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Abstract
This work addresses the real-time optimization of train scheduling decisions at a complex
railway network during congested traffic situations. The problem of effectively managing
train operations is particularly challenging, since it is necessary to incorporate the safety
regulations into the optimization model and to consider numerous performance indicators
that are important to evaluate the solution quality. Moreover, solutions must be produced in
a limited computation time. This paper deals with the development of a multi-criteria deci-
sion support methodology to help dispatchers in taking more informed decisions when deal-
ing with real-time disturbances. As a novel idea in the literature, optimal train scheduling
solutions are computed with high level precision in the modelling of the safety regulations
and with consideration of state-of-the-art performance indicators to be optimized in a given
computation time period. To this aim, mixed-integer linear programming formulations are
proposed based on the alternative graph modeling approach and solved via a commercial
solver. For each problem instance, an iterative procedure is executed in order to estab-
lish an efficient-inefficient classification of the best solutions provided by the formulations
via a well-established non-parametric benchmarking technique, named data envelopment
analysis. Based on this classification, the procedure improves inefficient formulations with
generation of additional linear constraints. Computational experiments are performed for
30-minute and 60-minute instances from a Dutch railway network with mixed traffic and
multiple delayed trains. For each problem instance, the procedure converges after a limited
number of iterations, and returns a set of efficient solutions and the relative formulations.

Keywords
Railway Traffic Control, Disturbance Management, Performance Evaluation, Mixed-Integer
Linear Programming, Data Envelopment Analysis.



1 Introduction

A key problem in real-time railway traffic management is to efficiently reschedule trains
during operations (Cacchiani et al. (2014)). In presence of initial delays, this problem
requires to detect potential conflicts between two or more trains in each resource and to
globally solve them by taking into account the propagation of consecutive delays (D’Ariano,
2009, Kecman et al. (2013), Corman et al., 2014B). Due to the limited time available to take
real-time decisions, train dispatchers usually have a limited view on the effects of conflict
resolution methods and are not able to compare alternative solutions in terms of various
performance indicators. In practice, the dispatching measures are often sub-optimal, and
leave room for improvement. Moreover, there is no clear agreement in literature on the
objective functions to be used as many should be considered, due to different stakeholders
and operational aspects.

This paper deals with the development of a multi-criteria decision support methodology
to help dispatchers in taking more informed decisions when dealing with real-time distur-
bance management. As a novel idea in the literature, we compute optimal train scheduling
solutions with high level precision in the modelling of the safety regulations and with con-
sideration of state-of-the-art performance indicators to be optimized in a given computation
time period. To achieve this aim, the following scientific issues have to be addressed:

• Microscopic optimization models for the real-time train scheduling problem are re-
quired, each one taking into account multiple performance indicators, either in the
objective function or in the problem constraints;

• The models are to be automatically created and solved in a short computation time,
and to be assessed in terms of the various performance indicators;

• A quantitative technique is needed to automatically compare the best solutions com-
puted for the different models, to select efficient solutions and to give suggestions for
improving inefficient ones;

• A comprehensive computational analysis is required to perform the performance as-
sessment and to provide a pool of good quality solutions.

The first issue is addressed by the development of Mixed-Integer Linear Programming
(MILP) formulations based on the alternative graph model of the real-time train scheduling
problem (D’Ariano et al., 2007-2014). Since there is no generally recognized indicator, the
investigation of suitable objectives to optimize is very important. We study a selection of the
most used objectives in the related literature, including the minimization of the maximum
(initial plus consecutive) delay (Mazzarello and Ottaviani, 2007), the maximum consecutive
delay (D’Ariano et al., 2007A, Pellegrini et al., 2014), the maximum consecutive delay with
consideration of train priorities (Corman et al., 2011A), the cumulative consecutive delays
(Pellegrini et al., 2014), the weighted sum of deviations from the arrival/departure scheduled
times (Caimi et al., 2012), the sum of all completion times (Dessouky et al., 2006), the sum
of delays (Meng and Zhou, 2011), a weighted sum of delays (Higgins et al., 1996) with
penalties when exceeding a threshold (Törnquist and Persson, 2007), the travel time of
trains as a surrogate of energy consumption (Corman et al., 2009A).

All the objectives studied in this paper are operational-centric since they focus on the
minimization of railway operations objectives with a train point of view, whereas other
approaches are passenger-centric since they focus on the maximization of the quality of



service perceived by the passengers (the latter approaches are investigated e.g. in Tomii et
al. (2005), Takeuchi et al. (2006), Caprara et al. (2006), Kanai et al. (2011), Sato et al.
(2013), Binder et al. (2014), Cacchiani et al. (2014)). However, the methodology proposed
in this paper remains valid even if different types of objectives are proposed.

The second issue is organized in the construction of the MILP formulations via the al-
ternative graph model, the resolution of each formulation via a MIP solver, the investigation
of the resulting solutions via a post-processing analysis. The latter procedure assesses the
quality of each solution in terms of the various performance indicators.

The third issue is addressed via a useful benchmarking technique, named Data Envelop-
ment Analysis (DEA), for assessing the relative efficiency of the different solutions (Charnes
et al., 1978). It uses linear programming (LP) to determine the relative efficiencies of a set of
homogeneous (comparable) units. This is a non-parametric technique, used for performance
measurement and benchmarking the model solutions computed by the MIP solver (viewed
as units). The analysis is based on the determination of the technical efficiency frontier
as the frontier (envelope) representing the best performance and is made up of the units
(formulations) in the data set which are most efficient in transforming their inputs (compu-
tational resources) into outputs (optimization results). The interested reader is referred to
Charnes et al. (1994) and Cooper et al. (2007) for the fundament on DEA.

In DEA analysis, the performance of a formulation on a particular problem instance is
calculated by comparing it to the efficiency frontier directly determined from the data. An
efficiency score is thus computed for each solution based on its distance from the efficient
frontier determined by the envelope of data of all solutions. This analysis is based on the
BCC DEA model (Banker et al., 1984) which assumes variable returns to scale input/output
relationships, and produces, for each unit, an efficiency score and additional information.

For each inefficient unit, improvement targets are individuated using the concept of
composite unit. The attributes of a composite unit (which is a hypothetical efficient unit)
are determined by the projection of an inefficient unit to the efficiency frontier. The at-
tributes are formed as a combination of specific efficient units, in the proportions indicated
by the results of DEA analysis. Based on an analysis of the MIP solver solutions computed
for each formulation, we first classify the solutions into efficient and inefficient in terms of
the given set of performance indicators. Then, for all the inefficient solutions, we propose
an iterative procedure in order to improve their performance. This procedure, in a first step,
generates additional constraints and then calls for the MIP solver in order to solve the mod-
ified formulations. In a second step, a further DEA analysis is devoted to establish a new
efficiency ranking. The iterative procedure ends after a stopping criteria. The efficient solu-
tions obtained for the modified formulations and the values for each performance indicator
are given to the dispatchers for the final selection of the train schedule to be implemented.

The fourth issue is carried out on a busy and complex Dutch railway network. The
investigated network is a central part of the Dutch railway network, including the Utrecht
Central station area. This station area is the most complex in the Netherlands since the
station layout presents the largest amount of parallel tracks. Dense mixed (local and inter-
national) passenger and freight traffic traverses the network. In the problem formulation,
different train types are considered when modeling the objective function.

The computational experiments are based on the evaluation of several alternative prob-
lem formulations. Specifically, we study which formulations generate inefficient solutions
or can be modified, with the proper addition of specific constraints. This would quantify
the interplay and cross-performance of the different objective functions, and allows for an



efficient multi-criteria decision analysis.
This paper is organized as follows. Section 2 provides a description of the investigated

problem. Section 3 presents the studied formulations with a common solution space and
different objective functions and Section 4 the methodology proposed to evaluate the per-
formance of the best solutions provided by these formulations. Section 5 gives a description
of the computational analysis performed on real-world Dutch railway instances. Section 6
describes the paper conclusions and lines for further research.

2 Problem description

In its basic form a rail network is composed of stations, links, block sections and track-
circuits. For safety reasons, signals, interlocking and Automatic Train Protection (ATP)
systems control the train traffic by imposing a minimum safety separation between trains.
To this end, railway tracks are divided into block sections, which may host at most one train
at a time. A detailed description of different aspects of railway signalling systems and traffic
control regulations can be found e.g. in the handbook of Hansen and Pachl (2014).

A timetable describes the movements of all trains running in the network, specifying,
for each train, the planned arrival/passing times at a set of relevant points (such as stations,
junctions, and the exit point of the network). Train movements can be formally described as
follows. The passage of a train through a particular block section is named an operation i.
A route is an ordered sequence of operations to be processed during the train service. The
timing of a route specifies the start time ti of each operation.

Each operation requires a running time, which depends on the speed profile followed
by the train while traversing the block section. A speed profile is constrained by the rolling
stock characteristics (maximum speed, acceleration and braking rates), physical infrastruc-
ture characteristics (maximum allowed speed and signalling system) and driver behaviour
when approaching variable signals aspects. Safety regulations impose a minimum head-
way separation between the trains running in the network, which translates into a minimum
headway time between consecutive trains. Railway timetable design usually includes re-
covery times and buffer times between the train routes. The recovery time is an extra time
added to the travel time of a train between two stations, which corresponds to planning train
speed smaller than maximum; those times can be utilized in real-time to recover from de-
lays by running trains at maximum speed. Instead, the buffer is an extra time inserted in
the timetable between consecutive train paths to prevent or reduce the propagation of train
delays in the network.

Trains have planned stops at stations. The published stopping time of each train is named
dwell time. A train is not allowed to depart from a platform stop before the scheduled de-
parture time published in the timetable. Trains result in delay when arriving at the platform
later than their scheduled arrival time as planned in the timetable.

Timetables are designed to satisfy all traffic regulations. However, unexpected events
occur during operations. An entrance perturbation is a set of delayed trains at their entrance
in the network, due to the propagation of delays from previous areas. The latter delays are
called initial delays and can only be partially recovered by exploiting available recovery
times. The initial delays are used to compute the release time of each train, i.e., the expected
time the train enters the network under the current perturbed traffic conditions.

In disturbed operations, conflicting situations might be solved. A potential conflict arises
when two or more trains claim the same block section at the same time. A decision on the



train ordering has to be taken and one of the trains involved has to change running, departure,
and/or passing times according to the constraints of the signalling system.

A delayed train might cause many potential conflicts, as the available infrastructure has
very limited possibility for overtaking, normally only at major stations, thus many trains
might be slowed down or held since the subsequent block section is occupied by another
train and cannot be entered. This phenomenon is known as delay propagation; the related
propagated delays spreads the impact of a disturbance to other trains in the network, affect-
ing greatly traffic in time and space. In general, the main goal of real-time train scheduling
is to minimize train delays while satisfying traffic regulation constraints and guaranteeing
the compatibility with the actual position of each train.

2.1 Investigated performance indicators

There is no general agreement in the literature on which the objective functions should to be
adopted for formulating the real-time train scheduling problem. This problem copes with
temporary infeasibility by adjusting the schedule of each train, and the newly determined
schedule should optimize some performance measure, related to delay propagation. We
next describe some of the mostly used in literature, as previously introduced in Section 1:

• Tardiness is the difference between the estimated train arrival time and the scheduled
arrival time at a relevant point in the networks. This difference can be computed with
or without the so-called unavoidable delays, that are the initial delays that cannot
be recovered. The optimization problem with unavoidable delays is named the total
delay minimization, while the optimization problem without unavoidable delays is
named the consecutive delay minimization. The latter problem focuses on the delays
caused by the resolution of potential train conflicts only.

• Priority tardiness takes train classes into account, assigning suitable weights in the
tardiness objective function. Tardiness is a special case of priority tardiness in which
all trains have the same priority. However, setting different train weights in the objec-
tive function often means computing different optimal train schedules.

• Punctuality reports the number of trains that do not arrive at their final destination
within a given threshold. In our experiments we study the special case in which the
threshold is zero;

• Schedule deviation is computed to evaluate the difference between the off-line sched-
ule and the schedule computed in real-time. This is adopted in order to try to limit
the deviation from the off-line planned departure and arrival times. We observe that
tardiness is a special case of schedule deviation in which only delays linked to the due
dates are considered (early arrival and departure times are not penalized). However,
it is again often the case that different solutions are computed for these two objective
functions.

• Total completion is related to the arrival time of all trains at their destination.

• Travel time is a measure of the time spent by all trains in the system.

All indicators related to tardiness and punctuality measures can be computed either at
all stations or at end (destination) stations only, in terms of consecutive or total delays. In
general, we selected the above set of performance indicators since they are representative of



commonly used objectives in the literature and their optimization produces different train
schedules. However, these indicators do not represent an exhaustive set of practically rele-
vant objectives. Further research can be directed to evaluate combinations of the proposed
objectives or different sets of objectives.

2.2 Assumptions and limitations

We model the real-time train scheduling problem by introducing the following assumptions
and limitations that are the hypothesis at its basis:

• Fixed train speed profile: The computation of an optimized train schedule is based on
a fixed-speed model, that does not allow a dynamic adjustment of running and head-
way times. In other words, the fixed-speed model corresponds to a fixed speed profile
for each train, that does not consider the impact of braking and re-acceleration when
facing the yellow and red signal aspects of the Dutch signaling system. However,
the solutions computed for the fixed-speed model can be modified in a later stage as
described e.g. in D’Ariano et al. (2007B) and Corman et al. (2009A).

• Fixed train routing: Each train has a prescribed sequence of operations in the network,
which corresponds to a fixed routing. We fix a commonly used routing for each
train based on suggestions from the infrastructure managers. The combined train
scheduling and routing problem has been studied e.g. in Corman et al. (2010).

• Fixed release time: At the start time of the traffic optimization, the initial position of
each train in the network is a deterministic information computed and released by the
traffic controllers of the neighbouring dispatching areas. The coordination of multiple
dispatching areas has been investigated e.g. in Corman et al. (2014A).

• Fixed dwell time: The dwell time is considered as a deterministic information. The
impact of variable dwell times has been assessed e.g. in Larsen et al. (2014).

• Interlocking system: Track sections in complex interlocking areas are aggregated into
station routings with a good approximation of sectional-release route-locking opera-
tions, as shown in Corman et al. (2009B, 2011B).

• Rolling-stock re-utilization: The constraints on the re-use of the same rolling stock for
different train trips are ignored in this work. The modeling of this type of constraints
has been proposed e.g. in D’Ariano and Pranzo (2009).

The above assumptions and limitations do not impact the general validity of the method-
ology provided in this paper. However, the train schedules computed by the scheduler would
need to be adjusted before final implementation. We also observe that introducing additional
constraints would increase the complexity to compute a feasible train schedule, while intro-
ducing additional variables would increase the time to compute the optimal solution.

3 Mathematical model

The train scheduling problem can be modelled as a job shop scheduling problem with ad-
ditional constraints, in which a job is a sequence of operations performed by a train while
respecting all operational constraints. We next represent it via a MILP based on the alter-
native graph model of Mascis and Pacciarelli (2002). Let G = (N,F,A) be the alternative
graph composed of the following sets:



• N = {0, 1, ..., n, ∗} is the set of nodes, where nodes 0 and ∗ represent the start and
the end operations of the schedule, while the other nodes are related to the operations
in the schedule. To each node i ∈ N is associated a start time ti of operation i. By
definition, the start time of the schedule is a known value, e.g. t0 = 0, and the end
time of the schedule is a variable t∗.

• F is the set of fixed directed arcs that model the sequence of operations to be executed
by trains. Let σ(i) be the operation succeeding i, each fixed directed arc (i, σ(i)) ∈
F has a length wFiσ(i), representing the minimum running, dwell or release time of
operation i before operation σ(i) can begin, such that and tσ(i) ≥ ti + wFiσ(i). In
particular, the release times are represented by an arc (0, i) ∈ F .

• A is the set of alternative pairs of directed arcs that model the train sequencing de-
cision when a potential conflict arises. To each alternative pair ((i, j), (h, k)) ∈ A
belongs two arcs whose lengths are wAij and wAhk. The alternative arc length wAij rep-
resents a minimum headway time between the start time ti of i and the start time tj
of j. In particular, wAij (wAhk) can be sequence-dependent.

A selection S is a set of alternative arcs, at most one from each pair. A solution is a complete
selection Sc, where an arc for each alternative pair of A is selected, and it is feasible if the
connected graph (N,F, Sc) has no positive length cycles. Given a feasible schedule Sc, a
timing ti for operation i is the length of a longest path from 0 to i (lS

c

(0, i)).
The alternative graph can be viewed as a disjunctive program. We let X be the set:

X =


t ≥ 0 x ∈ {0, 1}|A| :
tσ(i) − ti ≥ wFiσ(i) ∀(i, σ(i)) ∈ F, σ(i) 6= ∗
tj − ti +M(1− xijhk) ≥ wAij
tk − th +Mxijhk ≥ wAhk

∀((i, j), (h, k)) ∈ A

 (1)

The variables of the problem are the following: |N | real variables ti associated with
the start time of each operation i ∈ N and |A| binary variables xijhk associated with each
alternative pair ((i, j), (h, k)) ∈ A. The variable xijhk is 1 if (i, j) ∈ S, and xijhk = 0 if
(h, k) ∈ S. The constant M must be a sufficiently large number.

In the following subsections, a set of MILP formulations with different objective func-
tions is presented and an illustrative numerical example is reported.

3.1 Formulations

The modelling of the different objective functions requires the introduction of due date
constraints in the MILP formulation of Section 3. In order to measure the delay of a train
we use due date arcs in the alternative graph model. In case of total delays, a due date arc
(k, ∗) ∈ F is used to measure the train delay with respect to the time at which the operation
k is scheduled, i.e. the arrival of a train at a scheduled stop in a station or its scheduled exit
from the network. When the goal is the minimization of consecutive delays (delays caused
by the real-time train scheduling decisions necessary to solve the potential train conflicts
in the network), due date arcs measures the delay with respect to the time at which the
operations are scheduled but without considering the initial delays.

The length dk of a due date arc (k, ∗) ∈ F is next described. We let k be the arriving of
a train at a relevant location where the delay is measured, δk its scheduled (off-line) arrival



time and τk its earliest possible arrival time. In case the train has no intermediate stops with
scheduled (off-line) arrival and departure times, the latter time is computed as the sum of
the release time of the first operation of the train plus the minimum running and dwell times
in all block sections processed by the train before operation k. The other case requires to
take the maximum between the scheduled departure time and the earliest possible arrival
time at each intermediate stop computed as for the previous case. The computation of the
maximum between those two quantities is necessary, since the trains cannot depart before
their scheduled departure time.

When we fix the due date dk = δk, we compute a feasible real-time train schedule and
measure the total delay of the train at operation k as max{0, tk − dk}, in which tk is the
start time of operation k, i.e. the actual arrival time in the real-time train schedule. When
we fix the due date dk = max{τk, δk}, the consecutive delay of the train at operation k can
be computed as max{0, tk − dk}, while its initial delay is max{0, τk − δk}.

In what follows, we model MILP formulations with different objective functions, and
we study the performance indicators introduced in Section 2.

The MAXIMUM TARDINESS - MT (2) minimizes the maximum (consecutive or
total) delay at all relevant locations.

min t∗
s.t.
t∗ − tk ≥ −dk ∀(k, ∗) ∈ F
{x, t} ∈ X

(2)

The CUMULATIVE TARDINESS - CT (3) is the minimization of the sum of (con-
secutive or total) delays at all relevant locations:

min
∑|K|
k=1 zk

s.t.
zk − tk ≥ −dk ∀(k, ∗) ∈ F
zk ≥ 0 ∀k ∈ K
{x, t} ∈ X

(3)

where K ⊂ N is the set of nodes from which a due date arc starts and zk is a real positive
variable associated with the due date arc (k, ∗) ∈ F .

A variant of cumulative tardiness is to compute the (consecutive or total) delay of each
train with respect to the due date time of its last operation only. The last operation is asso-
ciated either to the exit from the network or to a scheduled stop at the ending station. The
resulting formulation is named CUMULATIVE TARDINESS END - CTE (4):

min
∑|E|
e=1 ze

s.t.
ze − te ≥ −de ∀(e, ∗) ∈ F
ze ≥ 0 ∀e ∈ E
{x, t} ∈ X

(4)

where E ⊆ K is the set of nodes from which the due date arc associated with the last
operation of each train starts and ze is a real positive variable associated with the due date
arc (e, ∗) ∈ F .



We now consider a punctuality measure by counting the number of trains that are de-
layed (i.e. have a consecutive or total delay) with respect to a threshold P on the due date
time related their last operation. Considering P = 0, we call it PUNCTUALITY - P0 (5):

min
∑|E|
e=1 ve

s.t.
Mve − te ≥ −de − P ∀(e, ∗) ∈ F
v ∈ {0, 1}|E|
{x, t} ∈ X

(5)

where ve is a binary variable indicating if a train is delayed (ve = 1) or not (ve = 0).
In some approaches different classes of trains have different priorities (see e.g. Carey

and Kwiecinski (1995) and Gorman (2009)), considering the fact that the same delay could
have a different cost impact depending on the train class, e.g. international passenger, local
passenger or freight trains. The next two formulations take into account priorities.

The PRIORITY CUMULATIVE TARDINESS END - PCTE (6) is the minimization
of the sum of weighted delays with respect to the due date time of the last operations only.
The weights depend on the train class:

min
∑|E|
e=1 feze

s.t.
ze − te ≥ −de ∀(e, ∗) ∈ F
ze ≥ 0 ∀e ∈ E ⊂ K
{x, t} ∈ X

(6)

where fe is the cost associated with the due date arc (e, ∗) ∈ F .
The PRIORITY CUMULATIVE TARDINESS END COST - PCTEC (7) extends

the previous formulation with the introduction of a threshold to the delay of each train and
a related penalty cost:

min
∑|E|
e=1(feze + ceve)

s.t.
ze − te ≥ −de ∀(e, ∗) ∈ F
ze ≥ 0 ∀e ∈ E
Mve − te ≥ −de − ue ∀(e, ∗) ∈ F
v ∈ {0, 1}|E|
{x, t} ∈ X

(7)

where fe is the weight associated with the due date arc (e, ∗) ∈ F , ue the delay threshold
related to operation e, ce the related penalty cost and ve is a boolean variable indicating if
the associated train is delayed (ve = 1) or not (ve = 0) with respect to the threshold.

We consider three different classes of passenger trains: high speed, intercity and local.
For all due dates belonging to the operations of each train class, we assign a weight and
a threshold. In particular, high speed trains have fHS = 20/3600 and cHS = 30 minutes,
intercity f IC = 10/3600 and cIC = 2 hours, local trains fL = 5/3600 and cL = 2 hours.
Those thresholds correspond to the minimum time resulting in a monetary compensation
for passengers.

All the previous formulations take into account train delays. Another interesting formu-
lation is related to the assessment of positive and negative deviations. The two deviations



correspond to study how the new schedule differs from the off-line schedule. Clearly, ahead
trains have a different cost impact than delayed trains, so different costs are associated
in objective function with the two kinds of deviation. The following formulation, named
SCHEDULE DEVIATION - SD (8), measures the positive and negative deviations with
respect to due date times and the positive deviations with respect to release times:

min
∑|K|
k=1(azk − bpk) +

∑|R|
r=1 aqr

s.t.
zk − tk ≥ −dk ∀(k, ∗) ∈ F
zk ≥ 0 ∀k ∈ K
pk − tk ≤ −dk ∀(k, ∗) ∈ F
pk ≤ 0 ∀k ∈ K
tr − qr ≤ wsr ∀(0, r) ∈ F
qr ≥ 0 ∀r ∈ R
{x, t} ∈ X

(8)

where a and b are the costs associated with the kind of deviation considered (in our experi-
ments a = 1/180 and b = 1/360), K ⊂ N is the set of nodes from which due date arcs start,
R ⊂ N is the set of nodes from which release arcs start, zk (pk) is a real positive (negative)
variables associated with each due date (k, ∗) ∈ F , and qr is a real variable associated with
each release arc (0, r) ∈ F .

The TOTAL COMPLETION - TC (9) models the minimization of the sum of the
arrival times of all trains at their exit from the network. This objective function can be
viewed as the maximization of throughput. This formulation requires to fix dk = 0 ∀k ∈ K.

min
∑|E|
e=1 ze

s.t.ze − te ≥ 0 ∀(e, ∗) ∈ F
ze ≥ 0 ∀e ∈ E
{x, t} ∈ X

(9)

We also consider the minimization of the travel time of all trains in the network as a surro-
gate for the minimization of the energy consumption. This formulation is named TRAVEL
TIME - TT (10):

min
∑|G|
g=1(t

g
l − t

g
f )

s.t
{x, t} ∈ X

(10)

where G is the set of trains in the network, tgf and tgl and the start times of the first and
the last operations (f and l) in the schedule for a train g, and (tgl − t

g
f ) is the travel time

spent by train g in the network.
We are interested in minimizing the above-presented objective functions, both in case

of consecutive and total delays. However, the distinction between the two cases only stands
for formulations (2) and (5), for which the following four distinct cases must be considered:
MT CONSECUTIVE (MTC) and MT TOTAL (MTT ) for formulation (2); P0 CONSEC-
UTIVE (P0C) and P0 TOTAL (P0T ) for formulation (5). Regarding the formulations (3),
(4), (6), (7), (8), (9) and (10), a distinction between the consecutive and total delay mini-
mization is not necessary, since the only difference in the objective function value would be
a constant factor (i.e. the unavoidable delay).



3.2 A numerical example

This section illustrates an example of traffic situation on a network of six block sections
(numbered 1–6), three of which (3, 4, 5) can be traversed in both directions, and a station
(Q) with a single stop platform. In Figure 1, we have 4 trains (named A,B,C,D): trains
A and B follow the same route (even if they enter the area from different entrance points)
traversing resources 1, 2, stopping at station Q, and traversing resource 3; train C follows
the route traversing resources 4, 5, 3; train D follows the route traversing resources 3, 5, 4.

Figure 1: Example with four trains running in a small network

Table 1 presents the numerical data of the example. Row 1 specifies which train the
value refers to, Row 2 the release time at which each train enters the network, Rows 3-7
the minimum running time on the various block sections, Row 8 the minimum dwell time
in station Q, Row 9 the minimum departure time from station Q, Rows 10-11 the due date
times of arrival at stationQ for the total and consecutive delay minimization cases, Rows 12-
13 the due date times of exiting the network for the total and consecutive delay minimization
cases. All trains must keep a minimum headway time of 1 unit on all resources.

Table 1: Numerical Example : Data
Train A B C D
Release Time Entrance 60 45 45 60
Running Time Block Section 1 10 10
Running Time Block Section 2 10 10
Running Time Block Section 3 15 15 15 5
Running Time Block Section 4 25 15
Running Time Block Section 5 25 15
Dwell Time Station Q 20 20
Release Time Station Q 70 110
Total Due Date Time Station Q 40 65
Cons. Due Date Time Station Q 80 65
Total Due Date Time Exit 105 125 110 45
Cons. Due Date Time Exit 115 125 110 95

For sake of simplicity, the illustrative example only considers four formulations of Sec-
tion 3: MTC , MTT , P0T , PCTE with wc = 10 and wa = wb = wd = 1. Table 2 reports on
the four optimal solutions obtained by the optimization solver for each formulation. Row 1



indicates which objective function has been minimized, Row 2 the total computation time
(in seconds), Rows 3-4 if the solution is optimal (1) or not (0) and the relative gap of opti-
mality (in percentage), Rows 5-8 the value for each performance indicator (in bold the one
optimized in the corresponding formulation), Row 9 the train ordering in each solution.

Table 2: Numerical Example : Results
Formulation MTC MTT P0T PCTE
Comp. Time (s) 0.01 0.01 0.01 0.01
Num. Opt. Sol. 1 1 1 1
Opt. Gap % 0 0 0 0
MTC 51 52 67 63
MTT 101 52 117 101
P0T 3 4 3 3
PCTE 106 541 110 106
Trains Orders C-D-B-A D-A-B-C C-D-A-B C-B-D-A

The optimal resolution of each formulation gives a different solution and no solution
outperforms the others in terms of all performance indicators. The four solutions should
therefore be given to the dispatcher. But how can a subset of solutions be selected? And,
for each problem instance, how can the formulations be combined in order to obtain better
quality solutions (if any exists)?

The following section proposes a new methodology for the systematic evaluation of
performance of the different formulations and for the enhancement of their performance.

4 Performance evaluation methodology

The approach proposed in this work focuses on identifying relatively efficient formulations
among a set of available formulations for the real-time train scheduling problem. The core
of a new Decision Support System (DSS) is developed for this purpose. In addition, the
proposed methodology enables the possibility to enhance the available formulations on the
basis of an efficiency assessment conducted applying an iterative procedure based on DEA.
We next describe the DSS and the developed procedure.

4.1 Decision support system

Each formulation is considered as a decision-making unit (DMU) with multiple inputs and
outputs. Then, DEA is used to evaluate the relative efficiency of the different optimization
formulations. The DEA-based approach differs from methods based on statistical tests in
that multiple inputs and outputs are simultaneously considered in an integrated framework
for the evaluation of unit efficiency. In addition, the proposed approach gives a support in
order to improve the configurations showing inefficiency. In fact, besides the identification
of relatively efficient and inefficient DMUs (i.e. formulations with respect to a given in-
stance) and the efficiency ranking of the formulations under study, DEA helps to identify
also the sources and the level of inefficiency for each of the considered inputs and outputs.
This translates into an iterative procedure for the generation of improved formulations via
the addition of specific constraints on a number of inefficient performance indicators.



Figure 2: The general scheme of the DSS

Figure 2 describes the DSS scheme, which it is applied to a set of formulationsF1, ..., Fq .
Each formulation Fi is characterized by a set of inputs Ii (representing the use of resources)
and a set of outputs Oi (representing the achieved results) used by the DEA Module to
elaborate the efficiency assessment. In the DEA methodology, the measurement of relative
efficiency in the presence of multiple inputs and outputs is addressed by assigning weights
so that the overall relative efficiency score is actually a ratio of the weighted sum of the
outputs to the weighted sum of the inputs. The result of this analysis includes: a) a relative
efficiency measure for each DMUs; b) the individuation of a set of inefficient DMUs; c) the
determination of a virtual composite efficient DMU for each inefficient DMU; d) indications
on how to drive improvements for the inefficient DMUs.

These results are the inputs for another DSS module, namely the Formulation En-
hancement Module which suggests to modify the set of constraints of the evaluated for-
mulations in order to improve their performance. The set of DMUs is updated with the new
enhanced formulations and proposed to the DEA Module for a new efficiency analysis. At
end of this iterative process, a final set of enhanced formulations Fe1, ..., Feq and the corre-
spondent solutions Se1, ..., Seq are returned by the DSS. A detailed description of the DEA
literature, of the DEA model adopted for the DEA Module and of the phases of the overall
process of Figure 2 is the argument of the following sections.

4.2 DEA evaluation

Setting the best formulations in use should be considered as an integral part of an ad-
vanced optimization system and plays a crucial role in the success of a modern planning
and scheduling system. For the sake of simplicity and without loss of generality, we con-
sider a formulation of high quality if it effectively and efficiently solves the problem of
interest. To help to decide efficient configurations of optimization approaches, the literature
(see e.g. Cooper et al. (2007), Lu and Yu (2012), Lu and Wu (2014)) recently proposed to



use the well-known DEA method, which is based on LP and has been widely adopted in
the non-parametric performance evaluation of several systems and organizations. Previous
DEA-based studies measured empirically the production efficiency of a set of DMUs with
multiple inputs and outputs. Also, the feature of handling the multiple inputs and outputs
of DMUs makes DEA an attractive alternative for evaluating the algorithmic performance
of different algorithmic configurations, because researchers and practitioners may desire to
compare several inputs and outputs at the same time in order to assess the relative efficiency
of each algorithm or configuration.

Given selected inputs and outputs, DEA analysis requires to handle a set of LP prob-
lems which can be solved by standard optimization solvers. Other empirical techniques
for analysis of the performance of algorithms (typically based on design of experiments
(DOEs), analysis of variance (ANOVA), and paired statistical tests) are also based on stan-
dard solvers and help to individuate best configurations arriving at conclusions that have
a statistical meaning. However, these techniques are often based on parametric methods
separately and sequentially compared. In general, conducting the analysis could become
difficult when the numbers of distinct parameter values and evaluation criteria are large.

The proposed DEA approach differs from classical empirical analysis methods in that
multiple inputs and outputs of the unit configurations under evaluation are simultaneously
taken into account in an integrated framework. This paper considers each formulation as a
DMU and applies DEA to assess the relative efficiency of a set of formulations tackling the
same optimization problem under investigation.

Different DEA models have been proposed in the literature (see e.g. Charnes et al.
(1994), Cooper et al. (2007)). Based on the assumption of constant returns-to-scale (CRS),
Charnes et al. (1978) developed a DEA model using LP, named the CCR (Charnes Copper
Rhodes) model. That model is based on the choice of input and output weight for each
DMU. An optimal solution to the CCR model assigns the input and output weights which
maximize the efficiency of the evaluated DMU, relative to the other DMUs. The model
is solved in turn once for each DMU, to obtain the relative efficiencies of all the DMUs
under evaluation. To relax the strict CRS assumption, Banker et al. (1984) proposed a
generalization of the CCR model named the BCC model, which allows variable returns-to-
scale (VRS) on production frontiers. Both CCR and BCC models can be adapted to measure
the relative efficiency of different unit configurations.

Lu and Yu (2014) adopted the CCR model of DEA to evaluate relative efficiencies of
a set of algorithms for a variant of the vehicle routing problem. Dellino et al. (2009) use
the same approach in the configuration of a metamodel-assisted engineering design opti-
mization. The CCR model is often criticized due to the assumption of CRS, which might
not always hold to the inputs to and/or outputs from an algorithm for solving optimiza-
tion problems. For instance, more computational time for executing an algorithm does not
guarantee to obtain a better objective value. In the evaluation of algorithmic efficiency, Lu
and Wu (2014) applied the BCC model which allows VRS on production frontiers. Their
work shows how the relative efficiency of each configuration can be determined using DEA,
helping to easily determine the best configuration or the set of efficient configurations of an
algorithm. In addition, it compares the evaluation results of the CCR and BCC models
for determining efficient algorithmic configurations. In general, BCC seems to be more
adequate for the decision-maker who needs to analyze the performance of optimization
approaches, to identify efficient unit configurations, to rank them effectively, and to give
indications on how to improve inefficient cases.



4.3 The adopted DEA model

The CCR model (by Charnes et al. (1978)) is considered as the origin of many follow-
ing ideas and models in DEA literature. The mathematical formulations and summaries
adopted in this paper are based on Cooper et al. (2007). We suppose that there are q DMUs
representing q different optimization problem formulations: DMU1, DMU2, . . . , DMUq .
Suppose there are m inputs and s outputs for each one of them. For DMUj the inputs
and outputs are represented by (w1j , w2j , . . . , wmj) and (y1j , y2j , . . . , ysj), respectively.
For each DMUo, DEA basically tries to maximize the ratio θo representing the efficiency,
according to the following fractional model:

max θo =
(u1y1o+...+usyso)

(v1w1o+...+vmwmo)

s.t.
(u1y1o+...+usyso)

(v1w1o+...+vmwmo)
≤ 1

v1, v2, ..., vm ≥ 0;u1, v2, ..., us ≥ 0

(11)

For each DMU involved in the performance evaluation process, DEA provides an efficiency
score between 0 and 1. This efficiency score for a DMU is determined by computing the
ratio of cumulative weighted outputs to cumulative weighted inputs for it. DEA enables
variable weights, which are calculated in such a way that the efficiency score for the DMU is
maximized. For a DEA analysis with q different DMUs, q different optimization problems
are solved to compute the efficiency scores of each of the DMUs. The basic (fractional)
formulation (11) can be easily transformed into a LP model, while the input and output
data can be arranged in matrix notation W and Y , respectively. Based on these input and
output matrices, the DEA model can be rewritten in the following envelopment form which
is expressed with a variable θ and a non-negative vector of h = (h1, ..., hq)

T :

min θ
s.t.
θwo −Wh ≥ 0
Y h ≥ yo

h ≥ 0

(12)

In model (12), the objective is to guarantee at least the output levels expressed by yo of
DMUo in all dimensions while reducing the input vector wo proportionally as much as
possible. An efficient DMUo has a θo equal to 1, while for an inefficient DMUo, its
reference set RSo is defined as follows: RSo = {j|h∗j > 0}(j = 1, . . . , q).

The rationale behind DEA technique is that if a given DMU is capable of producing a
level of outputs using a certain amount of inputs, then other DMUs should also be able to
do the same if they were to operate efficiently. The DMUs can then be combined to form a
target DMU with composite inputs and composite outputs. Such an unit does not necessarily
exist and it is typically indicated as virtual composite DMU (DMUV C). The heart of the
analysis lies in finding the best virtual unit for each real DMU. IfDMUV C is better than the
original DMU under study by either making more output with the same input or making the
same output with less input then the original DMU is inefficient. Even more importantly,
considering the envelopment form, at the optimum, the constraints give indication about
both the input excesses and the output shortfalls, in such a way an inefficient DMU can be



improved correspondingly. The reference set allows to determine the DMUV C obtained as
a linear combination of the elements in RSo using h∗ as coefficients.

The presented CCR models deal with trying to reduce input variables while attaining at
least the provided output levels. There is another type of model aiming to maximize output
levels while spending no more than existing resources or inputs. This kind of models is
referred as output-oriented. A CCR output-oriented model is formulated (in its envelopment
form) as follow: In DEA, θ∗ indicates the input reduction rate whereas η∗ represents the
output enlargement rate (Cooper et al., 2007). It is clear that the less the η∗ value, the more
efficient the DMU, or vice versa. In order to obtain an efficiency score of between 0 and 1
and to relate the efficiency scores with the input oriented model, 1/η∗ is used to express the
efficiency score of the DMU in an output oriented model.

The model orientation does not change the set of efficient DMUs; however the possible
improvements and the composite virtual DMUs are calculated with different h values. The
CRS assumption of CCR models typically is oversimplified for several real world prob-
lems and specifically for optimization approaches. In fact, in the practice of algorithmic
design it is difficult to obtain an increase/decrease in outputs proportional to an augmenta-
tion/reduction in input variables. To this aim, the BCC model firstly proposed by Banker et
al. (1984)) allows the consideration of more useful VRS. The BCC model differs from the
presented CCR model for a convexity condition in its constraints. Moreover, in order to an-
alyze the performance of different formulations, the output-orientation appears to be more
adequate. We adopt the following envelopment form, where e indicates the unit vector:

max η
s.t.
wo −Wh ≥ 0
ηyo − Y h ≤ 0
eh = 1
h ≥ 0

(13)

In order to prepare data for the DEA analysis proposed in this paper, the DSS scheme con-
tains a pre-processing phase based on Sarkis (2007), including scaling and normalization
data and a correlation analysis.

4.4 Formulation enhancement procedure

For the real-time train scheduling problem under study, each considered formulation Fi is
associated to a DMU in the DEA analysis. The set of inputs Ii associated to a Fi is limited to
the computation time, while the set of outputs Oi includes: a) the value of the performance
index related to the best solution Si attained by Fi; b) the gap of optimality showed by Fi; c)
the optimality of the solution Si (through a binary index); d) the q−1 evaluations of Si with
the performance indicators (i.e. objective functions) of formulations Fj with j 6= i. The
DEA analysis gives for each DMU (i.e. each formulation Fi) an assessment of its relative
efficiency represented by η (or θ). If Fi is not fully efficient, the method individuates a
reference set RSi of efficient DMUs which can be used to obtain a virtual composite unit
as a benchmark for Fi. This DMUV C is determined as a linear combination of the units
in RSi, being h∗ the vector of coefficients. In more detail, this linear combination involves
the outputs of the reference being yVC = h∗TY .



For each inefficient Fi a formulation enhancement procedure is executed. This proce-
dure compares each output of Fi (i.e. yi = (y1i, y2i, . . . , ysi)) with the correspondent out-
put of the DMUV C and individuates output improvements to drive Fi towards efficiency.
The output improvements refer to the evaluation of Si with the different performance indi-
cators and are used to modify Fi by introducing constraints on the inefficient performance
indicators. Each additional constraint requires to Fi an improvement with respect to a spe-
cific performance index (i.e. to increase the correspondent output). These constraints are
determined by all the relations in yi ≤ yVC violated in the evaluations of the solution Si
(i.e. the train order obtained by Fi) with respect to the performance indicators of Fj with
j 6= i. The procedure is executed iteratively by updating at each step the set of formula-
tions via the improvements suggested by the DEA analysis. The stopping criteria is reached
either when all DMUs are fully efficient or when inefficient DMUs are not improvable.

4.5 Numerical example

We use the example of Section 3.2 to better explain the DSS work. We evaluate the four
formulations with the DEA Module, considering inputs and outputs according to Section
4.4. As a result, the solutions found by P0T and PCTE are shown to be inefficient and the
DMUV C is represented by MTC in both cases (i.e. the reference set contains MTC only).

Comparing the values of each performance indicator, the solution resulting from MTT is
efficient, since MTT is by far the most difficult indicator to take into account indirectly. The
Formulation Enhancement Module suggests the following additional constraints: PCTE
is required to add a constraint regarding MTC (≤ 51); and P0T three constraints regarding
MTC (≤ 51), MTT (≤ 101) and PCTE (≤ 106). The solutions returned by the enhanced
PCTE and P0T formulations are the same found by MTC . All four formulations are now
efficient and the final solutions presented by the DSS to the dispatcher are the trains orders
of MTC and MTT solutions.

5 Computational experiments

This section presents the computational results on the formulations and DEA techniques
introduced in this paper. The tests have been performed in a laboratory environment on 30-
minute instances of a Dutch railway network. The optimal MILP solutions are computed
via the solver IBM ILOG CPLEX MIP 12.0. The experiments are executed on a workstation
Power Mac with processor Intel Xeon E5 quad-core (3.7 GHz), 12 GB of RAM.

5.1 Test case description

The infrastructure considered is a large part of the railway network in the east of the Nether-
lands. As shown in Figure 3, the network is composed of four major stations with complex
interlocking systems and dense traffic: Utrecht Central, Nijmegen, Arnhem and Den Bosch.
Other 36 minor stations in the network are also considered in our model.

The two main traffic directions are served by the line between Utrecht and Arnhem
(towards Germany) and the line between Utrecht and Den Bosch (from Amsterdam towards
Eindhoven and the southern part of the country). The network comprises a combination of
single/double-tracks of different length, with a maximum distance between area borders of
around 300 km. In total, there are more than 1000 block sections and 200 stopping locations



Figure 3: The considered Dutch railway network

(i.e. platforms actually used at stations).
For the computational experiments, we use the 2008 timetable that is cyclic with a cycle

length of one hour, though most intercity and local trains services operate up to 4 times per
hour per direction. Figure 4 gives a graphical view of line frequencies, each thick line (solid
or dotted) represents a train line with 4 trains running per hour per direction, each thin line
represents a train line with 2 trains running per hour per direction.

The real-life stochasticity of train operations can be modeled by Weibull distributions.
In this work, a random variation of the release time is applied to all trains in the network,
and initial delays are generated for multiple trains. From the Weibull distribution in Cor-
man et al. (2011B), two sets of entrance perturbation instances are generated: 5 “normal”
perturbations that corresponds to the scale, shift and shape parameters; 5 “increased” per-
turbations that are obtained by using the same scale and shift parameters and doubling the
shape parameter. The latter perturbations result in an increased variability of train delays.

For each entrance perturbation, we deal with two types of instances: 30-minute (60-
minute) traffic optimization with 99 trains (154 trains). In the latter instances the following
trains traverse the network: 80 local trains, 70 intercity trains and 4 high speed trains. For
the latter instances, we use CPLEX with one-hour computation time in order to compute
near-optimal train schedules.



Figure 4: Line frequencies on the network (source: treinreiziger.nl)

5.2 Performance evaluation

Tables 3 and 4 report on the first and last iterations of the DEA framework for the 30-
minute and 60-minute instances, respectively. In each table, we report 110 runs of CPLEX
per iteration: the 10 entrance perturbation instances of Section 5.1 multiplied by the 11
formulations of Section 3.1. Specifically, each row of the tables presents average results on
the 10 entrance perturbation instances.

The results of the first/last iterations are provided in Tables 3 and 4 with a 14-row in-
formation: Row 1 gives the average computation time (in seconds), Row 2 the number of
problems that were solved to optimality by CPLEX, Row 3 the average optimality gap (in
percentage), Rows 4-14 the average value of each performance indicator. For each column
(i.e. for each formulation), the average value of the optimized performance indicator is
highlighted in bold, while the improvements of the last iteration versus the first iteration are
highlighted in italic.

For the 30-minute instances of Table 3, CPLEX takes on average up to 15 seconds to
compute the optimal solution for each formulation and the DSS requires at most 3 iterations
in order to converge, i.e. no more constraints can be added to improve efficiency. Overall,
the DSS requires at most 3 iterations in order to converge, and is therefore very quick to
compute efficient solutions. Regarding the 60-minute instances of Table 4, CPLEX is not
always able to compute an optimal solution within 1 hour of computation, except for MTC ,
MTT and P0T . For the latter formulations, the value of the lower bound is closer to the



Table 3: Computational results for 30-minute instances
Formulation MTC CT CTE P0C PCTE PCTEC SD TC TT MTT P0T

First Iteration
Comp. Time (s) 3.3 11.9 8.9 5.3 9.1 7.6 9.1 7.3 14.0 1.8 3.5
Num. Opt. Sol. 10 10 10 10 10 10 10 10 10 10 10

Opt. Gap % 0 0 0 0 0 0 0 0 0 0 0
MTC 220 290 245 530 278 284 287 264 264 414 604
CT 4485 2486 3032 5519 3668 3696 2568 3244 3237 7537 9300

CTE 1559 1116 954 1735 1058 1058 1207 1032 1032 2481 2917
P0C 16.9 14.5 14.5 11.7 14.6 14.6 14.7 15.0 15.0 18.3 16.5

PCTE 3.4 2.8 2.3 3.7 2.2 2.2 3.1 2.5 2.5 5.0 6.2
PCTEC 3.4 2.8 2.3 3.7 2.2 2.2 3.1 2.5 2.5 5.0 6.2

SD 192 171 179 203 185 185 170 181 181 222 242
TC 513825 513449 513320 514166 513440 513440 513606 513247 513247 514716 515084
TT 91422 91046 90917 91763 91037 91037 91203 90844 90844 92313 92681

MTT 881 917 881 1011 893 893 917 881 881 872 1033
P0T 70 70 70 69 70 70 70 70 70 71 66

Last Iteration
Comp. Time (s) 3.4 11.9 8.9 5.3 9.1 8.3 9.1 7.3 14.3 2.9 3.5
Num. Opt. Sol. 10 10 10 10 10 10 10 10 10 10 10

Opt. Gap % 0 0 0 0 0 0 0 0 0 0 0
MTC 220 290 245 530 278 275 287 264 263 313 604
CT 4381 2486 3032 5519 3668 3629 2568 3244 3229 6125 9300

CTE 1512 1116 954 1735 1058 1058 1207 1032 1032 2051 2917
P0C 16.5 14.5 14.5 11.7 14.6 14.6 14.7 15.0 15.0 16.5 16.5

PCTE 3.4 2.8 2.3 3.7 2.2 2.2 3.2 2.5 2.5 4.2 6.2
PCTEC 3.4 2.8 2.3 3.7 2.2 2.2 3.2 2.5 2.5 4.2 6.2

SD 191 171 179 203 185 184 170 181 181 208 242
TC 513780 513449 513320 514166 513440 513438 513606 513247 513247 514350 515084
TT 91377 91046 90917 91763 91037 91035 91203 90844 90844 91947 92681

MTT 881 917 881 1011 893 893 917 881 881 872 1033
P0T 70 70 70 69 70 70 70 70 70 70 66

value of the optimal solution compared to the other formulations.
When looking at the number of efficient solutions for each instance, the DEA Module

delivers, on average, 8 different efficient solutions. The Formulation Enhancement Mod-
ule is able to improve several performance indicators, but some other indicators decrease
their performance, thus yielding to trade-off solutions. In some particular cases, the addi-
tion of constraints deteriorates the performance of some formulation in terms of its objective
function, because the set of feasible solutions decreases for the enhanced formulation and
the optimal solution of the original formulation is discarded by the solver.

Table 5 reports average information on the DEA evaluation performed by the DSS.
The evaluation is given both for 30-minute and 60-minute instances. Each row presents
the average results obtained on the 10 entrance perturbation instances. Row 1 gives the
cumulative number of instances for which each formulation results to be efficient at the first,
second and third iterations; Row 2 counts how many times a DMU is in some reference
set RSi, i.e. how many times it has been used in a DMUV C (at first, second and third
iterations); Row 3 returns the average number of constraints added to each formulation at
each iteration.

From Table 5, we have the following observations. The efficiency found at the first
iteration is often improved at the next iterations (4 formulations are improved for the 30-
minute instances and 5 formulations are improved for the 60-minute instances). This is a



Table 4: Computational results for 60-minute instances
Form. MTC CT CTE P0C PCTE PCTEC SD TC TT MTT P0T

First Iteration
Comp. Time (s) 914.4 1022.6 1182.3 411.8 924.1 900.6 1376.9 874.8 1160.9 85.0 365.5
Num. Opt. Sol. 10 8 7 9 8 7 7 8 7 10 10

Opt. Gap % 0 10.3 18.9 0.4 11.7 11.1 11.4 0 0.3 0 0
MTC 313 389 418 840 499 497 441 424 427 595 733
CT 14789 7760 10079 16556 12495 12085 8368 9971 10143 21393 24697

CTE 5178 3081 2619 5484 2981 2906 3406 2673 2699 6121 7115
P0C 37.0 28.6 28.1 22.6 29.3 28.9 29.4 28.4 28.9 37.8 33.6

PCTE 12.2 8.6 6.8 14.5 6.1 6.0 9.5 6.9 6.8 13.2 15.6
PCTEC 12.2 8.6 6.8 14.5 6.1 6.0 9.5 6.9 6.8 13.2 15.6

SD 437 370 399 458 423 419 371 397 399 505 539
TC 965034 962888 962433 965175 962840 962813 963308 962327 962384 965918 966716
TT 186553 184407 183952 186695 184360 184332 184827 183846 183903 187437 188235

MTT 1017 1034 1028 1349 1057 1057 1088 1039 1039 1004 1221
P0T 112 109 109 107 109 110 110 109 109 112 104

Last Iteration
Comp. Time (s) 920.5 1238.8 1243.9 416.4 1644.1 930.3 1850.2 1025.8 918.7 121.6 365.5
Num. Opt. Sol. 10 8 5 8 8 7 6 7 7 10 10

Opt. Gap % 0 12.2 20.4 2.7 11.2 11.8 7.9 0 0.2 0 0
MTC 313 383 403 734 498 491 435 425 415 553 733
CT 14638 7894 10154 15465 12047 12120 7635 10012 9023 18680 24697

CTE 5075 3067 2650 4974 2945 2913 2997 2668 2433 5495 7115
P0C 36.3 29.0 28.0 23.1 29.3 28.9 28.7 28.5 28.0 34.8 33.6

PCTE 12.1 8.4 6.8 13.4 6.1 6.0 8.4 6.8 6.5 12.3 15.6
PCTEC 12.1 8.4 6.8 13.4 6.1 6.0 8.4 6.8 6.5 12.3 15.6

SD 437 371 400 449 418 419 360 398 382 479 539
TC 964915 962910 962455 964680 962811 962804 962624 962336 961883 965274 966716
TT 186434 184429 183974 186199 184330 184323 184453 183855 183712 186794 188235

MTT 1017 1022 1022 1249 1051 1051 1060 1034 1011 1004 1221
P0T 112 110 109 107 109 110 110 109 109 112 104

Table 5: Cumulative DEA evaluation
Formulation MTC CT CTE P0C PCTE PCTEC SD TC TT MTT P0T

30-Minute Instances
Efficient cases 9|10|10 6|6|6 8|8|8 10|10|10 9|9|9 4|4|5 9|9|9 8|8|8 2|3|3 6|9|9 10|10|10
∈ RSi 0|0|0 1|1|1 4|4|6 1|0|0 11|9|5 3|1|1 6|3|3 6|5|5 0|0|0 0|0|2 1|0|0

Added Constr. 8|0|0 0|0|0 0|0|0 0|0|0 0|0|0 3|2|0 0|0|0 0|0|0 2|0|0 9|0|0 0|0|0
60-Minute Instances

Efficient cases 8|9|9 8|8|8 6|6|6 8|8|8 7|8|8 4|6|6 7|7|7 6|7|7 4|4|4 6|9|9 10|10|10
∈ RSi 2|0|0 4|3|4 4|2|2 1|1|1 5|4|4 9|5|5 6|6|6 8|8|8 1|1|1 8|8|8 2|0|0

Added Constr. 7|0|0 6|0|0 3.3|3.5|3.5 9|9|0 2.7|7|7 3.3|3|3 4.3|8|6.5 2.3|4|4 2.3|3.3|3 9.5|9|9 0|0|0

confirmation that the additional constraints are very useful to improve the formulations and
their solution quality in terms of multiple performance indicators.

Regarding the specific formulations, P0T is already efficient for all the instances, since
the other formulations have a poor performance for this performance indicator. TT has the
smallest number of efficient solutions, since competitive solutions are found by the other
formulations in a shorter computation time. Also, MTT has a high number of inefficient
solutions, however these are often improved by the iterative procedure. This is due to the
nature of the formulation: only a small number of trains have effects in this objective func-
tion and different optimal solutions exist. Furthermore, MTT is quite often improved and
presents the largest number of average constraints added during the iterative process. The



improvement of MTT is also visible when looking at the specific performance indicators in
Tables 3 and 4. The other formulations are improved for similar reasons.

6 Conclusions and future research

This paper presents a methodology for the development of a multi-criteria decision support
system to help dispatchers in taking more informed decisions when dealing with real-time
traffic disturbances. We are particularly interested in the computation of near-optimal so-
lutions in terms of a set of performance indicators. This is achieved by the development
of MILP formulations based on the alternative graph model, each one taking into account
multiple performance indicators, either in the objective function or in the problem con-
straints. An iterative DEA-based procedure is proposed to establish an efficient-inefficient
classification of the formulations and to improve inefficient formulations. For each tested
instance, the procedure converges after a limited number of iterations and returns a set of
efficient formulations and their best solutions. The final selection of the train schedule to be
implemented is left to the dispatchers.

Experiments are performed for 30-minute and 60-minute instances from a Dutch rail-
way network with mixed traffic and multiple delayed trains. We study which formulations
are efficient or can be modified to be efficient, with the proper addition of selected linear
constraints. The proposed methodology is shown to be able to improve the inefficient for-
mulations, and to deliver of a pool of improved formulations and their solutions in a short
computation time for 30-minute instances.

The insights of the proposed approach regard the investigation of different objective
functions and constraints and the identification of the most representative formulations for
the computation of good trade-off solutions. On-going research is dedicated to a more
comprehensive evaluation of alternative formulations and DEA classifications. The long
term contribution to the practice of dispatching is the possibility to automatically generate
a combination of objective functions and constraints such that the most efficient solutions
can be quickly identified, classified, visualized and delivered to the dispatchers.
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