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Abstract
The capability of Active Thermography (AT) techniques in detecting shallow defects has been proved by many works in
the last years, both on metals and composites. However, there are few works in which these techniques have been used
adopting simulated defects more representative of the real ones. The aim of this work is to investigate the capability of Pulsed
Thermography of detecting shallow spherical defects in metal specimens produced with laser powder bed fusion (L-PBF)
process and characterized by a thermal behaviour very far from the flat bottom hole and so near to the real one. In particular,
the quantitative characterization of defects has been carried out to obtain the Probability of Detection (PoD) curves. In fact, it
is very common in non-destructive controls to define the limits of defect detectability by referring to PoD curves based on the
analysis of flat bottom holes with a more generous estimation and therefore not true to real defect conditions. For this purpose,
a series of specimens, made by means of Laser-Powder Bed Fusion technology (L-PBF) in AISI 316L, were inspected using
Pulsed Thermography (PT), adopting two flash lamps and a cooled infrared sensor. To improve the quality of the raw thermal
data, different post-processing algorithms were adopted. The results provide indications about the advantages and limitations
of Active Thermography (AT) for the non-destructive offline controls of the structural integrity of metallic components.

Keywords Pulsed thermography (PT) · Non-destructive techniques (NDT) · Probability of detection (PoD) · Laser-powder
bed fusion (L-PBF) · Additive Manufacturing (AM)

1 Introduction

Active infrared thermography has been usually applied as
a non-destructive technique in many industrial applications
and fields, to detect and characterize shallow defects, from
composite [1–5] to metals [3, 6–8].

The main advantages of the use of active thermographic
techniques are known [1]. In particular, these techniques
allow for a full-field non-destructive control,without the need
for direct contact with the component, they are very fast and
require an external heat source to stimulate the component
for a few seconds. For high diffusivity materials like met-
als, due to the high heat diffusive phenomena, the use of
active thermographic techniques can be considered only for
surface or subsurface controls [7]. Basically, pulsed thermog-
raphy and lock in thermography are commonly used among
optical infrared thermography approaches, that includes also
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the use of other techniques, such as induction thermography,
pulse compression thermography, and laser spot thermogra-
phy [9–21].

In Pulsed Thermography (PT), the investigated material
is stimulated by a short-duration energy pulse (likely, flash
lamp, eddy-current, laser, etc.), and the thermal sequence is
collected by an infrared sensor. The raw thermal data are
then processed by applying post-processing algorithms (i.e.
Pulsed Phase Thermography (PPT), Thermographic Signal
Reconstruction (TSR), Principal Component Thermography
(PCT), etc.) [15–18].

Like all non-destructive techniques, also PulsedThermog-
raphy (PT) requires experimental tests in which the test and
analysis parameters must be set. This “calibration” approach
needs the extensive use of specimensmade of the samemate-
rial and with simulated defects as similar as possible to the
real defects [7, 8]. However, it is not easy to simulate real
flaws because of difficulties in master sample production and
related high costs. Therefore, most of the literature works
concerns the analysis of Flat Bottom Holes (FBHs), which
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can only very remotely simulate the thermal behaviour of a
real defect and so can not useful to characterize the same [7].

The aim of this work is to investigate the capability of
Active Thermography in detecting shallow spherical defects
in metal specimens produced with the Laser-Powder Bed
Fusion (L-PBF) process. The spherical defects simulate bet-
ter, with respect to the FBHs, the thermal behaviour of real
defects as these latter are characterized by a low value of
the reflection coefficient. In particular, the quantitative char-
acterization of defects has been carried out to obtain the
Probability of Detection (PoD) curves [21–23].

Generally, for a quantitative non-destructive technique
or method, the Probability of Detection (PoD) is a metric
to describe the accuracy of a test. This statistical method
identifies in a quantitative way, how well a non-destructive
inspection can detect and characterize defects. This method-
ology allows for a simple comparison also among the
application of different non-destructive techniques. Up to
now, there have been several studies concerning the deter-
mination of the PoD of standard and more conventional
non-destructive methods like ultrasonics, eddy current, and
radiography [24, 25]. Some works also regard the applica-
tion of active thermography with this purpose, in particular,
lock-in and pulsed techniques, but considering in most cases
FBHs defects [2–3]. In order to determine the PoD curve,
a relationship between the variable that describes the defect
and the one that characterizes the signal contrast is necessary
[2, 3, 21-23].

In this work, to obtain the PoD curves, a series of spec-
imens in AISI 316L, for a total of twelve, were produced
by means of L-PBF technology. A series of defects of hol-
low spherical shape, known size and at different depths, were
created within the specimens. Defects were produced layer-
by-layer by not scanning the powder in the defect area with
the laser beam. Moreover, given the layer-by-layer construc-
tion method of the L-PBF process, the defects themselves
presented unmelted powder trapped within them. In this way,
it is possible to evaluate the capability of Pulsed Thermog-
raphy in detecting shallow defects, more “close” to the real
defects that are present in metallic components, as in casting.

Several thermographic tests have been carried out using
the pulsed thermography technique in reflection configura-
tion, with two flash lamps and a cooled sensor. Different
post-processing algorithms were considered to improve the
quality of the raw thermal data in terms of signal-to-noise
ratio (SNR), and, in particular, Pulsed Phase Thermography
(PPT) [1, 6, 7, 15], Thermographic Signal Reconstruction
(TSR) [16, 17], Principal Component Thermography (PCT)
[18], Slope and R2 [19].

In addition, the PoD curves were compared to analyse
the performance of the technique and establish, in a quan-
titative way, the limits of the used setup, parameters, and
post-processing algorithms to detect spherical defects.

2 Theoretical Background: Pulsed
Thermography and Post-processing
Algorithms

The concept of Pulsed Thermography (PT) as a non-
destructive technique for high diffusivity material inspection
consists of applying in a very short time a powerful energy
pulse to the specimen under investigation and then recording
the temperature decay [1]. According to the thermal diffu-
sion phenomena, the presence of a defect interferes with the
diffusion of the heat and appears as an area with a differ-
ent temperature than its surroundings. The specimen surface
is heated by a Dirac-shaped flash excitation with an energy
density ofQ. Under the hypothesis of a one-dimensional heat
transfer in-depth direction, semi-infinite plate and neglecting
the heat losses due to radiation and convection, the temper-
ature T of the surface z = 0 above a defect at a depth d, can
be described as follows [26]:

T (0, t) = Q√
πρckt

[
1 + 2

∞∑
n=1

γ n exp
(
− n2d2

αt

)]
(1)

where ρ is the density, c is the specific heat capacity, k is the
thermal conductivity, α is the thermal diffusivity of the mate-
rial, and t represents the time. The coefficient γ describes
the contrast of the thermal effusivities at the interface of the
sound material to defect, which is very close to 1 only in the
theoretical case of perfect reflection and a large discontinuity
[7, 26, 27].

During the last years in which the pulsed thermography
technique has been used for several applications, several
post-processing algorithms were considered and adopted to
improve the quality of the raw thermal data and then the
signal-to-noise ratio such as Pulsed Phase Thermography
(PPT) [1, 6, 7, 15], Thermographic Signal Reconstruction
(TSR) [16, 17], Principal Component Thermography (PCT)
[18], Slope and R2 [19]. The theoretical background of each
of these algorithms is well known, as reported in the men-
tioned works.

3 Probability of Detection (PoD)

The PoD is a quantitative measure of the capability of a
non-destructive technique or methodology and allows the
determination of the defect detection probability as a func-
tion of a parameter describing the defect geometry (ASME
3023–15) [2, 3, 21–23].

This methodology should produce output that can be sum-
marized within a representative quantitative signal, ‘â’, or a
binary response, hit/miss. For this reason, starting signalswill
need somepre-processing to provide either ‘â’or hit/miss and
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a parameter ‘a’ able to characterize the system, as inputs to
these analysis methods.

In the case of PoD analysis of continuous response
data, the methodology relies on Generalized Linear Mod-
els, where, simply, a defect parameter ‘a’ is required, which
depends linearly on the measured signal ‘â’. Generally, sup-
posing that ‘ga(â)’ indicates the probability density function
of the ‘â’ related to a generic defect characteristic ‘a’, the
PoD can be written as:

PoD(a) = ∞∫
âdec

ga
(
â
)
dâ (2)

With the hypothesis of a linear relation ‘â vs a’ with nor-
mally distributed deviations, it is possible to write:

â(a) = B0 + B1xa + ε (3)

where ε is the measurement error, which usually follows the
normal distribution with zero mean value μ and standard
deviation σε and, obviously, B0 and B1 are the coefficients
of the linear regression. Normally, an analysis of source data
‘â vs. a’ is implemented to choose the best model that can be
described properly by a straight line with a good square cor-
relation coefficient (R2) and constant variance. This research
includes the analysis of four models: ‘â vs. a’, ‘â vs. log(a)’,
‘log(â) vs. a’, and ‘log(â) vs. log(a)’.

After the choice of the best linear model, the PoD can be
calculated by the relationship:

PoD = �
( a−μ

σ

) = 1
2

[
1 + er f

(
a−μ

σ
√
2

)]
(4)

Equation 4 represents the expression of a cumulative nor-
mal distribution function, where er f is the error function and
the parameters μ and σ are expressed as reported below as a
function of the threshold ‘th’ above of which a defect can be
detected:

μ = âth−B0
B1

σ = σε

B1
xâth (5)

Usually, the values of B0, B1, σε can be estimated by
using the maximum-likelihood estimation method to achieve
the best fitting of the analysed data set.

In non-destructive investigations that use this methodol-
ogy to quantify defect reliability, the Signal-to-Noise ratio
(SNR) or, equivalently, the Normalized Contrast (CNR), or
the simple contrast, of the temperature difference between
defect and sound regions related to a generic thermogram or
an analogs contrast measurement related to a post-processing
thermal feature are used as variable â. Instead, a parameter
that describes the defect geometry needs to be found and usu-
ally, this parameter can be any mathematical representation

Fig. 1 Part of specimens manufactured for the thermographic analyses
performed

of one or more defect characteristics, e.g. the diameter D, the
depth d, the nominal area A and the aspect ratio D/d.

The hit/miss or 0/1 response, where one denotes the
detected defect and zero denotes the undetectable defect, is
made by the operator and depends on the threshold value and
the region of interest (ROI) that define the defect and related
sound zone [2, 3]. If the contrast related to a particular ther-
mal feature is over the given value that is determined by the
inspector, the hit source data is set equal to 1, instead, the
miss data is obtained as 0. With the same logic of PoD anal-
ysis related to continuous phase response data, the first step
for POD analysis of hit/miss response data is model identifi-
cation. There are four models corresponding to four different
link functions: logit, logistic or log-odds function, the pro-
bit or inverse normal function, the complementary log–log
function, often called Weibull by engineers, and the loglog
function. Both the log-normal and log-odds link functions
are more often used to link binary data to defect character-
istic ‘a’. The obtained results in terms of PoD curves can be
considered practically equivalent in many cases [2]. Due to a
number of available defects and obtained results in terms of
linearity, in this study a hit/miss approach has been adopted,
and the log-odds function has been used, as suggested in [2,
3].

4 Materials andMethods

4.1 Setup andMaterials for the L-PBF Process
and Experimental Plan

A series of specimens were fabricated with Laser-Powder
Bed Fusion (L-PBF) technology, using the M1 Cusing com-
mercial machine owned by Concept Laser (GE). Figure 1
shows a part of the printed specimens. The M1 machine
was equipped with an Nd-YAG (Neodymium-doped Yttrium
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Fig. 2 Scanning Electron Micrographs (SEM) of the AISI 316L gas
atomized powder

Aluminium Garnet) laser source having a wavelength of
1064 nm, a maximum laser power output in continuous
mode of 100 W, and a beam spot diameter of 200 µm. The
laser beam was guided through a mirror galvanometer on the
powder bed, selectively drawing each layer to be produced.
Figure 2 shows the metallic powder used for the fabrication
of the specimens, whichwere subsequently analyzed by ther-
mography. The material used was the AISI 316L, the particle
size of the powderwas in the range of 15–53µmand its shape
was spherical. This gas atomized powder was produced by
Cogne Acciai Speciali S.p.a. (Italy) and its chemical com-
position, as certified by the manufacturer, is given in Table
1.

Hollow spheres of known sizewere createdwithin the fab-
ricated specimens to simulate the presence of defects. These
defects, due to the constructionmethod of theL-PBFprocess,
are filled with unmolten powder, as can be seen in Fig. 3.

The specimens were fabricated using the process param-
eters shown in Table 2. The latter resulted from optimization
conducted in previous works [28, 29]. An important expe-
dient adopted in the arrangement of the specimen to be
manufactured was a rotation of 45°, on the construction plat-
form, with respect to the coating blade (see Fig. 4): this
solution prevented the edges of the specimens were paral-
lel to the coater, creating an uneven distribution or a barrier
for the recoating of the powder. Furthermore, the specimens
were manufactured using the random island strategy; each
island had a size of 5 × 5 mm2. The islands were scanned by
the laser randomly on each layer and this was useful to reduce

Fig. 3 The unmolten powder inside the defects as it appears during
fabrication

Table 2 Process parameters used to produce the specimens

Process parameters Values

Laser power (W) 100

Scanning speed (mm s−1) 200

Laser spot diameter (µm) 200

Hatch distance (µm) 140

Layer thickness (µm) 30

the residual thermal stresses [30, 31]. However, as the speci-
men grew in a layer-by-layer manner in the Z direction, there
was a 1 mm translation, in X and Y directions, of the islands
of a layer with respect to those of the previous layer: this
solution prevented the porosities formation between layers
(see Fig. 4).

Defects were created within each specimen with the dis-
tribution in space shown in Fig. 5 and described in detail in
Table 3.

The aspect ratioD/d has been chosen considering the theo-
retical limit of 2–3 found in the literature for flat bottomholes.
Of course, the limit can be assumed to be certainly more
severe in the case of spherical defects. As already underlined
in previous sections, the AM process allowed us to design
the sample/master specimens with the desired aspect ratios.
The possibility to produce master specimens made of metal-
lic materials is fundamental for calibrating the technique
and then applying the same in real industrial applications
on metallic components.

Figure 6 shows the cross-section of specimen 2 (spheres
with a diameter of 6 mm) and confirms the correct shape,
sizes, and position of defects within the specimens.

Table 1 Chemical composition (wt%) of the AISI 316L gas atomized powders used to make the specimens

Element Cr Ni Mo Mn Si Cu C S N P O Fe

wt% 16.0–18.0 11.0–13.0 2.0–3.0 2.0 0.75 0.50 0.03 0.010 0.10 0.025 0.10 Bal
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Fig. 4 Schematic representation
of the island shifts in the
different layers: a layer 1; b layer
2; c layer 3

Fig. 5 a Defect and specimen
geometry reported as an example
for specimen 1 and b schematic
view of the defect distribution
within the manufactured
specimens
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Table 3 Full experimental plan
of induced spherical defects. D is
the diameter of the sphere, d
represents the distance between
the beginning of the sphere and
the external face of the specimen

Specimen 1 × 4
Diameter (D) 8.00 [mm]

Specimen 2 × 4
Diameter (D) 6.00 [mm]

Specimen 3 × 4
Diameter (D) 3.00 [mm]

Depth (d)
[mm]

Aspect ratio
(D/d)

Depth (d)
[mm]

Aspect ratio
(D/d)

Depth (d)
[mm]

Aspect ratio
(D/d)

Side F

0.50 16.00 0.50 12.00 0.20 15.00

1.00 8.00 1.00 6.00 0.40 7.50

2.00 4.00 1.50 4.00 0.60 5.00

3.00 2.67 2.00 3.00 0.80 3.75

4.00 2.00 2.50 2.40 1.00 3.00

5.00 1.60 3.00 2.00 1.20 2.50

Side R

5.00 1.60 2.80 2.14 2.00 1.50

4.50 1.78 2.30 2.61 1.80 1.67

3.50 2.29 1.80 3.33 1.60 1.88

2.50 3.20 1.30 4.62 1.40 2.14

1.50 5.33 0.80 7.50 1.20 2.50

0.50 16.00 0.30 20.00 1.00 3.00

Fig. 6 a Section of specimen 2 after a macrographic analysis related to the spherical defects indicated in (b)

4.2 Setup for Pulsed Tests

The pulsed thermographic tests were performed in reflection
configuration using the experimental setup shown in Fig. 7,
composed of an MWIR (range 3.0–5.0 µm) cooled sensor
FLIR A6751, with a thermal sensitivity/NETD < 18 mK, a
full frame window of 640 × 512 pixels and a lens of 50 mm,
and two flash lamps (Hensel EH Pro 6000, Fairfield, NJ,
USA)with an optical pulse energyof 6 kJ and a pulse duration
in the range 3–5ms. For triggering the thermal excitationwith
the thermal acquisition, the software IRTA2®byDES (Diag-
nostic Engineering Solutions Srl) was used. Considering the
results shown in [7], it is possible to obtain an estimation of
the absorbed energy by the specimens during each test, equal
toQ/ρc = 0.0015 K*m. The main technical specifications of

the adopted set-up are reported in Table 4. In particular, the
adopted values of frame rate and spatial window were cho-
sen considering both the thermophysical material properties
and defect characteristics. About 200 tests were carried out,
investigating both sides of each specimen, considering four
replications as indicated in Table 3, and a maximum surface
extension of about 750 mm2, including two defects for each
test. A duration of 10 s was considered for each acquisition.
As explained in [7], considering one-dimensionalmodels and
material thermophysical properties obtained by means of the
Parker standard method [32], the duration of the acquisitions
was sufficient to reach a theoretical depth of about 5 mm, and
then to investigate the depths of all the defects (Table 3).
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Table 4 Technical specifications related to the adopted thermographic set-up

Set-up technical specifications

Energy source
Flash Hensel EH Pro
6000

Lamps Pulse duration
(ms)

Nominal energy input
(kJ)

2 3–5 6

MWIR 3–5 µm
cooled sensor FLIR
A6751 – lens 50 mm,

Frame
rate
(Hz)

Acquisition
time
(s)

Calibration
temperature range
(°C)

Integration
time
(µs)

Spatial
window
(pixels)

Spatial resolution
(mm/pixel)

NETD < 18 mK 600 10 10–90 °C 595.43 320 × 156 0.14

5 Data Processing Procedure and Results

To obtain the PoD curves, a comparison among different
algorithms and related performance was carried out with the
aim to assess the advantages and disadvantages of each one
and then the capability of thermography of detecting shallow
defects with a spherical shape.

The data analysis requires a series of post-processing steps
that need to be explained and specified to understand the
quality of the achieved results. The following data proce-
dure specifies also the different steps used to obtain the PoD
curves.

– Subtraction of the “cold” frame acquired before starting
the flash pulse from the entire thermal sequence, to obtain
the delta temperature.

– The application of different post-processing algorithms,
and subsequent output, described in the previous section:

• PCT, 4096 frames, about 7 s – sequence of maps of the
EOFs as a fuction of time;

• PPT, 4096 frames – 2 sequences ofmaps (phase and ampli-
tude) as fuction of frequency;

Fig. 7 Experimental setup adopted for pulsed thermographic tests:
energy source with two flash lamps and MWIR cooled sensor FLIR
A6751

• TSR, 4096 frames – 2 sequences of maps of 1st and 2nd
derivatives, polynomial degree 5 (determined with prelim-
inar tests) as a function of time;

• Linear regression in a log–log scale – analysis of 31 differ-
ent intervals, not evenly spaced (every 0.1 s until 0.5 s of
cooling down, after every 0.25 s until 7 s or 4096 frames),
to obtain, also in this case, 2 sequences of maps related to
the Slope Coefficient and the Square Correlation Coeffi-
cient R2 [19, 33] as function of interval time.

– Definition of Regions of Interest (ROIs), with a matrix of
3 × 3 pixels for each defect and four different matrices of
5 × 5 pixels for the sound material. This latter has been
taken around the defect, considering a variable distance,
based on the defect diameter, avoiding edge effects, from
a minimum of 40 pixels – D = 3 mm to a maximum of 60
pixels – D = 8 mm, considering the centre of the defect,
as here reported in Fig. 8.

– Calculation of the contrast (C) and normalized contrast
(CNR), considering the ROIs previously defined and using
the following equations, for each thermal feature and post-
processing algorithm.

C = MSD − MSs CN R = MSD−MSs
SDS

(6)

where MSD is the mean value related to the defective ROI,
MSS and SDS are, respectively, the mean and the standard
deviation values of the sound ROI.

– Definition of defect detectability, considering the Normal-
ized Contrast (CNR) for each defect and an appropriate
threshold value (Th), to carry out the hit/miss response pro-
cedure useful to reconstruct the PoD curves. To choose the
appropriate threshold value, several attempts were carried
out, analysing all the post-processed data. In particular,
three values of the threshold were considered, equal to 1,
2, and 3, and the actual adopted threshold value was cho-
sen as the one above of which the signal contrast produces
a “visible” defect, according to an inspection carried out
by a qualified operator.
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Fig. 8 Thermal features related
to the application of PCT
algorithm – EOF2; an example of
result and identification of sound
and defect as main ROIs and
relative distance

Fig. 9 Definition of the
procedure for defect
detectability—example of
thermal maps related to the slope
feature after the CNR calculation
pixel by pixel for different
intervals of analysis equal to
respectively a 0.2 s, b 0.3 s, c 3 s,
d 5.5 s, and e trend related to the
normalized contrast (CNR) for
all the time intervals; an
indication of the different
threshold values and times
corresponding to the thermal
maps is shown on the left (blue
crosses)

As an example of the adopted procedure, Figure 9 shows
some results related to the larger and more superficial
defect, analysing the raw thermal data as previously
described and obtaining a sequence of maps for the slope
and the R2 calculated pixel by pixel and considering 31-
time intervals, as explained before. The slope results refer
to 4 different maps obtained for 4 different time inter-
vals (Figure 9 (a)—0.2 s, 9—0.3 s, 9—3 s and 9—5.5
s). Figure 9e shows the trend of both the contrast and the
normalized contrast for all the time intervals. Consider-
ing the results in Figure 9, a CNR value greater than 2
seems to correspond to a “visible” detectable defect. Sim-
ilar results were obtained considering the other algorithms
and the other defects and then a threshold value (Th) equal
to 2 can be adopted to define the defect detectability as
follows:

{
hit 1 ST F (x , y) > MSS + |MSD − MSS|Th
miss 0 ST F (x , y) < MSS + |MSD − MSS|Th (7)

Fig. 10 A simple scheme that defines the response ′̂a′ and so the chosen
parameter to represent the defect geometry

Equation 7 represents the conditions for which the generic
pixel (x, y) related to the obtained result or thermal feature has
a signal value indicated as STF , which can be assumed equal
to 1 or 0 depending on the chosen threshold value (hit/miss
data).

– Determination for each output sequence, the map that pro-
vides the maximum normalized contrast.

– Definition of the parameter ‘a’ that represents the maxi-
mum normalized contrast value for each thermal feature.

123



Journal of Nondestructive Evaluation (2023) 42 :27 Page 9 of 16 27

– Definition of the response that describes the defect geom-
etry ‘â’, equal to the defect aspect ratio D/d (defined in
Fig. 10).

– Comparing four possible models ‘â vs. a’, ‘â vs. log(a)’,
‘log(â) vs. a’, and ‘log(â) vs. log(a)’, and choosing the best
one that returns the greater R2 – linearity value, together
with a low norm of the residual. This analysis has been car-
ried out for all the implemented algorithms and thermal
features. From the graphic results reported as an exam-
ple in Fig. 11, it was possible to conclude that the source
data of “CNR vs. D/d” presents the most linear correlation
(different colours were used based on the defect diameter
value).

– For all the algorithms and investigated thermal features,
the slope, and intercept values were obtained considering
the linear model “CNR vs. D/d” and then the goodness
of linear fitting has been evaluated considering 95% con-
fidence and prediction bounds, as shown in the example
reported below in the case of PCT analysis.

Fig. 12 A linear relationship between the maximum normalized con-
trast and the defect aspect ratio D/d, considering the PCT results –
linear fit, confidence, and prediction bounds

– In all the cases, the log-odds model was used to plot
the PoD curves. Furthermore, for each data processing

Fig. 11 Four models comparison in the case of PCT results, considering all the defects, the replications and the result related to the maximum CNR
vs defect aspect ratio D/d; a lin-lin, b lin-log, c log–log, d log-lin
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method, the 95% lower confidence bounds were also cal-
culated and reported.

– Comparison of the obtained results in terms of POD curves
considering the defect aspect ratio with 90% PoD (D/d90)
and the defect aspect ratio for which a 90% PoD is reached
at 95%confidence level (D/d90/95), for each thermal feature
and post-processing analysis

6 Comparison Among Algorithms
and Discussion

Following the different steps indicated before, all the
acquired thermal sequences were analysed, obtaining, as a
result, the associated PoD curves. As already specified, the
maximum contrast related to the trend of each thermal fea-
ture was considered and associated with the related defect
aspect ratio. In Fig. 13 are resumed all the obtained results in
terms of PoD curves, for each algorithm, as already shown
in the case of PCT in Fig. 14, using the log-odds model. The
lower and upper confidence and prediction bounds at 95%
were calculated and reported in each graph.

In Fig. 15, the comparison among the different algorithms
is shown within the same graph, leaving, for simplicity and
clarity of results, only the curves related to the lower confi-
dence bound at 95%. The number of the detected defects and
the coefficient R2 are also indicated for each algorithm and
thermal feature.

A zoom of the higher part of the PoD curves are reported
in Fig. 16 and then in Table 5. For clarity, in Fig. 15, different
symbols have been assigned to each PoD curve for a simpler
and more immediate distinction. In particular, for each algo-
rithm two different results can be obtained: the values of the
defect aspect ratio associated with a PoD of 90% (D/d90) and
the ones with a 90% probability where only 5% might fall
outside the confidence limit in case the experiment is repeated

four (AM process + thermographic measurements and anal-
ysis) times (D/d90/95). The indication D/d90/95, together with
the linearity (R2), represents a measure to quantify the dif-
ferences between the fit curve and experimental data for each
algorithm. Within the same table, the detection rate with
respect to the total number of inspected defects (144) is also
indicated.

As alreadydemonstrated in previousworks for other appli-
cations and case studies [19], the post-processing algorithms
show intrinsic peculiarities and limitations. From the analy-
sis of Table 5 and Fig. 15, the higher D/d values, and so the
worst results, are related to PCT and R2 algorithms while,
the best results are obtained with the TSR algorithm, with the
lowest D/d values. However, considering the results reported
in Table 5 related to the number of detected defects and the
detection rate, the PCT algorithm shows better results if com-
pared with Slope, R2 and PPT, but with a lower probability
of detection.

To have an idea of the limits of each algorithm and ther-
mal features, not only related to defect aspect ratio D/d, but
also considering the single values in terms of diameter and
depth, the results in terms of normalized contrast CNR are
reported in a 3D plot (Fig. 17), setting directly in the graphs
the CNR limit equal to 2. The representation regards the
detected spherical defects, reporting the single data of each
replication.

As already demonstrated in [26], the signal contrast, is
most affected by the depth with respect to the defect size, i.e.
the contrast decreases with the squared depth (Eq. 1), while
it seems to show a linear dependence with the in-plane defect
dimension.

Also, the graphs in Fig. 17, show the limits of the tech-
nique in terms of depth, with a maximum value of 2 mm in
correspondence of a diameter equal to 6 mm, in the case of
the TSR algorithm.

In Table 6, the previous results are summarized, indicating
for each diameter the maximum detectable depth and the
corresponding aspect ratio D/d value. These values refer to

Fig. 13 PoD curves for different
algorithms and analysed thermal
features—log-odds model;
a slope, b R2,c amplitude,
d phase, e TSR 1der, f TSR 2der
(see Fig. 12 for PCT)
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Fig. 14 POD curve—log-odds model; example related to the PCT result

Fig. 15 Comparison among PoD
curves for different algorithms
and analysed thermal features
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Fig. 16 A zoom of PoD curves
for different algorithms and
analysed thermal features to
highlight the PoD 90% and the
PoD 90/95%

Table 5 D/d90 and D/d90/95
values obtained using different
data processing algorithms and
thermal features on hit/miss data
and a summary of detection
results in terms of the number of
detected defects and detection
rate

Algorithms D/d90/95 D/d90 Number of detected defects Detection rate (%)

Slope 6.8 6.2 45 31

R2 7.6 6.9 40 28

Amplitude 6.9 6.3 47 33

Phase 5.8 5.3 51 35

PCT 7.7 6.8 55 38

TSR 1der 5.0 4.4 61 42

TSR 2der 4.7 4.2 61 42

an imposed defect, for the continuous values it is necessary
to refer to the proposed PoD curves. As demonstrated also in
previous works [19], PCT presents the best results in terms
of CNR (Fig. 17).

Therefore, the limit of the pulsed technique associated
with the adopted flash setup generally rises to a D/d value
equal to 3 in the case of spherical defects, with a probability
of detection that is around 70% with the TSR algorithm.

7 Conclusions

A complete study regarding the probability of detection for
spherical shallow defects by means of Pulsed Thermography
has been proposed. Different specimens in AISI 316L were
produced by means of the L-PBF technology, with shallow
spherical defects of different sizes and depths. The main aim
was to investigate the capability of this non-destructive tech-
nique of detecting defects with geometry very different from
the FBHs, usually used for metallic materials (high diffusive
materials).

As quantitative analysis, the PoD methodology has been
adopted to define the limits and advantages of this tech-
nique applicated as offline control. Two flash lamps and a
cooled sensor were adopted, and different post-processing
algorithms were adoptes for extracting the thermal features
from the thermal sequences to characterize these defects. As

themain parameters to quantify the detected defects, the con-
trast and then the normalized contrast were chosen. For the
defect geometry, the aspect ratio D/d was defined, being D
the maximum diameter of the sphere and d the depth of the
sphere from its starting point with respect to the specimen
surface.

The main results can be summarized by the following
points:

– Considering the adopted setup, approach and procedure
for data analysis, Pulsed Thermography presents a ≥ 50%
probability of detecting spherical defects with D/d > 4,
independently from the used algorithm.

– For higher values of D/d (D/d > 6.5), the probability of
detecting the defect rises to 90% or higher, based on the
used algorithm.

– For lower values of D/d (3 < D/d < 4), the TSR and PCT
algorithms allow to detect defects with greater probability,
and in particular, the TSR algorithm gives a probability of
around 70%.

– Considering the detected defects, the highest depth value
is 2 mm, with a diameter equal to 6 mm, using the TSR
algorithm.

– Spherical defects, closer to real defects such as porosity,
can be detected in correspondence of a minimum aspect
ratio of 3–4, higher than the limit usually obtained with
Flat Bottom Hole (FBH).
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Finally, as expected, shallow spherical defects are more
difficult to detect with respect to FBHs and in this regard,
they provide a more realistic indication of the capability of
AT of detecting real defects such as isolated porosities. It is
worth noting that the obtained results are related to not only
simple empty spheres but spheres with powder inside of the
same material. These kinds of defects, even if of smaller
sizes, can occur during the process due to undesired changes
of some process parameters and provide a reduced signal
contrast with respect to porosity with air inside.

As an example, looking at the obtained results in terms of
PoD curves, porosities with the size of about 1mm (typical of
processes for obtaining metal alloys) could be detected with
a probability of detection of about 70% inspecting the sub-
surface deposition layers, with depths around 0.2 or 0.3 mm.

It is important to underline that, in this work, the limits
of the PT technique are related to the equipment used for
the tests and probably can be improved by using high-power
heat sources or/and more performing IR sensors. As already
suggested in previous works and here remarked, the ther-
mography inspection can be also used for off-line control
AM components. Of course, it is worth underlining that the
capability of the AT technique is confined only within the
inspection of the shallow defects.

Fig. 17 3D plots related to each
algorithm and adopted thermal
feature; a slope, b R2,
c amplitude, d phase, e PCT,
f TSR 1der., g TSR 2der
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Fig. 17 continued

Table 6 Summary of the detected defects considering the depth and 2D dimension separately

Thermal feature or
post-processing algorithm

D (mm) dmax (mm) D/d Thermal feature D (mm) dmax (mm) D/d

Slope 3 1 3 R2 3 0.8 3.75

6 1.5 4 6 1.8 3.33

8 2 4 8 2 4

Amplitude 3 0.8 3.75 Phase 3 1 3

6 1.5 4 6 1.8 3.33

8 2 4 8 2 4

PCT 3 0.8 3.75

6 1.5 4

8 2 4

TSR 1der 3 1 3 TSR 2der 3 1 3

6 2 3 6 2 3

8 2 4 8 2 4
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