens
Manufacturer and Process Runner is the Surface Calculator.

In this case study, a Lens Designer implements its calculation algorithm
with the programming language of his choice and packs the compiled ap-
plication along with all libraries and dependencies in a Docker image to
be pushed to a container registry. Although the Process Smart Contract
encodes the calculation logic by including the Docker digest in the model,
it is in charge only of the process flow, therefore no particular changes are
needed to support the specific case study. Consequently, the implementa-
tion of CreateProcess and ConsumeProcess functions for respectively adding
new lens design and requesting new calculation is straightforward.

Moreover, even the implementation of client applications does not re-
quire any particular change from proposed architecture as we only need to
collect input and output files both on client and runner edges. However, the
Process Client Application needs to be connected to the lens manufacturer’s
information system to allow the CNC machine to retrieve the calculated
surface. We use Amazon S3 service as our cloud storage, therefore both
consumers and runners need to have an account on those platforms to store
and retrieve files.

Running Time Prediction ANN

Data Mining Application collects metrics from past lens calculation in-
stances and trains a model for each runner and for each process to predict
the running time of a single lens design instance on the runner at a specified
time.

In this particular context, calculation time is pretty stable for a de-
sign unless other simultaneous processes are running on the node and the
available resources, such as cpu and memory, must be shared. In order to
simulate a real environment and evaluate the efficacy of the prediction ap-
proach, we use one c5d.large node on Amazon Web Services equipped with
two Intel Xeon 3.6Ghz vCPUs and 4GB of RAM. In addition, we choose a
progressive lens design and we run manually a set of 9143 calculations to
get a reference value of running time in seconds in both busy and normal
state to evaluate the performance of the sample node under different load
conditions. In the first busy case, namely when there are multiple intensive
processes running at the same time on the node, the calculation mean time

3.4. CASE STUDY: OPHTHALMIC LENSES MANUFACTURING 28

is 15s with a standard deviation of 1.0s. Conversely, in the second normal
case, when only one process is running at a time, the mean of calculation
time is 7s with a standard deviation of 0.5s. We use calculated values and
two normal distributions to build multiple random datasets of 200 sam-
ples/hour, from 8:00 to 20:00, from Monday to Sunday, collecting a total of
18200 samples.

In particular, for each day of the week, after randomly picking a two
hours period for busy state condition, we build a first normal distribution:

X1 ∼ N (µ1, σ
2
1)

where X1 is a random variable that represents the calculation time in busy
state condition with mean value µ1 = 15s and standard deviation σ1 = 1s.

Then, we build a second normal distribution:

X2 ∼ N (µ2, σ
2
2)

whereX2 is a random variable that represents the calculation time in normal
state condition with mean value µ2 = 7s and standard deviation σ2 = 0.5s.

Finally, we randomly sample 200 values/hour either from X1 or X2

according to the corresponding state. Since we use a normal distribution,
almost 99.7% of the sampled values fall in the interval [µ− 3σ, µ+ 3σ].

After generating the dataset, we build the ANN described in Table 3.1.
Since a multilayer perceptron network requires numerical values as input,
One-Hot encoding technique [48] is used to transform day of week and hour
of day features in a single vector of only 0 and 1 for each sample. The
resulting network is depicted in Fig. 3.4 and consists of 20 neurons in the
input layer, 21 neurons in the hidden layer and a single neuron in the output
layer which represents the calculation time.

Day of Week
1-7 ...

Hour of Day
8-20

...

...

Calculation
Time

Hidden
layer

(n=21)

Input
layer

(n=20)

Output
layer
(n=1)

Figure 3.4: MLP Network Infrastructure

3.4. CASE STUDY: OPHTHALMIC LENSES MANUFACTURING 29

We split the original dataset into 80% training and 20% test sets. Given
that we deal with a regression problem, the network is trained with Mean
Squared Error (MSE) as loss function to minimize the average squared
difference between the collected calculation time values and the predicted
values, whereas Rectified Linear Unit (ReLU), which is nowadays the de-
fault choice for many types of neural networks as it often achieves better
performance than other methods [49], is used as activation function. Lastly,
Adam algorithm [50] is used as optimizer. The training process converges
to MSE=0.38, for both training and test sets, in less than 10 epochs, as
depicted in Fig. 3.5.

Figure 3.5: Training Epochs vs. MSE

The residual MSE=0.38 yields to RMSE=0.61s that allows us to predict
the calculation time with sufficient accuracy for the purpose of this platform.
In order to clearly show the effectiveness of the network after training, we
predict the calculation time of the last 100 samples of the test set and we
plot both actual and predicted values in Fig. 3.6. In particular, Fig. 3.6
shows that the proposed platform is able to fully capture the time band in
which a specific node is busy and, consequently, to select an alternative free
node to calculate a specific lens design instance in the least possible time.

3.4. CASE STUDY: OPHTHALMIC LENSES MANUFACTURING 30

Figure 3.6: Effectiveness of the Time Prediction ANN

Discussion

In this subsection, we compare the proposed BPM platform with two ex-
isting LDS design software: IOT1 that is a monolithic software package to
be installed in a lens manufacturer calculation server; ProCrea2 that is a
client-server architecture providing calculation service through a centralized
platform.

The mentioned solutions have the following limitations.

� Lack of flexibility: The two vendors provide ten different lens
designs for single vision and progressive lenses. The availability of
new designs for the lens manufacturer only depends on their updates.
It is not easy for a lens designer to make a new design available to
the market without relying on one of these legacy solutions.

� The instances are executed one by one in a queue: therefore, it
is not possible to parallelize calculations. Huge queues require a long
time to be processed and product lead time is inevitably affected.

� Lack of reliability: in the case of IOT, any fault of the local server
would result in a production stop; in the case of ProCrea, the fault
of the centralized platform would prevent on-premise clients to make
new calculations.

� Lack of security: The details and the accounting of calculated
jobs are stored either in the local on-premise server or in the central-
ized platform database. There’s no guarantee that these data cannot
be damaged, lost or altered and therefore the integrity of economic
transactions could be affected.

1https://www.iot.es/
2https://www.procreatech.com/

https://www.iot.es/
https://www.procreatech.com/

3.4. CASE STUDY: OPHTHALMIC LENSES MANUFACTURING 31

� Constrained requirements: ProCrea client software is Java based
and it requires a specific version of Java Runtime Environment. IOT,
which is Microsoft .NET based, makes calculations locally; thus, cal-
culation time strictly depends on the amount of CPU and memory on
the on-premise server.

By implementing a LDS system in the proposed Blockchain platform,
the following improvements are achieved.

� Collaboration: we provide a shared and decentralized platform on
which multiple Lens Designers can make their algorithms available in
form of self-contained Docker images. Consequently, computational
resources providers can register as calculators and provide their ser-
vice. The manufacturer uses always the same client for all lens designs.
The integration of new or updated designs is therefore easier, as it does
not require any structural change or any significant reconfiguration of
the environment.

� Performance: the provided solution is distributed and fault tolerant.
Indeed, the manufacturer can run multiple calculations, that are ex-
ecuted simultaneously on different runners. Hence, the performances
in term of computational time and reliability improve.

� Cybersecurity: since the Blockchain is tamper-proof, the economic
transactions of the fees charged to the manufacturer and paid to
lens designers and surface calculators cannot be altered. The use
of Ethereum platform gives the additional option to finalize transac-
tions right on the chain by implementing a dedicated ERC-20 token
[51].

� Costs: since the cloud storage service has typically low fares, a long-
term storage is guaranteed for input and output files. This feature
also prevents data loss on manufacturer’s side. In addition, when
the Blockchain is implemented in Consortium fashion, such as in the
proposed platform, the cost of executing transactions in Ethereum is
controllable and can be even zeroed.

However, every Blockchain based solution has some limitations that need
to be investigated. For example, in terms of scalability, the number of trans-
actions per second is strictly dependent on the consensus algorithm that is
implemented in the system. In that respect, since the adopted Blockchain
is implemented in Consortium fashion, the consensus algorithm is scalable

3.4. CASE STUDY: OPHTHALMIC LENSES MANUFACTURING 32

and does not require the time consuming operations of mining-based algo-
rithms. In addition, from the transactional privacy perspective, although
the core of the intellectual property is in the Docker images and in the file
stored in the Cloud Storage area, the content of transactions is visible to
all users who have access to the Blockchain. Hence, the implementation
of a complex Blockchain architecture such as HyperLedger Fabric, which
can limit the user access to the transactions, would benefit the proposed
system.

3.5. CONCLUSION 33

3.5 Conclusion

The Blockchain is a consolidated paradigm shift in software architectures.
The increasing interest in this technology over the last decade has shown
that it can be adopted not only for financial applications such as cryp-
tocurrencies, but also in industry environments and specifically in Cloud
Manufacturing to increase the efficiency of production process and take the
benefits of a decentralized approach and a tamper-proof ledger.

This work proposes a novel platform for improving digital processes in
an Ethereum based Blockchain enviroment in which we integrate two of
the most popular cloud technologies: Docker and Cloud Storage. In detail,
Docker, which in a typical Blockchain architecture is usually employed to
run the software components of the Blokchain, in this platform runs pro-
cess instances using input files stored in Cloud Storage in a distributed and
flexible computational platform. We identify and describe the roles of Pro-
cess Owner, Process Consumer and Process Runner, whose differences and
cooperation are the fundamentals of the proposed platform.

Process life-cycle is implemented in the main Smart Contract, while
the individual process core logic is packed in a Docker image enabling any
generic host to perform an heterogeneous set of tasks. A simple task assign-
ment problem, implemented through an ANN approach, is also introduced
for the purpose of improving the performance by decreasing instances exe-
cution times.

Finally, we provide a case study regarding the implementation of this
platform in Ophthalmic Lenses Manufacturing environment and specifically
in Lens Design Systems. Two results are enlightened. First, we show that
no significant changes are needed on the industrial process to implement the
new platform. Second, we underline the benefits of moving from a legacy
static and centralized approach to a flexible decentralized, distributed, se-
cure and collaborative platform on which multiple lens designers can pro-
vide their calculation algorithms while lens manufacturers can run different
calculations simultaneously on registered calculators.

In the next chapter, the same architecture is proposed in Hyperledger
Fabric blockchain and the task assignment problem is implemented by a
Deep Reinforcement Algorithm algorithm.

4 Optimal Task Assignment
Problem with DRL in
Hyperledger Fabric

4.1 Introduction

In this chapter, the second work dedicated to the problem of optimal

software tasks assignment in Blockchain environments in Manufac-

turing is presented. Differently from the first work, in which the

runtime prediction algorithm, based on a classical ANN, is offline, in

this second approach an online method based on Deep Reinforcement

Learning is suggested that gradually learns how to make correct pre-

dictions. Moreover, a more structured auction-based tasks orches-

tration framework designed on Hyperledger Fabric is suggested.

The migration from on-premise to Cloud-based platforms has been rising
over the past years. The public Cloud infrastructure as a service (IaaS)
spending forecast for 2023 is of 156 billions U.S. dollars, whereas in 2019
it was only 45 [52]. Consequently, due to the high requirements of several
application categories, the rapid increase of company investments in the
Cloud leads to a continuous growing of computing power, memory and
storage demands.

In this context, scientific workflows, data mining algorithms, file format
conversion (e.g. video and audio file), 3D rendering and cryptography-based
solutions are only some examples. All of those applications are resource con-
sumption intensive in terms of CPU and memory and it is often required in
enterprise environments that they are completed in the least time possible,
especially when they are part of a production flow.

However, due to the high volatility of resources availability in the Cloud,
application runtime is not always static and strictly depends on the assigned
environment current workload, therefore it needs to be somehow estimated.

34

4.1. INTRODUCTION 35

This problem is well known in literature as performance prediction and it
has been addressed since 2005 with different techniques based on the con-
tinuous collection of resource consumption data such as CPU and memory
usage. In [53], a systematic review of performance prediction of parallel ap-
plications is provided. The authors observe that in the 81.7% of considered
papers, the estimation is based on analytic methods in which the corre-
sponding equations are either manually or automatically derived mostly by
stochastic linear and non-linear approaches. On the other hand, in the re-
maining 18.29%, non-analytic methods, such as Support Vector Machines or
Artificial Neural Networks are used. Although most of these approaches are
quite accurate, they cannot be easily used in modern Cloud environments
for at least three reasons:

i) they are too application-specific or platform-dependent and, therefore,
they have a limited field of application;

ii) they are intended for single-core processors or for a specific class of
multi-core architectures and they do not consider the vast class of avail-
able platforms;

iii) they assume a free workload context in which the underlying resources
are not being used by other concurrent processes, which is unrealistic
in a typical Cloud environment.

Indeed, these limitations are reflected in some recent works. For exam-
ple, in [54], the proposed performance prediction approach is restricted to
scientific applications on HPC Cluster platforms. In contrast, the method
proposed in [55] is not application-specific but it is restricted to Grid en-
vironments. Moreover, many of the existing works, such as [56] and [57],
suggest an offline approach, whereas all modern applications require an
online continuous incremental learning.

As a result, due also to the heterogeneity of the applications and the
volatility of configuration and availability of the underlying resources, the
existing methods are not generally applicable in a Cloud environment.

In alternative, the adoption of Reinforcement Learning-based (RL) tech-
niques is a valid approach. In [58, 59], the authors propose RL-based meth-
ods for solving specific resource management and task mapping problems
and minimizing application runtime by prediction. However, [58] is re-
stricted to the problem of optimizing the performance of communication
bound applications on parallel computing systems. In contrast, [59] pro-
poses a mapping problem for generic tasks in a multi-resource cluster but,
in its prediction approach, it assumes that the resource demand for each

4.1. INTRODUCTION 36

task is known in advance. When it comes to Cloud environments, this
is certainly a strong assumption as the task demands are not necessarily
known upon arrival on the system.

In addition, decentralization is another key factor in Cloud environ-
ments. In fact, in a typical scenario multiple resources are available from
different locations on a variable time-based fee. The resulting resources
trading problem among nodes poses several security and integrity issues
for transactions that have been addressed in recent literature with auction
systems implemented on Blockchain, a popular secure distributed ledger
technology, and combined with RL-based techniques for various optimiza-
tion objectives such as maximizing participants payoff, minimizing energy
consumption or adjusting block size [60].

In this work, we overcome the limitations of the existing methods and we
formulate a task assignment problem by performance prediction for Cloud
applications in a multi-agent environment that is based on an incremental
online learning process. Diversely from the approaches proposed in [54] and
[55], which are restricted to only some classes of platforms and applications,
the novel method is neither application-specific or platform-dependent and
is able to work in a generic cloud environment in which, for each agent,
a certain number of concurrent different processes are running. The main
objective of the proposed approach is to find, according to the client prefer-
ences, the agent that completes the execution in least time or, in alternative,
the cheapest agent.

Differently from [60], which is focused mostly on the use of Blockchain
for the implementation of optimal auction and bidding strategies, we lever-
age on Hyperledger Fabric to manage both the agent selection process by
auction and the task execution. In addition, we adopt a DRL incremental
learning approach [25] to enable each agent to predict task runtime and
therefore place a bid for a submitted task. The proposed DRL-based algo-
rithm overcomes the limitations of [59] as it does not assume any preliminary
consumption-related information in advance.

In more detail, the research contributions are listed as follows:

1. A Blockchain-based trading platform is designed on top of Hyper-
ledger Fabric to orchestrate clients requests, agents bids and resulting
task assignment. We formulate a double bidding strategy according
to client preferences. On the one hand, agents provide both a runtime
estimation and a price. On the other hand, clients choice between the
least price and the least estimated time according to their current
setting.

4.1. INTRODUCTION 37

2. A model-free DRL framework for task runtime estimation to support
the agent selection process. The proposed algorithm enables the agent
to incrementally learn how to do predictions for generic tasks repre-
sented by only two parameters, considering its current load in terms
of resources consumption and already running tasks.

To the best of our knowledge, it is the first time that Hyperledger Fabric
Blockchain and DRL are combined together for task assignment orchestra-
tion and performance prediction. In this regard, in our previous works [1]
and [3], resumed in Chapter 3, we propose a similar framework, which is
based on Ethereum [61] and implements a traditional offline deep learning-
based prediction strategy, rather than an online approach.

We conduct extensive experiments to evaluate the performance of the
proposed DRL algorithm with different training factors. In particular, we
show how it works by varying discount factor, number of episodes and policy
exploration vs. exploitation probability.

In Chapter 2, some basic concepts related to Blockchain, HyperLedger,
Smart Contracts and DRL have been introduced. The rest of the chapter is
organized as follows: Section 4.2 describes some works about performance
prediction, DRL-based task assignment algorithms and resources trading
systems in Blockchain environments combined with DRL. Section 4.3 in-
troduces the proposed system model. The DRL-based task assignment
approach is described in section 4.4, whereas in Section 4.5 experimental
results are presented in detail. Finally, Section 4.6 concludes the chapter.

4.2. RELATED WORK 38

4.2 Related Work

The prediction of performance for a vast class of tasks with machine learning
(ML) techniques has been extensively studied over the past years. Some of
the earliest works suggest how to predict resource consumption over time,
such as CPU utilization, amount of used memory, disk space and network
bandwidth, given a set of environment attributes.

In [62], the suitability of several machine learning techniques for pre-
dicting spatio-temporal utilization of resources by two bioinformatics ap-
plications, BLAST and RAxML, is studied. Some of the investigated meth-
ods are: k-nearest neighbor, linear regression, decision table, Radial Basis
Function network, Predicting Query Runtime and Support Vector Machine.
The authors conclude that different algorithms perform better in different
situations and that including as many attributes as available, even from
monitoring systems, can improve prediction performance.

In [63], a novel approach for learning ensemble prediction models of
tasks runtime is presented. The authors use bagging techniques to produce
ensembles of regression trees to be used in scientific workflows, such as
gene expression analysis, made of different sub-tasks, and show that their
method leads to significant prediction-error reductions when compared with
standalone models.

Still referring to scientific workflows, an online incremental learning ap-
proach to predict the runtime of tasks in cloud environments is suggested in
[64]. The incremental approach enables to capture some typical cloud fea-
tures, such as the continuous environmental changes and the heterogeneity
of the different platforms whereas. Recurrent Neural Network (RNN) and
K-Nearest Neighbors (KNN) are used for estimation. To improve predic-
tions, fine-grained time-series resources monitoring data related to CPU uti-
lization, memory usage, and I/O activities are collected for each unique task
in the form of time-series records. The authors show that their approach
significantly outperforms state-of-the-art solutions in terms of estimation
error.

A similar approach, called two-stage prediction, is proposed in [65]. In
this work, first the resources consumption in terms of CPU utilization,
memory, storage, bandwidth, I/O is estimated for a single task instance
in a cloud environment and then the result is used for runtime prediction.
However, that is an offline machine learning approach and has some limita-
tions compared to online approach in which data are processed as soon as
they arrive in a near real-time fashion and it does not reflect the streaming
nature of workloads in cloud environments.

4.2. RELATED WORK 39

Furthermore, in [53] a systematic literature review of performance pre-
diction methods for parallel applications is presented that includes analytic
and non-analytic methods and indicates future research trends and some
unsolved issues. In particular, this work shows that performance predic-
tion has been applied on a wide range of domains and reviews 82 different
approaches developed between 2005 and 2020. However, the authors con-
clude that most of these methods focus on a specific application type and
platform and therefore there’s a lack of independent solutions able to work
in unknown environments.

Resource management and task assignment are two other problems that
have received great attention in the related literature. In this context, the
DRL approach, that is often used for intelligent-robot related problems such
as optimal path planning and obstacle avoidance [66], has recently become
very popular. For instance, in [59], a multi-resource cluster scheduler named
DeepRM is presented that is able to learn how to manage resources directly
from experience in an online fashion and to optimize various objectives
such as minimizing average job slowdown or completion time. The authors
show that their method performs comparably to state-of-the-art heuristics,
adapts to different conditions and converges relatively quickly.

In [58], a DRL approach for solving task mapping problems with dy-
namic traffic on parallel systems is discussed. The algorithm explores better
task mappings by using a network simulator that predicts performance and
runtime communication behaviors. Since communication pattern are often
changing and unknown, network performance is difficult to be accurately
estimated, therefore the authors claim that DRL is an efficient solution in
this dynamic context and show that their method performs comparably or
better than previous approaches.

Diversely from the aforementioned works, the DRL approach proposed
in this work does not rely on a specific class of application, but it is in-
tended to be an abstract framework combined with modern container based
technologies, such as Docker, with the purpose to learn the behavior and
estimate the execution time of a generic software task that can be packed
in a container image and can be monitored by Docker resources metrics in
a competitive environment.

Blockchain-enabled solutions for a vast range of problems have been
recently arising. For example, in our previous works [1] and [3], a Smart
Contracts-based platform is proposed for improving digital processes in a
Cloud manufacturing environment. In detail, we combine Blockchain with
Docker and Cloud Storage and introduce a deep learning approach in a task
mapping framework. In [67], a blockchain-based two-stage secure spectrum
intelligent sensing and sharing auction mechanism for mobile devices is

4.2. RELATED WORK 40

designed in a consortium blockchain to guarantee secure and efficient spec-
trum auction with low complexity. In [68], the authors introduce a novel
scalable and multi-layer blockchain-based energy trading framework for co-
operative microgrid systems that considers the issue of of perceiving the
status of block generation over temporary network disruption and improves
the consensus and the reliability of energy trading.

Moreover, several recent works have been proposed addressing security,
data integrity and optimization problems with a combination of Blockchain
and DRL. For instance, in [69], a reliable data collection and a secure sharing
scheme for smart mobile terminals are proposed. The authors introduce an
Ethereum-based Blockchain to safely manage data sharing with a DRL
approach to achieve the maximum amount of collected data, geographic
fairness and minimize energy consumption. Several simulations experiments
show that their method outperforms traditional database based approaches
in terms of reliability and security.

In [70], a smart grid blockchain combined with fog computing is sug-
gested. This work includes a Hyperledger Fabric Blockchain in which the
nodes are part of a fog computing environment. A verifiable random func-
tion is proposed to ensure randomness and increase safety in the selection of
the primary node while keeping the probability proportional to the comput-
ing power provided by each member. Based on storage cost and security
constraints, a DRL scheme is implemented to adjust the block size and
the block interval in the proposed Blockchain. By conducting extensive
simulations, the authors show the superiority of their scheme in terms of
throughput and latency. A similar approach, though intended to decrease
energy consumption and to improve the efficiency of the consensus process
in Blockchain-enabled Industrial Internet of Things systems by adjusting
block size and offloading some tasks to computing servers, is suggested in
[71]. The problem is formulated as a high-dynamic and high-dimensional
Markov Decision Process for whom a DRL approach is used to converge to
an optimal solution.

A peer-to-peer energy trading problem among microgrids is investigated
in [72]. In this work a multi-agent deep deterministic policy gradient, based
on energy trading algorithm, is proposed to enable each microgrid to max-
imize its own utility in a local market. Given the uncertainties and the
constraints in renewable energy and power demand, the authors claim that
the DRL-based approach is suitable to help each microgrid to find its opti-
mal policy. An Ethereum Blockchain is adopted to ensure the integrity of
transaction data.

A Blockchain-enabled computing resource trading system is proposed
in [60]. This system takes into account pricing and bidding strategies to

4.2. RELATED WORK 41

enable providers and customers to trade computing resources on a safe and
tamper-proof environment. A decision-making problem in the continuous
double auction is formulated with the goal of maximizing each participant
payoffs, while a DRL approach is adopted to help them building their op-
timal bidding strategies. The authors conduct extensive simulations and
show that their scheme outperforms other existing methods.

Finally, in [73], a DRL approach is used to solve a joint optimization
problem to enhance adaptivity and scalability in Blockchain environments.
The proposed approach considers the optimal selection of consensus proto-
cols and the allocation of computation and bandwidth resources. The au-
thors show through extensive simulations the effectiveness of their scheme.

4.3. SYSTEM MODEL 42

4.3 System Model

In this section, we introduce a new system that combines a novel runtime
estimation algorithm based on DRL in a competitive task assignment frame-
work safely managed by a Hyperledger-based Enterprise Blockchain. The
proposed architecture is depicted in Fig. 4.1. The system is made up of
three layers: the Blockchain layer in the middle, and the Agent and Client
layers on the sides.

Agent 1

Agent 2

Agent m

Agent Layer

Peer1,1 Peer1,2 Peer1,n CA1

Provider 1

Chaincode (CH) Ledger (L)

Tasks Coordina-
tion Channel

Peern,1 Peern,2 Peern,n CAn

Provider n

Client 1

Client 2

Client i

Client Layer

Orderer (OD)

Blockchain Layer

Bids Requests

Events Events

Figure 4.1: System Architecture

Blockchain Layer

Let us consider a set of pre-authorized organizations O = {o1, o2, on, . . . , o|O|},
called providers, that constitute the nodes of the permissioned Hyperledger
Blockchain. An organization in Hyperledger Fabric is simply a firm that
decides to join a network and that is authorized by other existing members.
Note that symbol |A| denotes the cardinality of the generic set A. More-
over, each provider on delivers a set of peers Pn = {pn,1, . . . , pn,i, . . . , pn,|Pn|}
joining the network, where pn,i is the i-th peer of provider on. Each provider
on has one Certification Authority CAn to provide and renew certificates for
Agents, Clients and other components. All peers in the set Pn hold a copy
of the chaincode CH and of the ledger L. The chaincode CH is the main
Smart Contract that regulates the requests of the clients, the bids received
by the agents and coordinates the task assignment process. The ledger L
stores the current state of the tasks and the related transactions. Finally,
the Orderer node OD is responsible for packaging transactions into blocks
and distributing them to the peers in the sets Pn across the network.

4.3. SYSTEM MODEL 43

Client Layer

In the proposed system, we define the set of clients C = {c1, . . . , , ci, . . . , c|C|},
where ci implements a step of a generic process flow, for which it is required
to run computationally intensive tasks. Since ci may not have enough re-
sources to run tasks locally, it interacts with the Blockchain to submit
execution requests. For each successful task execution, a variable fee is
charged.

For each ci, we define the set

Ri = {ri,1, . . . , ri,j, . . . , ri,|Ri|}

where ri,j represents the j-th execution request of client ci. In addition,
for each request ri,j, the client ci has to specify the strategy and the task
details. Considering the used strategy, we define two alternative options:
time-sensitive and price-sensitive. In the first case, we assume that the
client objective is to complete the task in the least time possible, regardless
of the charged fee. In the second case, the requirement is to pay the lowest
fee, regardless of the execution time. In order to specify task details, we
define the set T = {t1, . . . , tk, ..., t|T |}, where tk represents a generic task
that can be requested by the clients with an arbitrary input parameter.

Now, each request ri,j can be defined by a triple ri,j = ⟨gi,j, ti,j, pi,j⟩,
where gi,j ∈ [0, 1] is the strategy, with 0 representing time-sensitive and
1 price-sensitive, ti,j = tk ∈ T is the required task and pi,j is the input
argument.

Agent Layer

Each request ri,j submitted by a client requires an Agent to execute the
associated task. In this fully distributed environment, we define the set of
agents A = {a1, . . . , am, . . . , a|A|}, where am is a node that joins the network
and provides its computational resources, such as CPU and memory, to
the system. For the sake of generalization, we use Docker container-based
technology to embed the tasks in self-dependent images [23]. In this way,
since everything is packed in the Docker image, the nodes do not have any
constraint in terms of operating system and dependencies.

Now, at each request ri,j, we associate an agent am ∈ A that is denoted
ai,j. Such an agent is paid a variable fee upon successful execution of the
related task. Moreover, since for each agent am we allow the execution of
concurrent processes, the execution time strictly depends on its current load
state.

4.3. SYSTEM MODEL 44

As illustrated in section 4.3, the client can choose between time-sensitive
and price-sensitive strategies. More specifically, when the former strategy is
chosen, the client goal is to minimize the run-time of its processes and thus
each agent am is required to provide a reliable prediction of the execution
time for each request rn,i based on its current state. Conversely, in case
the latter strategy is selected, only the proposed price is relevant for the
assignment. The main scope of the price-sensitive option is to allow an
agent that has recently joined the network and it is not able to provide a
reliable execution time prediction to compete in price rather than in time
and collect new experiences to progressively improve its predictions.

4.4. DRL-BASED TASK ASSIGNMENT PROCESS 45

4.4 DRL-Based Task Assignment Process

In this section, we introduce a competitive task assignment process by ex-
pected runtime prediction that implements the two client strategies: time-
sensitive and price-sensitive. The agents leverage on a novel DRL approach
to provide predictions.

Task Assignment Process

The main process is designed in the chaincode CH and is depicted in the
UML sequence diagram in Fig. 4.2. Both the clients C and the agents A
continuously interact with the Blockchain for requests and tasks manage-
ment. More specifically, in the first part of the diagram, the agent selection
is performed and in the second part, post-assignment actions are imple-
mented.

beginRequest(ri,j)

notifyAgent(ri,j)

sendBid(bi,j,m)

sortBidsByRating()

sortBidsByPrice()

notifyWin()

executeTask(ti,j ,pi,j)

notifyEnd()

storeTask(eti,j,m,ri,j)

chargeClient()

notifyClient()

Client:ci Smart Contract: Agent:am

[gi,j=Price Sensitive]

alt

[gi,j=Time Sensitive]

alt

[Agent am is winner]

Figure 4.2: Agent selection UML sequence diagram

4.4. DRL-BASED TASK ASSIGNMENT PROCESS 46

The agent selection process is detailed in Algorithm 1, which is imple-
mented in the chaincode in GO [74] programming language. The input is
the client request ri,j and the output is the winner agent ai,j ∈ A.

Algorithm 1 Agent selection algorithm
Input: A Client Request ri,j = ⟨gi,j , ti,j , pi,j⟩
Output: Winner Agent ai,j ∈ A

Step 1:
foreach am ∈ A do

Forward request ri,j to Agent am Collect bid bi,j,m = ⟨eti,j,m, pri,j,m⟩ B ← B ∪
{bi,j,m}

end
Step 2:
if gi,j is time-sensitive then

Sort set B by estimated time eti,j,m
else if s is price-sensitive then

Sort set B by bid price pri,j,m
Step 3:
Set h← 1 while B ̸= ∅ do

Take bid bi,j,m(h) ∈ B if Agent am is available then
Agent am is the winner ai,j ← am return ai,j ;

else
B ← B \ {bi,j,m} Set h = h+ 1

end

In Step 1, a request ri,j for a bi,j,m is sent to each available agent am ∈ A,
where bi,j,m is the bid of agent m for the request j of client ci. In addition,
bi,j,m is defined as bi,j,m = ⟨eti,j,m, pri,j,m⟩ where eti,j,m is the estimated
completion time provided by the agent am and pri,j,m is the proposed price.
All received bids are collected in the set B = {bi,j,1, . . . , bi,j,m, . . . , bi,j,|A|}.
In Step 2, given the strategy gi,j in ri,j, the members of B are sorted by
eti,j,m or pri,j,m accordingly. Finally, in Step 3, the first available agent am
associated to bi,j,m in the sorted rank is elected as the winner and therefore
ai,j = am.

The estimated time eti,j,m leverages on the DRL approach that is de-
scribed in Section 4.4. On the contrary, the bid price pri,j,m is determined
autonomously by the agent to compete in the current race.

After a request ri,j has been successfully assigned, the winner agent ai,j
executes the task ti,j with the parameter pi,j and notifies the completion
to the chaincode CH. Finally, the instance metrics, such as the effective
runtime, are stored in the tamper-proof Blockchain and the client ci is
charged according to the offset between the actual execution time and the
prediction.

4.4. DRL-BASED TASK ASSIGNMENT PROCESS 47

DRL approach for running-time predictions

In this section, we propose a DRL approach for task runtime prediction.
In particular, the Deep-Q-Network (DQN) algorithm proposed in [25] is
applied to the considered problem. The triple (S,A,R) defines a RL deter-
ministic model, where S is the State Space, A is the Action Space and R is
the Reward. In the considered application the triple (S,A,R) is specified
in the following.

1. State Space (S): We assume that each agent is able to run a fixed
number k of concurrent tasks as individual containers. As a con-
sequence, execution time is potentially impacted by three combined
parameters to be considered on a new incoming request ri,j:

I) the type of task ti,j ∈ T , its associated input parameter pi,j and
submission time tsi,j;

II) total available resources for each agent am: cpu speedm, number
of cores n coresm, maximummemorymax memorym, hdd typem
(rotational or high-speed SSD), available network bandwidth
bwm;

III) current resources consumption of previous k − 1 processes run-
ning on am: cpu timem,n,memm,n, net i/om,n, block i/om,n, num-
ber of processes n pidsm,n where n = 1, 2, . . . , k − 1.

Now, we introduce the following three tuples:

I) sm,1 = ⟨ti,j, pi,j, tsi,j⟩;
II) sm,2 = ⟨cpu speedm, n coresm,max memorym,

hdd typem⟩;
III) sm,3 = ⟨cpu timem,n,memm,n, net i/om,n,

block i/om,n, n pidsm,n⟩, where n = 1, 2, . . . , k − 1.

Moreover, we define Sm = {sm,1, sm,2, sm,3} that represents the current
state of agent am in the proposed DQN framework. The structure
of sm,2 reflects the current node configuration. Those features are
assumed to be static and are described in Table 4.1. In addition,
sm,3 denotes the current running containers resources usage and is
continuously updated. Since in the proposed system, each task is
represented by a Docker image and, consequently, each instance is
essentially a container based on that image, we can leverage on live
metrics exposed by Docker to collect live resources usage data. In
Table 4.2, all those metrics are described.

4.4. DRL-BASED TASK ASSIGNMENT PROCESS 48

2. Action Space (A): Given the current state of the candidate agent
am, the target is to predict the expected runtime in seconds for the
incoming client request ri,j. In the proposed DRL approach, the bid
estimated value eti,j,m constitutes the action. In order to ease the
training, we consider a discrete set of execution times in steps of 1
second with a predefined upper bound value that constitutes a global
time out for each instance processed by the system.

3. Reward (R): Once task ti,j has been executed, each state Sm and
action eti,j,m produce the actual elapsed time as observation and con-
tribute to the reward by assessing the level of prediction accuracy.
Thus, if we set a constant token TKmax as a maximum reward for
each successful calculation, we can calibrate the reward value RDi,j,m

by considering the relative error between actual execution time ati,j,m
and estimated time eti,j,m. In detail, RDi,j,m is defined by the follow-
ing formula:

RDi,j,m = TKmax

{
ati,j,m
eti,j,m

ati,j,m ≤ eti,j,m
eti,j,m
ati,j,m

otherwise.
(4.1)

Table 4.1: Node Configuration Features

Feature Description UM

cpuspeed CPU speed Mhz

ncores Number of cores n/a

maxmemory Memory MB

hddtype Storage type (0=spinning,1=solid state)

bw Network bandwidth Kbps

The adopted DQN scheme is described by Algorithm 2. Firstly, accord-
ing to the approach in [25], a number of episodes E for training and the
condition for a state Sm to be terminal are defined. In the proposed ap-
proach, the number of episodes is arbitrary and is strictly related to the
number and types of tasks in the set T . Basically, it should be as long as to
guarantee an accurate prediction of execution runtime eti,j,m in every agent
load condition. Similarly, a maximum number of iterations I is set after
which the state Sm is terminal and single episode is completed.

Step 1 initializes the replay memory set D with capacity N and the Q
network that will be trained. Moreover, in Step 2, for each iteration of each

4.4. DRL-BASED TASK ASSIGNMENT PROCESS 49

Table 4.2: Resources Usage Metrics

Metrics Description UM

cputime The amount of cpu usage accumulated
by the process

1/100th seconds

mem The total memory the container is us-
ing

MiB

neti/o The amount of data the container has
sent and received over its network in-
terface

bytes

blocki/o The amount of data the container has
read to and written from block devices
on the host

bytes

npids The number of processes or threads
the container has created

n/a

episode, whenever a new request ri,j is submitted to agent am, a new state
Sm is built and a value for eti,j,m is randomly selected or predicted with
probability ϵ. Subsequently, price pri,j,m is arbitrarily determined by agent
am and the bid bi,j,m is definitely set. As shown in Fig. 4.2, bi,j,m is sent
to the Smart Contract on which the Algorithm 1 is executed after all bids
from all agents are collected.

In Step 3, if the agent am is the winner, ti,j is run locally and the actual
execution time ati,j,m is observed from Docker metrics to calculate the step
reward RDi,j,m. At the same time, a new training step begins.

In Step 4, on next incoming request r′i,j, the future state S ′
m is deter-

mined. Then, the whole transition trh is stored in experience replay memory
set D. Subsequently, M transitions are randomly selected from set D in the
subset Dh. Then, a new value yn that considers maximum future reward
as predicted from target network Q and discounted by γ is calculated as
updated reward for each transition tbn ∈ Dh.

Finally, in Step 5, a new Q network is trained by performing a gradient
descent step on (yn − Q(Sm,n, eti,j,m,n; Θ))2, in order to get new θ for next
iteration h+1. The target network is updated every w iterations to stabilize
learning, where w must be preliminary assigned.

4.4. DRL-BASED TASK ASSIGNMENT PROCESS 50

Algorithm 2 Deep Q Learning
Step 1:
Initialize replay memory set D with capacity N
Initialize Q(Sm, êt) arbitrarily
Step 2:
Set e = 1
while e ≤ E do

Set î = 1
while î ≤ I do

Wait for request ri,j
With probability ϵ select a random action êt
otherwise select êt = max

êt
Q(s, êt; θ)

Set eti,j,m = êt
Set arbitrary price pri,j,m
Set bi,j,m = ⟨eti,j,m, pri,j,m⟩
Send bi,j,m to Smart Contract and wait for Algorithm 1
Step 3:
if agent am is the winner then

Take action eti,j,m = êt, observe RDi,j,m, S′
m

Step 4:
Wait for next request r′i,j
Store transition trh = ⟨Sm, eti,j,m, RDi,j,m, S′

m⟩ in D
Sample random minibatch of M transitions Dh = {tb1, tb2, tbn, . . . , tbM}
where tbn ∈ D
foreach tbn ∈ Dh do

Set yn ←

RDi,j,m,n

for terminal S′
m,n

RDi,j,m,n+

γ max
eti,j,m

Q(S′
m,n, et

′
i,j,m; θ)

for non-terminal S′
m,n

end
Step 5:
Perform gradient descent step on (yn − Q(Sm,n, eti,j,m,n; θ))

2 where n =
1, 2, . . . ,M
Sm ← S′

m

Set î = î+ 1
end
Set e = e+ 1

end
end

4.5. PERFORMANCE EVALUATION 51

4.5 Performance Evaluation

In this section, we evaluate the performance of the proposed task runtime
prediction DQN driven algorithm in a simulated environment.

Simulation Settings

In the proposed case study, we identify three common software algorithms
with different complexities to evaluate the proposed system, therefore we
set T = {t1, t2, t3}. We code the tasks using Python language in a single
Docker image that requires two parameters on launch: task ti,j ∈ T and
parameter pi,j. In the considered case, the value of pi,j is restricted to the
members of the set P = {1, ..., 5} with pi,j ∈ P .

In particular, we consider the following three well known algorithms:

1. Standard Array Sorting (t1): it builds a random big Python inte-
ger list whose number of elements is based on pi,j. After building the
list, the sort method is called that implements the Timsort algorithm
[75]. This algorithm has a runtime complexity of O(n log n) in the
worst case;

2. Fast Array Sorting (t2): instead of constructing a list, a ran-
dom NumPy [76] integer array is built that also implements the sort
method. However, in NumPy library the quicksort algorithm [77] is
adopted which has a runtime complexity of O(n2) in the worst case;

3. Dijkstra Shortest Path Search (t3): The Dijkstra’s algorithm
[78] is an algorithm for finding the shortest paths between nodes in
a graph. In this implementation, firstly we build a graph with a
large number of vertices V determined by parameter pi,j. Secondly,
we find the shortest path from the first vertex to all other vertices.
The Dijkstra standard implementation has a complexity of O((|V |+
|E|) log |V |) in the worst case.

The proposed algorithms are currently implemented in scientific and
industrial applications. For example, sorting tasks are used in operations
research to implement both the Shortest Processing Time First and the
Longest Processing Time First rules for optimal jobs scheduling and load
balancing [79]. Indeed, Dijkstra’s algorithm is currently been used for a vast
class of problems including vehicle path planning [80] and optimal packet
routing in software defined network environments [81].

4.5. PERFORMANCE EVALUATION 52

In Table 4.3, we summarize the three tasks, their runtime complexities
and the minimum and maximum value of elements as determined by their
linear combination with parameter pi,j.

Table 4.3: Tasks Details

ID Algorithm Complexity Min Max

1 Sort O(n log n) 2× 104 5× 104

2 NumPy sort O(n2) 106 2× 106

3 Dijkstra SPS O((|V |+ |E|) log |V |) 103 5× 103

We set maximum concurrent tasks k = 4 and we run a random sequence
of simultaneous instances on a designated agent. On each new submitted
instance, we collect current Docker metrics from the node as described in
section 4.4.

As agent, we use a t2.medium cloud instance from Amazon AWS equipped
with 2x Intel Xeon 3.3Ghz vCPU and 4GB of memory. Since the number of
available CPUs is less than k, we simulate an elevated competition between
tasks during runtime and therefore we observe high variability in execution
time, which is typical of real cloud environments.

In Fig. 4.3, the average task ti,j runtime, observed for each pi,j value
over a total of 9995 metrics collected in two days simulation, is depicted.

1 2 3 4 5

Parameter p

10

20

30

40

50

60

70

80

90

100

110

R
u

n
ti
m

e
 (

s
)

(a) Sort t1

1 2 3 4 5

Parameter p

10

15

20

25

30

35

40

45

50

R
u
n
ti
m

e
 (

s
)

(b) NumPy sort t2

1 2 3 4 5

Parameter p

0

10

20

30

40

50

60

R
u
n
ti
m

e
 (

s
)

(c) Dijkstra SPS t3

Figure 4.3: (a), (b), (c), Tasks Average Runtime for different values of
parameter pi,j

We use the metrics set for testing the performance of the DRL approach
described in Section 4.4. In particular, on each iteration a new state from
current item is built, then either a random time is selected or the expected
runtime is predicted from current Q-function according to the exploration
vs. exploitation probability. Finally, the reward is calculated against the
actual runtime as described in 4.1. The current transition is stored in

4.5. PERFORMANCE EVALUATION 53

experience replay, then the rest of the steps in Algorithm 2 update the
current Q-function.

In this experiment, the Q-function is approximated by a dense DNN
made up of three layers:

1. The input layer represents the state and consists of 21 neurons. In
this layer, we combine some elements of the state to reduce the di-
mension and we use One Hot Encoding techniques [48] to represent
some categorical variables, such as the tasks IDs.

2. The intermediate layer consists of 70 neurons, as the average between
input and output dimensions

3. The output layer represents the discretized action space and consists
of 120 neurons, where 1 second is the minimum expected runtime and
120 seconds is the last accepted value before raising a timeout error.

The deep neural network approximating the Q-function is depicted in Fig.
4.4. To evaluate the performance of our DRL strategy, we use a t3.2xlarge
cloud instance from Amazon AWS equipped with 8 x Intel Xeon 3.1Ghz
vCPU and 32GB of memory.

Submitted Task
...

Existing Workload
(Tasks & Metrics)

...

...

1 sec.
...

120 sec.

Hidden
layer

(n=70)

Input
layer

(n=21)

Output
layer

(n=120)

Figure 4.4: Deep Neural Network for Q-function

4.5. PERFORMANCE EVALUATION 54

Performance Comparison

This section reports a performance comparison between two different sce-
narios tested in the performed experiment. The first scenario consists of
5000 episodes of 150 iterations each, whereas the second scenario consists of
3000 episodes of 300 iterations each. Since we are using a DRL approach,
we have two more critical hyper-parameters to consider:

1. Discount Factor γ: in DRL environments, setting the discount factor
is part of the problem [82]. The discount factor essentially determines
how much the RL agent cares about rewards in the distant future
relative to those in the immediate future. If γ = 0, the agent will
be completely myopic and only learn about actions that produce an
immediate reward. If γ = 1, the agent will evaluate each of its actions
based on the sum total of all of its future rewards. In the simulations,
we continuously feed the system with tasks and we are interested in
evaluating how the DRL approach performs with different values of
γ. Therefore, we test the algorithm for both scenarios with γ = 0.2,
γ = 0.5 and γ = 0.8.

2. Exploration vs. Exploitation Probability ϵ: in RL, exploration means
that the agent explores randomly the whole action space to improve
its knowledge about each action for a long-term benefit. On the other
hand, exploitation means that the agent uses only its current knowl-
edge to get the most reward. In Algorithm 2, the choice between
exploration and exploitation is made with a probability coefficient ϵ
that usually varies at each episode. Normally, this value starts from 1,
meaning that, since the agent doesn’t know anything at the beginning
about the actions, it must explore all available actions for each state.
Successively, it slowly decays over future episodes until the training
end, when it is very close to 0, meaning that it fully levarages on its
knowledge. For the performed evaluations, we start from ϵ = 1 and
we implement a linear decaying strategy over episodes till a minimum
value of ϵ = 0.001.

Considering the aforementioned hyper-parameters, we are interested in
comparing the following two metrics for both scenarios.

1. Cumulative Reward CR is defined for single episode of n steps as:

CR =
∑
n

R(n); CR ∈ [0, Cmaxn]. (4.2)

4.5. PERFORMANCE EVALUATION 55

Figures 4.5a and 4.6a compare the average values CR vs. episodes
for all three considered discount factors in both scenarios. For all val-
ues of γ, as the agent explores new actions and trains its Q-function,
the CR value increases almost linearly and results in 46% perfor-
mance improvement at the end of the training, compared to the first
exploration-only episode.

0 1000 2000 3000 4000 5000

Episode

600

650

700

750

800

850

900

950

A
v
e

ra
g

e
 R

e
w

a
rd

=0.2

=0.5

=0.8

(a) Average Reward

0.2 0.5 0.8

Discount Factor

1

2

3

4

5

6

7

8

9

10

L
a

s
t

S
te

p
 R

e
w

a
rd

(b) Prediction Accuracy

Figure 4.5: First scenario performance evaluated for different values of γ:
(a) Average reward over episodes, (b) Runtime prediction accuracy

summary statistics

0 500 1000 1500 2000 2500 3000

Episode

1200

1300

1400

1500

1600

1700

1800

1900

2000

A
v
e

ra
g

e
 R

e
w

a
rd

=0.2

=0.5

=0.8

(a) Average Reward

0.2 0.5 0.8

Discount Factor

0

1

2

3

4

5

6

7

8

9

10

L
a
s
t
S

te
p
 R

e
w

a
rd

(b) Prediction Accuracy

Figure 4.6: Second scenario performance evaluated for different values of
γ: (a) Average reward over episodes, (b) Runtime prediction accuracy

summary statistics

Moreover, though γ = 0.2 appears to learn faster than γ = 0.5 and
γ = 0.8, in the end the performance of the highest discount factors

4.5. PERFORMANCE EVALUATION 56

outperforms the smallest one. In the last part of the training, the
value of ϵ becomes very small and let the algorithm leverage only on
exploitation for task runtime prediction. In this case, the compari-
son shows that for higher values of γ, the accuracy of the Q-function
slightly improves proving that the proposed DRL approach is able to
catch a sort of correlation between successive submitted tasks. There
are no major differences between the performance of the two scenar-
ios. It can only be observed that in the second scenario, the learning
speed for γ = 0.8 is higher than in the first scenario, compared to
other values of γ. This metric can be influenced by the different num-
ber of steps in the episode and the resulting value of exploration vs.
exploitation probability coefficient ϵ in each step. In fact, in the first
scenario, ϵ decreases linearly every 150 steps, whereas in the second
scenario every 300 steps. As a consequence, although the evaluated
performance shows that a higher number of steps per episode improves
the algorithm, it is evident that episode length also affects the train-
ing time. However, the simulations point out that different values of
γ and ϵ may help in minimizing total computational effort.

2. Runtime Prediction Accuracy is measured in the last training
step, in which the algorithm only exploits the approximated Q-function.
We set Cmax = 10 as highest step reward in case of exact runtime pre-
diction, otherwise the value is determined in a linear fashion as defined
in (4.1). Figures 4.5b and 4.6b show summary step reward statistics
for both scenarios and for different values of discount factor γ. As for
the previous metric, in all the cases a similar performance is observed
among the compared schemes, having γ = 0.8 case the best median
x̃ = 6.30 and x̃ = 6.89 for the first and second scenario, respectively.
The latter case with γ = 0.8 shows the overall best performance, hav-
ing the 50% of the steps a prediction accuracy ≥ ≈69%, whereas only
a residual 25% of the steps show an accuracy ≤ ≈49%. Finally, the
upper quartile shows a prediction accuracy ≥ ≈82% for 25% of the
steps.

Given the dimensions of state space and action space, the evaluated
performance is acceptable and confirms the effectiveness of the proposed
DRL approach.

4.6. CONCLUSION 57

4.6 Conclusion

In this work, we introduce a Hyperledger Fabric Blockchain-based resources
trading platform to orchestrate clients requests, agents bids and provide a
solution to a common task assignment problem.

A double bidding strategy is proposed that enables client to choose either
the least time among estimations provided by the agents or the cheapest
price. To support node selection and task assignment, we propose a model-
free DRL framework for task runtime estimation in agent current load state.
In the proposed algorithm, both the submitted and the existing tasks are
represented by only two parameters combined with some resources usage
metrics collected at runtime. As the agent receives new tasks requests, it
incrementally learns how to do predictions in an online fashion.

Simulations show that DRL is suitable for task runtime prediction and
provides similar or better performance, compared to other more complex
existing solutions. Moreover, it is important to enlighten that the proposed
approach is not tied to a specific application and can be adopted on any type
of tasks in a modern cloud environment. In future work, we plan to integrate
this solution on Kubernetes, an open-source container-orchestration system,
and evaluate the performance of the DRL approach for workload operations
such as deployment and scaling.

5 An Incentive Platform in
Ethereum for Energy
Management

5.1 Introduction

This chapter concludes the part dedicated to the implementation of

optimal algorithms in Blockchain. In this work an incentive platform

for energy communities is suggested. A user ranking algorithm and a

penalty-reward scheme are designed in the Blockchain. Since sensis-

tive users consumption data are concerned, Blockchain is chosen for

its intrinsic tamper-proof capabilities. The penalty-reward scheme

is formulated as a classical minimization problem.

Given the continuous increase in temperatures globally, over the past
40 years, the problem of energy consumption due to buildings conditioning
systems has become increasingly important [83], [84], [85].

In recent years, smart and green building management is approached by
considering District Energy Management (DEM) systems. More precisely,
the district (building network) has to be managed for purchasing energy
and optimally balancing real-time energy consumption while satisfying user
comfort [84].

One method to promote virtuous user behaviour is to provide to the
consumers monetary incentives rewarding or penalizing them according to
their energy management.

In [86], a novel approach is proposed based on the energy credits alloca-
tion to reduce electricity costs. The customers can use such credits during
periods with high energy prices for saving considerable costs.

A holistic model has been studied [87] to optimize power scheduling
within individual microgrids and energy trading among interconnected mi-
crogrids.

58

5.1. INTRODUCTION 59

In [88], the authors use low-cost hardware such as the Raspberry Pi to
act as the central hub of a smart home air conditioning system. However,
Raspberry Pi is not the only hardware that can be used; lots of other raw
sensors can be implemented with a small and cheap dedicated IoT hardware,
as depicted in [89].

IoT devices are increasingly widespread [90], and this involves a series
of problems related to the use of data, their privacy and storage. In [91],
the Ethereum Blockchain is used to create an integrated system between
the IoT and the Blockchain.

In [92], the Blockchain technology is introduced alongside the IoT sen-
sors. This configuration for air monitoring in smart cities sends data di-
rectly to the Blockchain service; in doing so, the Blockchain platform adds
a security level to the certainty of the data, avoiding their manipulation.

A more specific case of remote condition monitoring efficiency has been
studied in [93], by exploring the use of Blockchains and Smart Contracts in
situations where it is essential to ensure commercial and economic agree-
ments in the data processing.

In [94], artificial neural networks are used to predict the thermal param-
eters of air conditioning based on historical time-series data. This solution
uses a set of IoT sensors that communicate with a Wireless LAN access
point. Once again, the use of a RaspberryPi as an IoT gateway is pre-
ferred.

However, all the cited papers contemplate a passive use of the Blockchains,
employing them as mere register providing a higher degree of reliability.

This work proposes an innovative system for improving the user be-
haviour on the basis of IoT components, Blockchain, Smart Contract and
a reward and penalty strategy. In particular, the IoT components provide
data about the energy consumption in real time. Such data are stored in
a specifically designed Smart Contract that allows adding a basic feature
of the Blockchain: the payment management. Moreover, the payments are
subject to a reward and penalty strategy: the users are classified in con-
sumption classes and each class is characterized by multiplier coefficient
that increases (penalty) or decreases (reward) the user energy costs.

Compared with credit-based incentive systems proposed in the related
literature[86], we enlighten that the centralized approach means that users
have to trust the outcomes of the process blindly. On the contrary, the
application of Blockchain and Smart Contracts allows us to obtains two
benefits: i) since multiple nodes are available, the decentralized approach
increases the system reliability; ii) the users do not have to trust on a central
authority; iii) the data stored in the Smart Contract are immutable thanks
to the intrinsic nature of the Blockchain. In addition, the complete process

5.1. INTRODUCTION 60

breaks away from the cryptocurrencies intrinsic volatility, by using a stable
coin as a means of exchange, making the whole process, up to the payment,
more stable, transparent and secure.

In Chapter 2, some basic concepts related to Blockchain and Smart Con-
tracts have been introduced. The remainder of this chapter is organized as
follows. Section 5.2 introduces some basic concepts about stable coins. Sec-
tion 5.3 describes the proposed system and the Smart Contract architecture.
Section 5.4 presents the reward and penalty procedure whereas Section 5.5
discusses a case study. Finally, Section 5.6 draws the conclusions.

5.2. STABLE COINS 61

5.2 Stable Coins

One crucial feature of Smart Contracts is the ability to create specific cryp-
tocurrencies, namely tokens, to be used for financial purposes. A popular
token in Ethereum is Tether ($USDT), a token with the sole and primary
purpose of maintaining its value pegged to the US dollar and, therefore, to
prevent fluctuations typical of other cryptocurrencies, such as Bitcoin or
Ether. These tokens fall in the set of Stable Coins. However, Tether is not
the only token of that kind available.

In this work, among the stablecoins, we use Maker’s DAO ($DAI), which
is a token generated by MakerDAO, a ”peer-to-peer organization created on
the Ethereum network to allow people to lend and borrow using cryptocur-
rencies” [95]. The value of $DAI is pegged to the US dollar through a
series of smart contracts that automatically manage the liquidation of debt
positions which fall below their loan/value ratio.

The rationality of using this token is due to its resilience to price fluctu-
ations, as it remains stable at ±$0.004 from the value of the peg in the year-
to-date period. Thanks to the use of this token, it is possible to generate a
set of application scenarios that are not subject to the price fluctuations of
Ether or other cryptocurrencies.

5.3. THE PROPOSED SYSTEM 62

5.3 The Proposed System

This section describes the overall architecture of the proposed system that
is shown in Fig. 5.1.

Figure 5.1: System Architecture

The system is composed of a set of IoT elements that collect consump-
tion data from air-conditioning system and environmental data from sen-
sors. Such IoT elements are then connected to a central data collecting
unit by WiFi, which then invokes a Smart Contract in a Blockchain-based
infrastructure and delivers the data collected in a specified time period.
Moreover, an external module computes rewards and penalties on the basis
of optimization tools. Finally, in this work, we propose to process pay-
ments on chain by $DAI stable token in order to guarantee safety and
transparency.

System Architecture

The local infrastructure system consists of a Raspberry Pi (RasPi), which is
a single-board computer running Linux OS and providing a set of General
Purpose Input/Output (GPIO) pins. Moreover, RasPi allows the interac-
tion through the GPIO interface with humidity and temperature sensors.
The RasPi is connected by internet to the smart meter, the IoT devices
and sensors that monitor energy consumptions, temperature and humidity.
The data are sampled at a given time interval T and are collected during a
predetermined period Tperiod. The data are sent via Internet to the Smart
Contract that computes the penalties and the rewards to be assigned to the
users for the considered time period Tperiod.

The implementation of a RasPi on the hardware side allows improving
the efficiency of air conditioning systems: the temperature and humidity

5.3. THE PROPOSED SYSTEM 63

sensors detect the environmental condition at time intervals T ; basic rules
for exceeding threshold intervals trigger the switching on or off of air con-
ditioning systems.

If the air conditioning and infrastructure systems are already equipped
with IoT devices connected to the network, then it is possible to avoid the
local coordination and data collection systems like the RasPi. A remote
data collection system can be envisaged utilizing APIs. In this case, the
role of RasPi can be performed by a remote virtual server. However, the
RasPi acts as a centralized hub of the air conditioning system, allowing the
triggering of more advanced logic than those that can be implemented on
individual appliances.

Smart Contract Architecture

RasPi locally collects (directly or via API) and preprocesses the data and
ensures that they are stored into a set of variables specifically designed
in the Smart Contract. More specifically, the Smart Contract stores the
values related to the operation of the air conditioning systems along with
environmental data, such as the indoor and outdoor temperatures, coming
from the IoT devices. Being the RasPi based on Linux OS, a command-line
based Ethereum wallet is installed to interact with the Smart Contract.

At the end of each billing period Tperiod, collected data are preprocessed
and the total consumption for each user along with average temperatures
is delivered to the Smart Contract and, subsequently made available to the
optimization module.

Figure 5.2 depicts the steps that are carried out in the Smart Contract.
Initially, in order to allow payments once the invoices are generated, the
user’s wallet must authorize the implemented Smart Contract to spend
$DAI on its behalf. Then, once a new billing cycle begins, the Smart
Contract receives and stores data preprocessed by the local units. If the user
is in a public Blockchain context and has to pay a fee for each transaction,
he/she can choose to store only the data hashes. On the contrary, in a
private Blockchain context, the whole data can be stored at no charge.

After choosing the storage mode, the local unit starts broadcasting a
set of transactions to the Smart Contract containing all data. This process
continues until all data of the current billing cycle have been delivered and
the last block has been reached.

Having collected all data of the current billing cycle, the last step consist
in determining the rewards and penalties on the basis of the users behavior.
The data integrity are verified by the optimization module that applies
the reward and penality scheme. The optimization module writes back to

5.3. THE PROPOSED SYSTEM 64

the Smart Contract the final amounts to invoice to each user and process
payments.

Figure 5.2: Smart Contract Flow Chart

5.4. THE REWARD AND PENALTY SCHEME 65

5.4 The Reward and Penalty Scheme

The proposed reward and penalty scheme consists of the following three-
steps procedure:

1. The set of m users U = {i|i = 1, 2, ..,m} are classified in n Consump-
tion classes belonging to a set C = {j|j = 1, ..., n}. To this aim the
k-means classifier [96] and the data recorded in the Smart Contract
are used.

2. A target k̂j ∈ [k̂min, k̂min] multiplier coefficient is assigned to each class

j ∈ C. The purpose of the calculated k̂j values is to apply discount

(if k̂j > 1) or penalties (k̂j ≤ 1) to the users on the basis on their
consumption profiles.

3. The values of k̂j for j = 1, ...,m are revised in order to guarantee that
the values of the assigned rewards do not exceed the values of the
penalties with an economic loss of the energy provider. The compu-
tation of the new values of kj for j = 1, ...,m are obtained by solving
a simple optimization problem.

The k-means Based Users Classification

The first step of the proposed reward and penalty procedure consists of
classifying the n users belonging to the set U = {1, 2, ..,m} in the n Con-
sumption classes. We assume that n users are registered in the system
and some data are recorded in the Smart Contract for each user. Then, a
feature vector vi with i = 1, ...,m is associated to each user i ∈ U . The
set of feature vectors is denoted by V = {v1, v2, vi, . . . , vm} and is used to
partition the user set by the k-means classifier. The components of each
vi vector are related to the consumption and behavior of the users in the
considered time frame.

Furthermore, the behavior profile is driven by the level of compliance
of the user to the law and to the best practices in terms of energy saving
and environment preservation. For the considered time period Tperiod, the
following data are recorded in the Smart Contract for each user along with
the consumption: the average indoor temperature Ti, the average outdoor
temperature Te, the average seasonal outdoor temperature Ts, the seasonal
indoor temperature threshold enforced by the law Tl and the total number
of hours HoursOpi of air conditioning system operation.

Now, we define the generic vector vi = [ci, α1i, α2i, α3i, α4i]
T where:

5.4. THE REWARD AND PENALTY SCHEME 66

� ci is the total consumption in kWh;

� α1i = Ti/Te;

� α2i = Ti/Ts;

� α3i = Ti/Tl;

� α4i = HoursOpi/HoursTot.

Here, α1i, α2i, α3i represent the average indoor temperature in the consid-
ered time frame compared to the average outdoor temperature in the same
time interval, the seasonal average and the threshold enforced by the law,
respectively. In addition, α4i considers the level of operation of the air con-
ditioning system by comparing the total numbers of hour of operation to
the total number of hours HoursTot in the same time frame.

Now, the purpose of the k-means algorithm is to assign each vector
to the cluster with the nearest mean, e.g., the least squared Euclidean
distance. The process is iterative and converges when the assignments no
longer change. At the end of the procedure the set of users is partitioned
in n disjoints set. To this aim the following parameter is defined:

yij = 1 if user i belongs to the class j;
yij = 0 otherwise.

If user i belongs to the class j then the multiplier k̂j is associated to the
user with the related remuneration or penalty, determined for each class
according to the governance policy.

Target k̂ Coefficient Assignment

If we consider a unitary price p per kWh in the billing period Tperiod, the
total billed energy cost for each user is EBi = cip. The purpose of the
second step of the proposed system is to assign a desired k̂1, . . . , k̂j, . . . , k̂n
to each of the classes determined in the previous step. More precisely, kj is

then used to calculate a new EB′
i = EBik̂j where k̂j is the target coefficient

chosen for the class assigned to user i.
If k̂j > 1 the behavior of the users in the related class is considered

not compliant and, therefore, each user is charged an increased amount
proportionally to its consumption. On the contrary, if k̂j ≤ 1 the behavior
is considered normal or virtuous and, consequently, a discount applies for
all users in the relative class.

As mentioned above, the choice of assigning a certain value of kj to
a class is strictly related to the governance policy and to external factors

5.4. THE REWARD AND PENALTY SCHEME 67

such as the current season, the energy saving, law compliant enforcement
and environment preservation. This analysis is driven by the values of the
feature vectors vi in each class.

For example, in winter, a high consumption value ci along with high
values of coefficients α1i, α2i and α3i and a low value of α4i denotes a very
bad behavior of the relative user in the sense that the system operates for a
few hours with too high temperatures and considerably over the threshold
enforced by law and, therefore, it is very inefficient. Similarly, in summer,
when the average indoor temperature is less than the corresponding outdoor
temperature, high values for ci and low values for the other coefficients
indicate the same bad condition.

Conversely, a virtuous behavior is denoted, in general, by low values of
ci along with a full operation condition, e.g. α4i ≈ 1 and α1i, α2i ≤ 1.7
or ≥ 0.7 in winter and summer respectively. The same thresholds can be
considered for α3i although it should be more strict given that they represent
a compliance to the law.

Finally, mixed cases can also be considered. For example, in winter,
α2i ≫ α3i denotes an exceptional case in which, in the considered time
frame, the average outdoor temperature is much less than the seasonal
average and, consequently, an increased value of ci should not be penalized.

5.4. THE REWARD AND PENALTY SCHEME 68

Optimal Values of Target Coefficients

In order to collect all the amount of money to pay the energy market op-
erator, the sum of the recalculated energy costs for all users must be equal
to the sum of the original costs.

Due to the heterogeneity of users consumption, it is not possible to use
directly the target k̂j values, but it is necessary to calculate the new kj
values such that the penalties compensate the rewards, while each kj value

is as close as possible to the corresponding target k̂j value in order to comply
to the governance policy.

The decision variables are k1, . . . , kj, . . . , kn and the optimal values can
be determined by solving the following optimization problem:

min
n∑

j=1

(kj − k̂j)
2 (5.1)

s.t.

m∑
i=1

EBi =
m∑
i=1

n∑
j=1

EBiyijkj (5.2)

k̂min ≤ kj ≤ k̂max j = 1, 2, . . . , n (5.3)

Equation (5.1) is the objective function to be minimized: it is the sum of
the squared differences of the kj values with respect to the corresponding

decided target k̂j values. Constraint (5.2) is the balance constraint and
ensures that the sum of the recalculated costs is equal to the sum of the
original costs.

Finally, constraints (5.3) impose that the values of kj are in the interval

of values k̂min and k̂max. Such constraints are important to comply to the
governance policy and prevent both excessive penalties and discounts.

5.5. CASE STUDY 69

5.5 Case Study

In order to test the feasibility and the performance of the proposed ap-
proach, we consider the case study of a district of m = 2000 users. We
implement the Blockchain infrastructure in a simulated Ethereum environ-
ment based on Ganache and we write random sensor data in the Smart
Contract for all users considering a time period of one week in the month
of June, in Italy.

We set Ts = 23◦C, which is the average temperature in June and Tl =
26◦C, that is considered as the minimum temperatures prescribed by the
law for public offices and institutions to save energy. For all users, we
consider a range of weekly consumption between 40 kWh and 180 kWh,
a daily continuous operation between 2 and 21 hours, an outdoor average
temperature between 23◦C and 31◦C, and an indoor average temperature
between 18◦C and 30◦C.

We decide to split the users in n = 5 Consumption classes and run the
first-step of our approach, e.g., the k-means algorithm, accordingly. At the
end of the classification step, we analyze the average data of the resulting
classes and we identify five different behaviors.

The paritioned users set is depicted in Table 5.1.

Table 5.1: Partioned Users Set

Temperature [◦C]

Class No. kWh Indoor Outdoor
Daily

Usage [Hrs]

1 Small 501 49.72 27.00 27.00 4.01

2 Good 317 93.56 24.00 27.00 14.76

3 Normal 291 113.18 23.56 27.50 15.48

4 Nearly Bad 516 134.22 22.53 28.00 14.71

5 Bad 375 154.47 21.17 27.87 12.10

Total 2000

We observe that users in class 1 have a relative low consumption along
with a low daily usage and the same average indoor and outdoor tempera-
tures. On the basis of this data, we classify those users as Small.

Users in class 2 and 3 have higher consumptions and daily usages than
those in class 1 and they set their indoor thermostat to an average value
of 24◦C and 23.56◦C, respectively. Although the indoor temperatures of
users in both class 2 and 3 are lower than the respective average outdoor
temperatures and the threshold prescribed by the law, we have to consider
that the average outdoor temperature is higher than the seasonal reference

5.5. CASE STUDY 70

and that indicates the need to cool down the buildings. As a result, we
classify those users as Good and Normal respectively. Users in class 2 are
considered Good due to the slightly higher indoor temperature and the
consequential lower consumption compared to class 3.

Moreover, due to the lower indoor temperatures found for users in class
4 and 5 compared to both outdoor average temperature and the threshold
prescribed by the law and the relative high consumptions, we classify the
last two classes as Nearly Bad and Bad respectively.

In order to visualize the partitions, we apply Principal Component Anal-
ysis (PCA) [97] to the classified users set by projecting the data on the first
two principal components as shown in Fig. 5.3. We observe that, as a conse-
quence of the k-means algorithm, all similar users are grouped together and
the boundaries of different regions are clearly visible. Moreover, it is shown
that in some classes the users are more similar than in others. For example,
points relative to users in Small class are more concentrated compared to
those of the other classes.

-80 -60 -40 -20 0 20 40 60 80

PC1

-15

-10

-5

0

5

10

P
C

2

Small

Good

Normal

Nearly Bad

Bad

Figure 5.3: Partitioned users set projected on first two components after
PCA reduction

At this point, we assign a k̂j target coefficient to each of the classes.
As shown in Table 5.2, we decide to apply a discount to the first three
classes and a penalization to the remaining two classes. Now, if we set
p=$0.20, the total billed energy cost for all users, on the basis of on their
consumptions, is $42.940. If we apply the assigned k̂j target coefficient to

5.5. CASE STUDY 71

each user’s consumption, the total billed energy cost results in $41.298, that
is not enough to pay the energy provider.

Then, we solve the optimization problem described in Section 5.4 to
calculate the final kj coefficients. The problem is solved by the Matlab
fmincon solver [98], which in this case converges to an acceptable local
minimum in 15 iterations. The final kj coefficients are shown in Table 5.2
and they exhibit a percentage relative error less than 10% compared with
the corresponding values of k̂j.

Table 5.2: Optimized kj coefficients vs. k̂j target coefficients

Class k̂j kj Relative error [%]

1 Small 0.90 0.93 3.3%

2 Good 0.70 0.74 5.7%

3 Normal 0.85 0.93 9.4%

4 Nearly Bad 1.10 1.13 2.7%

5 Bad 1.20 1.20 0%

Now, the total energy cost for all users with the new coefficients applied
is again $42.940, that is the amount required to pay the energy provider. At
the end of the procedure, the final kj coefficients are written to the Smart
Contract to invoice the users and process the payments.

5.6. CONCLUSION 72

5.6 Conclusion

In this work, a district energy management approach based on IoT and
Blockchains is investigated. The proposed architecture is based on a de-
centralized Ethereum Blockchain and a local set of sensors connected to
a Raspberry Pi device for each user that acts both as data collector and
Blockchain client. Each device delivers its data to the Blockchain through
a Smart Contract. Thanks to the features of the Blockchain, all the data
stored in the Smart Contract are safe and immutable.

Having collected the data, the purpose of this work is to classify the
users to reward or penalize them on the basis of the analysis of the collected
data. In particular, specific attention is given to the air conditioning system
regulation to reward virtuous users and penalize not virtuous ones.

Note that in the proposed system, the Blockchain plays an active role,
not just being a means of notarization but managing the district’s payments.
Moreover, the user that receives a penalty can directly check the reasons of
the penalties, compared with the other users of the district and correct his
behaviour in the next billing cycle.

The feasibility and the performance of the proposed approach is inves-
tigated in a case study. In future work, we plan to extend the number
of features used for classification and study the scalability of the proposed
approach over the number of considered district users.

Part II

Swarm Algorithms in
Manufacturing

73

6 Flexible Job Shop
Sequencing Problem with
TCPN and PSO

6.1 Introduction

This chapter explores the use of Timed Coloured Petri Nets (TCPN)

in mass production system modelling. The objective of the work

is to solve the well known Flexible Job Shop Scheduling problem

(FJSSP) to determine the production sequence that maximizes the

throughput. Since the FJSSP problem is NP-hard, a method based

on Particle Swarm Optimization is suggested. Case study results

show that the method is effective and converges after a few iterations.

PSO has been chosen as it can be implemented in parallel fashion in

distributed systems thus further reducing convergence time.

The increasing demand of diversified products in the market poses major
challenges to producers. On the one hand, in order to be competitive, each
company is required to offer the widest possible product range. On the
other hand, that has to be achieved with as few machines as possible to
optimize spaces and costs.

In many industries, the differences among products consist in raw mate-
rials and tools selection throughout the production. Hence, modern Com-
puterized Numerical Control (CNC) machines have the ability to work with
different materials and they are often equipped with different tools. As a
result, we are in the age of smart and flexible factory, where multiple di-
versified jobs can be produced in a single plant made of a few connected
machines.

However, the optimization of job scheduling in such field, that is known
in literature as Flexible Job Shop Scheduling Problem (FJSSP), is one of
the most difficult combinatorial optimization problems [99] and it is NP-

74

6.1. INTRODUCTION 75

hard in general [100]. Some of the typical objectives of that problem are the
throughput maximization and the consequent minimization of job and ma-
chine waiting time. In addition, the scheduling has to be responsive against
external disturbances such as failures or interruptions of the supply chain,
allowing an immediate reconfiguration based on the actual conditions.

Due to the usual non-linearity of FJSSP, meta-heuristics based methods
have been proven to be a very efficient approach to this scheduling problem
in recent years. Among them, evolution-based, such as genetic algorithm
(GA), and swarm-based, such as Particle Swarm Optimization (PSO), dom-
inate the research area. However, regardless of the specific technique, the
choice of a suitable modeling and simulation algorithm is essential to rep-
resent a specific plant throughout the optimization process.

This work considers manufacturing systems for the mass production
of different types of jobs through a sequence of operations performed by
a set of flexible working machines. Moreover, each machine can perform
simultaneously multiple operations on different job types. The problem is
determining the optimal sequence of job types and the number of jobs for
each job type to be processed, in order to maximize the throughput of the
system.

First, the production system is described in a framework of Timed
Coloured Petri Nets (TCPN) [101] to model flexible CNC machines en-
abled to simultaneously work with multiple materials and multiple tools.
TCPN is a variant of classic Coloured Petri Nets (CPN) in which time is
also associated to tokens. Secondly, we implement a simulation algorithm
for computing the system throughput by the TCPN model. Finally, we ap-
ply the PSO by the TCPN simulation to maximize the system throughput
by optimizing the job type sequencing and the amount of units of each job
type that enters the system.

A case study describing and simulating a real manufacturing system
producing ophthalmic lenses is studied to demonstrate the efficiency of the
proposed method.

The new contribution of the work consists of the complementary use of
the TCPN to model and simulate the production system and the imple-
mentation of the PSO for solving this complex sequencing problem.

The remainder of this chapter is organized as follows. In Section 6.2, we
provide some basic concepts about Petri Nets and TCPN. In Sections 6.3
and 6.4, we introduce the TCPN-based modeling technique and the related
PSO optimization respectively. Section 6.5 delivers some experimental re-
sults. Finally, Section 6.6 concludes the chapter.

6.2. BASICS OF TIMED COLOURED PETRI NETS 76

6.2 Basics of Timed Coloured Petri Nets

A Petri Net (PN) is a bipartite graph described by non-empty sets of places
P , transitions T and arcs with associated weights. A place p ∈ P is called
an input place of a transition t∈T if there exists a directed arc from p to
t. On the contrary, a place p is called an output place of a transition t
if there exists a directed arc from t to p. A transition t is called enabled
if each of its input places contains at least a number of tokens equal to
the corresponding arcs weights. An enabled transition can fire. Firing a
transition means consuming tokens from the input place and producing
tokens for the output places according to the corresponding arcs weights.

Diversely from generic PN, in a Coloured Petri Net (CPN), places have
a color set (a data type) associated with them that specifies the set of
allowed token colors at this place. Each token in a place of a CPN has an
attached data value (color) to it that matches the corresponding color set of
the place. In a Timed Coloured Petri Net (TCPN) a timestamp is added to
each token indicating the time at which they will be available for the firing
of transitions. The system model includes a global clock that represents
the total elapsed time.

Based on the formalism proposed by [101] and [102], a TCPN is defined
as a tuple (P, T,A,Σ, V,G,E) where:

� P is a finite set of places

� T is a finite set of transitions such that P ∩ T = ∅

� A is a set of directed arcs where A ⊆ P × T ∪ T × P

� Σ is a finite set of non-empty color sets

� V is a finite set of typed variables in Σ, i.e., Type(v) ∈ Σ, for all
v ∈ V .

� G is the guard function where G : T → EXPRV , which assigns a
Boolean expression to each transition, i.e. Type(G(t))=Bool, where
Bool ∈ {enabled , disabled}

� E : A → EXPRV is the arc expression function, which assigns an
expression to each arc that determines the color set of the generated
tokens in the output places when a transition is fired.

In this definition, EXPRV denotes the expressions constructed using the
variables in V according to a given syntax.

6.2. BASICS OF TIMED COLOURED PETRI NETS 77

The state of the TCPN is represented by a marking M that is a mapping
defined as M : P → B(Σ), i.e., M(p) is a set of elements of Σ, also with
repeated elements (i.e., a multiset of Σ denoted by B(Σ)) corresponding to
the token colors in place p.

The dynamics of a TCPN is regulated by guard functions and arc ex-
pressions. In particular, given an input place p with a certain number of
tokens and a transition t, t is set to enabled by G only if certain precon-
ditions on its current tokens colors are met and the corresponding tokens
in the output places are generated according to the function E. When a
transition is enabled, firing can only occur once the timestamp attached to
each token has been reached.

6.3. TCPN MODEL OF A MANUFACTURING PLANT 78

6.3 TCPN Model of a Manufacturing Plant

In this section, we describe the TCPN model of a production system con-
sisting of CNC machines connected in a production line and capable of
working, at the same time, a finite number of jobs. The jobs are of different
types characterized by different raw material and by the required different
processing tools.

Production System Model

Let us consider a set of N CNC machines M = {M1,M2,Mn, . . . ,MN},
connected in a line production system. Let us also consider a set of features
F = {f1, f2, fi, . . . , f|F |}, where each feature fi can represent a raw material
or a tool in the CNC machine devoted to a particular operation. Note that
symbol |A| denotes the cardinality of the generic set A.

Figure 6.1 shows an example of the TCPN model of a system composed
by N = 3 CNC machines. Each CNC machine n is modeled by a TCPN
with three places pn,i with i = 1, 2, 3 and two transitions. More precisely,
place pn,1 is the jobs input buffer where jobs wait to be processed, pn,2 is
the storage area that provides a limited set of processing tools, pn,3 is the
working cell in which jobs are processed.

Each machine is modelled also by two transitions tn,i with i = 1, 2: tn,1
denotes the beginning of the operation of the job in the CNC machine n
and tn,2 denotes the end of the operation and the entering in the subsequent
machine. In addition, tstart is a source transition that feeds the system with
a new job by firing at predetermined time intervals and pend is the place
collecting the completed jobs.

In the model, a token can be either a feature (i.e., a tool or a raw
material) or a job depending whether the token is in a storage area or in a
buffer. Moreover, let be J = {J1, J2, . . . , Ji, . . . , Jm} the job type set and
each job type Ji ∈ J is described by a tuple Fαi of distinct elements of
F , characterizing specific products to be machined. We assume that the
routing of the job types is fixed and the same for all the jobs.

Each machine can use simultaneously more tools with different prede-
fined processing times and each tool can process only one job at a time.
Furthermore, we consider that the job type has an attached timestamp ts
and therefore is described by Ji =< Fαi, ts >.

In the considered system, the features are described by two sets: the
set Rc = {rc, rc1, . . . , rci . . . , rc|Rc|} of the raw materials where rci ∈ R with
i = 1, .., |Rc| are the raw materials and rc is a neutral material, and the

6.3. TCPN MODEL OF A MANUFACTURING PLANT 79

Machine 1
(e.g. 4-Workcells)

Machine 2
(e.g. 4-Tools)

. . .

Machine n
(e.g. 2-Workcell)

tstart

p1,1

t1,1

p1,2 p1,3

t1,2

p2,1

t2,1

p2,2 p2,3

t2,2

pn,1

tn,1

pn,2 pn,3

tn,2

pend

Figure 6.1: Model of a line production system with 3 CNC machines

set Sc = {sc1, . . . , sci, . . . , sc|Sc|} of the available tools sci with i = 1, .., |Sc|.
Then, it holds F = Rc ∪ Sc. In this case, each job type Ji ∈ J is described
by a couple of features: a raw material rci ∈ Rc \ {rc} and the associated
tool sci ∈ S. Then the colors of the Ji ∈ J are Fαi ∈ Jc = Rc \ {rc} × Sc.
The sets of features and the set of the couples of features Jc denote the color
sets associated to the token of the described TCPN, i.e., Σ = Rc ∪ Sc ∪ Jc.

6.3. TCPN MODEL OF A MANUFACTURING PLANT 80

The guard function G is described by Algorithm 3 and the arc expression
E is described by Algorithm 4.

Algorithm 3 Guard function G
Require: Transition t ∈ T , job Ji =< Fαi, ts >
Ensure: tstate

Pt ← Set of input places of t foreach p ∈ Pt do
if M(p) ∈ B(Sc ∪ {rc}) then
Fp ←M(p) if Fp ∩ Fαi = ∅ ∧ rc /∈ Fp then

tstate ← disabled
return else

end
tstate ← enabled

end
end

end

Algorithm 4 Arc Expression function E
Require: Transition t ∈ T , job Ji =< Fαi, ts >

Pt ← Set of output places of t foreach p ∈ Pt do
if M(p) ∈ B({rc}) then
Add rc toM(p) else if M(p) ∈ B(Sc) then

end
sc ← Fαi ∩ Sc

Add sc toM(p) else

end
Add Ji toM(p)

end
end

Now, the marking of the places are characterized as follows:

� M(pn,1) ∈ B(Jc)

� M(pn,2) ∈ B(Sc ∪ {rc})

� M(pn,3) ∈ B(Jc).

In particular, if transition tstart fires, then a new job of type Ji enters the
input buffer p1,1. Moreover, as a job token enters a generic input buffer place
pn,1, the guard function G of tn,1 checks the marking of the storage place
pn,2 for raw materials or tool tokens matching the features in Fαi and sets
the tstate of transition tn,1 accordingly, where tstate ∈ {enabled, disabled}.
Note that if M(pn,2) ∈ B({rc}), then pn,2 matches with every raw material
in Fαi.

If tn,1 is enabled and the timestamp ts of the job has been reached, the
tn,1 fires and, according to the arc expression function E, the job token

6.3. TCPN MODEL OF A MANUFACTURING PLANT 81

is moved from pn,1 to the working cell pn,3, while a corresponding feature
token is removed from pn,2 to indicate that the resource is temporarily not
available.

In addition, when the job enters the working cell, its timestamp is up-
dated according to a function TS(pn,3, Ji) that, given a job Ji and a working
place pn,3, returns the processing time required in that place for the cor-
responding feature. Once the new timestamp has been reached and the
processing has been completed in pn,3, the transition tn,2 is enabled and
fires. Then, according to arc expression function E, the job is moved to the
input buffer of the subsequent machine where the process starts again and
proceeds until the job reaches the final output buffer place pend.

To complete the description of the dynamics, there are two final consid-
erations:

� the initial markings M0(pn,2) of places pn,2 with n = 1, ..., N indicate
the available features of machine n and the corresponding maximum
number of jobs that can be simultaneously processed;

� if the initial marking of a storage place is M(pn,2) ∈ B({rc}) then it
allows each token color Fαi to enable transition tn,1, on the contrary
if M(pn,2) ∈ B(Jc) then the corresponding color in marking M(pn,2)
can enable transition tn,1. By this way, we represent the capability of
a CNC machine of processing all raw materials with different times
determined by the TS function and the capability of the tools of
working only particular jobs.

6.4. JOB SEQUENCING BY PSO 82

6.4 Job Sequencing by Particle Swarm

Optimization

In this section, we define the job sequencing problem and we propose the
optimization approach based on the PSO applied to the CTPN simulation.

Throughput Maximization Problem

We assume that in the considered manufacturing system, the daily produc-
tion is continuous and consists of a predetermined repeated sequence of job
types.

The objective of the optimization problem is to find the sequence of the
job types and the number of the jobs pertaining to each job type that have
to enter the system to maximize the output throughput TH. Denoting by
Ω the set of the possible permutations of the elements in J , we define the
following decision variables:

� ωh ∈ Ω is a permutation of the elements of J that indicates the
sequence in which the job types enter the production system;

� δi is the number of jobs of type Ji ∈ J for i = 1, ...,m in the sequence
ωh.

We assume that for each i = 1, ...,m, the number of jobs δi is in an
interval [δmini, δmaxi] with δmini > 0 .

The problem is formulated as follows:

THMAX = max
X

TH(X) (6.1)

with X = {ωh, δ1, . . . , δi, . . . , δm}, ωh ∈ Ω and 0 < δmini ≤ δi ≤ δmaxi.
Different techniques are applied in the related literature for optimizing

objective functions obtained by simulations [103]. Since such strategies
consist of searching variations iteratively in the domain of decision variables,
this approach requires a connection between the optimization algorithm
and the simulation model [104]. In the considered application context, we
implement a PSO technique because the search space has a straightforward
representation using PSO particles, thus avoiding complex encoding and
decoding operations. Moreover, the evaluation of the objective function
requires a limited number of simulations that are typically time consuming.

6.4. JOB SEQUENCING BY PSO 83

TCPN Simulation Algorithm

The throughput of the system is computed by the simulation Algorithm
5 that implements the dynamic behaviour of the TCPN . Firstly, at each
valid timestamp as determined by the given time interval, the source tran-
sition tstart feeds the system with a new job in p1,1 according to the current
sequence. Secondly, for each outbound transition of each place, the corre-
sponding guard function G is evaluated against all jobs to check whether
the transition has to be enabled. Thirdly, for each enabled transition, in
case the timestamp has been reached for a job, a fire event occurs and the
corresponding arc expression E is executed that moves the job to next place
and eventually restores the tool or the raw material token. Finally, the job
timestamp is updated in the new place according to the TS function.

Algorithm 5 Simulation Function
Require: Jobs sequence X
Ensure: Throughput TH

tmax ← 3600
τ ← time units interval for new jobs (e.g. 5s)
TT ← empty array for job timestamps
t← 0 while t ≤ tmax do

if t mod τ = 0 then
Add next job in sequence toM(p11)
Add t+ τ value to array TT
end
foreach pi ∈ P do
Tout ← outbound transitions from pi foreach Job Ji ∈M(pi) do

foreach Tj ∈ Tout do
Tj enabled ← G(Ji, Tj) if Tj is enabled then

if job timestamp ts ≤ t then
Fire transition Tj for job Ji

Execute E(Ji, Tj)
Take new pk place of job ji
Update Ji timestamp
ts += TS(Pk, Ji)
Add new ts of Ji to array TT
end

end
end

end
end

TH ← number of tokens in last place pend

Sort TT array
Remove from TT array all values ≤ t if TT has remaining values then

Set next t← TT{0} else
end
return

end
end

6.4. JOB SEQUENCING BY PSO 84

Particle Swarm Optimization

This subsection specifies the application of the PSO algorithm. PSO is a
stochastic meta-heuristic optimization algorithm, which simulates the flock-
ing behavior of birds [103].

In the PSO a number of simple entities, called particles, is used for opti-
mization purposes: the particles represent candidate solutions with respect
to the problem being optimized. In particular, each particle of the swarm
is composed of three D-dimensional vectors, where D is the dimension of
the search space: the current position xi, the previous its best position pi,
and the velocity vi. The particles are placed in the search space of some
problem or function, and each of them evaluates the objective function at
its current location. Each particle then determines its movement through
the search space by combining some aspect of the history of its own current
and best (best-fitness) locations with those of one or more members of the
swarm, with some random perturbations. The next iteration takes place
after all particles have been moved [105].

In detail, the current position xi can be considered as a set of coordi-
nates describing a point in the space and is evaluated as a possible problem
solution. If such position results to be better than the previous ones, then
its coordinates are stored in the vector pi. The value of the resulted best
function is stored in a variable called previous best pbesti, for comparison on
the later iterations. The objective of each particle is to find better positions
and update pi and pbesti vectors. For this reason, the algorithm iteratively
updates the velocity vector vi of each particle and calculates new positions
xi, also considering the best location of all particles (gbest), in accordance
with the following two-update equations:

vi(k + 1) = w · vi(k) + c1 · r(k)1 · [pbesti(k)− xi(k)]+

. . .+ c2 · r(k)2 · [gbest(k)− xi(k)]
(6.2)

xi(k + 1) = xi(k) + vi(k + 1) (6.3)

where w is the inertia weight, k is the iteration number, c1 and c2 are
respectively the cognitive and social weight, r1 and r2 are vectors of random
numbers sampled from a uniform distribution in the range [0, 1].

In the considered problem, the position xi(k) at iteration k is a vector of
m+1 components associated to the elements of X = {ωh, δ1, ..., δj, . . . , δm}.
In addition, the parameters w, c1, c2 and the particle numbers have to be
appropriately chosen, depending on the problem to be solved. In the case
study we dynamically adjust the inertia w at each iteration in the range
[0.1, 1], we fix c1 = c2 = 1.49 and set the size of the population equal

6.4. JOB SEQUENCING BY PSO 85

to 30 particles [106]. Finally, the optimization process is completed if the
best location gbest does not change for a fixed number of 10 consecutive
iterations. The corresponding throughput TH is the optimal value of the
objective function determined by the PSO.

6.5. CASE STUDY 86

6.5 Case Study

We consider as a case study an ophthalmic lenses mass production system in
a firm consisting of three CNC machines: the first one is a lens-blocker with
four work-cells and can process up to four jobs at the same time, regardless
of the raw material. The second one is a lens-generator characterized by four
different finishing tools and can process up to to four jobs simultaneously,
supposed that each job requires a different tool. The third machine is
a lens polisher having two work-cells that concludes the lens generation
process and can process up to two jobs at a time. The production system
works three raw materials: 1.5 - CR39 (rc1), 1.53 - MR-8 (rc2) and 1.6
Polycarbonate (rc3). Moreover, four types of finishing tools are used by the
second machine. The model of the production line is shown in Figure 6.1.

Hence, the set of the TCPN are the following:

P = {p11, p12, p13, p21, p22, p23, p31, p32, p33, pend}

T = {tstart, t11, t12, t21, t22, t31, t32}

Rc = {rc, rc1, rc2, rc3}

Sc = {sc1, sc2, sc3, sc4}

We set the initial marking as follows: M0(p12) = {rc, rc, rc, rc},M0(p22) =
{sc1, sc2, sc3, sc4}, M0(p32) = {rc, rc}, M0(pni) = ∅ for n = 1, 2, 3 and
i = 1, 3 and M0(pend) = ∅.

The system has to produce seven different types of lenses, i.e, the job
type set is J = {J1, . . . Ji, . . . , J7} with δi ∈ [1, 10] for i = 1, ..., 7.

In Table 6.1, the color of each job type and the corresponding processing
times in the places pn,3 for n = 1, 2, 3 are shown.

Table 6.1: Job types and timestamp function

Job Color
Processing Time

p13 p23 p33

Job 1 J1 =< rc1, sc1 > 30 10 10

Job 2 J2 =< rc2, sc2 > 10 20 14

Job 3 J3 =< rc1, sc3 > 30 30 21

Job 4 J4 =< rc2, sc1 > 10 10 12

Job 5 J5 =< rc1, sc2 > 30 20 18

Job 6 J6 =< rc3, sc4 > 25 15 17

Job 7 J7 =< rc3, sc2 > 19 32 11

6.5. CASE STUDY 87

We implement the TCPN simulation and the PSO optimization in a
Matlab environment. The PSO is implemented by running 100 consecutive
simulations of about 150 seconds each, and a new job enters the system at
5 second intervals. Figure 6.2 and Table 6.2 show five optimized job type
sequences obtained by the PSO in the corresponding simulation and their
throughput values (in jobs per hour, jph). We use these sequences to feed
the system through tstart in cyclical fashion.

Time

0-20 20-40 40-60 60-80 80-100 100-120 120-140

Sim16 J7J3 J1 J2 J6 J5 J4

Sim35 J7 J6 J5J4J3J2 J1

Sim21 J2 J4 J5 J1 J7J3J6

Sim96 J1 J2J3J4J5 J6 J7

Sim51 J4 J2 J6 J5 J1 J7 J3

Figure 6.2: Optimized Jobs Sequences to cyclically feed the system
through tstart

Table 6.2: Optimized job types sequences and their dimension

Sim. ω Sequence
Job Units

Jph
J1 J2 J3 J4 J5 J6 J7

16 475 J7,J3,J1,J2,J6,J5,J4 2 1 1 2 1 2 1 407

35 1 J7,J6,J5,J4,J3,J2,J1 2 1 1 1 1 2 1 394

21 4028 J2,J4,J5,J1,J7,J3,J6 2 1 1 2 1 1 1 393

96 5040 J1,J2,J3,J4,J5,J6,J7 2 1 1 1 1 2 1 392

51 2675 J4,J2,J6,J5,J1,J7,J3 10 1 1 10 1 2 1 356

In detail, we achieve the best result by simulation 16, in which the
optimization process starts from 227 jph and converges to 407 jph when
we feed the system cyclically with the computed sequence. Similar results
are obtained by simulations 35, 21 and 96. However, the worst result is
achieved in simulation 51 that converges to 356 jph. Figure 6.3 shows the
throughput obtained at each PSO iteration in the five considered solutions.
The best PSO algorithm execution (simulation 16) stops after 37 iterations
and the 100 simulations are completed in about 4 hours on a standard Intel
Core vPro i7 processor.

6.5. CASE STUDY 88

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Iteration

220

240

260

280

300

320

340

360

380

400

420

J
o

b
s
 p

e
r

H
o

u
r

Sim. #16 407 jph

Sim. #35 394 jph

Sim. #21 393 jph

Sim. #96 392 jph

Sim. #51 356 jph

Figure 6.3: Throughput obtained at each PSO iteration optimization

In order to show the efficiency of the proposed method, we simulate
the TCPN arranging the job types according to two well-known techniques:
SPT (Shortest Processing Time) and LPT (Longest Processing Time) [107].
In SPT, the jobs having shorter time are processed first while the opposite
occurs in LPT. For both techniques, a quantity of one job per type in the
sequence is set. In detail, the throughput calculated according to LPT and
SPT techniques is 329 and 330 jph, respectively. In addition, we calcu-
late the throughput obtained using each of all the sequences in Ω and we
get a mean value of 317 jph. On the other hand, we calculate the mean
throughput obtained by the 100 simulations with the application of the
PSO algorithm we obtain 389 jph.

Summing up, Figure 6.4 shows that by using the best solution of the
proposed method the firm is able to increase the throughput of about 23%
(i.e., 77 jobs) per hour with respect to the LPT and SPT techniques.

0 50 100 150 200 250 300 350 400 450

Jobs per hour

SPT

LPT

Avg. Permutations

Avg. PSO

Best PSO

Figure 6.4: Throughput comparison between PSO and other methods

6.6. CONCLUSION 89

6.6 Conclusion

This work proposes a meta-heuristic approach based on Timed Coloured
Petri Nets (TCPN) and Particle Swarm Optimization (PSO) to maximize
the throughput of jobs in a production system by computing the optimal
sequence of job types and the amount of units of each type. The computed
sequence represents the order by which the jobs enter the system in a cyclical
way.

A model in a TCPN framework describes the production system includ-
ing CNC machines. Each machine works by a certain number of tools and is
able to process a limited set of raw materials with different operation times.
Given a set of job types to be produced in a determined sequence, we intro-
duce a simulation algorithm that calculates the corresponding throughput.
In addition, by the simulation algorithm the PSO is implemented in order
to select the best sequence that maximizes the system throughput.

The case study of the mass production of ophthalmic lenses shows that
the proposed approach enables the system to increase the throughput of
about 23% in one hour. The results show the applicability of the approach
with the complementary use of the TCPN model that allows simulating the
system and the PSO technique that provides the optimal solutions.

Future developments concern an extended generalization of the modeling
approach to include more complex job routing and larger number of CNC
machines to optimize the job sequences.

Part III

Multi-Agent Systems for
Autonomous Vehicles

90

7 A Cooperative DRL
Approach for Autonomous
Intersection Management

7.1 Introduction

In this chapter, the problem of autonomous intersection management

at unsignalized intersections is addressed. The scenario includes not

only connected and automated vehicles (CAV), but also connected

vehicles driven by humans with high priority and regular vehicles.

In order to have CAVs cross the intersection safely, preventing col-

lisions and observing priorities, a Cooperative Deep Reinforcement

Learning approach is suggested. Cooperative DRL has been chosen

for its ability to consider the contributions of multiple agents in a

distributed environment. This is particularly important in the pre-

sented scenario since the current state is only partially observable by

each vehicle depending on its current position.

The constant increase of urban mobility over the past decades has im-
proved the overall quality of life around the world. At the same time, when
it comes to urban environments, various problems have been arising such
as traffic congestion, collisions and pollution. As a consequence, continuous
efforts are required to optimize traffic flow, reduce travel time, decrease fuel
consumption and prevent collisions.

Among urban routes infrastructures, intersections represent one of the
major bottlenecks of traffic flow [108]. Moreover, according to a report pub-
lished by the U.S. Transportation Department, about 40% of all collisions
occur at or nearby intersections [109].

A concrete chance to contribute to traffic flow optimization in criti-
cal areas, such as intersections, is being recently given by the advent of
connected and automated vehicles (CAV). The capability of those vehicles

91

7.1. INTRODUCTION 92

to exchange data by a Vehicle-to-Vehicle or Vehicle-to-Grid infrastructure
makes it possible to implement different classes of optimization tasks and
therefore schedule crossing times based on priorities, prevent collisions and
ultimately improve traffic streams.

In this context, most of the literature has been focusing on optimal inter-
sections management under full CAV environment, considering signalized
and unsignalized intersections and using mostly rule-based and optimization
methodologies with the support of simulators and numerical tests [110].

However, as the reality in the near future will be a mixture of CAV and
regular vehicles (RV), mixed traffic scenarios have been recently receiving
more attention. In this regard, in [111], the authors analyze the existing
solutions for intersection management under mixed traffic environments at
signalized intersections but point out that a full connected environment
is often a requirement for the proposed methods to be effectively applied.
Moreover, they conclude that Machine Learning (ML) approaches, thanks
to their capability of continuous learning and adaption, can be an alterna-
tive reliable approach when it comes to hybrid environments in which not
all vehicles are connected.

Among ML techniques, Deep Reinforcement Learning (DRL) has proved
to be a powerful learning framework, capable of learning complex policies
in high dimensional environments, and it has been recently employed in
literature for different applications in the domain of Autonomous Driving
[112, 113, 114].

More specifically, in [115], a novel approach for unsignalized intersec-
tion management is proposed that is based on a DRL-based centralized
policy that optimizes traffic flow and arranges the right-of-way between ve-
hicles. A method that combines 2D Lidar sensors observations and DRL in
a game-theoretic decision-making context is proposed in [116]. The authors
claim that their technique enables vehicles to make optimal decisions at
unsignalized intersections without using any central coordinator or vehicle-
to-vehicle infrastructure. A similar approach for complex intersection sce-
narios is proposed in [117], in which DRL is supported by long short-term
memory (LSTM) that processes traffic images collected by a camera sensor
mounted on the vehicle.

In addition, several recent works exist that employ Multi-agent DRL
techniques for autonomous intersection management in a decentralized a
cooperative fashion and show promising results in optimizing traffic flow,
prevent collisions, decrease fuel consumption and reduce vehicles waiting
time [118, 119].

However, among existing works, unsignalized intersection management
in mixed traffic scenarios has received very little attention. Moreover, at the

7.1. INTRODUCTION 93

best of our knowledge, none of the existing works consider that vehicles may
have different priorities based on their class. For example, an ambulance
or a police car must be given the right-of-way by all other autonomous or
regular vehicles in order to safely cross the intersection.

Motivated by this gap, in this work, we introduce a novel Multi-agent
Cooperative DRL approach for autonomous intersection management at
unsignalized intersections under prioritized mixed traffic scenarios. In the
proposed method, three different vehicle classes are considered: Connected
Automated Vehicles, i.e. CAVs, that act as agents, Connected Priority
Vehicles (CPVs), such as ambulances or police cars, that are connected
but driven by humans and, lastly, Regular Vehicles (RVs), that are neither
connected or automated.

In detail, the main contributions of this research are:

(i) A novel state representation of mixed traffic consisting of four over-
lapped grid layers representing the current route of each CAV or CPV
connected vehicle, the speed, the distance to the intersection and,
eventually, the distance from the vehicle in front, which could be even
an unconnected vehicle. As a consequence, since RVs are not con-
nected, the current traffic state is only partially observable by the
agents.

(ii) A weighted global reward function that considers CAVs and CPVs
current speeds at each step and applies strong penalties in case of
collisions.

(iii) A Proximal Policy Optimization (PPO) [120] approach to find the
optimal DRL-based policy that optimizes traffic flow by observing
vehicles priorities, preventing collisions and reducing crossing times.

Compared to previous works, the main challenge addressed by the pro-
posed DRL algorithm is to instruct the CAVs to take into account the class
to which each other vehicle approaching the intersection belongs and to act
accordingly.

The remainder of this chapter is organized as follows. In Section 7.2, the
problem of autonomous intersection management problem at unsignalized
intersections under prioritized mixed traffic scenarios is formulated and the
resulting system is modeled. Section 7.3 introduces the Multi-agent Coop-
erative DRL approach to automate intersection management. In Section
7.4, a case study designed in SUMO [121] and trained by RLlib [122] shows
the performance of the proposed method under simulated mixed traffic sce-
narios. Finally, Section 7.5 concludes the work and draws future research
directions.

7.2. PROBLEM FORMULATION 94

7.2 Problem Formulation

This section describes the Autonomous Intersection Management problem
(AIM) addressed in this work and depicted in Fig. 7.1. In detail, three
different classes of vehicles are approaching a 4-way double lane unsignalized
intersection at the same time. The two red vehicles are CAVs, the blue
vehicle is a CPV, for example an ambulance, whereas the yellow vehicle is
a RV, which is not connected. The two CAVs wish to cross the intersection
from right to left side and from left to right side respectively, while the
ambulance is heading south and the RV wishes to turn left.

Figure 7.1: Standard mixed traffic scenario at unsignalized intersection
including CAVs (red), CPVs (blue) and RVs (yellow) vehicles.

Since all vehicles are approaching the intersection at the same time, both
a priority and a scheduling problem occur. In absence of traffic signals, one
of the possible strategies to solve such problem is to follow the traffic rules
and force all vehicles to give way to the right. However, in case a vehicle has
higher priority over other vehicles on the basis of its class, that approach is
not always feasible. Such case is depicted in Fig. 7.2a.

The blue priority vehicle slows down at intersection and gives right-of-
way to one of the CAVs, that is not acceptable, as the blue vehicle has
priority over the red one. Moreover, at unsignalized intersections, the risk
of collisions is higher than at signalized intersections due to the high degree
of discretionary power conferred to the drivers. In the proposed approach,
CAVs and CPVs are both connected to a Vehicle-to-Infrastructure architec-
ture and exchange data about their desired route, current lane, speed and
distance to the intersection and eventually the distance from the vehicle in
front, that could be even a regular vehicle.

7.2. PROBLEM FORMULATION 95

(a) without priority (b) with priority

Figure 7.2: Mixed traffic scenario with and without CPVs priority.

The final objective is to design a control strategy for CAVs that regulates
their speed at discrete time intervals in order to observe priorities, prevent
collisions and reduce crossing times, even overcoming standard traffic rules
in certain conditions. By following such ideal control strategy, we determine
the scenario in Fig. 7.2b, in which the red vehicles, regardless of traffic rules,
slow down as they know that a priority blue vehicle is about to cross the
intersection.

In that respect, in this work, the control strategy is designed in terms of
a policy trained by a DRL algorithm in a simulation framework. Accord-
ingly, to model the interaction between CAVs and other vehicles, we model
the AIM problem as a Markov Decision Process (MDP), where the agents
follow a policy π (a|s) in a predetermined environment. More specifically, at
each time step t, given the current state s(t), each agent chooses an action
a(t) ∈ A, according to the current policy, transits to the next state s(t+1)
and finally receives a reward r(t) ∈ R. The agent purpose is to maximize
the expectation of the return over time that is called the discounted cu-
mulative reward and is defined as G(s(t)) =

∑∞
h=0 γ

hr(t + h + 1), where
γ ∈ [0, 1] is the discount factor.

In the proposed problem formulation, the agents are the CAVs and the
current state of each agent at each time step is designed on the basis of real-
time traffic data shared by all connected vehicles. However, since priority
vehicles are connected but driven by humans and regular vehicles are also
unconnected, the future state of the environment not only depends on the
agents, but also on certain unknown processes, such as the future intentions
of CPVs drivers and the position of RVs. As a consequence, the process
is only partially observable. In contrast, the global reward at each step
is calculated on the basis of global traffic flow optimization objectives and
considers both CAVs and CPVs current speeds and possible collisions. In
this respect, in the proposed model, the agents work cooperatively to grant
priorities, avoid accidents and reduce their crossing time.

7.3. MULTI-AGENT DRL OPTIMIZATION APPROACH 96

7.3 Multi-agent DRL Optimization

Approach

In this section, we introduce the details of the proposed Multi-agent DRL
approach for AIM. For the sake of simplicity, we assume a 4-way unsignal-
ized intersection, even if the method can be generalized to any kind of
intersection.

Intersection scheme

The considered 4-way intersection is schematized in Fig. 7.3. Each way
is made of two double lanes identified by a unique label. The first label
identifies the incoming lane to the intersection, whereas the second one
spots the outgoing lane. All possible routes are represented by the arrows
and can be identified by joining the incoming and outgoing lanes labels.
For example, considering E1 as incoming way, vehicles can designate either
E1-N2, E1-W1 or E1-S1 as their planned routes.

E1

E2

W1

W2

N1 N2

S1 S2

Control
Zone

Figure 7.3: 4-way Intersection Scheme.

In addition, we define:

� C = {CAV 1, CAV 2, CAV i, ..., CAV n} as the set of CAV agents,

� P = {CPV 1, CPV 2, CPV j, ..., CPV m} as the set of CPV vehicles.

7.3. MULTI-AGENT DRL OPTIMIZATION APPROACH 97

Similarly to the work [123], the intersection is divided in two different zones:
(i) the control zone in which each CAV i or CPV j communicates with the
centralized infrastructure and (ii) the merging zone where the collisions in
the intersection may occur. The control zone is depicted in Fig. 7.3 as
the gray rectangle surrounding the intersection. We assume that this zone
extends up to 100 meters from the intersection center. On the contrary,
the merging zone is the area shared by the vehicles when they cross the
intersection and is depicted by the dotted rectangle in Fig. 7.3.

Within the control zone, at every time step t, each CAV i sends the
following data to the centralized infrastructure:

� the planned route, for example: E1-N2;

� the current speed vi(t) in m/s;

� the current distance di(t) in meters to the intersection;

� the current distance li(t) in meters from the in front vehicle.

In the same way, the planned route, v̂j(t), d̂i(t) and l̂i(t) are defined for
each CPV j to denote the current speed and distances to the intersection
and the in front vehicle, respectively.

State Representation

Having collected all data from CAVs and CPVs, the observation for each
CAV i agent at every time step t, is designed as a space in four dimensions.
Every dimension in the space is a k × k grid, where k is the number of roads
that make the intersection. In each k × k grid, rows and columns represent
the incoming and outgoing ways respectively, whereas each cell identifies
the corresponding route as defined in Section 7.3.

The four dimensions are used by CAVs and CPVs to mark in correspond-
ing cells their planned routes, current speeds, distances to intersection and
distances from the vehicle in front respectively.

In Table 7.1, an example observation of agent CAV 1, in the example
4-way intersection scenario, is shown.

In the proposed example, white cells of the tables represent all feasible
routes on the intersection. On the contrary, gray boxes mark the unfeasible
routes and cannot be filled. As shown in Table 7.1 (a), agents CAV 1 and
CAV 2 (red), and priority vehicle CPV 1 (blue), have S2-W1, W2-S1 and
S2-N2 as their planned routes respectively.

For each of the vehicles, the current speed in m/s is reported in Table
7.1 (b), while the distance to the intersection can be found in Table 7.1

7.3. MULTI-AGENT DRL OPTIMIZATION APPROACH 98

Table 7.1: Observation Example for CAV1

N2 S1 W1 E2

N1

S2 CPV1 CAV1

W2 CAV2

E1

7.1 (a)
Planned Route

N2 S1 W1 E2

N1

S2 7m/s 9m/s

W2 6m/s

E1

7.1 (b)
Current Speed

N2 S1 W1 E2

N1

S2 30m 25m

W2 20m

E1

7.1 (c)
Distance to Intersection

N2 S1 W1 E2

N1

S2 n/d 6.5m

W2 n/d

E1

7.1 (d)
Distance from
Vehicle in Front

(c). In this regard, positive values are used as the vehicle approaches the
intersection, whereas negative values indicate that the vehicle is leaving the
junction. Finally, in Table 7.1 (d), the distance from vehicle in front, if any,
is recorded. In the given example, only CAV 1 agent has vehicle in front
that could be another CAV agent, a CPV or even a regular vehicle.

In general, the proposed approach can reproduce only partially the cur-
rent state traffic as each agent has only visibility of the first connected
vehicle in front, either CAV or CPV, for each route. Moreover, regular
unconnected vehicles can be seen only in terms of their distance from a
connected vehicle.

In addition, since more than one CAV may have the same planned route,
agents observations generally differ each other. For example, suppose that
two agents, i.e. CAV 1 and CAV 2, both planned the same route and that
CAV 2 was the vehicle in front on the way. In that case, CAV 1 would see
itself in the related cell in first grid and the distance to CAV 2 would be
reported in fourth grid. At the same time, in CAV 2 observation, the value
in the first grid would be CAV 2 itself, whereas no distance from vehicle in
front would be found in fourth grid.

Also for those reasons, the state is only partially observable by each CAV
agent and the cooperative approach is used to improve the performance of
the trained policy.

7.3. MULTI-AGENT DRL OPTIMIZATION APPROACH 99

Action Space

In this work, we assume that the kinematics of each autonomous CAV i

agent is driven by a separate low-level and autonomous control strategy and
that only the speed v(t) at each time step t needs to be set in order to fulfill
the autonomous intersection management objectives. In this regard, we de-
fine the discrete set of three actions A = {ACC, KEEP, DEC} in which,
given the predefined speed variation δ m/s, one of ACC = δ, KEEP = 0
or DEC = −δ represents the action ai(t) chosen according to the policy at
every time step t for each CAV i. As a consequence, at each step, the new
speed vi(t) of the agent CAV i is calculated as vi(t) = vi(t− 1) + ai(t).

Reward

As stated in Section 7.2, the common objectives of the proposed control
strategy are: (i) force agents to observe priorities by giving right-of-way to
connected priority vehicles, (ii) prevent collisions and (iii) reduce individual
crossing times. In order to design a proper global reward function that takes
into account all aforementioned requirements, including penalties in case of
collisions, we first define the following binary variable pi(t) as follows:

pi(t) =

1, if CAV i detects collisions

with other vehicles at time step t

0, otherwise.

(7.1)

Then, the global reward function is defined by:

r(t) = w1

n∑
i=1

vi(t) + w2

m∑
j=1

v̂j(t)− w3

n∑
i=1

vi(t)pi(t), (7.2)

where w1, w2, w3 ∈ [0, 1] are arbitrary weights.
In detail, global reward at time step t is given by adding the weighted

sum of CAVs current speeds and the weighted sum of current velocities
of all priority vehicles. A more aggressive or conservative strategy against
priorities is regulated by tuning w1, which is the weight of CAVs speeds,
and w2, which is the weight of CPVs speeds. More specifically, greater the
value of w2 compared to w1, higher is the probability of CPVs to be given
right-of-way by CAVs.

In addition, a strong penalty, weighted by w3 and proportional to the
current speed vi, is applied in case CAV i collides with other vehicles at time
step t. In this respect, setting a value for w3 ≫ w1, w2 drastically increases
the probability to avoid accidents.

7.4. CASE STUDY 100

7.4 Case Study

In this section, we implement the proposed method on the example sce-
nario schematized in Fig. 7.3 and we give the details about the simulation
environment, the training setup and the performance evaluation.

Simulation Environment and Training Setup

The intersection is designed in SUMO environment. We set three different
vehicle classes: CAVs, CPVs and RVs. Then, we connect SUMO by TraCi
interface to a Python script in which we implement the Multi-agent DRL
policy training strategy by RLlib and PPO. We run 500 training episodes
with randomly generated traffic on the given simulation environment and
we collect some metrics. More in detail, at the beginning of each episode,
we place four vehicles at 30 meters from the intersection with randomly
assigned routes. We choose to place two CAVs, i.e. the agents in the
training strategy, one CPV and one RV. All vehicles are 5 meters long and
have maximum speed set at 50 m/s.

As explained in Section 7.3, a shared fully connected network (FCN) is
used as policy π and value function ϕ estimator. Hence, since k = 4, the
network, that is shown in Fig. 7.4, has one input layer of size 4×4×4 = 64,
two hidden layers of size 256 and two output layers of size 3 for the policy
and 1 for the value respectively.

Figure 7.4: Fully Connected Network used as Policy π and Value Function
ϕ estimator.

7.4. CASE STUDY 101

Although the control action on CAVs is effective as they cross the in-
tersection, the speed should be regulated since when they approach the
junction. Hence, rewards in the future are of great importance. In this
regard, we set γ = 0.99 as discount factor. Moreover, we set α = 5e−5 as
starting learning rate and ReLU as activation function.

Finally, since we wish to give more importance to collisions prevention
and CPVs crossing than to CAVs speed, we set the weights in reward func-
tion (7.2) as: w1 = 1, w2 = 2 and w3 = 5.

To decrease the number of steps, we terminate each episode when all
vehicles are on the outgoing way and at least 20 meters from the intersec-
tion. In each step, a train batch of size 4000 is sampled and chunked down
in mini-batches of size 128, each of those is used to update the agents for
30 consecutive iterations. We run the simulations for 10 to 15 hours on a
personal computer with Intel(R) Core(TM) i7-1185G7 3.00 GHz CPU and
16 GB RAM.

Performance Evaluation

In Fig. 7.5, we show the performance of the training strategy. Firstly, we
observe that the global reward converges after 50 episodes to a stable value.
However, after around 320 episodes the number of accumulated collisions
does not significantly increase anymore. Since one of the main objectives
of the proposed approach is to ensure safety and avoid accidents, both the
global reward and total collisions have to be considered to determine an
effective training stop strategy.

Figure 7.5: Global Reward obtained during training and accumulated
collisions over all episodes.

7.4. CASE STUDY 102

In Fig. 7.6, the average speed over episodes for all connected vehicles is
shown. Although the speed plays a central role in reward function (7.2), the
global average value tends to slow down as collisions converge to a stable
value around 320 episodes. This is due to the fact that CAV agents, as
they approach the junction, are forced by the policy to give right-of-way to
priority vehicles and to act, at the same time, in a conservative fashion to
prevent collisions.

Figure 7.6: Average speed of connected vehicles.

The speed profiles of CAV 1 and CAV 2 agents, compared to the one of
priority vehicle CPV 1, over a single episode after the training, are shown in
Fig. 7.7. We observe that CAV 1, traveling on E1-W1 route, starts slowing
down after 7 seconds entering the control zone and stops for around 3
seconds at time step 9. At the same time, CAV 2, traveling on W2-E2 route,
starts decelerating after around 6 seconds and accelerates again at time
step 9. In contrast, CPV 1, traveling on N1-S1 route, constantly increases
its velocity over the whole time horizon and goes through the intersection
without any interference of other vehicles. In conclusion, after around 320
episodes the trained policy is able to fulfill all prescribed objectives.

CPV 1

CAV 1

CAV 2

Figure 7.7: Speed profile of CAV 1 and CAV 2 agents vs. priority vehicle
CPV 1 as they simultaneously cross the intersection.

7.5. CONCLUSION 103

7.5 Conclusion

In this work, we present a novel approach for autonomous unsignalized in-
tersection management in mixed traffic scenarios with priority vehicles. The
proposed method is based on cooperative Multi-agent Deep Reinforcement
Learning and aims to optimize global traffic flow by giving right-of-way
at intersection to specific classes of priority vehicles and ensuring safety,
at the same time, by preventing collisions. Furthermore, since the sce-
nario is of mixed traffic, we introduce a novel multidimensional intersection
state representation that is only partially observable by each connected
and autonomous vehicle since, in general, only some of other agents, prior-
ity connected vehicles and unconnected regular vehicles may appear in an
observation.

We validate the proposed cooperative approach with Proximal Policy
Optimization in a 4-way example scenario designed in SUMO, in which
we place two connected and autonomous vehicles, one priority connected
vehicle and one regular vehicle traveling on randomly assigned conflicting
routes. Experiments results show that after around 320 training episodes
the Fully Connected Network policy is able to ensure stable global reward,
avoid accidents and give right-of-way to priority vehicles.

In future work, we plan to investigate the impact of partial observability
in more complex intersections and traffic scenarios. Furthermore, we aim
to assess the scalability of the presented method by extending simulations
with more cooperative agents and test alternative approaches to accelerate
the DRL training process.

8 Conclusion

The necessity to address multiple complex tasks in fast efficient and se-
cure environments is one of the key requirements in the new Industry 4.0
paradigm. The contribution of Cloud Computing in this sense is crucial
and ensures the availability of distributed and resilient infrastructures to
provide a variety of services for many business domains.

Distributed systems have the ability to split the effort of multiple com-
plex tasks across a set of nodes, often coordinated by a single leader, and
complete the jobs more efficiently, compared to the centralized alternative.
In addition, in decentralized systems, a subset of distributed systems, each
node also constitutes a point of decision and contributes to the system
behaviour.

A variety of well known optimization problem can be performed in such
environments by using both classical and AI-based methodologies, to in-
crease speed and improve resilience and efficiency.

In this thesis, the implementation of some of such problems in dis-
tributed environments has been presented. In Part I, the role of Blockchain,
a special case of a decentralized system, has been specifically investigated.
The main contributions of this part are reported hereafter:

� A collaborative decentralized Ethereum-based multi-agent platform to
deliver complex software tasks in manufacturing environments by a
dedicated Smart Contract, with the complementary use of Blockchain,
Docker and Cloud Storage in a secure and tamper-proof environment;

� An approach for optimal task assignment, based on least agent run-
time estimation. The runtime prediction is performed by a specifically
designed Artificial Neural Network;

� A second platform designed in HyperLedger Fabric, in which the con-
cept of task assignment procedure is driven by an auction and bidding
scheme provided by a dedicated Smart Contract ;

104

105

� A DRL-based runtime prediction algorithm that overcomes the limita-
tions of the first proposed algorithm by providing incremental on-line
learning and current load state estimation when multiple concurrent
tasks are running on the agents;

� An Ethereum-based incentive platform for energy management that
collects users consumption data in real-time and provides clustering
and rating of the users in a district with a subsequent penalty and
reward scheme based on an optimization problem.

Future research directions for this part regard the use of different container-
based solutions such as Kubernetes as well as the implementation of different
Cloud related optimization problems, such as optimal resources allocation,
on-demand scaling and task re-allocation.

In Part II, the problem of Flexible Job Shop Scheduling (FJSSP) has
been addressed with the implementation of a Swarm-based approach. In
detail, the contributions of this part are:

� The design of a TCPN framework to simulate mass production sys-
tems;

� The implementation of PSO to find the optimal job sequence that
maximizes throughput and minimizes machine waiting time.

Thanks to the intrinsic features of PSO, the proposed algorithm is likely
to be implemented and solved in a distributed system context. In future
developments, the investigated modeling approach should be more exten-
sively generalized and the management of complex job routings should be
included to allow a concrete industrial application.

Finally, in Part III, the problem of autonomous intersection management
in the domain of Autonomous Driving has been explored. More specifically
the contributions of this part are as follows:

� A novel Multi-agent Cooperative DRL approach for autonomous in-
tersection management at unsignalized intersections;

� A partially-observable state representation scheme that includes not
only pure autonomous vehicles, but also connected human driven ve-
hicles and unconnected regular vehicles;

� A global reward scheme that considers vehicle priorities and prevent
collisions.

106

The optimal control policy can be synthesized by training the proposed
DRL scheme in a parallel fashion in the context of a distributed system.
Future work for this last part is the investigation of the impact of partial
observability in more complex intersections and traffic scenarios. Moreover,
with the increasing number of the agents, the impact on performance should
be studied.

References

[1] Gaetano Volpe, Agostino Marcello Mangini, and Maria Pia Fanti.
An architecture combining blockchain, docker and cloud storage for
improving digital processes in cloud manufacturing. IEEE Access, 10:
79141–79151, 2022. doi: 10.1109/ACCESS.2022.3194264.

[2] Gaetano Volpe, Agostino Marcello Mangini, and Maria Pia Fanti. A
deep reinforcement learning approach for competitive task assignment
in enterprise blockchain. IEEE Access, 11:48236–48247, 2023. doi:
10.1109/ACCESS.2023.3276859.

[3] Gaetano Volpe, Agostino Marcello Mangini, and Maria Pia Fanti. An
architecture for digital processes in manufacturing with blockchain,
docker and cloud storage. In 2021 IEEE 17th International Confer-
ence on Automation Science and Engineering (CASE), pages 39–44,
2021. doi: 10.1109/CASE49439.2021.9551633.

[4] Giuseppe Olivieri, Gaetano Volpe, Agostino Marcello Mangini, and
Maria Pia Fanti. A district energy management approach based on
internet of things and blockchain. In 2022 IEEE Intl Conf on De-
pendable, Autonomic and Secure Computing, Intl Conf on Perva-
sive Intelligence and Computing, Intl Conf on Cloud and Big Data
Computing, Intl Conf on Cyber Science and Technology Congress
(DASC/PiCom/CBDCom/CyberSciTech), pages 1–6, 2022. doi: 10.
1109/DASC/PiCom/CBDCom/Cy55231.2022.9927910.

[5] Marco Fiore, Federico Carrozzino, Marina Mongiello, Gaetano Volpe,
and Agostino Marcello Mangini. A blockchain-based modular ar-
chitecture for managing multiple and quantum-safe encryption algo-
rithms. In 2023 9th International Conference on Control, Decision
and Information Technologies (CoDIT), pages 598–601, 2023. doi:
10.1109/CoDIT58514.2023.10284090.

[6] Gaetano Volpe, Agostino Marcello Mangini, and Maria Pia Fanti.
Job shop sequencing in manufacturing plants by timed coloured

107

108

petri nets and particle swarm optimization. IFAC-PapersOnLine,
55(28):350–355, 2022. ISSN 2405-8963. doi: https://doi.org/10.
1016/j.ifacol.2022.10.365. URL https://www.sciencedirect.com/

science/article/pii/S2405896322024028. 16th IFAC Workshop
on Discrete Event Systems WODES 2022.

[7] Gaetano Volpe, Agostino Marcello Mangini, and Maria Pia Fanti.
A cooperative drl approach for autonomous traffic prioritization in
mixed vehicles scenarios. In 2023 IEEE 19th International Conference
on Automation Science and Engineering (CASE), pages 1–6, 2023.
doi: 10.1109/CASE56687.2023.10260615.

[8] Francesco Paparella, Gaetano Volpe, Agostino Marcello Mangini, and
Maria Pia Fanti. Collision avoidance strategy for autonomous inter-
section management by a central optimizer algorithm. In 2023 IEEE
International Conference on Systems, Man, and Cybernetics (SMC),
2023 (to appear).

[9] Jiewu Leng, Guolei Ruan, Pingyu Jiang, Kailin Xu, Qiang Liu,
Xueliang Zhou, and Chao Liu. Blockchain-empowered sustainable
manufacturing and product lifecycle management in industry 4.0:
A survey. Renewable and Sustainable Energy Reviews, 132:110112,
2020. ISSN 1364-0321. doi: https://doi.org/10.1016/j.rser.2020.
110112. URL http://www.sciencedirect.com/science/article/

pii/S1364032120304032.

[10] Xun Xu. From cloud computing to cloud manufacturing.
Robotics and Computer-Integrated Manufacturing, 28(1):75–86, 2012.
ISSN 0736-5845. doi: https://doi.org/10.1016/j.rcim.2011.07.
002. URL https://www.sciencedirect.com/science/article/

pii/S0736584511000949.

[11] JP Vergne. Decentralized vs. distributed organization: Blockchain,
machine learning and the future of the digital platform.
Organization Theory, 1(4):2631787720977052, 2020. doi:
10.1177/2631787720977052. URL https://doi.org/10.1177/

2631787720977052.

[12] Fran Casino, Thomas K. Dasaklis, and Constantinos Patsakis. A sys-
tematic literature review of blockchain-based applications: Current
status, classification and open issues. Telematics and Informatics,
36:55 – 81, 2019. ISSN 0736-5853. doi: https://doi.org/10.1016/j.

https://www.sciencedirect.com/science/article/pii/S2405896322024028
https://www.sciencedirect.com/science/article/pii/S2405896322024028
http://www.sciencedirect.com/science/article/pii/S1364032120304032
http://www.sciencedirect.com/science/article/pii/S1364032120304032
https://www.sciencedirect.com/science/article/pii/S0736584511000949
https://www.sciencedirect.com/science/article/pii/S0736584511000949
https://doi.org/10.1177/2631787720977052
https://doi.org/10.1177/2631787720977052

109

tele.2018.11.006. URL http://www.sciencedirect.com/science/

article/pii/S0736585318306324.

[13] K. Christidis and M. Devetsikiotis. Blockchains and smart contracts
for the internet of things. IEEE Access, 4:2292–2303, 2016. doi:
10.1109/ACCESS.2016.2566339.

[14] Giang-Truong Nguyen and Kyungbaek Kim. A survey about consen-
sus algorithms used in blockchain. J. Inf. Process. Syst., 14:101–128,
2018.

[15] Riikka Koulu. Blockchains and online dispute resolution: Smart con-
tracts as an alternative to enforcement. SCRIPTed, 13:40–69, 05 2016.
doi: 10.2966/script.130116.40.

[16] Solidity Documentation. https://docs.soliditylang.org/en/v0.
8.1, Jan 2021. [Online; accessed 22. Feb. 2021].

[17] Vyper Documentation. https://vyper.readthedocs.io/en/

stable, Feb 2021. [Online; accessed 22. Feb. 2021].

[18] Sishan Long, Soumya Basu, and Emin Gün Sirer. Measuring miner
decentralization in proof-of-work blockchains, 2022. URL https://

arxiv.org/abs/2203.16058.

[19] Tharaka Hewa, Mika Ylianttila, and Madhusanka Liyanage. Sur-
vey on blockchain based smart contracts: Applications, opportuni-
ties and challenges. Journal of Network and Computer Applications,
177:102857, 2021. ISSN 1084-8045. doi: https://doi.org/10.1016/j.
jnca.2020.102857. URL http://www.sciencedirect.com/science/

article/pii/S1084804520303234.

[20] Charles Anderson. Docker [software engineering]. IEEE Software, 32
(3):102–c3, 2015. doi: 10.1109/MS.2015.62.

[21] CouchDB: The Definitive Guide, Aug 2019. URL http://guide.

couchdb.org/editions/1/en/index.html. [Online; accessed 22.
Dec. 2021], http://guide.couchdb.org/editions/1/en/index.html.

[22] Diego Ongaro and John Ousterhout. In search of an under-
standable consensus algorithm. In 2014 USENIX Annual Tech-
nical Conference (USENIX ATC 14), pages 305–319, Philadel-
phia, PA, June 2014. USENIX Association. ISBN 978-1-
931971-10-2. URL https://www.usenix.org/conference/atc14/

technical-sessions/presentation/ongaro.

http://www.sciencedirect.com/science/article/pii/S0736585318306324
http://www.sciencedirect.com/science/article/pii/S0736585318306324
https://docs.soliditylang.org/en/v0.8.1
https://docs.soliditylang.org/en/v0.8.1
https://vyper.readthedocs.io/en/stable
https://vyper.readthedocs.io/en/stable
https://arxiv.org/abs/2203.16058
https://arxiv.org/abs/2203.16058
http://www.sciencedirect.com/science/article/pii/S1084804520303234
http://www.sciencedirect.com/science/article/pii/S1084804520303234
http://guide.couchdb.org/editions/1/en/index.html
http://guide.couchdb.org/editions/1/en/index.html
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro

110

[23] Docker. https://docs.docker.com/get-started/overview, Oct
2023. [Online; accessed 09. Oct. 2023].

[24] Wenying Zeng, Yuelong Zhao, Kairi Ou, and Wei Song. Research
on cloud storage architecture and key technologies. In Proceedings
of the 2nd International Conference on Interaction Sciences: Infor-
mation Technology, Culture and Human, ICIS ’09, page 1044–1048,
New York, NY, USA, 2009. Association for Computing Machin-
ery. ISBN 9781605587103. doi: 10.1145/1655925.1656114. URL
https://doi.org/10.1145/1655925.1656114.

[25] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves,
Ioannis Antonoglou, Daan Wierstra, and Martin A. Riedmiller. Play-
ing atari with deep reinforcement learning. CoRR, abs/1312.5602,
2013. URL http://arxiv.org/abs/1312.5602.

[26] Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Mach.
Learn., 8(3):279–292, May 1992. ISSN 1573-0565. doi: 10.1007/
BF00992698.

[27] Timothy Lillicrap, Jonathan Hunt, Alexander Pritzel, Nicolas Heess,
Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous
control with deep reinforcement learning. CoRR, 09 2015.

[28] Global cloud and data center spending 2020 | Statista.
https://www.statista.com/statistics/1114926/

enterprise-spending-cloud-and-data-centers, May 2021.
[Online; accessed 7. May 2021].

[29] Ming K. Lim, Weiqing Xiong, and Zhimei Lei. Theory, support-
ing technology and application analysis of cloud manufacturing: a
systematic and comprehensive literature review. Industrial Manage-
ment & Data Systems, 120(8):1585–1614, Jan 2020. ISSN 0263-5577.
doi: 10.1108/IMDS-10-2019-0570. URL https://doi.org/10.1108/

IMDS-10-2019-0570.

[30] C. Esposito, A. Castiglione, B. Martini, and K. Choo. Cloud manu-
facturing: Security, privacy, and forensic concerns. IEEE Cloud Com-
puting, 3(04):16–22, jul 2016. ISSN 2372-2568. doi: 10.1109/MCC.
2016.79.

[31] Shuai Wang, Liwei Ouyang, Yong Yuan, Xiaochun Ni, Xuan Han, and
Fei-Yue Wang. Blockchain-enabled smart contracts: Architecture,

https://docs.docker.com/get-started/overview
https://doi.org/10.1145/1655925.1656114
http://arxiv.org/abs/1312.5602
https://www.statista.com/statistics/1114926/enterprise-spending-cloud-and-data-centers
https://www.statista.com/statistics/1114926/enterprise-spending-cloud-and-data-centers
https://doi.org/10.1108/IMDS-10-2019-0570
https://doi.org/10.1108/IMDS-10-2019-0570

111

applications, and future trends. IEEE Transactions on Systems, Man,
and Cybernetics: Systems, 49(11):2266–2277, 2019. doi: 10.1109/
TSMC.2019.2895123.

[32] U. Bodkhe, S. Tanwar, K. Parekh, P. Khanpara, S. Tyagi, N. Ku-
mar, and M. Alazab. Blockchain for industry 4.0: A comprehensive
review. IEEE Access, 8:79764–79800, 2020. doi: 10.1109/ACCESS.
2020.2988579.

[33] Jiewu Leng, Shide Ye, Man Zhou, J. Leon Zhao, Qiang Liu, Wei Guo,
Wei Cao, and Leijie Fu. Blockchain-secured smart manufacturing
in industry 4.0: A survey. IEEE Transactions on Systems, Man,
and Cybernetics: Systems, 51(1):237–252, 2021. doi: 10.1109/TSMC.
2020.3040789.

[34] J. E. Kasten. Engineering and manufacturing on the blockchain: A
systematic review. IEEE Engineering Management Review, 48(1):
31–47, 2020. doi: 10.1109/EMR.2020.2964224.

[35] Jiewu Leng, Douxi Yan, Qiang Liu, Kailin Xu, J. Leon Zhao, Rui
Shi, Lijun Wei, Ding Zhang, and Xin Chen. Manuchain: Combining
permissioned blockchain with a holistic optimization model as bi-level
intelligence for smart manufacturing. IEEE Transactions on Systems,
Man, and Cybernetics: Systems, 50(1):182–192, 2020. doi: 10.1109/
TSMC.2019.2930418.

[36] Tharaka Mawanane Hewa, An Braeken, Madhusanka Liyanage, and
Mika Ylianttila. Fog computing and blockchain based security service
architecture for 5g industrial iot enabled cloud manufacturing. IEEE
Transactions on Industrial Informatics, pages 1–1, 2022. doi: 10.
1109/TII.2022.3140792.

[37] J. A. Garcia-Garcia, N. Sánchez-Gómez, D. Lizcano, M. J. Escalona,
and T. Wojdyński. Using blockchain to improve collaborative business
process management: Systematic literature review. IEEE Access, 8:
142312–142336, 2020. doi: 10.1109/ACCESS.2020.3013911.

[38] T. Allweyer. BPMN 2.0: Introduction to the Standard for Business
Process Modeling. Books on Demand, 2010. ISBN 9783839149850.
URL https://books.google.it/books?id=fdlC7K_3dzEC.

[39] Orlenys López-Pintado, L. Garćıa-Bañuelos, M. Dumas, and Ingo We-
ber. Caterpillar: A blockchain-based business process management
system. In BPM, 2017.

https://books.google.it/books?id=fdlC7K_3dzEC

112

[40] Turusha Ghimire, Atharva Joshi, Samgeeth Sen, Chinmay Kapruan,
Utkarsh Chadha, and Senthil Kumaran Selvaraj. Blockchain in
additive manufacturing processes: Recent trends & its future
possibilities. Materials Today: Proceedings, 50:2170–2180, 2022.
ISSN 2214-7853. doi: https://doi.org/10.1016/j.matpr.2021.09.
444. URL https://www.sciencedirect.com/science/article/

pii/S2214785321063604. 2nd International Conference on Func-
tional Material, Manufacturing and Performances (ICFMMP-2021).

[41] Abhiram Haridas, Adil Abdul Samad, Vysakh D, Deepak Lawrence K,
and Vinod Pathari. A blockchain-based platform for smart contracts
and intellectual property protection for the additive manufacturing
industry. In 2022 IEEE International Conference on Signal Pro-
cessing, Informatics, Communication and Energy Systems (SPICES),
volume 1, pages 223–230, 2022. doi: 10.1109/SPICES52834.2022.
9774219.

[42] Ethereum Development documentation. https://ethereum.org/

en/developers/docs, Jan 2021. [Online; accessed 21. Jan. 2021].

[43] Agust́ın Halty, Rodrigo Sánchez, Valent́ın Vázquez, Vı́ctor Viana,
Pedro Piñeyro, and Daniel Alejandro Rossit. Scheduling in cloud
manufacturing systems: Recent systematic literature review. Mathe-
matical biosciences and engineering : MBE, 17(6):7378—7397, Oc-
tober 2020. ISSN 1547-1063. doi: 10.3934/mbe.2020377. URL
https://doi.org/10.3934/mbe.2020377.

[44] Marlon Dumas, Marcello La Rosa, Jan Mendling, and Hajo A. Rei-
jers. Fundamentals of Business Process Management. Springer,
Berlin, Germany, 2013. ISBN 978-3-642-33142-8. doi: 10.1007/
978-3-642-33143-5.

[45] I. Barinov, V. Baranov, and P. Khahulin. POA Net-
work Whitepaper. https://github.com/poanetwork/wiki/wiki/

POA-Network-Whitepaper, Feb 2021. [Online; accessed 21. Feb.
2021].

[46] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified
Modeling Language User Guide. Addison Wesley Longman Publishing
Co., Inc., USA, 1999. ISBN 0201571684.

[47] DCS - Data Communication Standard, v.3.12. https:

//www.thevisioncouncil.org/sites/default/files/DCS-v3_

12_FINAL_v2.pdf, Aug 2019. [Online; accessed 10. May. 2021].

https://www.sciencedirect.com/science/article/pii/S2214785321063604
https://www.sciencedirect.com/science/article/pii/S2214785321063604
https://ethereum.org/en/developers/docs
https://ethereum.org/en/developers/docs
https://doi.org/10.3934/mbe.2020377
https://github.com/poanetwork/wiki/wiki/POA-Network-Whitepaper
https://github.com/poanetwork/wiki/wiki/POA-Network-Whitepaper
https://www.thevisioncouncil.org/sites/default/files/DCS-v3_12_FINAL_v2.pdf
https://www.thevisioncouncil.org/sites/default/files/DCS-v3_12_FINAL_v2.pdf
https://www.thevisioncouncil.org/sites/default/files/DCS-v3_12_FINAL_v2.pdf

113

[48] David Harris and Sarah Harris. Digital Design and Computer Archi-
tecture. Morgan Kaufmann, Oxford, England, 2 edition, 2012.

[49] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse
rectifier neural networks. In Geoffrey Gordon, David Dunson,
and Miroslav Dud́ık, editors, Proceedings of the Fourteenth Inter-
national Conference on Artificial Intelligence and Statistics, vol-
ume 15 of Proceedings of Machine Learning Research, pages 315–
323, Fort Lauderdale, FL, USA, 11–13 Apr 2011. PMLR. URL
https://proceedings.mlr.press/v15/glorot11a.html.

[50] Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochas-
tic optimization. 3rd International Conference on Learning Represen-
tations, ICLR 2015 - Conference Track Proceedings, pages 1–15, 2015.

[51] ERC-20 Token Standard | ethereum.org. https://ethereum.org/

en/developers/docs/standards/tokens/erc-20, Feb 2021. [On-
line; accessed 11. Feb. 2021].

[52] Public cloud IaaS market worldwide 2023 | Statista, Septem-
ber 2022. URL https://www.statista.com/statistics/505251/

worldwide-infrastructure-as-a-service-revenue. [Online; ac-
cessed 27. Sep. 2022].

[53] Jesus Flores-Contreras, Hector A. Duran-Limon, Arturo Chavoya,
and Sergio H. Almanza-Ruiz. Performance prediction of par-
allel applications: a systematic literature review. Journal of
Supercomputing, 77(4):4014–4055, 2021. ISSN 15730484. doi:
10.1007/s11227-020-03417-5. URL https://doi.org/10.1007/

s11227-020-03417-5.

[54] Ali Mohammed, Ahmed Eleliemy, Florina M. Ciorba, Franziska
Kasielke, and Ioana Banicescu. An approach for realistically sim-
ulating the performance of scientific applications on high perfor-
mance computing systems. Future Generation Computer Systems,
111:617–633, 2020. ISSN 0167-739X. doi: https://doi.org/10.
1016/j.future.2019.10.007. URL https://www.sciencedirect.com/

science/article/pii/S0167739X19308830.

[55] Younghyun Cho, Surim Oh, and Bernhard Egger. Performance mod-
eling of parallel loops on multi-socket platforms using queueing sys-
tems. IEEE Transactions on Parallel and Distributed Systems, 31(2):
318–331, 2020. doi: 10.1109/TPDS.2019.2938172.

https://proceedings.mlr.press/v15/glorot11a.html
https://ethereum.org/en/developers/docs/standards/tokens/erc-20
https://ethereum.org/en/developers/docs/standards/tokens/erc-20
https://www.statista.com/statistics/505251/worldwide-infrastructure-as-a-service-revenue
https://www.statista.com/statistics/505251/worldwide-infrastructure-as-a-service-revenue
https://doi.org/10.1007/s11227-020-03417-5
https://doi.org/10.1007/s11227-020-03417-5
https://www.sciencedirect.com/science/article/pii/S0167739X19308830
https://www.sciencedirect.com/science/article/pii/S0167739X19308830

114

[56] Peter Altenbernd, Jan Gustafsson, Björn Lisper, and Friedhelm Stap-
pert. Early execution time-estimation through automatically gener-
ated timing models. Real-Time Systems: The International Journal
of Time-Critical Computing Systems, 52(6):731–760, November 2016.
URL http://www.es.mdh.se/publications/4284-.

[57] Tri Doan and Jugal Kalita. Predicting run time of classification algo-
rithms using meta-learning. International Journal of Machine Learn-
ing and Cybernetics, 8, 12 2017. doi: 10.1007/s13042-016-0571-6.

[58] XinnianWang, Keyi Xing, Yanxiang Feng, and YunchaoWu. Schedul-
ing of Flexible Manufacturing Systems Subject to No-Wait Con-
straints via Petri Nets and Heuristic Search. IEEE Transactions on
Systems, Man, and Cybernetics: Systems, 51(10):6122–6133, 2021.
ISSN 21682232.

[59] Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kan-
dula. Resource management with deep reinforcement learning. Hot-
Nets 2016 - Proceedings of the 15th ACM Workshop on Hot Topics
in Networks, pages 50–56, 2016. doi: 10.1145/3005745.3005750.

[60] Zixuan Xie, Run Wu, Miao Hu, and Haibo Tian. Blockchain-Enabled
Computing Resource Trading: A Deep Reinforcement Learning Ap-
proach. In 2020 IEEE Wireless Communications and Networking
Conference (WCNC), volume 2020-May, pages 1–8. IEEE, may 2020.
ISBN 978-1-7281-3106-1. doi: 10.1109/WCNC45663.2020.9120521.
URL https://ieeexplore.ieee.org/document/9120521/.

[61] Intro to Ethereum | ethereum.org, March 2023. URL https://

ethereum.org/en/developers/docs/intro-to-ethereum. [Online;
accessed 29. Mar. 2023].

[62] Andréa Matsunaga and José A.B. Fortes. On the use of machine
learning to predict the time and resources consumed by applications.
In 2010 10th IEEE/ACM International Conference on Cluster, Cloud
and Grid Computing, pages 495–504, 2010. doi: 10.1109/CCGRID.
2010.98.

[63] David A. Monge, Matĕj Holec, Filip Železný, and Carlos Garćıa
Garino. Ensemble learning of runtime prediction models for gene-
expression analysis workflows. Cluster Computing, 18(4):1317–1329,
2015. ISSN 15737543. doi: 10.1007/s10586-015-0481-5.

http://www.es.mdh.se/publications/4284-
https://ieeexplore.ieee.org/document/9120521/
https://ethereum.org/en/developers/docs/intro-to-ethereum
https://ethereum.org/en/developers/docs/intro-to-ethereum

115

[64] Muhammad Hafizhuddin Hilman, Maria A. Rodriguez, and Rajkumar
Buyya. Task runtime prediction in scientific workflows using an online
incremental learning approach. Proceedings - 11th IEEE/ACM In-
ternational Conference on Utility and Cloud Computing, UCC 2018,
pages 93–102, 2019. doi: 10.1109/UCC.2018.00018.

[65] Thanh Phuong Pham, Juan J. Durillo, and Thomas Fahringer. Pre-
dicting Workflow Task Execution Time in the Cloud Using A Two-
Stage Machine Learning Approach. IEEE Transactions on Cloud
Computing, 8(1):256–268, 2020. ISSN 21687161. doi: 10.1109/TCC.
2017.2732344.

[66] Lan Jiang, Hongyun Huang, and Zuohua Ding. Path planning for
intelligent robots based on deep q-learning with experience replay
and heuristic knowledge. IEEE/CAA Journal of Automatica Sinica,
7(4):1179–1189, 2020. doi: 10.1109/JAS.2019.1911732.

[67] Rongbo Zhu, Hao Liu, Lu Liu, Xiaozhu Liu, Wenjie Hu, and Bo Yuan.
A blockchain-based two-stage secure spectrum intelligent sensing and
sharing auction mechanism. IEEE Transactions on Industrial Infor-
matics, 18(4):2773–2783, 2022. doi: 10.1109/TII.2021.3104325.

[68] Haojun Huang, Wang Miao, Zhaoxi Li, Jialin Tian, Chen Wang,
and Geyong Min. Enabling energy trading in cooperative micro-
grids: A scalable blockchain-based approach with redundant data
exchange. IEEE Transactions on Industrial Informatics, 18(10):7077–
7085, 2022. doi: 10.1109/TII.2021.3115576.

[69] Chi Harold Liu, Qiuxia Lin, and Shilin Wen. Blockchain-enabled
data collection and sharing for industrial iot with deep reinforcement
learning. IEEE Transactions on Industrial Informatics, 15(6):3516–
3526, 2019. ISSN 19410050. doi: 10.1109/TII.2018.2890203.

[70] Weijun Zheng, Wenhua Wang, Guoqing Wu, Chenzi Xue, and Yifei
Wei. Fog computing enabled smart grid blockchain architecture and
performance optimization with drl approach. In 2020 IEEE 8th In-
ternational Conference on Computer Science and Network Technol-
ogy (ICCSNT), pages 41–45, 2020. doi: 10.1109/ICCSNT50940.2020.
9305000.

[71] Le Yang, Meng Li, Pengbo Si, Ruizhe Yang, Enchang Sun, and Yan-
hua Zhang. Energy-Efficient Resource Allocation for Blockchain-
Enabled Industrial Internet of Things With Deep Reinforcement

116

Learning. IEEE Internet of Things Journal, 8(4):2318–2329, 2020.
ISSN 2327-4662. doi: 10.1109/jiot.2020.3030646.

[72] Ye Xu, Liang Yu, Gang Bi, Meng Zhang, and Chao Shen. Deep
Reinforcement Learning and Blockchain for Peer-to-Peer Energy
Trading among Microgrids. In 2020 International Conferences
on Internet of Things (iThings) and IEEE Green Computing and
Communications (GreenCom) and IEEE Cyber, Physical and So-
cial Computing (CPSCom) and IEEE Smart Data (SmartData)
and IEEE Congress on Cybermatics (Cybermatics), pages 360–
365. IEEE, nov 2020. ISBN 978-1-7281-7647-5. doi: 10.1109/
iThings-GreenCom-CPSCom-SmartData-Cybermatics50389.2020.
00071. URL https://ieeexplore.ieee.org/document/9291556/.

[73] Chao Qiu, Xiaoxu Ren, Yifan Cao, and Tianle Mai. Deep reinforce-
ment learning empowered adaptivity for future blockchain networks.
IEEE Open Journal of the Computer Society, 2:99–105, 2021. doi:
10.1109/OJCS.2020.3010987.

[74] Alan A.A. Donovan and Brian W. Kernighan. The Go Program-
ming Language. Addison-Wesley Professional, 1st edition, 2015. ISBN
0134190440.

[75] Nicolas Auger, Vincent Jugé, Cyril Nicaud, and Carine Pivoteau.
On the Worst-Case Complexity of TimSort. In Yossi Azar, Hannah
Bast, and Grzegorz Herman, editors, 26th Annual European Sym-
posium on Algorithms (ESA 2018), volume 112 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 4:1–4:13, Dagstuhl,
Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
ISBN 978-3-95977-081-1. doi: 10.4230/LIPIcs.ESA.2018.4. URL
http://drops.dagstuhl.de/opus/volltexte/2018/9467.

[76] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf
Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian
Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Pi-
cus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Al-
lan Haldane, Jaime Fernández del Ŕıo, Mark Wiebe, Pearu Peter-
son, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, War-
ren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E.
Oliphant. Array programming with NumPy. Nature, 585(7825):
357–362, September 2020. doi: 10.1038/s41586-020-2649-2. URL
https://doi.org/10.1038/s41586-020-2649-2.

https://ieeexplore.ieee.org/document/9291556/
http://drops.dagstuhl.de/opus/volltexte/2018/9467
https://doi.org/10.1038/s41586-020-2649-2

117

[77] Charles AR Hoare. Quicksort. The Computer Journal, 5(1):10–16,
1962.

[78] Edsger W Dijkstra. A note on two problems in connexion with graphs.
Numerische mathematik, 1(1):269–271, 1959.

[79] Robert Sedgewick and Kevin Wayne. Algorithms, 4th Edition.
Addison-Wesley, 2011. ISBN 978-0-321-57351-3.

[80] Dan-Dan Zhu and Jun-Qing Sun. A new algorithm based on dijkstra
for vehicle path planning considering intersection attribute. IEEE
Access, 9:19761–19775, 2021. doi: 10.1109/ACCESS.2021.3053169.

[81] Alina Buzachis, Antonio Celesti, Antonino Galletta, Jiafu Wan, and
Maria Fazio. Evaluating an application aware distributed dijkstra
shortest path algorithm in hybrid cloud/edge environments. IEEE
Transactions on Sustainable Computing, 7(2):289–298, 2022. doi: 10.
1109/TSUSC.2021.3071476.

[82] Filipo Studzinski Perotto and Laurent Vercouter. Tuning the discount
factor in order to reach average optimality on deterministic mdps.
In Max Bramer and Miltos Petridis, editors, Artificial Intelligence
XXXV, pages 92–105, Cham, 2018. Springer International Publishing.
ISBN 978-3-030-04191-5.

[83] Michele Roccotelli, Agostino Marcello Mangini, and Maria Pia Fanti.
Smart district energy management with cooperative microgrids. IEEE
Access, 10:36311–36326, 2022. doi: 10.1109/ACCESS.2022.3163724.

[84] Maria Pia Fanti, Agostino Marcello Mangini, Michele Roccotelli, and
Walter Ukovich. A district energy management based on thermal
comfort satisfaction and real-time power balancing. IEEE Transac-
tions on Automation Science and Engineering, 12(4):1271–1284, Oct
2015. ISSN 1558-3783. doi: 10.1109/TASE.2015.2472956.

[85] D. Muralidar, Meikandasivam, and Vijayakumar. A review about
energy management techniques in industrial buildings. In 2017 Inno-
vations in Power and Advanced Computing Technologies (i-PACT),
pages 1–9, April 2017. doi: 10.1109/IPACT.2017.8245086.

[86] Ozan Erdinç, Akın Taşcikaraoğlu, Nikolaos G. Paterakis, and João
P. S. Catalão. Novel incentive mechanism for end-users enrolled in dlc-
based demand response programs within stochastic planning context.
IEEE Transactions on Industrial Electronics, 66(2):1476–1487, Feb
2019. ISSN 1557-9948. doi: 10.1109/TIE.2018.2811403.

118

[87] Hao Wang and Jianwei Huang. Incentivizing energy trading for in-
terconnected microgrids. IEEE Transactions on Smart Grid, 9(4):
2647–2657, 2018. doi: 10.1109/TSG.2016.2614988.

[88] Miroslav Markovic, Marko Maljkovic, and Rini Nur Hasanah. Smart
home heating control using raspberry pi and blynk iot platform. In
2020 10th Electrical Power, Electronics, Communications, Controls
and Informatics Seminar (EECCIS), pages 188–192, Aug 2020. doi:
10.1109/EECCIS49483.2020.9263441.

[89] Ivan Ganchev, Zhanlin Ji, and Mairtin O’Droma. An iot-based smart
electric heating control system: Design and implementation. In 2017
Ninth International Conference on Ubiquitous and Future Networks
(ICUFN), pages 760–762, July 2017. doi: 10.1109/ICUFN.2017.
7993895.

[90] Research Department Statista. Global smart home devices ship-
ment share 2018-2025, by category. Technical report, Statista,
mar 2022. URL https://www.statista.com/statistics/920694/

smart-home-device-shipment-share-worldwide-by-category/.

[91] Marah R. Bataineh, Wail Mardini, Yaser M. Khamayseh, and Muneer
Masadeh Bani Yassein. Novel and secure blockchain framework for
health applications in iot. IEEE Access, 10:14914–14926, 2022. doi:
10.1109/ACCESS.2022.3147795.

[92] Shajulin Benedict, P. Rumaise, and Jaspreet Kaur. Iot blockchain
solution for air quality monitoring in smartcities. In 2019 IEEE Inter-
national Conference on Advanced Networks and Telecommunications
Systems (ANTS), pages 1–6, Dec 2019. doi: 10.1109/ANTS47819.
2019.9118148.

[93] Rahma A Alzahrani, Simon J Herko, and John M Easton. Blockchain
application in remote condition monitoring. In 2020 IEEE Interna-
tional Conference on Big Data (Big Data), pages 2385–2394, Dec
2020. doi: 10.1109/BigData50022.2020.9377895.

[94] Anjali Rajith, Sakurai Soki, and Mine Hiroshi. Real-time optimized
hvac control system on top of an iot framework. In 2018 Third In-
ternational Conference on Fog and Mobile Edge Computing (FMEC),
pages 181–186, April 2018. doi: 10.1109/FMEC.2018.8364062.

https://www.statista.com/statistics/920694/smart-home-device-shipment-share-worldwide-by-category/
https://www.statista.com/statistics/920694/smart-home-device-shipment-share-worldwide-by-category/

119

[95] Maker - Dai stable coin, June 2022. URL https://developer.

makerdao.com/dai/1. https://developer.makerdao.com/dai/1, [On-
line; accessed 15. Jun. 2022].

[96] Douglas Steinley and Michael J Brusco. Initializing k-means batch
clustering: A critical evaluation of several techniques. Journal of
Classification, 24(1):99–121, 2007.

[97] I.T. Jolliffe and Springer-Verlag. Principal Component Analysis.
Springer Series in Statistics. Springer, 2002. ISBN 9780387954424.
URL https://books.google.it/books?id=_olByCrhjwIC.

[98] MATLAB. version 9.11.0 (R2021b Update 1). The MathWorks Inc.,
Natick, Massachusetts, 2021.

[99] Fuqing Zhao, Jianlin Zhang, Chuck Zhang, and Junbiao Wang. An
improved shuffled complex evolution algorithm with sequence map-
ping mechanism for job shop scheduling problems. Expert Systems
with Applications, 42(8):3953–3966, 2015. ISSN 0957-4174.

[100] Michael R Garey, David S Johnson, and Ravi Sethi. The complexity of
flowshop and jobshop scheduling. Mathematics of operations research,
1(2):117–129, 1976.

[101] K. Jensen and L. Kristensen. Coloured Petri Nets. Modelling and
Validation of Concurrent Systems. Springer, Berlin, 2009.

[102] Abel Gómez, Ricardo J. Rodŕıguez, Maŕıa-Emilia Cambronero, and
Valent́ın Valero. Profiling the publish/subscribe paradigm for auto-
mated analysis using colored petri nets. Software & Systems Modeling,
18(5):2973–3003, Oct 2019. ISSN 1619-1374.

[103] R. E. Perez and K. Behdinan. Particle swarm approach for structural
design optimization. Comput. Struct., 85(19–20):1579–1588, oct 2007.
ISSN 0045-7949.

[104] Monica Clemente, Maria Pia Fanti, Giorgio Iacobellis, Massimiliano
Nolich, and Walter Ukovich. A decision support system for user-
based vehicle relocation in car sharing systems. IEEE Transactions
on Systems, Man, and Cybernetics: Systems, 48(8):1283–1296, 2018.

[105] Riccardo Poli, James Kennedy, and Tim Blackwell. Particle swarm
optimization. Swarm Intelligence, 1(1):33–57, Jun 2007. ISSN 1935-
3820.

https://developer.makerdao.com/dai/1
https://developer.makerdao.com/dai/1
https://books.google.it/books?id=_olByCrhjwIC

120

[106] Efrén Mezura-Montes and Carlos A. Coello Coello. Constraint-
handling in nature-inspired numerical optimization: Past, present and
future. Swarm and Evolutionary Computation, 1(4):173–194, 2011.
ISSN 2210-6502.

[107] J. H. Blackstone, Don T. Phillips, and G. L. Hogg. A state-of-the-art
survey of dispatching rules for manufacturing job shop operations.
International Journal of Production Research, 20(1):27–45, 1982.

[108] Lina Wu, Yusheng Ci, Jiangwei Chu, and Hongsheng Zhang. The
influence of intersections on fuel consumption in urban arterial road
traffic: A single vehicle test in harbin, china. PLOS ONE, 10(9):1–
10, 09 2015. doi: 10.1371/journal.pone.0137477. URL https://doi.

org/10.1371/journal.pone.0137477.

[109] Eun-Ha Choi. Crash Factors in Intersection-Related Crashes: An On-
Scene Perspective, September 2010. URL https://trid.trb.org/

view/1083638. [Online; accessed 15. Feb. 2023].

[110] Elnaz Namazi, Jingyue Li, and Chaoru Lu. Intelligent intersection
management systems considering autonomous vehicles: A systematic
literature review. IEEE Access, 7:91946–91965, 2019. doi: 10.1109/
ACCESS.2019.2927412.

[111] Mohammed Al-Turki, Nedal T. Ratrout, Syed Masiur Rahman, and
Khaled J. Assi. Signalized intersection control in mixed autonomous
and regular vehicles traffic environment—a critical review focusing
on future control. IEEE Access, 10:16942–16951, 2022. doi: 10.1109/
ACCESS.2022.3148706.

[112] B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ah-
mad A. Al Sallab, Senthil Yogamani, and Patrick Pérez. Deep rein-
forcement learning for autonomous driving: A survey. IEEE Trans-
actions on Intelligent Transportation Systems, 23(6):4909–4926, 2022.
doi: 10.1109/TITS.2021.3054625.

[113] Giuseppe Benedetti, Maria Pia Fanti, Agostino Marcello Mangini,
and Fabio Parisi. Application of deep reinforcement learning for traffic
control of road intersection with emergency vehicles. In 2021 IEEE
International Conference on Systems, Man, and Cybernetics (SMC),
pages 182–187, 2021. doi: 10.1109/SMC52423.2021.9658968.

https://doi.org/10.1371/journal.pone.0137477
https://doi.org/10.1371/journal.pone.0137477
https://trid.trb.org/view/1083638
https://trid.trb.org/view/1083638

121

[114] Maria Pia Fanti, Agostino Marcello Mangini, Daniele Martino, Ig-
nazio Olivieri, Fabio Parisi, and Francesco Popolizio. Safety and com-
fort in autonomous braking system with deep reinforcement learning.
In 2022 IEEE International Conference on Systems, Man, and Cy-
bernetics (SMC), pages 1786–1791, 2022. doi: 10.1109/SMC53654.
2022.9945383.

[115] Shengchao Yan, Tim Welschehold, Daniel Büscher, and Wolfram Bur-
gard. Courteous behavior of automated vehicles at unsignalized inter-
sections via reinforcement learning. IEEE Robotics and Automation
Letters, 7(1):191–198, 2022. doi: 10.1109/LRA.2021.3121807.

[116] Mingfeng Yuan, Jinjun Shan, and Kevin Mi. Deep reinforcement
learning based game-theoretic decision-making for autonomous vehi-
cles. IEEE Robotics and Automation Letters, 7(2):818–825, 2022. doi:
10.1109/LRA.2021.3134249.

[117] Guofa Li, Siyan Lin, Shen Li, and Xingda Qu. Learning automated
driving in complex intersection scenarios based on camera sensors: A
deep reinforcement learning approach. IEEE Sensors Journal, 22(5):
4687–4696, 2022. doi: 10.1109/JSEN.2022.3146307.

[118] Guillen-Perez Antonio and Cano Maria-Dolores. Multi-agent deep
reinforcement learning to manage connected autonomous vehicles at
tomorrow’s intersections. IEEE Transactions on Vehicular Technol-
ogy, 71(7):7033–7043, 2022. doi: 10.1109/TVT.2022.3169907.

[119] Antonio Guillen-Perez and Maria-Dolores Cano. Learning from ora-
cle demonstrations—a new approach to develop autonomous inter-
section management control algorithms based on multiagent deep
reinforcement learning. IEEE Access, 10:53601–53613, 2022. doi:
10.1109/ACCESS.2022.3175493.

[120] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal policy optimization algorithms, 2017. URL
https://arxiv.org/abs/1707.06347.

[121] Arpan Kusari, Pei Li, Hanzhi Yang, Nikhil Punshi, Mich Rasulis,
Scott Bogard, and David J. LeBlanc. Enhancing sumo simulator for
simulation based testing and validation of autonomous vehicles. In
2022 IEEE Intelligent Vehicles Symposium (IV), pages 829–835, 2022.
doi: 10.1109/IV51971.2022.9827241.

https://arxiv.org/abs/1707.06347

122

[122] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox,
Ken Goldberg, Joseph Gonzalez, Michael Jordan, and Ion Stoica. RL-
lib: Abstractions for distributed reinforcement learning. In Jennifer
Dy and Andreas Krause, editors, Proceedings of the 35th Interna-
tional Conference on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pages 3053–3062. PMLR, 10–15 Jul
2018. URL https://proceedings.mlr.press/v80/liang18b.html.

[123] Gianvito Difilippo, Maria Pia Fanti, and Agostino Marcello Mangini.
A consensus protocol for connecting automated vehicles at signal-
free intersection. In 2022 IEEE 61st Conference on Decision and
Control (CDC), pages 6568–6573, 2022. doi: 10.1109/CDC51059.
2022.9993242.

https://proceedings.mlr.press/v80/liang18b.html

	12_liberatoria_archiviazione_tesi
	14_Tesi_PhD_archiviazione_iris.pdf
	Contents
	Preface
	List of Publications
	Introduction
	Optimal Algorithms and Blockchain Applications in Manufacturing and Power Systems
	Blockchain, Docker & DRL Preliminaries
	Blockchain and Smart Contracts
	Ethereum & Hyperledger Fabric
	Dockers, Containers and Cloud Storage
	Deep Reinforcement Learning

	Design of a Tasks Orchestration Platform in Ethereum with ANN
	Introduction
	Digital Processes
	The Proposed Platform Structure
	Case Study: Ophthalmic Lenses Manufacturing
	Conclusion

	Optimal Task Assignment Problem with DRL in Hyperledger Fabric
	Introduction
	Related Work
	System Model
	DRL-Based Task Assignment Process
	Performance Evaluation
	Conclusion

	An Incentive Platform in Ethereum for Energy Management
	Introduction
	Stable Coins
	The Proposed System
	The Reward and Penalty Scheme
	Case Study
	Conclusion

	Swarm Algorithms in Manufacturing
	Flexible Job Shop Sequencing Problem with TCPN and PSO
	Introduction
	Basics of Timed Coloured Petri Nets
	TCPN Model of a Manufacturing Plant
	Job Sequencing by PSO
	Case Study
	Conclusion

	Multi-Agent Systems for Autonomous Vehicles
	A Cooperative DRL Approach for Autonomous Intersection Management
	Introduction
	Problem Formulation
	Multi-agent DRL Optimization Approach
	Case Study
	Conclusion

	Conclusion
	References

