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Abstract

Digital realization of non-integer order controllers is important to exploit the bene�ts provided by these con-

trollers, in terms of �exibility, dynamic performance and robust stability, for applications in mechatronics,

industrial and automotive systems. To realize in�nite-dimensional fractional-order operators and controllers

in the digital domain, a discrete-time approximation is necessary that must be characterized by stable and

minimum-phase properties for control purpose. This paper provides a design method useful for a wide class of

plants and applies a consolidated approximation technique. Moreover, the practical implementation problems

of digital non-integer control algorithms are deeply analyzed by considering the e�ect of the sampling period,

of the conversion between analog and digital domain (and vice versa) and the associated quantization. Results

show bene�ts and limitations of the approach.
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1. Introduction

It is well-known that proportional-integral-derivative (PID) controllers still dominate the process control loops

in industrial contexts, over 95% of the times (Åström and Hägglund, 1995), in particular PI controllers are

employed in the majority of the cases. However, fractional calculus contributed to investigate and develop new

control solutions that extend the standard integer-order integral or derivative actions. Namely, much time after

seminal applications and studies (Bode, Manabe, Tustin, etc.), non-integer order di�erentiation and integration

were reconsidered. See, for example, the CRONE control method (Oustaloup, 1991), the PIλDµ-controller
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(Podlubny, 1999a), and in general the di�erent versions of the fractional-order PID or fractional-order controllers

(Caponetto et al., 2010; Chen et al., 2009).

Currently, there exist several design methods or tuning techniques to determine the parameters of the

fractional-order controllers, however there are still implementation issues to be addressed. Some techniques for

analog implementation have been proposed by (Caponetto and Dongola, 2008; Caponetto et al., 2008; Petrá²,

2012; Podlubny et al., 2002). See also (Caponetto et al., 2014) for a recent implementation by integrated circuits

technology.

The problem addressed here is to control electro-mechanical systems by embedded non-integer order con-

trollers. In particular, DC-motors are considered because they are widely employed in mechatronics, automotive

systems, and other emerging areas. Since properly tuned PI controllers are frequently used for these plants,

we consider the extension based on fractional-order PI controllers, FOPI controllers for short. Moreover, dig-

ital fractional-order control solutions are still to be analyzed and optimized, also because many applications

deploy low-cost microcontrollers and digital signal processors. Then this paper is motivated to investigate digital

implementation problems associated with discretized versions of FOPI controllers.

Section 2 describes how to synthesize the FOPI controller parameters for the considered electro-mechanical

plants. Section 3 addresses the realization problem on the basis of a well-known approximation technique that is

necessary to achieve rational transfer functions, i.e. to realize the fractional-order controller. Section 4 analyzes

in details how to cope with existing limitations due to operations that are necessary to achieve an e�cient digital

implementation based on microcontrollers or similar devices. Namely, the sampling process, the digital-to-analog

and analog-to-digital conversions, and quantization are often neglected whereas they may determine a serious

decay in performance and even instability. Section 5 shows experimental results from a lab equipment. Section

6 gives some �nal remarks.

2. Controller design

This section illustrates how to design the FOPI controller by an e�cient method that satis�es frequency-domain

speci�cations on robustness and dynamic performance. Closed-form formulas allow to automatically set the

controller parameters. However, other equivalent design methods can be also used.

Many industrial plants, processes, and electro-mechanical systems can be synthetically represented as a �rst-

order system plus a time delay, a FOPTD system for short. In this case, the plant transfer function is given by

Gp(s) =
K

1+τs e
−Ls, where K is the static gain, τ is the dominant time constant, and L is the intrinsic deadtime

(if present). If two (or more) time constants describe the process dynamics, they are combined into only one

equivalent time constant.

Usually, an integer order PI controller is employed. However, the idea is to extend and give more �exibility to

the controller by an integral action of non-integer order, say ν. Then the s-domain standard integral operator 1/s

is replaced by the irrational non-integer integral operator 1/sν . The controller transfer function becomes Gc(s) =

KP + KI

sν . Obviously, 1/s
ν must be approximated by a rational transfer function, which allows realization of the

non-integer order controller. Moreover, if 1 < ν < 2 is used, then 1/sν = (1/s) (1/sξ), with 0 < ξ = ν − 1 < 1,

meaning that the non-integer integrator is composed by two parts, namely an integer order integrator and a

residual non-integer order integrator 1/sξ. The �rst allows rejection of disturbances on the plant input, the latter

improves robustness and is the part that must be approximated.

The controller parameters, namely KP , KI , and ν, can be designed by one of the available methods in the

literature. This work employs an e�cient method tailored to integrating plants with a �rst-order lag (Lino and

Maione, 2013; Maione and Lino, 2007) and adapts it to FOPTD systems, which is useful for speed control
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of electromechanical processes. The design objective is twofold: to achieve robustness and to approximate an

optimal feedback system in a given bandwidth where input-output tracking is desired. On one side, the non-

integer integration allows a constant non-integer slope of the Bode magnitude diagram and a nearly �at Bode

phase diagram in a su�ciently wide frequency range around the gain crossover frequency (Maione and Lino,

2007; Monje et al., 2007). This allows robustness to gain variations. On the other side, optimality is pursued by

shaping the open-loop frequency response so that gain is high at low frequencies and rolls o� at high frequencies.

Both robustness and performance are speci�ed in the frequency domain by the phase margin and the closed-loop

bandwidth, respectively.

To start with the design procedure, consider the open-loop frequency response G(jω) = Gc(jω)Gp(jω)

with the controller transfer function expressed by KI and TI , where TI = KP /KI . Then G(jω) =
K KI [1+TI(jω)ν ]
(jω)ν [1+τ(jω)] e−jωL. Using a normalized frequency u = ω τ and rearranging the frequency response yields:

G(ju) =
KKI τ

ν
[
1 + TI (

u
τ )

ν (C + jS)
]

uν (C + jS) (1 + j u)
e−j uL

τ (1)

where θ = π
2 ν, C = cos(θ), and S = sin(θ). Then the magnitude and phase angle of G(ju) are:

|G(ju)| = KKI τ
ν

uν

√
1 + 2TI (

u
τ )

ν C + T 2
I (uτ )

2ν

1 + u2
(2)

∠G(ju) = arctan

(
TI (

u
τ )

ν S

1 + TI (
u
τ )

ν C

)
− arctan(u)− θ − uL

τ
(3)

Now, an approximation of an optimal feedback system with unitary closed-loop gain is achieved in a speci�ed

bandwidth, say uB = ωB τ , which is determined according to the desired range for input-output tracking. uB
is chosen by a trade-o� between the requirement of a prompt closed-loop response and the need to center the

crossover in the region where the phase diagram is �at. Namely, a link between uB and the normalized crossover

frequency is given by uC ∈ [uB

1.7 ,
uB

1.3 ] (Maciejowski, 1989), e.g. uC = uB

1.5 , bearing in mind that |G(ju)| is shaped
around uC to obtain a low-frequency high gain and a roll o� at high frequencies.

The next speci�cation is the phase margin, say PMs. Given that, for each value of ν, the phase margin can

be computed by

PM = arctan

(
TI (

uC

τ )ν S

1 + TI (
uC

τ )ν C

)
− arctan(uC)− θ − uCL

τ
+ π, (4)

the relation PM = π−θ = (2− ν)π/2 is enforced in order to obtain a direct and simple design formula between

any speci�cation PMs on the phase margin and the parameter ν (see also (Lino and Maione, 2013; Maione and

Lino, 2007)). To exactly obtain the mentioned relation between PM and ν, the unique solution for the controller

parameter TI is

TI =

(
τ

uC

)ν uC + tan(uCL
τ )

S − uC C − (C + uC S) tan(
uCL
τ )

. (5)

which is a closed-form design formula.

Moreover, given that (5) and PM = (2− ν)π/2 hold true, imposing the speci�cation provides a strict

relation between the phase margin and fractional order, i.e. PMs = (2− ν)π/2, then it follows:

ν = 2− 2PMs/π (6)
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which gives another closed-form formula to obtain ν from the speci�ed phase margin. Since the plant does not

include an integer order integrator, (6) provides ν > 1 to include it in G(s).

Finally, the crossover speci�cation is enforced to obtain KI by another closed-form relation:

KI =
1

K

(uC
τ

)ν

√
1 + u2C

1 + 2TI (
uC

τ )ν C + T 2
I (uC

τ )2ν
(7)

The design method guarantees a good trade-o� between robustness and performance and is based on simple

analytical formulas that relate performance and robustness speci�cations to the controller parameters. Namely,

(5) establishes the integral time constant to obtain the speci�ed bandwidth, (6) establishes the required fractional

order to obtain the speci�ed phase-margin. Finally, simplicity of the formulas allows easy implementation.

3. Controller realization: The approximation problem

The key feature of a non-integer order controller is its irrational transfer function (Oustaloup, 1991; Podlubny,

1999a). Namely, the basic operators are non-integer powers of the s variable and correspond to control actions

of any non-integer order. Then, synthesis of the controller structure and parameters must be followed by a

realization step for a real implementation in control applications.

To this aim, the in�nite-dimensional fractional operator sν , with ν ∈ R and 0 < |ν| < 1, must be approx-

imated by an almost equivalent rational transfer function, for example by considering the frequency response.

From the control point of view, the transfer function providing the approximation must be characterized by

stable poles and minimum-phase zeros, both in the analog and in the discrete domain. An usual choice is to

alternate zeros and poles along the negative real half-axis of the s-plane, for an analog realization, or inside

the real segment (−1, 1) of the z-plane, for a digital realization. This property is guaranteed by the methods in

(Maione, 2011b, 2013).

Several methods are available for continuous or discrete approximation (Chen and Moore, 2002; Chen et al.,

2004; Maione, 2006, 2008, 2013; Oustaloup, 1991, 1995; Oustaloup et al., 2000; Podlubny et al., 2002; Vinagre et

al., 2000). Besides classical interpolation (Oustaloup, 1995; Oustaloup et al., 2000) and �tting techniques, one

may use truncation of continued fraction expansions (CFEs) or other interpolation methods (Chen et al., 2004;

Maione, 2008; Vinagre et al., 2000), or methods coming from the signal processing �eld (Barbosa et al., 2006).

Some methods exhibit better frequency behavior, some a better time response, but it is di�cult to establish the

best one from all aspects. In all cases, the approximation provides analog or digital �lters, many times in the

form of ratios of two polynomials in the variable s or z. The coe�cients of the �lters, then the zeros and poles

of this function, depend on the non-integer order ν.

Herein, the focus is on digital realization of fractional operators and controllers. First, we remark a distinction

between discrete approximation methods that design �nite impulse response (FIR) �lters (Samadi et al., 2004;

Tseng, 2001) or in�nite impulse response (IIR) �lters (Chen and Vinagre, 2003; Vinagre et al., 2003). IIR �lters

are preferable because the associated approximations are de�ned by rational transfer functions that provide

faster convergence and wider domain of convergence in the complex plane than polynomial approximations

(Stoer and Bulirsch, 2002). Moreover, direct or indirect discretization can be considered (Chen and Moore,

2002). Direct methods use a generating function s = ψ(z−1) for conversion from the continuous-time to discrete-

time domain, then truncate a power series expansion (PSE) or a CFE. The generating function depends on the

sampling period T .
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The most referenced method is the direct discretization based on the Grünwald-Letnikov (GL) de�nition of

fractional derivative of order ν with lower and upper limits a and t (Oldham and Spanier, 1974):

aD
ν
t f(t) = lim

h→0

1

hν

[ t−a
h ]∑

j=0

w
(ν)
j f(t− j h) (8)

where h is the time step, [·] stands for the integer part, w(ν)
j = (−1)j

(
ν
j

)
, with w

(ν)
0 = 1 and w

(ν)
j =(

1− ν+1
j

)
w

(ν)
j−1 for j > 0, to re�ect the limitations imposed by the �nite memory word lengths in digital

signal processors. Now consider T in place of h. This method corresponds to applying a PSE to the generating

function s =
(
1
T

)
(1 − z−1) de�ning the backward di�erence rule by means of the Euler's operator (Tenreiro

Machado, 1997; Vinagre et al., 2000). The yielded discrete transfer function is: GGL(z) =
(
1
T

)ν
PSE{(1−z−1)ν}.

Another possible generating function is s =
(
2
T

)
1−z−1

1+z−1 , which de�nes the trapezoidal rule or the Tustin's

operator (Chen and Moore, 2002; Chen et al., 2004; Vinagre et al., 2000, 2003). Other conversion rules are given

by the Al-Alaoui's operator, i.e. a weighted combination of Euler's and Tustin's rules, or the Simpson's operator.

However, all discretization schemes based on PSEs generate polynomials, then FIR �lters, that show convergence

with slower speed and in a narrower domain. This problem is overcome by combining a transformation rule with

CFEs. Namely, the CFE is applied to the s-to-z operator de�ned by the selected generating function: sν =(
2
T

)ν
CFE

{(
1−z1

1+z1

)ν}
. Then the CFE is truncated to obtain a rational transfer function: sν ≈

(
2
T

)ν A(z−1)
B(z−1) ,

where the order of the approximation is speci�ed by the degree of polynomials A and B and determines the

accuracy, then the required memory space to store coe�cients of the function A/B. Other direct discretization

methods are based on the Muir's recursion (Chen et al., 2009), or on a Taylor series expansion of the Euler's

operator followed by truncation (Tenreiro Machado, 2001), or on numerical integration schemes performing

linear or quadratic interpolation (Tenreiro Machado, 1997).

Indirect discretization is based on a frequency-domain �tting in the s-domain followed by a discretization of

the �t transfer function by one of the available operators like Tustin, Euler, Al-Alaoui, Simpson, etc. (Oustaloup

et al., 2000; Podlubny et al., 2002). The indirect discretization method proposed in (Maione, 2011a) shows

robustness to round-o� and truncation errors occurring because of a �nite word length in memory. In what

follows, we focus on indirect discretization methods that lead to IIR �lters. The non-integer order controllers in

this form can be easily and directly implemented in microprocessor systems.

3.1. Approximation by the discretized Oustaloup's interpolation

For the purpose of this paper, one may consider the discrete-time implementation of the well-known and widely

employed Oustaloup's recursive approximation technique at the basis of the CRONE control (Oustaloup, 1991,

1995; Oustaloup et al., 2000). It is a frequency-domain interpolation method that speci�es the number n of zero-

pole couples (i.e. the order of the approximation) in advance and is based on two parameters called recursive

factors

α =

(
ωH

ωL

) ν
n

η =

(
ωH

ωL

) 1−ν
n

(9)

where ωH and ωL are the high- and low-transitional angular frequencies of the range [ωL, ωH ], in which the

approximation is built by distributing zeros and poles around the unit gain frequency ωu =
√
ωL ωH (e.g. ωu = 1

rad/s for sake of simplicity and ωL = 0.01 rad/s, ωH = 100 rad/s). The Oustaloup's s-domain approximant is
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de�ned by

GOus(ν, s) =

(
ωu

ωH

)ν N∏
k=−N

1 + s/ωzk

1 + s/ωpk

(10)

with n = 2N + 1, N = log(ωpN
/ω0)/ log(αη), ωz0 = ωu α

−0.5, ωp0 = ωu α
0.5. The 2n singularities of the �lter

required to approximate a di�erentiator sν can be determined by the following formulas:

ωz1 = ωL
√
η (11)

ωpi = ωzi α for i = 1, ..., n (12)

ωzi+1 = ωpi η for i = 1, ..., n− 1 (13)

Then, it is immediate to obtain the relations ωzi+1/ωzi = ωpi+1/ωpi = αη > 1. The �nal operation is the

discretization by one of the available s-to-z transformation rules that provides the discrete transfer function

GOus(ν, z). In particular, the discrete-time realization of sν can be easily obtained by applying the Tustin's

bilinear transformation. This discretization rule may exhibit large errors in high frequency range. Then other

discretization rules can be also considered, but they do not provide signi�cant improvements if the sampling

rate 1/T is high. However, Tustin's rule is better for low values of 1/T .

An example. Consider three representative values of ν = 0.3, 0.5, 0.7, with n = 3 zero-pole pairs only both to

obtain an acceptable approximation and to reduce the complexity of the implementation. Let T = 0.01 s, which

is a common value in real applications. The discrete transfer functions are the following:

GOus(0.3, z) =
3.6137z3 − 10.3572z2 + 9.8765z − 3.1329

z3 − 2.6919z2 + 2.3886z − 0.6967
(14a)

GOus(0.5, z) =
8.4476z3 − 24.4973z2 + 23.6558z − 7.6060

z3 − 2.6010z2 + 2.2103z − 0.6094
(14b)

GOus(0.7, z) =
19.5331z3 − 57.1436z2 + 55.6929z − 18.0824

z3 − 2.4901z2 + 1.9948z − 0.5047
(14c)

where the form of transfer functions is useful to derive the input-output di�erence equation ready for a direct

implementation of the fractional di�erentiator. Table 1 and Figure 1 show the zeros and poles of all the obtained

approximations. All singularities of the Oustaloup's method are in the unit circle but some are very close to the

point (1, 0), namely the ones with the highest module. It is well-known that this result combined with memory

limitation due to �nite word length could provide problems for digital coding of the �lter coe�cients. The problem

could be reduced by other approximation techniques based on partial fraction expansions or continued fraction

expansions (e.g. (Charef, 2006; Maione, 2011a)) but a high number n of zeros and poles could be necessary

(n = 16 in the examples shown in (Charef, 2006)), then high costs and computational requirements would arise.

Moreover, a special care must be paid to sensitivity of the coe�cients to truncation and round-o� errors that

a�ect e�ciency of the real implementation. To this aim, using a partial fraction is a totally di�erent solution and

could allow a better discrete-time implementation code (less sensitive to the truncation of input/output signals

and of the parameters of the controller) resulting from a continuous-time domain Oustaloup's approximation,

as already presented in the literature. A dedicated and deeper investigation is postponed to future papers.

4. Controller implementation problems

Several digital control applications use hardware-in-the-loop devices, in which the control law is an algorithm that

is pre-computed and stored in the device memory (Chen et al., 2009). The algorithm is de�ned by the coe�cients
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Table 1. Zeros and poles of rational approximations with n = 3 and T = 0.01 s

ν Zeros Poles

GOus(ν, z)
0.3 {0.9997, 0.9937, 0.8727} {0.9993, 0.9843, 0.7083}
0.5 {0.9998, 0.9954, 0.9048} {0.9990, 0.9787, 0.6233}
0.7 {0.9998, 0.9966, 0.9290} {0.9986, 0.9711, 0.5204}

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
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−0.8

−0.6
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0.97 0.98 0.99 1
−5

0

5
x 10

−3

Zoom of two
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highest magnitude
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ν = 0.3

ν = 0.5

ν = 0.7

Fig. 1. Pole-zero maps of the discrete transfer function GOus(ν, z)

in the IIR �lter associated to the controller. The �nite available memory restricts the number and accuracy of

the coe�cients in the real implementation. Moreover, the microprocessor speed must be taken into account.

Then a good trade-o� in realization must be achieved to guarantee a robust and e�cient implementation. The

lower is the number of coe�cients, the faster is the computation and the less memory is occupied, but the higher

is the approximation error and the higher are the errors due to sampling, quantization, and data representation.

It is important to stress the di�erent complexity of the digital non-integer (fractional) and integer order

control algorithms. They are both implemented by recurrent di�erence equations. But a digital non-integer

order PI controller is realized by an equation with more coe�cients (14 in the experiments of section 5). Then

the di�erence equation in the non-integer case requires more computation time and more memory. Moreover,

more coe�cients must be numerically approximated by truncation or round-o�. Then the implementation is

more sensitive to relevant aspects like the selection of T and the quantization e�ects.

More in details, the implementation of the control law on a microcontroller involves the development of a

source code including all the required operations. The �rst are the sampling and the analog-to-digital (AD)

conversion, that includes the quantization of the error signal. Then the current time control signal is computed

by linear combination of the digitalized errors in past time instants. Finally, there is a digital-to-analog (DA)

conversion ending with the transmission of the control signal to the actuators.

The AD and DA conversions and the implementation of the control algorithm on a dedicated device introduce

approximations determined by the �nite resolution of the converters. In general, these approximations produce

errors due to quantization, over�ow, and round-o� noise e�ects. Instead, the errors are negligible in higher-level

digital signal processors employing double precision �oating point representations.

A �rst analysis can be on the e�ect of the sampling period T . The selection of T depends on many factors

and requirements: verifying the Shannon's theorem, keeping the closed-loop performance of the continuous-time
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controlled behavior, �nding a good trade-o� between cost of implementation and the performance of the closed-

loop system. In its turn, the cost of implementation depends on the computational load and the consequent

required processing capacity, the speed and precision of converters, the amount of memory that is used to save

parameters, coe�cients, and variables with �nite precision. The available hardware obviously in�uences the

�nal choice. Another aspect regards the desired servo performance of the feedback system, but also robustness,

limitation of the control e�ort, disturbance rejection, etc. To this aim, the selection of T must always be veri�ed

to avoid that sampling and quantization e�ects degrade the performance with respect to speci�cations.

Usually, rules of thumb suggest to start by choosing T in relation with the dominant open-loop time constant

τ , for example by τ/10 ≤ T ≤ τ/2, and to adjust T by considering the desired performance. Anyway, the value

of τ ensues from a model identi�cation, while the real process behavior is a bit di�erent. Then T is selected and

tested by the real behavior and by taking into account the limitations of the employed hardware, in particular

the encoder, and the computational load. More precisely, a too low sampling period implies several issues to be

addressed.

a) Cost and speed issues. Fast sampling requires fast computations, then high-cost analog-to-digital (ADC)

and digital-to-analog (DAC) converters and processing units. Then T must take into account the limitations

posed by the available computing devices and must include all operations required by the digital non-integer

order control algorithm. Moreover, the more complex is the realization of such algorithm, i.e. the more

coe�cients de�ne the associated rational transfer function, the more time is necessary to compute the con-

troller output, given its error input. (Higher complexity also means more required memory, while computing

devices typically have a �nite limited number of bits at disposal.) A trade-o� is required between the speed

of computation and the complexity of the control law that is actually implemented. In particular, note that

if T is comparable to the required computation time, then the output produced by the controller and the

DAC converter could be not available at the expected discrete time instant, and a delay approximately equal

to T would a�ect the control loop and degrade performance.

b) Interaction with converters and memory. An unnecessary reduction of T does not imply performance

improvements. Namely, if T is too small, the variations of the input signal between two sampling times

may be smaller than the resolution of the converters or than the precision used to represent data in the

microcontroller memory. In such case, the signal variations are not resolved and there is a loss of information.

Then, in general, the reduction of T should be accompanied by an increase of the memory word length, as

well as by an increase of the converters resolution, so that the di�erence between two successive values of

the signal can be resolved and properly represented.

c) Numerical issues. These may occur because of the �nite precision that is used for representing �oating point

numbers and for computing the control law: fast sampling would increase too much the truncation and

round-o� errors and the controller provides an output too di�erent from the required one.

d) Stability issues. Increasing the sampling rate moves the zeros and poles of the discrete transfer function

close to each other and gathers them around the critical point (1, 0). Then, the zeros and poles are highly

sensitive to changes in coe�cients and could even make the implementation unstable.

As an example, the e�ect of changes of T is analyzed by considering the values 0.001, 0.002, 0.005, 0.02 and

0.04 s with respect to the previous value T = 0.01 s. The e�ect on the positions of zeros and poles is illustrated

in Table 2. ∆z% and ∆p% are de�ned as the percentage relative variations of zeros and poles with respect to

the values obtained for T = 0.01 s. For T = 0.001 s (or 0.002 s), the singularities of GOus(ν, z) get very close

to or even coincide with (1, 0). Moreover, a large variation of the third zero and, above all, of the third pole is

observed when T increases up to 0.04.
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Table 2. Variations of zeros and poles of GOus(ν, z) with T

ν T Zeros ∆z% Poles ∆p%

0.3

0.001 1.0000 0.9994 0.9865 0.03 0.57 13.04 0.9999 0.9984 0.9664 0.06 1.43 36.44
0.002 0.9999 0.9987 0.9732 0.02 0.51 11.51 0.9999 0.9968 0.9340 0.06 1.28 31.85
0.005 0.9999 0.9969 0.9343 0.01 0.32 7.05 0.9996 0.9921 0.8427 0.04 0.80 18.97
0.02 0.9994 0.9875 0.7607 -0.03 -0.63 -12.94 0.9985 0.9688 0.4909 -0.07 -1.57 -30.69
0.04 0.9988 0.9751 0.5725 -0.09 -1.88 -34.40 0.9971 0.9386 0.1884 -0.22 -4.65 -73.40

0.5

0.001 1.0000 0.9995 0.9900 0.02 0.41 9.42 0.9999 0.9978 0.9546 0.09 1.95 53.15
0.002 1.0000 0.9991 0.9802 0.02 0.37 8.34 0.9998 0.9957 0.9113 0.08 1.74 46.21
0.005 0.9999 0.9977 0.9512 0.01 0.23 5.13 0.9995 0.9893 0.7921 0.05 1.08 27.08
0.02 0.9996 0.9908 0.8182 -0.02 -0.46 -9.57 0.9980 0.9578 0.3660 -0.10 -2.13 -41.28
0.04 0.9991 0.9816 0.6667 -0.06 -1.38 -26.32 0.9960 0.9174 0.0372 -0.30 -6.26 -94.04

0.7

0.001 1.0000 0.9997 0.9927 0.02 0.31 6.86 0.9999 0.9971 0.9388 0.13 2.68 80.40
0.002 1.0000 0.9993 0.9854 0.01 0.27 6.07 0.9997 0.9942 0.8813 0.11 2.37 69.36
0.005 0.9999 0.9983 0.9639 0.01 0.17 3.75 0.9993 0.9855 0.7275 0.07 1.48 39.81
0.02 0.9997 0.9932 0.8630 -0.02 -0.34 -7.11 0.9973 0.9431 0.2263 -0.14 -2.89 -56.52
0.04 0.9994 0.9864 0.7435 -0.05 -1.02 -19.97 0.9946 0.8893 -0.1158 -0.41 -8.42 -122.25

It is also well-known that real implementation of fractional-order controllers on digital processing units pose

some practical problems (Chen et al., 2009). Here it is remarked that an important, yet obvious, di�erence

between the non-integer-order and the integer-order case is the need to approximate irrational fractional opera-

tors sν in the discrete domain, whereas a standard integer-order digital control algorithm does not require this

step. Then it is expected that the implementation is more sensitive to changes in T in the non-integer than in

the integer case (the same can be expected for variations of the converters resolution).

In synthesis, the highest possible values of T that verify the speci�cations and allow an acceptable approxima-

tion of the fractional operator should be used. To this aim, it is common to consider the desired servo performance

of the closed-loop system, i.e. the bandwidth speci�cation ωB, and use a rule of thumb like 10ωB ≤ 2π/T ≤ 30ωB

(Åström and Wittenmark, 1997).

Another analysis can focus on the AD-DA conversion. The AD conversion associates a �nite number of levels

of equal amplitude to the input signal by means of quantization, and then converts the quantized signal into a

numerical coded value that is suitable for the computing device. The DAC associates a �nite number of levels

of equal amplitude to the numerical coded value that is computed by the control algorithm, and then generates

a continuous signal to drive actuators.

The converter resolution, i.e. the lowest representable value other than 0, depends on the number of available

quantization levels during conversion. This value is determined by the number of bits used in the conversion.

Therefore, since the quantization error is de�ned by the di�erence between the input signal and the corresponding

converted signal, it comes out that the converter resolution directly a�ects the control system performance, by

determining a steady-state error and limit cycles with permanent oscillations.

It is expected that the e�ect of changes in the resolution of DAC and ADC converters is very signi�cant when

using a digital non-integer order controller. Reducing the number of bits devoted to conversion should determine

more negative e�ects in this case than what could be observed with an integer-order controller. Namely, just

like for sampling, the quantization error and the approximation error (which is not present in the integer case)

combine with one another.

5. Experimental results

This section reports some experimental tests that were performed on a real laboratory equipment employing a

DC-motor. Figure 2 shows all the devices required for the experiments. In details, the experimental set-up is



10 Journal name 00(00)

composed by: an EMG49 dc gear motor 24v with an intrinsic built-in encoder of 245 PPR (pulses per revolution);

a rapid prototyping dSPACE 1103 board to acquire the converted reference and feedback signals, to store and

compute the control law and to generate a duty-cycle command; a PWM generator; an L298 dual full-bridge

bidirectional driver.

Fig. 2. Experimental platform

Figure 3 shows the block diagram representing the control system. Note that a Graphical User Interface (GUI)

and the Real-Time Interface (RTI) control system are implemented in the ControlDesk software environment.

In details, the RTI control system is the highlighted part which communicates by ADC and DAC converters.

The last allow to change the resolution then the number of quantized levels to represent the input signal. The

set-point is provided in RPM units to the RTI, which uses the sign of the set-point to establish the motor

(clockwise or counterclockwise) direction of rotation by the two driver inputs. The allowed con�gurations at

the direction input pins are always opposite, except for the shutdown condition when the inputs are both 0.

Therefore, the upper branch on the block diagram only sets the direction of the motor. The system automatically

detects the sign of the RPM set-point and provides the two associated voltage drive signals (0V-5V or 5V-0V) to

set the correct rotor direction. The control error is the di�erence between the set-point and the measured speed

in RPM units. The Transmitter block makes the RPM measured feedback signal available and shows that this

speed depends on the number of impulses per second measured by the incremental encoder. Finally note that

the controller output is normalized with respect to the maximum motor speed, then a duty-cycle signal between

0 and 1 feeds a PWM generator block.

The motor speed is controlled by the FOPI controllers designed by the method proposed in section 2.

The identi�ed plant model is a FOPTD system characterized by the parameters K = 1.6862, τ = 0.0583

s, and L = 0.025 s. The performance speci�cations are the gain crossover angular frequency ωC = 15 rad/s

(then uC = ωC τ = 0.8745), i.e. a bandwidth 19.5 ≤ ωB ≤ 25.5 rad/s (then 1.1368 ≤ uB ≤ 1.4867) by the

Maciejowski's relation cited in section 2, and a phase margin PMs = π/3. Then the design procedure leads to
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Fig. 3. The control system block diagram

the FOPI controller transfer function that takes the following form:

Gc(s) = 0.8081 +
28.3334

s1.3333
.

As previously recalled, the approximation method used to implement the digital controller is based on the

Oustaloup's recursive technique. In particular, an approximation order n = 5 is used.

Table 3 indicates the coe�cients, zeros, and poles of the discrete transfer function representing the approxi-

mation of the fractional operator s1/3, which is the non-integer component of s4/3. The table also speci�es the

same information obtained for the discretization Gcz of the FOPI controller Gc(s) speci�ed above. Note that,

for increasing values of T , the zeros and poles move close to each other and gather around the critical point

(1, 0).

Table 3. Variations with T of zeros and poles of the transfer functions GOz and Gcz respectively representing the
discretized Oustaloup's approximation of the fractional operator s1/3 and the digital controller (n = 5, ν = 4/3)

T Coe�cients of numerator (top) & denominator (bottom) Zeros (top) & poles (bottom)

GOz

0.01
4.0940 -19.2027 35.9294 -33.5112 15.5751 -2.8846 0.9998 0.9988 0.9927 0.9546 0.7445
1.0000 -4.4758 7.9466 -6.9840 3.0318 -0.5185 0.9997 0.9978 0.9865 0.9178 0.5741

0.02
3.7253 -16.5437 29.1069 -25.3085 10.8447 -1.8247 0.9996 0.9977 0.9854 0.9113 0.5470
1.0000 -4.1079 6.5701 -5.0592 1.8398 -0.2427 0.9993 0.9957 0.9732 0.8420 0.2977

0.04
3.2497 -13.1839 20.7486 -15.6248 5.4911 -0.6806 0.9993 0.9953 0.9710 0.8301 0.2612
1.0000 -3.6047 4.8077 -2.7748 0.5456 0.0262 0.9986 0.9914 0.9471 0.7072 -0.0395

Gcz

0.01
0.8427 -4.7185 11.0020 -13.6728 9.5518 -3.5566 0.5514 0.9997 0.9978 0.9862 0.8994±0.0722i 0.8171
1.0000 -5.6905 13.4667 -16.9617 11.9899 -4.5090 0.7046 1.0000 0.9998 0.9988 0.9927 0.9546 0.7445

0.02
0.8841 -4.6330 10.0894 -11.6884 7.5972 -2.6267 0.3773 0.9993 0.9957 0.9726 0.8039±0.1308i 0.6648
1.0000 -5.4409 12.2543 -14.6071 9.7048 -3.4010 0.4898 1.0000 0.9996 0.9977 0.9854 0.9113 0.5470

0.04
0.9824 -4.5405 8.6473 -8.6900 4.8619 -1.4349 0.1738 0.9986 0.9914 0.9459 0.6300±0.2163i 0.4259
1.0000 -5.0570 10.4418 -11.1929 6.4978 -1.8992 0.2094 1.0000 0.9993 0.9953 0.9710 0.8301 0.2612

The �rst test analyzes the e�ect of the sampling period T on the step response and on the corresponding

time evolution of the control variable, i.e. the controller output. The considered values of T are 0.01, 0.02,

and 0.04 s. (In this way, the relation 10ωB ≤ 2π/T ≤ 30ωB (Åström and Wittenmark, 1997) is satis�ed.)

Lower values of T are not considered for the reasons speci�ed before in section 4. Moreover, other problems

arise from the interaction between the sampling process and the updating of the speed measurement by the
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incremental encoder. Since the speed is obtained by the pulse increment in a sampling period, the accuracy of

speed measurement depends on the encoder inherent PPR resolution. Moreover, the accuracy depends on the

speed, because the higher is the speed, the higher is the number of counted pulses. If T is too low, then the

pulse increment can be too low to provide a reliable measurement, so that the speed oscillates around an average

value in adjacent sampling periods. In synthesis, a better resolution would be required to decrease T . However,

the inaccuracy in the speed measurement also a�ects the control action during rising transients. For low speed

values, the measurement of speed error is quite inaccurate and the resulting control action is not optimal. This

e�ect is reduced for high speed values, as it is evident by comparing Figures 4 (speed reference of 40 RPM) and

5 (speed reference of 98 RPM). Namely, the step response overshoot is much higher for the lower speed reference

and is considerably decreased for the higher speed reference (see also the compared performance in Table 4).

The resolutions of the ADC and DAC converters, respectively indicated by ADCRes and DACRes, are both

kept constant to the same value: ADCRes = DACRes = 16 bits (Figures 4-5, top) or ADCRes = DACRes =

8 bits (Figures 4-5, down). These values are usually found in commercial devices for industrial applications,

then re�ect real conditions. Resolutions of lower values are not realistic and would downgrade the converter

performance too much.
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Fig. 4. Step responses (left) and control variables (right) for a 40 RPM set-point and for T = 0.01, 0.02, 0.04 s: with
ADCRes = DACRes = 16 bits (top), with ADCRes = DACRes = 8 bits (down)

Figure 4 shows that, for both values of the converters resolution, increasing the sampling period implies

a growth of the overshoot and settling time in the step response, whereas the rise time is comparable in all
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Fig. 5. Step responses (left) and control variables (right) for a 98 RPM set-point and for T = 0.01, 0.02, 0.04 s: with
ADCRes = DACRes = 16 bits (top), with ADCRes = DACRes = 8 bits (down)

conditions (see Table 4). This worsening is more evident with a lower resolution of 8 bits (Figure 4, lower part).

However, even if an improvement can be achieved by increasing the sampling rate, the control system can't

a�ord a lower T due to hardware limitations (in particular of the built-in encoder, see the case T = 0.01 s).

Moreover, steady-state high frequency oscillations of limited amplitude and a steady-state o�set occur

because of quantization e�ects and of the previously mentioned problems with the encoder resolution. More

or less, they are the same for all the resolutions even if they are a bit less signi�cant with T = 0.04 s and 16 bits.

In this last case, the steady-state response has an o�set which is reduced with respect to other cases. However,

the steady-state oscillations do not have a signi�cant impact on the overall behavior of the controlled system.

In any case, reducing T does not improve the response (see what happens for T = 0.01 s).

If the control variable is analyzed, then it is veri�ed that a higher T implies initial oscillations of higher

amplitude, so that a higher control e�ort is necessary during transients with high T . But a lower T induces more

important steady-state oscillations. Then a trade-o� can be given by T = 0.02 s.

The second analysis considers the e�ect of the variation of the converters resolution while maintaining a

constant sampling period (T = 0.01 or 0.02 or 0.04 s). Again, the step responses and the control variables are

shown in di�erent cases for a 40 RPM set-point. The plots for the case of 98 RPM are not shown for sake of

space but the results can be checked from Table 4.
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Table 4. Characteristics of the step response in all the experimented cases

Case no.
Set-point

T (s) ADCRes (bit) DACRes (bit) Overshoot (%) Rise Time (s)
Settling Time (s)

(RPM) (10% of set-point)

1 40 0.01 16 16 37.7 0.08 1.20
2 40 0.01 12 12 37.7 0.08 1.20
3 40 0.01 8 8 53.1 0.08 1.20
4 40 0.02 16 16 45.4 0.08 4.08
5 40 0.02 12 12 45.4 0.08 4.00
6 40 0.02 8 8 45.4 0.08 3.02
7 40 0.04 16 16 47.9 0.08 8.40
8 40 0.04 12 12 60.7 0.08 11.00
9 40 0.04 8 8 68.4 0.08 -
10 98 0.01 16 16 18.7 0.13 0.40
11 98 0.01 12 12 18.7 0.13 0.40
12 98 0.01 8 8 18.7 0.13 0.40
13 98 0.02 16 16 21.8 0.13 0.40
14 98 0.02 12 12 21.8 0.13 0.40
15 98 0.02 8 8 18.7 0.13 0.40
16 98 0.04 16 16 24.9 0.13 0.40
17 98 0.04 12 12 24.9 0.13 0.40
18 98 0.04 8 8 26.5 0.13 0.40

Figure 6 in the left top part shows that, with T = 0.01 s, there is no signi�cant di�erence between using higher

or lower resolution (apart an increase in the overshoot), especially in the steady-state oscillations associated to

limit cycles. If T is increased, the bene�ts of higher resolution are evident (see Figure 6 for T = 0.04 s in the

left lower part). Then increasing the resolution allows better performance, especially by looking at the control

variable. Similar considerations hold for the responses to a 98 RPM reference input.

Finally, note that the computational cost of the fractional order digital control algorithm obviously depends

on the number of operations required. The e�ect on the processing time required by the algorithm can be

analytically determined by using the clock of the employed HIL.

6. Conclusion

In this work, the problem of implementing non-integer order digital control of electro-mechanical systems was

addressed. The controlled plants are modeled as �rst-order plus time-delay systems of integer order, namely this

model is widely used to represent electro-mechanical systems subject to speed regulation. Then fractional-order

PI controllers are considered because they provide a con�guration a very close to the standard PI controllers that

are traditionally used for this type of plants. In this way, it is possible to explore the possibility to improve the

control loops of many industrial, mechatronics or automotive feedback systems. Moreover, the FOPI controller

is designed by a strategy that resembles loop-shaping techniques that are well-known in tuning of PI/PID

controllers (e.g. the symmetrical optimum method). A robust FOPI controller is designed and optimality is

pursued for the closed-loop system. The rational transfer function that realizes the FOPI controller is obtained

by the well-known Oustaloup's recursive approximation. The digital version of the controller is obtained by

the Tustin's discretization rule. In particular, the paper focuses on the operational issues in implementation of

the control algorithms. Namely, sampling, quantization, and conversion must be taken into account. A detailed

analysis of experimental results on a real platform show how performance gets worse if these limitations are

taken into account with respect to the ideal conditions provided by the theoretical designed controller. However,

the robustness and dynamic performance are satisfactory even if large variations are considered, owing to the

bene�ts o�ered by fractional-order controllers.
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Fig. 6. Step responses (left) and control variables (right) with di�erent resolutions and T = 0.01 s (top �gures), T = 0.02

s (middle �gures), T = 0.04 s (down �gures)
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