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Effective description of domain wall strings
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The analysis of domain wall dynamics is often simplified to one-dimensional physics. For domain walls in thin
films, more realistic approaches require the description as two-dimensional objects. This includes the study of
vortices and curvatures along the domain walls as well as the influence of boundary effects. Here we provide a
theory in terms of soft modes that allows us to analytically study the physics of extended domain walls and their
stability. By considering irregularly shaped skyrmions as closed domain walls, we analyze their plasticity and
compare their dynamics with those of circular skyrmions. Our theory directly provides an analytical description
of the excitation modes of magnetic skyrmions, previously accessible only through sophisticated micromagnetic
numerical calculations and spectral analysis. These analytical expressions provide the scaling behavior of the
different physics on parameters that experiments can test.
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I. INTRODUCTION

The existence of distinguishable magnetic domains in ferro-
magnetic films [1,2] is the basis for magnetic memory devices
[3]. The boundary between two opposite magnetic domains
corresponds to a domain wall (DW) [4–7]. DWs belong to a
class of textures called topological textures. Analytically in the
low-energy limit, DWs are often treated as one-dimensional
objects that can be described by two soft modes [4,8–14].
Experiments with thin films [7,15–18] reveal, however, much
richer configurations, including curved DWs and vortex DWs
[19], which in such a one-dimensional picture are not captured.
Therefore, a two-dimensional theory is needed.

In this paper, we consider DWs as strings described by a
pair of fields of soft modes. We derive a theory that allows
us to treat the local dynamics of the DW and interactions
with localized perturbations like impurities. Also the effects
of external perturbations can be easily added to the formalism.

Beyond DWs, magnetic skyrmions are promising candi-
dates for applications in spintronics [20–23]. Skyrmions have
a quantized topological charge and respond more efficiently
to applied currents [24,25]. Due to their reduced size and
particlelike behavior they have attracted significant interest
in spintronics [26] with applications for memory and logic
devices [3,27–29]. Skyrmions are very much related to DWs
in the sense at they can be viewed as closed DWs. Often, their
theoretical description is based on a radially symmetric ansatz
corresponding to a circular DW [30–33]. The radial symmetry,
however, is not a requirement for their existence. Other shapes
have been observed, for example, close to a defect [34,35]
or by exciting their internal modes [35–39]. The plasticity
of the skyrmion shape has several experimental advantages,
including the ability to avoid impurities [34,35] and increasing
the response to external electrical currents [40,41]. Here we
describe skyrmions as closed DWs without imposing shape-
related symmetries. Our formalism directly allows us to study

the dynamics of deformed magnetic skyrmions and their
eigenmodes.

This paper is organized as follows. In Sec. II we present the
effective description of a DW as a string. We describe the ansatz
and obtain the effective energy for these topological textures. In
Sec. III we obtain an action that describes the dynamics in terms
of the soft-mode fields. In Sec. IV we consider closed DWs and
analyze the dynamics of deformed skyrmions. In particular,
we consider three examples; we calculate the dynamics of
deformations (bumps) along skyrmions and examine the rota-
tional and breathing mode dynamics of deformed skyrmions.
In Sec. V we report our conclusions.

II. DESCRIPTION OF DOMAIN WALL STRINGS

We consider a ferromagnetic film with thickness τ ,
much smaller than the DW width, and with interfacial
Dzyaloshinskii-Moriya interaction (DMI) [42–44]. The mag-
netization field is described as M(r) = Msm(r), where m(r)
is a unit vector field and Ms is the saturation magnetization.
The micromagnetic Hamiltonian corresponds to

H =τ

∫
d2x

(
J

2
|∇m̂|2 + K

(
1 − m2

z

)

+ D(mz∇ · m⊥ − m⊥ · ∇mz)

)
, (1)

where m⊥ is the vector of the in-plane components of the
magnetization mx,my . The term proportional to J > 0 is the
ferromagnetic exchange interaction. It favors the alignment
of the magnetization vectors. The term proportional to K

corresponds to out-of-plane anisotropy interaction. It favors
the magnetization pointing along the easy axis, perpendicular
to the plane of the film. The term proportional to D is the
interfacial DMI. For D � 4

√
JK/π the ground state is given

by a helix [33], which can be viewed as a periodic structure
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FIG. 1. Sketch of an extended smooth DW given by the curve
X(s) in a thin film. Everywhere along the curve, the radius of curvature
is much bigger than �. The basis of the longitudinal, êl , and normal,
ên, vectors is represented. In the top left corner, we show a typical
cross section along the curve with the representations of X(s) and
�(s).

of DWs. In order to describe single DWs, we consider D <√
JK . We neglect explicit terms related to demagnetization

fields as they may be interpreted as a contribution to an effective
anisotropy in thin films [45]. The Hamiltonian from Eq. (1)
has a characteristic length, the DW width � = √

J/2K , and
a characteristic energy density scale, E = √

JK [46]. These
two parameters define the scale for the dynamics of topological
textures.

We consider a DW in a thin film to be an extended object
described by a curve X (see Fig. 1),

X(s) = (x(s),y(s),0), (2)

where s is a parameter along the curve. A local basis along the
curve is given by the unitary longitudinal vector êl(s) and the
unitary normal vector ên(s),

êl = X ′

|X ′| , ên = êl × êz, (3)

where for any function f (s) we define f ′ ≡ ∂sf and |X ′| =√
(∂sx)2 + (∂sy)2. Note that ê′

l = k ên, where the function k ≡
k(s) is related to the local curvature κ(s) via k = |X ′|κ (see
Appendix A). We assume that the radius of the local curvature
1/κ at any point along the DW is much bigger than the DW
width, i.e., |X ′|/k � �.

We consider an ansatz for an extended DW described by a
curve X(s) with a cross section along ên corresponding to a
rigid one-dimensional DW (see Fig. 1 and Appendix A). Thus,
each cross section is described by a pair of soft modes X(s),
the position of the cross section where the magnetization is in
plane, and �(s), the angle of the in-plane magnetization with
respect to the vector ên(s). The effective description of the DW
string is in terms of the fields X(s) and �(s).

In the case of finite thin films without periodic boundary
conditions, DMI produces a twist of the magnetization at the
boundaries [33,47]. This means that, for open DW curves
in thin films, DMI twists the magnetic profile for cross
sections close to the edge. We treat these edge twists as a
perturbation to the state without edge twists and associate with
them an effective potential. For DWs with periodic boundary

conditions, there is no such twisting, and consequently, there is
no potential associated with it. The effective energy obtained
from the micromagnetic Hamiltonian given by Eq. (1) with
periodic boundary conditions is in terms of the effective
coordinates given by

Heff = τ

∫
ds

(
cEE |X ′| + cκJ

|X ′| (�′ − k)2

+D(π |X ′| − cdk) cos �

)
. (4)

Here cE ,cκ , and cd are dimensionless constants that depend on
the exact profile of the DW along the normal direction ên (see
Appendix A). This effective Hamiltonian is one of the main
results of this paper. It is invariant under reparametrization,
s → γ s, where γ ∈ R. The first term in Eq. (4) is proportional
to the length of the DW, in analogy to the energy of a rubber
band. The solution that minimizes this term is a straight line.
The second term describes the fact that bending the DW
leads to a change in �′ and vice versa. As the azimuthal
angle can be manipulated experimentally, for example, by
local external magnetic fields or spin waves [48–50], this
provides a mechanism to introduce curvature in DWs. Note
that without DMI the energy is invariant under global rotations
of the azimuthal angle of the DW. As DMI breaks inversion
symmetry, it directly couples the azimuthal angle � with the
curvature and the total length of the DW curve, making the
physics of the extended DW more complex.

To calculate the effective potential due to boundary condi-
tions for open DWs, we assume the following two conditions:
(i) The longitudinal vector êl at the boundary is perpendicular
to the edge, and (ii) the length scale given by the DMI-induced
boundary twists is not much bigger than the DW width �. The
first condition implies that the magnetization configuration at
the edge corresponds to a DW with the same width as in the
bulk. Due to our assumption that the local curvature of the
extended DW is larger than its width, the second condition
ensures that the DW is straight in the region close to the
boundary. As a result, the DMI-induced boundary condition
leads to a rigid twist of the magnetization profile around ên for
cross sections close to the edge. As we substitute this modified
ansatz for the edges into the micromagnetic Hamiltonian from
Eq. (1), we find that, as expected, the energy potential due to
edge effects does not depend on the position X . The main
contributions are functions of � and �′ defined only in a
small region around the edges. Within the above formalism,
the Zeeman interaction due to an external magnetic field can
also be incorporated. In this case the boundary condition
will depend also on the relative positions of the string ends
[51,52]. In the following we will restrict our analysis to periodic
boundary conditions.

For two-dimensional magnetic textures it is possible to
define a topological charge of the form [23]

Q = 1

4π

∫
d2x m̂ · (∂x m̂ × ∂y m̂). (5)

The conservation of topological charge in the continuous
approximation is guaranteed by the boundary conditions. In
a magnetic lattice the conservation of topological charge holds
only for textures that are bigger than the discretization scale.
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FIG. 2. Sketch of how to obtain a skyrmion from an extended DW
with periodic boundary conditions.

By substituting the ansatz of the DW string into Eq. (5) we
obtain

Q = 1

2π

∫
ds(k − �′). (6)

For open DWs in thin films without periodic boundary con-
ditions, the topological charge does not need to be either
an integer number or a conserved quantity. This means that
it is possible to induce topological charge in these textures
through boundary dynamics [53,54]. In contrast, for DWs with
periodic boundary conditions, this charge must be conserved
in the continuum approximation as the integrals over �′ and
k are quantized. Connecting the ends of a DW (see Fig. 2)
leads to a skyrmion. For such closed DW strings without
knots, the contribution from the integral over k is ±1, where
we use the Gauss-Bonnet theorem. Thus, by interpreting
skyrmions as closed DW strings we, of course, also obtain their
quantized topological charge of ±1 depending on their center
magnetization. Equations (4) and (6) reveal that a possible
mechanism to produce skyrmions out of DW strings is to
manipulate the azimuthal angle [55].

In the following we will explicitly consider the dynamics
of extended DWs in Sec. III and the physics of closed DWs
in Sec. IV. For the case of open DWs the solution with
minimum energy is given by a straight DW, where |X ′| is a
constant and �′ = k = 0, while for a closed DW the state with
minimum energy is given by a circular skyrmion with radius
R = �

√
cE/(cκ − πD/E) and a constant azimuthal angle � =

π along the curve. Note that plugging a circular skyrmion
ansatz into Eq. (4) leads to the effective energy known from
the literature for skyrmions [33]. These two minimal solutions
do not have local degrees of freedom for the soft-mode fields.
Thus, the long-range dynamics of a straight DW is globally
defined by the soft-mode pair {X,�} [56]. In the case of
skyrmions, two globally defined soft modes are also enough
to capture their dynamics, {R,�}, the radius of the skyrmion
and the azimuthal angle of the in-plane magnetization along
the radius [39,57].

III. EFFECTIVE DYNAMICS OF EXTENDED DWs

The model that best describes the magnetization dynamics
in a ferromagnet is given by the Landau-Lifshitz-Gilbert (LLG)

equation [58]

˙̂m = γ

Ms

m̂ × δH[m̂]

δm̂
+ αm̂ × ˙̂m, (7)

where γ is the gyromagnetic constant, H is the Hamiltonian of
the system, α is the dimensionless Gilbert damping parameter,
and we define ḟ ≡ ∂tf for any function f . The first term on the
right-hand side corresponds to the precession of the magnetiza-
tion due to an effective magnetic field, and it conserves energy.
The second term correspond to a damping term which promotes
the alignment of the magnetization with the effective magnetic
field. The energy-conserving part of the LLG equation (7) may
be obtained from varying the action [59]

A =
∫

dt

(
τMs

γ

∫
d2x(1 − cos θ )φ̇ − H

)
, (8)

where the first part is the spin Berry phase SB expressed in
a standard spherical polar representation of the magnetization
[60]. Plugging in Eq. (7) the ansatz of a curved DW in terms
of the fields of soft modes, we obtain

SB = −τcγ

∫
dt

∫
ds|X ′|(Ẋ · ên)[� − arccos (ên · êx)],

(9)

where cγ = 2Ms/γ (see Appendix B). From the spin Berry
phase action, Eq. (9), and the effective Hamiltonian, Eq. (4), it
is possible to obtain the equations of motion for the soft-mode
fields X(s),�(s) to study the dynamics of DWs in thin films,
such as the propagation of extended DWs in different geome-
tries, the influence of curvatures, and the formation of cusps. A
full general description is, however, rather complicated as the
equations of motion are heavily influenced by the boundary
conditions.

In the case of �′ = 0, i.e., a constant azimuthal angle along
the DW, the Berry phase from Eq. (9) can be separated as

SB = − τcγ

∫
dt �Ȧ

+ τcγ

∫
dt

∫
ds|X ′|(Ẋ · ên) arccos (ên · êx), (10)

where A defines the area of the ferromagnetic domain with
mz = −1. The first term reveals that A and � are conjugated
soft modes [56], with a Poisson bracket given by {�,A} =
1/(τcγ ). An important remark is that, since an external out-
of-plane magnetic field couples directly to A, it produces, as
expected, a precession of the angle �.

IV. EFFECTIVE DYNAMICS OF CLOSED DWs

In this section we study the dynamics of closed DWs that can
be parameterized within the polar coordinate representation

X(s,t) = r(s,t)( cos(s), sin(s),0), (11)

where s = [0,2π ) and r(s) is a smooth function with r(0,t) =
r(2π,t). Such an ansatz includes circular and distorted mag-
netic skyrmions, as shown in the right panel of Fig. 2. For a
curve given by Eq. (11), the effective spin Berry phase is

SB = −τcγ

∫
dt

∫ 2π

0
ds

[
� − arctan

(
r ′

r

)]
rṙ. (12)
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The term depending on arctan (r ′/r) is associated with the chi-
ral properties of the skyrmion and is related to different speeds
of propagation for waves in clockwise and counterclockwise
motion [39].

A. Equations of motion for closed DWs

The equations of motion for the local radial distance r and
the azimuthal angle � of the closed DW are

cγ rṙ =
(

2J cκ

|X ′| (�′ − k)

)′
+ D sin �(π |X ′| − cdk),

(13a)

−τcγ �̇ = 1

r

δ

δr

[
Heff − τcγ rṙ arctan

(
r ′

r

)]
, (13b)

where |X ′| = √
r2 + r ′2 and k = [arctan(r ′/r)]′ − 1. Here we

did not include damping dynamics. The addition of the Gilbert-
damping term corresponds to adding a term proportional to the
damping constant α that mixes the evolution of ṙ and �̇ (see
Appendix C).

Equation (13a) has two interesting properties that we would
like to point out: (i) We find that the only contribution to the
time evolution of the area enclosed by the DW is due to
the DMI. In the case of �′ = 0 we obtain, after integrating
the equation of motion along the curve,

Ȧ = πD

cγ

sin �

(
2cd +

∫ 2π

0
ds|X ′|

)
. (14)

(ii) In the absence of DMI, Eq. (13a) has the form of a continuity
equation, i.e., ρ̇ = ∂s(j ). Here, analogous to the charge density,
it is proportional to the area per unit length, and j corresponds
to the density of topological charge per local length change.
This shows that the existence of Bloch lines, which corresponds
to a concentration of topological charge, can generate strong
deformations of the DW.

Equation (B6) is rather complicated as it contains higher-
order derivatives. Integrating the equation of motion along the
entire curve gives

cγ

∫
ds

(
�̇ + r2ṙ ′

|X ′|2
)

=
∫

ds

[
2(EcE + Dπ cos �)

|X ′| − J cκ

|X ′|3 (�′ − k)2

−
(

r ′

r|X ′|2
)(

2J cκ

|X ′|
(
�′ − k

) + Dcd cos �

)′]
, (15)

where some of the terms with higher-order derivatives vanished
due to the periodic boundary conditions.

These equations provide a good insight into the dynamics
of extended DWs as well as deformed skyrmions and convey
the general dynamics of a broad range of magnetic textures. In
particular, this effective theory allows for the study of contin-
uous deformations of skyrmions without requiring knowledge
of magnonic modes. In the following we will explicitly ex-
plore three examples, the propagation of deformations along
a skyrmion, the eigenmodes of closed DWs, and breathing
dynamics.

FIG. 3. Sketch of solutions described by Eq. (17) with �r/rmin =
0.3 and n = 1,2,3,4. These solutions correspond to the excitations
of circular skyrmions described in the literature [38,39,61–63]. Their
evolution in time is a rigid rotation with a frequency depending on
their size. Notice that the mode n = 1 corresponds to what is known
as (counter)clockwise modes for skyrmions in the literature.

B. Wave propagation along the closed DW

Here we consider circular skyrmions with radius R0 with
a small and smooth deformation of size d, i.e., r(s,t) = R0 +
d(s,t), with d 	 R0. We assume that the angle � and the radius
R0 are fixed to the values minimizing the energy [33], i.e.,
� = π and R0 = �

√
cκ/(cE − cπ (D/E), where � is the DW

width. In this case we obtain from Eq. (13a) a drift equation,(
R3

0cγ

2cκJ
ḋ + d ′

)
≈ 0. (16)

This describes the propagation of the deformation d along the
DW. Since the curve is closed, this motion is periodic with
frequency ω ∝ Jγ /MsR

3
0.

C. Rotational eigenmodes of a closed DW

In this example we consider solutions of Eq. (13a) that have
a rigid shape and obey the following conditions: (i) the curve
has a maximum radius rmax and a minimum radius rmin, which
are of the order of the equilibrium radius R0 of a circular
skyrmion. (ii) The solution depends on the combination s − ωt ,
where s is the parameter along the curve, t is time, and ω

is a constant frequency. (iii) The solution is periodic, and
(iv) �′ = 0. With these conditions, we find that the curve
describing the DW string is given by

r(s) ≈ rmin + �r sin2
(ns

2

)
, (17)

where �r = rmax − rmin and n is an integer. The first four
solutions of the above equation are shown in Fig. 3. The
solutions in Eq. (17), which we obtained within our effective
theory, correspond to the skyrmion excitation modes reported
in the literature [38,39,61–63]. The strength of our formalism is
that we can analytically obtain the frequencies. The frequency
ωn for the nth mode is given by

ωn ≈ − 2J cκ

cγ r3
min

(n − n3). (18)

This result is in agreement with the result obtained with
numerical methods by Kravchuk et al. for the clockwise modes
[63]. An important remark is that, even though this frequency
does not depend explicitly on the DMI, this interaction is
necessary to keep � constant along the DW string.

To obtain the full spectrum, we also need to consider the
cases in which �̇ �= 0. For small perturbations of r and �,
around the minimum radius rmin and the equilibrium angle π ,
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Eqs. (B6) and (13a) become

cγ ṙ + Dπ� ≈ O

(
1

r3
min

)
,

cγ (rmin�̇ − 2∂ψ ṙ) ≈ O

(
1

r2
min

)
. (19)

These equations of motion correspond to oscillations with
frequency

ωn ≈ −2πDn

cγ rmin
, (20)

which corresponds to the counterclockwise modes reported
by Kravchuk et al. [63]. To understand the difference for the
clockwise and counterclockwise modes, we notice that for the
clockwise modes, n < 0, oscillations for � and r travel in the
same direction, while for the counterclockwise modes, n > 0,
they travel in opposite directions. Since in this formalism, the
angle � is defined with respect to the normal direction along
the DW string, an oscillation for r already assumes a rotation
of the local magnetization. Therefore, if both oscillations travel
in the same direction, the oscillation in r can suppress the
oscillation for �, retaining the frequency ∼1/r3

min, while if
they travel in opposite directions, the oscillation in � should
be increased, producing motion with the frequency ∼1/rmin.

D. Breathing modes of a closed DW

Here we consider the smooth breathing dynamics of a closed
DW with �′ = 0 along the curve. This means that its shape
is fixed, and the dynamics is given by a scaling factor ε(t),
i.e., r(t,s) = [1 + ε(t)]r0(s), where r0(s) is the equilibrium
fixed shape. From Eqs. (14) and (15), we obtain the following
equations in terms of the scaling factor ε(t):

ε̇ = πD

2A0cγ

sin �

(∫ 2π

0
ds|X ′

0| + 2cd (1 − ε)

)
, (21a)

2πcγ �̇ =
(∫

ds
2(EcE + D cos �)

|X ′
0|

−
∫

ds
J cκk

2
0

|X ′
0|3

)

− ε

(∫
ds

2(EcE + Dπ cos �)

|X ′
0|

− 3
∫

ds
J cκk

2
0

|X ′
0|3

)
,

(21b)

where A0, |X ′
0|, and k0 are only functions of the initial curve

of the DW given by r0(s). Note that the second term in Eq. (15)
is zero for the higher modes due to symmetries. Also, in the
case of smooth breathing dynamics the last term in Eq. (15) is
small and therefore is neglected. From the first equation and
first term in the second equation we obtain the condition for
the equilibrium configuration. They fix r0(s) and � = π .

We define r0(s) = R̃0r(s), where r(s) is dimensionless and
r(s) = 1 at the average radius R̃0. The equilibrium condition
fixes R̃0 for any deformed skyrmion to

R̃0 = �

√
c̃κ

c̃E − c̃π (D/E)
, (22)

where � is the DW width and we have rescaled the con-
stants c̃π = π

∫
ds(r2

0 + r ′2
0 )

−1/2
, c̃E = cE

∫
ds(r2

0 + r ′2
0 )

−1/2
,

and c̃κ = cκ

∫
dsk2

0(r2
0 + r ′2

0 )
−3/2

. This equilibrium radius is
analogous to the case of a circular skyrmion with rescaled
parameters [33].

If we consider small perturbations of � around the equi-
librium configuration of the skyrmion, � = π + ϕ, we obtain
the following equations of motion:

ε̇ = −ϕ
πD

2A0cγ

(∫ 2π

0
ds|X ′

0| + 2cd

)
, (23a)

ϕ̇ = ε

∫
ds

J cκk
2
0

πcγ |X ′
0|3

, (23b)

describing the breathing dynamics of deformed skyrmions with
frequency

ω2 = DJ c̃κ

2A0c2
γ

(∫ 2π

0
ds|X ′

0| + 2cd

)
. (24)

In the case of a circular skyrmion, this breathing mode cor-
responds to the zero-order excitation mode [39,62,63]. Taking
into account the dependence on the average radius R0 of c̃κ ,A0,
and the total length of the domain wall, we notice that the
frequency dependence on the radius for this mode is ω ∼ 1/R2

0
for the first term [62,63]. The second term, proportional to cd ,
introduces a modification to the frequency with dependence
∼1/R

5/2
0 .

V. DISCUSSION AND CONCLUSION

Motivated by the experimentally observed richer config-
urations of topological magnetic textures in thin films, in
this paper we extended the soft-mode formalism of DWs
beyond the effective one-dimensional theory. We provided
an ansatz for the effective description of a DW in terms of
soft-mode fields. From the micromagnetic Hamiltonian for
ferromagnetic thin films we obtained an effective energy for
these topological textures, revealing analogies of the DW string
to elastic rubber bands. An important remark is that our results
are invariant under reparametrization. We showed that circular
skyrmions are (meta)stable configurations of the Hamiltonian
and analyzed their stability. We calculated the effective spin
Berry phase. The action given by the combination of the
effective spin Berry phase and the effective energy leads to
the undamped equations of motion that describe the dynamics
of these structures. Finally, we applied our formalism to three
examples of skyrmion dynamics. This allowed us to calculate
the excitation modes of magnetic skyrmions analytically, in
agreement with previous works which obtained them only
through sophisticated micromagnetic numerical calculations
and spectral analysis. Our analytical expressions provide the
scaling behavior of the frequencies for different measurable
parameters.

We would like to emphasize that the formalism we devel-
oped takes into account several aspects of topological textures
dynamics, such as curvatures and variations of the in-plane
magnetization. We have derived the topological charge for
the extended DWs. Our theory allows the study of more
complex dynamics like the propagation of extended DWs in
different geometries with inhomogeneous perturbations, the
local interaction of skyrmions and DWs, and the annihilation
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and creation of skyrmions mediated by DWs. Furthermore, it is
possible to analyze the stability of Bloch lines [64–66] in DWs
and the creation of skyrmion lattices by excitation of worm
domains [15,67].

For a more general case, however, a full treatment of
the boundary contributions is required [33]. These boundary
conditions can be treated effectively [52] and lead to additional
terms in Eq. (4). Micromagnetic simulations show that the
edges may be sources of both curvature and Bloch lines
[53], and with the present formalism we can analyze their
propagation along the DW.

We conclude by mentioning that our formalism is extendible
with regard to different types of interactions or more general-
ized types of DMI [68,69], which will cover the dynamics of
more complex topological textures like antiskyrmions.

Note added. Recently, we learned that Zhang and Tch-
ernyshyov independently developed a similar formalism [70].
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APPENDIX A: DERIVATION OF THE EFFECTIVE
ENERGY FOR THE EXTENDED DW

In this paper we describe an extended DW in terms of a
curve X(s) = (x(s),y(s),0) and a local unitary basis along the
DW given by the longitudinal, êl , and the normal, ên, vectors
of the curve. We make the ansatz that the DW can be described
along the normal direction by a rigid one-dimensional DW. We
can transform the Cartesian basis êx,êy via a local rotation into
the basis ên,êl along the curve

x,y → n,l, (A1)

where n,l are the coordinates along vectors ên,êl , respectively,

n(s) = [x − X(s)] · ên(s), l(s) = [x − X(s)] · êl(s). (A2)

Here x denotes any position in space, and the parameter l

takes values between zero and the length of the extended DW.
The transformation between the coordinate l and any string
parameter s is given by

dl = ds|X ′|. (A3)

The curvature κ of the DW is defined by [71]

∂l êl ≡ κ ên = k

|X ′| ên, (A4)

where in the last equality we have used Eq. (A3). According to
our ansatz, we separate the micromagnetic Hamiltonian from

Eq. (1) into three terms,

H = Hn + Hl + HD, (A5)

where

Hn = τ

∫
dl

∫
dn

(
J

2
(∂nm̂)2 + K(1 − m2

z)

)
, (A6a)

Hl = τ

∫
dl

∫
dn

(
J

2
(∂lm̂)2

)
, (A6b)

HD = τ

∫
dl

∫
dnD[mz(ên∂n + êl∂l) · (mn ên + ml êl)

− (mn∂n + ml∂l)mz] (A6c)

are the normal, longitudinal, and DMI contributions to the
Hamiltonian, respectively. We now show that our ansatz, where
each cross section corresponds to a rigid one-dimensional
DW, minimizes Hn with the given DW boundary conditions.
This can be directly seen by rewriting the exchange part in a
spherical representation of the magnetization,

Hn =τ
√

JK√
2

∫
dl

∫
dñ

[
(∂ñθ )2 + sin2 θ (∂ñ�)2

+ (
1 − m2

z

)]
, (A7)

where ñ = n/� is dimensionless. The state with minimum en-
ergy and DW boundary conditions, θ (nleft) = π and θ (nright) =
0, corresponds to a solution with ∂ñ� = 0 and a specific θ (ñ)
dependence. This solution is invariant under a rigid rotation of
�. Furthermore, in the linear approximation θ does not depend
explicitly on l. The magnetization is then given by

m̂ = cos �(l) sin θ (n)ên(l) + sin �(l) sin θ (n)êl(l)

+ cos θ (n)êz, (A8)

where θ (n(s)) corresponds to a rigid DW centered at position
X(s). Plugging the magnetization configuration of Eq. (A8)
into Eq. (A6) and performing the integration over n gives

Hn = τcE
√

JK

∫
dl, (A9a)

Hl = τJ cκ

∫
dl

1

|X ′|2 (�′ − k)2, (A9b)

HD = τD

∫
dl

(
π − cd

k

|X ′|
)

cos �, (A9c)

where cE ,cκ ,cd are dimensionless constants depending on
the precise shape of the DW. Note that the DMI part of
the Hamiltonian HD has the following boundary-dependent
azimuthal angle contribution: τDcd

∫
(dl/|X ′|)�′ cos �. Upon

integration along the length of the DW curve this term vanishes
for periodic boundary conditions. Moreover, for systems in
which the domain wall profile is point symmetric with respect
to the center of the domain wall, we have that cd = 0. This
point symmetry, however, is not always satisfied and can be
broken, for example, by an out-of-plane magnetic field.

134414-6



EFFECTIVE DESCRIPTION OF DOMAIN WALL STRINGS PHYSICAL REVIEW B 97, 134414 (2018)

APPENDIX B: SPIN BERRY PHASE IN THE
EXTENDED DW ANSATZ

The spin Berry phase in a standard spherical representation
of the magnetization in a thin film is [60]

SB = τMs

γ

∫
dt

∫
d2x(1 − cos θ )φ̇. (B1)

Performing a partial integration, we obtain

SB = −τMs

γ

∫
dt

∫
d2x φ sin θ θ̇ . (B2)

This representation has the advantage that the nonvanishing
contributions come only from regions within the DW, as
sin θ = 0 for the ferromagnetic domains. For the time variation
of θ , we note that θ ≡ θ (n). Any variation of θ corresponds to
a translation along the local ên direction. Using Eq. (A2), we
get

θ̇ = −(Ẋ · ên)∂nθ. (B3)

Plugging this into Eq. (B2) and changing to the n,l system of
coordinates give

SB = −τMs

γ

∫
dt

∫
dn dl(φ (Ẋ · ên)∂n cos θ ). (B4)

Since θ (n) is fixed by the DW solution, we may integrate the
n dependence, and we obtain

SB = −τcγ

∫
dt

∫
dl φ (Ẋ · ên), (B5)

where cγ = 2Ms/γ and with the reparametrization from l to s

we obtain Eq. (9) of the main text. The magnetization azimuthal
angle φ in terms of the DW coordinates is

φ = � + ψ − arccos (ên · êx). (B6)

Notice that the integral of the term proportional to ψ in the
Berry phase corresponds to a total time derivative and does not
contribute to the dynamic equations. With Eqs. (B5) and (B6)
we therefore obtain the effective Berry phase in Eq. (9) in the
main text. Also, as a note, for a circular skyrmion we have that
arccos (ên · êx) = ψ .

A simpler case is when ∂l� = 0, meaning that � is globally
defined along the DW curve. In this case, the first term for the
effective Berry phase (9) becomes

SB1 = −τcγ

∫
dt �

∫
dl(Ẋ · ên). (B7)

We can further simplify this equation with the following
considerations: The infinitesimal area spanned by dn and dl is
given by dA = (dnên × dl êl) · êz. A time variation of this area
corresponds to dn → dn + δn and dl → dl + δl , such that

δdA = (δn ên × dl êl) · êz + (dnên × δl êl) · êz. (B8)

We want to study the area change upon changing the DW
string X(t) with a fixed parametrization, i.e., ˙dA:

˙dA = ((Ẋ · ên)ên × dl êl) · êz = dl(Ẋ · ên). (B9)

Note that the second term vanishes as δl = 0 for a fixed
parametrization and in the first term we have calculated the
variation of the DW string along the normal direction.

Therefore, the second integral in Eq. (B7) becomes∫
dl(Ẋ · ên) =

∫
˙(dA) = Ȧ, (B10)

and we obtain the first term in Eq. (10) of the main text.

APPENDIX C: DAMPING TERMS AND
RAYLEIGH FUNCTIONAL

The damping term in the Landau-Lifshitz-Gilbert equation,
Eq. (7) of the main text, can be derived from a Rayleigh
functional [58]. This means that we can identify

αm̂ × ˙̂m ↔ δR[ ˙̂m]

δ ˙̂m
, (C1)

where the Rayleigh functional R[m̂] is given by

R[ ˙̂m] = ατMs

2γ

∫
d2x( ˙̂m)2. (C2)

If we plug in the ansatz of a DW curve, we obtain

R[ ˙̂m] = ατMs

2γ

∫
d2x(sin2 θ (�̇)2 + (θ̇)2)

= ατMs

2γ

∫
dn dl(sin2 θ (�̇)2 + (∂nθ )2(Ẋ · ên)2)

= ατMs

2γ

∫
dl(c�(�̇)2 + cX(Ẋ · ên)2). (C3)

As the only nonvanishing contribution comes from within the
DW curve, we can change thex,y basis to the localn,l basis and
then integrate the expression along the normal direction. The
constants c�,cX are positive and dimensionless. They depend
only on the specific shape of the profile.

The effect of damping occurs as additional terms γr,γ� in
the equations of motion of the closed DW, Eq. (13a) of the
main text,

cγ rṙ =
(

2J cκ

|X ′| (�′ − k)

)′
(C4a)

+D sin �(π |X ′| − cdk) + γr/τ, (C4b)

−τcγ �̇ = 1

r

1

r

δ

δr

[
Heff − τcγ rṙ arctan

(
r ′

r

)]
+ γ�. (C4c)

Here γr and γ� for the curve of Eq. (11) are given by

γr = ατMs

2γ
c��̇, (C5a)

γ� = −1

r

ατMs

2γ
cXṙ. (C5b)

This reveals that the effect of damping is to couple the
dynamics of ṙ and �̇. To obtain the above damping terms,
we followed the Thiele approach [8,57], where

γr = δ�̇R[ṁ]/
∫

d2x(m̂ · ∂�m̂ × ∂r m̂), (C6a)

γ� = δṙR[ṁ]/
∫

d2x(m̂ · ∂r m̂ × ∂�m̂). (C6b)
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