
sustainability

Article

Evaluating the Efficiency of Bike-Sharing Stations with Data
Envelopment Analysis

Leonardo Caggiani 1 , Rosalia Camporeale 2,3,* , Zahra Hamidi 3,4 and Chunli Zhao 2,3

����������
�������

Citation: Caggiani, L.; Camporeale,

R.; Hamidi, Z.; Zhao, C. Evaluating

the Efficiency of Bike-Sharing Stations

with Data Envelopment Analysis.

Sustainability 2021, 13, 881. https://

doi.org/10.3390/su13020881

Received: 31 December 2020

Accepted: 13 January 2021

Published: 17 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Civil, Environmental, Land, Building Engineering and Chemistry,
Polytechnic University of Bari, Via Edoardo Orabona 4, 70125 Bari, Italy; leonardo.caggiani@poliba.it

2 Division of Transport and Roads, Department of Technology and Society, Lund University, P.O. Box 118,
22100 Lund, Sweden; chunli.zhao@tft.lth.se

3 K2—The Swedish Knowledge Centre for Public Transport, Bruksgatan 8, 22236 Lund, Sweden
4 Department of Urban Studies, Malmö University, Niagara, Nordenskiöldsgatan 1, 21119 Malmö, Sweden;

zahra.hamidi@mau.se
* Correspondence: rosalia.camporeale@tft.lth.se

Abstract: This paper focuses on the efficiency evaluation of bike-sharing systems (BSSs) and develops
an approach based on data envelopment analysis (DEA) to support the decisions regarding the
performance evaluation of BSS stations. The proposed methodology is applied and tested for the
Malmöbybike BSS in Malmö, Sweden. This was done by employing spatial analyses and data about
the BSS usage trends as well as taking into account transport, land use, and socioeconomic context
of the case study. The results of the application demonstrate consistency with the literature and
highlight meaningful associations between the station relative efficiency and the urban context. More
specifically, the paper provides in-depth knowledge about the preprocessing data, selection of input
and output variables, and the underlying analytical approach to be potentially applied to other
cases and urban contexts. Overall, the DEA-based methodology presented in this study could assist
decision-makers and planners with developing operational strategies for planning and management
of BSS stations and networks.

Keywords: BSS station efficiency; data envelopment analysis; spatial analysis in transport; bike-
sharing system; bike-sharing station

1. Introduction

A bike-sharing system (BSS) is considered an alternative to cars. It is a measure
designed to inspire modal shift from short car trips to cycling and intermodal. BSS primary
function, typically regarded as a last-mile solution for metropolitan areas, has motivated the
investments to provide such services in cities around the world [1,2]. Two main types of BSS
exist in cities today, the conventional BSS and the free-floating BSS. The conventional BSS
requires the passengers to borrow and return the bicycle from/to fixed stations. Compared
to the conventional BSS, free-floating BSS has been recently introduced and it does not
have fixed stations for picking up and dropping off bicycles; users are allowed to park the
bikes potentially “everywhere” (or within areas with geo-fenced boundaries) as close as
possible to their destinations [3]. Both BSS types enable the possibility for the passengers
to cycle in a city without owning a bike. This study focuses on conventional BSS.

The first bicycle-sharing scheme was introduced in Amsterdam, the Netherlands in
1965 and it was followed by a station-based BSS implemented in Denmark in 1991 [4]. The
first Swedish BSS was a pilot project introduced in Gothenburg in 2005 which operated
exclusively in the northern part of the city. The project led to the development of the
current BSS in Gothenburg, Styr and Ställ, which was launched in 2010 with 300 bicycles
distributed in 20 stations (operating between April and October) [5] and expanded in
2020 to provide 1750 bicycles in 135 stations available throughout the year [6]. Similar
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systems have also been implemented in other major Swedish cities including Stockholm
and Malmö. In 2019, Linköping, the fourth largest city in Sweden, launched the LinBike
program as the first Swedish BSS with e-bikes (100 bikes and 17 charging stations). The
system, instead of fixed stations, employs recent BSS technologies such as geofencing to
define GPS-based virtual zones where users can access or leave the rental bikes [7]. In
recent years, in addition to the rapid emergence of these systems in the larger Swedish
cities, there has been a growing interest in the development of regional BSSs that could
provide viable bike-sharing services across several smaller cities [8].

As a measure to reduce car use and emissions, BSSs offer a set of advantages which
explains their widespread adoption by many cities around the world [9,10]. They provide
improved accessibility to cycling thus could increase cycling mode share in general [10];
BSSs are a possible last/first-mile mode for connecting to public transport services or
can be used as single-mode for shorter journeys. In terms of costs, using rental bikes is
often cheaper than renting a car and it is not necessarily more expensive than buying a
ticket for public transport for the equivalent travel distance in an urban area. Overall, BSS
is considered an affordable, convenient, sustainable, and healthy transport alternative,
hence gaining the attention of the cities committed to social, economic, and environmental
sustainability [11]. It is worth noting that BSS popularity has not declined due to the
recent COVID-19 pandemic but rather has grown considering the reported increase in
trip duration and distance compared to the nonpandemic time [12,13], which strengths its
potential for future mobility.

Despite the wide-ranging possible benefits and the global popularity of BSSs, there have
been cases of financial or operational failures that were mostly caused by mismanagement
or under-designed implementations of these systems [14]. Due to inflexible standardized
business models or lack of strategies tailored to the local context, such systems typically face
issues such as underuse, misplaced bicycles, vandalism and theft, unusable or dysfunctional
devices, impractical or unreliable service, sluggish expansion, and lack of adequate cycling
infrastructure [15,16]. Previous studies in a Swedish context suggest that the pressure to
deliver a commercially viable and profitable service presents challenges to the success of
BSSs as it may result in creating sociotechnical configurations that fall short in delivering
long-term sustainability benefits [14]. Other studies highlight public acceptance as another
relevant factor for the success of BSSs in both Swedish [5] and global contexts [16]. Nikitas [16]
maintains that while BSSs are often widely appreciated by users and nonusers, without
long-term support and investment from the local authorities such public acceptance may not
translate into an actual usage hence failing in achieving sustainability goals.

In general, it is challenging to provide effective BSS in cities since a range of behavioral
aspects, as well as technical and organizational factors, can impact the usage of a bike-
sharing system. From the BSS planning perspective, station location, the membership, the
accessibility of the stations, the number of bikes and racks in each station, the redistribution
of bikes during the rush hours, the technology used for building and operation of the
system, as well as the attractiveness of the service are considered significant for an effective
BSS [4,15,17–19]. In terms of land use, similarly to other travel modes, activity patterns
and urban form influence BSS users’ travel behaviors. Previous research suggests that
population density, job density, as well as cycling infrastructure are all crucial for passengers’
choice of traveling by shared bicycles [15,20].

Even though the knowledge about the factors associated with the usage of the BSSs
has been fairly studied within the research on shared-bike systems, the topic of station
efficiency and its determinant factors has been understudied and under-analyzed [21].
Similarly, in transport practice, typical bike-sharing strategies do not involve scientifically
backed and evidence-based measures of station efficiency. In the absence of a station
efficiency analysis, it is difficult to identify and eliminate the bottlenecks in a BSS effectively.
This was while BSSs have been increasingly planned and implemented to meet mobility
needs in an environmentally sustainable way, hence a growing relevance and importance
of dealing with the efficiency analysis of shared-bicycle stations.
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The objective of this study is to propose and test a method to evaluate the relative
efficiency of each shared-bicycle station within a given system and identify its determinants
to establish an operational strategy for public BSSs. The proposed method will not only
evaluate the efficiency of shared-bicycle stations but also consider the influence of the
external variables, thereby contributing to the literature as a methodology for analyzing
the efficient operation of BSS stations and the management of the shared-bicycle systems.

The method is proposed and tested through carrying out an analysis of the comparative
efficiency of bike-sharing stations, putting forward a general methodology to apply potentially
to any context and proposing a numerical application for the city of Malmö, Sweden. The
efficiency measures are calculated by a nonparametric approach known as data envelopment
analysis (DEA), showing its particular applicability to BSSs. The evaluation result is expected
to help in reallocating the existing resources and assist policymakers when deciding where to
allocate new stations (planning stages). In this way, it is possible to discover those stations
that work better, that are more efficient according to the considered parameters, and optimize
the system with low costs, i.e., reallocating racks where they are more needed (moving them
from less used to more used stations, for instance).

The paper is structured as follows. Section 2 provides the introduction of the proposed
DEA methodology from a general perspective, specifying the variables that, according
to literature and planning guides, mostly characterize BSSs. Section 3 details the study
material and method for the application of DEA to the BSS in Malmö, Sweden, including
the detailed description of the explanatory analysis on the dataset to identify a subselection
of significant variables. Section 4 presents and discusses the obtained results in Malmö.
Section 5 concludes the paper with final remarks and reflections on the proposed approach
and its implications.

2. Proposed Methodology

The methodology presented in this section allows at first to define the input and
output variables that mostly characterize BSS stations. More specifically, inputs refer to
BSS station, built environment, and population-related variables; outputs refer to station
usage trends and are based on the trips done by using the system. Data related to BSS
usage has to be cleaned and prepared before applying DEA (i.e., removing anomalies that
can indicate temporary malfunctioning of the system of broken bicycles/stations) and be
able to calculate the efficiency of each station.

Furthermore, to obtain a sufficient differentiation between the efficiency scores and
remove from the analysis any potential outliers among the pool of BSS stations (DEA is
sensitive to outliers), we propose to use Robust CoPlot (more details in Section 3.4). Robust
CoPlot allows choosing inputs, outputs, and stations more significant for the studied
context, considering the available data.

After this preliminary data preparation, DEA can be applied to determine the different
degrees of efficiency associated with each BSS station. In the following subsections, we
provide a more detailed description of the DEA methodology and the inputs/outputs that
we suggest to include in the analysis. The data cleaning, elaboration and variable selection
are more extensively described when presenting the case study (Section 3).

2.1. Data Envelopment Analysis (DEA)

Mathematically, DEA is a linear programming-based model for evaluating the relative
efficiency of a set of decision making units (DMUs) which are homogeneous in the sense
that they use the same types of resources (inputs) to produce the same kinds of goods or
services (outputs) [22]. DEA evaluates the efficiency of each DMU relative to an estimated
production possibility frontier determined by all DMUs. It has been used in several contexts
(including education systems, health care units, agricultural production, military logistics,
etc.); however, when analyzing the areas approached thus far, energy and transportation
have the highest number of applied studies [23].
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The application of the method in the transport sector is widespread, especially in
the evaluation of airports, ports, railways, and urban transport companies [24,25]. In this
paper, we suggest applying DEA to evaluate the relative efficiency of bike-sharing stations:
hence, each DMU, in this case, corresponds with a bike-sharing station of a selected system.

To our knowledge, only two recent studies present an application of DEA in the bike-
sharing research. The first one, from Hong et al. [21], is applied to a station-based BSS, but it
does not include any external variable in the first stage of the model. The second one, from
Chang and Wei [26], uses DEA to evaluate and determine the optimal bike-sharing parking
points for free-floating bicycles. We believe that the application of DEA to shared systems,
although unconventional, is an interesting line of upcoming research that is worthy of
further investigations.

DEA does not require any functional relationship between inputs and outputs, al-
though it is important to provide their accurate measurements to apply it successfully.
This means that only those variables that could appropriately capture the nuances in the
efficiency of the DMUs have to be selected as inputs and outputs.

Since the DEA model employed in this paper relies on the standard input-oriented
CCR model [22], the DMUs that, at the result of the application, obtain efficiency values
equal to 1 are considered efficient. On the other end, efficiency scores less than 1 denote
some inefficiencies of the considered DMU.

Note that to obtain sufficient differentiation between the efficiency scores, the number
DMUs should not be too small when compared to the total number of inputs and outputs.
In the literature, there is no theoretical treatment that gives a unique suggestion on this
issue, but there are different rules of thumb. In this paper, we follow the recommendation
by Dyson et al. [27], keeping the number of DMUs greater than or equal to twice the
product between the number of inputs and that of outputs.

2.2. List of Inputs to Include in the Model

Input variables for DEA represent the aspects that impact the usage of the BSS and
travel behavior in general and may explain the differences in the performance of the stations.
To include such aspects in the DEA model, they need to be quantified and recorded as a
set of variables. Nevertheless, other relevant qualitative parameters, such as weather and
seasonal conditions, that may influence the use of BSS network as a whole, could play an
important role in the step of interpreting the result.

In this study, a set of input variables were identified based on the review of literature
on the usage of the BSS and travel behavior. In particular, the research by Ewing and
Cervero [28] and the review study carried out by Eren and Uz [18] were used as key literature
for establishing the list of the input variables which are described in Table 1 below.

Table 1. Suggested input variables for measuring the efficiency of the bike-sharing system (BSS) stations using DEA.

Input Variables Rationality and Description of the Variables

BSS Station Related Variables

Station age
The variable is relevant for more complex/old systems, particularly if the system has been

developed during several stages and groups of stations have been added at different points in
time. It can be measured according to the age context of the stations.

Visibility of stations

Visibility of the stations should consider if they are placed next to public transport, or in green
areas (i.e., partially hidden by trees/bushes), or in a well-lit environment [29–31]. It can be

measured taking into account the involved elements, i.e., by assessing the distance to the bus
stops/metro stations, and/or the area of the bushes around the stations, etc.

Density of BSS station The proximity of BSS stations to each other contribute to the increasing demand for BSS services
[32,33]. Different buffers have been suggested for effective BSSs in various contexts [18].
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Table 1. Cont.

Input Variables Rationality and Description of the Variables

BSS Station Related Variables

Built environment variables

Bicycle infrastructure

Increasing the usage of bicycles requires good bicycle infrastructure [34]. The proximity of BSS
stations to the cycling infrastructure impacts the motivation of cycling [35].

This variable can be measured computing the total length of bike lanes within the catchment
area of each station, possibly weighted by the type of the bike lanes (e.g., separated paths

versus paths shared with traffic).

Street connectivity

Street connectivity reflects the level of infrastructure and traffic safety in the network
surrounding a BSS station [36,37]. The variable can be applied or not according to the context, it
can be measured calculating the number of intersections and the density of the road network in

the area.

Public transport (PT) impact
factors

BSS likely promotes the mode share of public transport by serving as a feeder mode for PT
[38,39], and vice versa, the provision of the PT service can impact the usage of BSS.

Three dimensions related to the public transport can be measured: (1) distance to the PT
stations (i.e., bus stops, railways stations); (2) level of provision, which can be measured by the

number of stops and stations, number of bus lines, ride frequency; (3) price scheme and
approach for accessing to PT and BSS services, e.g., using a smart card for accessing to both

services with a fair price is likely to increase the usage of BSS service [28,36,40,41].

Land Use
Land use impacts the demand for trips and affects the choice of travel modes. Residential areas,
public and commercial areas, green areas in the city and outskirt, and mixed level of land use

are the main parameters for measuring the impact of land use [28,41].

Slope (morphology of the
territory)

Slope is one of the main barriers for motivating cyclists to cycle and it strongly affects bicycle
usage [18]. It can be measured by assessing the level of slope in specific streets, and the portion

of the streets with a certain slope within the city and catchment area [42]. It should be
included/considered as a parameter in the general model formulation especially for those cities

that have hilly topographies.
Population related variables

Population size
Population size in the catchment area is an important factor that influences the usage of the BSS

service [43]. It can be measured by calculating the number of individuals residing in the
catchment area.

Sociodemographic
Age, gender, education, income, employment, ownership of transit mode are the individual
factors that most impact the travel behavior [18,41,43]; therefore, these are the parameters

within the catchment area suggested to be measured.

2.3. List of Outputs to Include in the Model

The outputs are needed in the model to analyze the performance of BSS stations and
calculate generation/attraction factors connected to (the usage of) each station. We propose
the following three classes of indicators (five outputs in total), all able to appropriately
capture the nuances in the efficiency of bike-sharing stations.

The usage trend of each BSS station shows a cyclical trend, i.e., a pattern that repeats
itself after a certain time interval ∆t. Here, we suggest calculating the output indicators as
daily averages (∆t = 24 h). Note that the output values have to be normalized according to
the number of racks of the largest BSS station in the analyzed system, meaning that each
station score is adjusted for the number of racks available at that station (this is the reason
why we did not include them among the inputs of the model).

• Station daily amplitude: The station daily amplitude is a way to express the daily vari-
ation of the number of bicycles in each station. A higher value (higher amplitude)
corresponds to a station that is more regularly used throughout the day. We suggest
calculating the amplitude of each station using the fast Fourier transform [44]. Fast
Fourier transforms are mathematical calculations that convert a domain waveform
(amplitude versus time) into a series of discrete waves in the frequency domain. The
daily amplitude for each station can be calculated starting from the bicycle varia-
tions (usage trends) in ∆T, obtaining their frequency domain using the fast Fourier
transform, and assessing the (daily) amplitude value for frequency (cycles/day) = 1.



Sustainability 2021, 13, 881 6 of 21

• Station prevalence: This indicator is a proxy for the share of bicycle trips that start
(departure prevalence) or end (arrival prevalence) in each station. Given n BSS stations
in the system, we count the number of trips starting in each stations si (picked-up
bicycles) during ∆t. Then, the stations are ordered from the one that originates more
trips (assigning it a score equal to n) to the one that originates less trips (score = 1).
The scores are assigned progressively, i.e., the second one in the list has n-1, the third
one n-2, and so forth. This process is repeated for every day ∆t in the timeframe ∆T of
the analysis (since every station may show a different behavior according to ∆t), and
the daily scores assigned to each station si are summed. From these final scores, an
average daily value is calculated, dividing the total score assigned to each station for
the days ∆t included in ∆T. This is the station prevalence calculated for the departures
from each station (departure prevalence); the same reasoning can be applied looking
at the arrivals (i.e., repeating the calculations for the number of bicycles dropped off
in each station during ∆t and then obtaining the average arrival prevalence in ∆T).

• Station attractiveness: attractiveness is understood as a way to assess how appealing the
station is for BSS users compared to the other stations in the network. More specifically,
we propose to distinguish an active attractiveness from a passive one, considering the
trips that connect each BSS station with the other stations in the network. The unit
of these indicators is km/day, associated with each station. To calculate the active
station attractiveness, we compute how many trips start in the origin station si in ∆T,
and we multiply each trip for the kilometers (real network distance, shortest path)
necessary to reach the destination station. Then, this value is divided according to
how many days are included in ∆T, to obtain an average daily value (km/day). The
same (opposite) reasoning is applied to calculate the passive station attractiveness,
i.e., how many trips have their destination in si in ∆T, computing again an average
daily value (km/day). Note that round trips (that is, those trips having both origin
and destination in si) should not be included in the calculations.

3. Case Study: Malmöbybike
3.1. Context Description and Related Variables

Malmö, with more than 344,000 inhabitants [45], is the third-largest urban area in
Sweden. The central-northern part (city center) has the highest population concentration,
while smaller urban agglomerations exist in the southwest and eastern parts (Figure 1). As
illustrated in Figure 2, the public transportation network follows a similar configuration
and is concentrated in areas with higher population density. The cycling infrastructure
(Figure 3) includes a bike path network with 520 km of completely separated (from motor
vehicle traffic) bike paths and prioritized bike paths shared with other road users [46]. In
2016, Malmöbybike (i.e., the Malmö BSS) started operating with 50 stations in the central
areas of the city; during 2019, the network expanded to a total of 100 stations. The recent
travel survey conducted in 2018 indicates that the modal share of cycling and public
transport in Malmö are, respectively, 25.5% and 25.4% [47].

The spatial data about the population statistics and the built environment char-
acteristics in Malmö were extracted from multiple sources including Statistics Sweden
(SCB) [45], Lantmäteriet (Swedish mapping, cadastral and land registration authority) [48]
and Trafikverket (Swedish Transport Administration) [49]. The population size data were
in a grid format of 100 × 100 m; while other socioeconomic data (such as employment
status, education level, income level, etc.) were available with two different cell sizes
(250 × 250 m for urban areas and 1000 × 1000 m for suburban areas). Land use data avail-
able by Lantmäteriet were employed to map three types of land use namely residential,
public and commercial, green areas. Moreover, the transport-related geodata captures the
existing cycling infrastructure as well as the public transport network including bus stops
and train stations [50].
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Figure 1. Population distribution in Malmö (number of inhabitants per 100 × 100 m).
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3.2. BSS Data Description and Preparation

The available dataset on Malmöbybike (January 2018–July 2020) was provided by
Clear Channel [51]. It covers all the OD trips in the system during this timeframe, and it
makes it possible to have detailed information about the usage of the system, allowing
different analyses and data aggregations.

For this application, we selected one-month data, ∆T = June 2020, i.e., the month that
has registered the largest number of movements (64,763 trips) in the available dataset. At
that date, 100 BSS stations were built and operating in the network. According to Weather
spark [52], the average daylight time in June is 17.5 h, with an average temperature of
28 ◦C; the summer vacation in Sweden usually starts from the last week of June. This
background offers an attractive condition for having outdoor activities. Regarding the
restriction related to the COVID-19 pandemic, in June 2020 Sweden has restricted the social
gathering in restaurants and public spaces (that should not exceed 50 people) and advised
everyone to keep social distance in outdoor activities.

Out of the 100 stations, five of them (namely, stations no. 21, 61, 62, 69, and 79) have
not been used at all during June; hence, they were removed from the dataset. As far
as concerns those stations that have been partially used during the month (i.e., due to
malfunctioning in some days), they were excluded only if they had not been used for more
than 50% of the observation time (station no. 41 was removed in this stage). The reason is
that we were performing a monthly (∆T) efficiency analysis, determining which stations
have been more efficient in the considered period; minor malfunctioning of the stations
should be part of the calculations.

An additional data cleaning was performed concerning those bikes that have been
used longer than 1 h (i.e., picked up, and not dropped off by 60 min). According to the
Malmöbybike terms of use [53], a bike should be used for a maximum of 60 min at a time,
and in the case that a bike is not returned within an hour the user would be charged a fine.
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Therefore, it is assumed that the trips longer than 60 min are due to bikes that are broken
or not functioning correctly. The result of data cleaning was a dataset with 94 stations and
63,338 OD-trips.

Considering the previous research [54] as well as the contextual conditions in Malmö
(e.g., the urban area size, the MalmöbyBike coverage area), a radius R = 300 m was
considered acceptable to define the catchment area (buffer) around each BSS station.

The selected input and output variables are explained and listed in the following
Section 3.3.

3.3. Specification of Inputs and Outputs

Based on the input variables suggested in Section 2.2, we used publicly available statis-
tical data to calculate the following list of input variables to apply DEA to the Malmöbybike
BSS (Table 2). Note that all the numbers in the input final table are non-negative; the zero
values were eliminated by adding a small positive constant, to meet the “positivity” re-
quirement of DEA [55].

Table 2. Description of input categories and variables notations for the DEA applied to Malmöbybike bike-sharing system.

Input Variables Description of the Variables DEA Notation

BSS Station Related Variables

Density of BSS stations Number of the BSS stations within 1 km
radius from each BSS station I1 Density of BSS stations (within 1 km)

Built environmental variables (within the catchment area)

Land use

The area of each land use category. Three
types of land use are calculated:

residential; public and commercial; green
areas [48].

I2 Green areas (km2)
I3 Residential (km2)

I4 Public + Commercial (km2)

Bicycle infrastructure

The total length of bike lanes. We
computed separated bike lanes and

shared bike lanes. Separated bike lanes
refer to the designated road space clearly

defined by signs and regulations that
space should be only used for cycling;
shared bike lanes are the road spaces

shared with pedestrian or cars but
recommended for cycling in the interest

of creating a more continuous cycling
network across the city [49].

I5 Separated bike lanes (m)
I6 Shared bike lanes (m)

Public transport impact factors

The number of tracks/bus lines passing
by each station/bus stop, to have a proxy
of the actual connectivity granted by the

public transport system [56].

I7 Number of tracks
I8 Number of bus lines

Population related variables (within the catchment area)

Population size

The average number of residents. Since
each catchment area is delimited by a

circle, and the population is available in a
grid format, we calculated the portion of

the area of each element of the grid
(square) falling within the circle, and the

corresponding share of population
assuming a uniform population density
in each element of the grid. Provided in

grid format (2018), 100 × 100 m [57].

I9 Population size

Age
Population aged 16–64, in grid format
(2018), 250 × 250 m urban area, 1000 ×

1000 m in suburban areas [57].
I10 Population aged 16–64
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Table 2. Cont.

Input Variables Description of the Variables DEA Notation

BSS Station Related Variables

Employment
For the population aged 20–64 (only

2017), two categories of employment are
measured: Employed, Unemployed [58].

I11 Unemployed
I12 Employed

Household disposable income (2018)

Household disposable income (2018) is
measured in four levels: low,

medium-low, medium-high, high. The
indicator is adjusted considering the
consumption units in a household
meaning it accounts for different

household compositions [59].

I13 Income: low
I14 Income: medium-low
I15 Income medium-high

I16 Income: high

Education

For the population aged 25–64 (2018),
four levels of education are measured:

Compulsory education, Upper secondary,
Post-secondary, less than 3 years and

Post-secondary, 3 years or longer,
including graduate and postgraduate

education [58].

I17 Education: level 1
I18 Education: level 2
I19 Education: level 3
I20 Education: level 4

Although the station age was listed among the suggested input variables (Section 2.2),
we did not include this variable for the case study of Malmöbybike. The decision was
made since the system is fairly recent, and it has been mainly built in two steps (50 stations
in 2016 and 50 more stations in 2019). As previously explained, since DEA provides a
relative efficiency of each station, it is important to provide indicators able to capture in
a nuanced way the differences among stations from a certain perspective. The (50 + 50)
BSS stations have not been opened simultaneously, but gradually over the year(s). Since
the information about the exact days/weeks/months of operation of each station is not
available and the Station age input would have had only two values (the two known years:
2016 and 2019), it was not added to the model.

In the following Table 3, some descriptive statistics (mean, median, minimum, maxi-
mum, standard deviation) of the input variables used in this analysis are provided.

Table 3. Descriptive statistics of input variables for the DEA applied to Malmöbybike bike-sharing system (94 DMUs,
20 inputs).

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

Mean 12.07 0.04 34,054.29 29,626.77 1880.77 371.21 0.65 5.88 2610.06 1701.69
Median 11.00 0.03 31,174.89 21,718.77 1827.97 261.96 0.00 2.00 2480.00 1634.00
Std. dev. 7.31 0.04 23,024.89 26,015.10 861.93 394.64 2.12 8.19 1853.44 1226.74

Minimum 1.00 0.0001 1.00 42.47 1.00 1.00 0.0001 0.0001 1.00 30.00
Maximum 26.00 0.24 87,317.85 110,052.80 4468.33 1911.09 10.00 50.00 7292.00 5230.00

I11 I12 I13 I14 I15 I16 I17 I18 I19 I20
Mean 566.44 1155.98 424.91 286.49 266.84 243.72 170.39 454.59 279.72 593.02

Median 533.50 1000.00 406.50 262.00 197.50 163.50 113.00 452.50 240.00 419.50
Std. dev. 429.96 862.35 329.60 215.67 216.59 207.98 164.89 307.23 209.39 505.34

Minimum 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Maximum 1650.00 3451.00 1232.00 943.00 902.00 936.00 851.00 1108.00 845.00 1891.00

Regarding the output calculation, notation and descriptive statistics are summarized
in the following Table 4.
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Table 4. Variable notations and descriptive statistics of output variables for the DEA applied to Malmöbybike bike-sharing
system. (94 DMUs, five outputs).

Output Variables DEA Notation Mean Median Std. Dev. Minimum Maximum

Station daily amplitude O1 2.01 1.54 1.57 0.12 6.70
Station arrival prevalence O2 54.07 55.08 24.99 11.77 86.23

Station departure prevalence O3 54.06 55.85 25.07 10.03 88.07
Station passive attractiveness O4 45.82 36.19 30.05 5.85 122.65
Station active attractiveness O5 45.82 38.06 29.34 6.40 122.24

If the calculation of station prevalence (O2 and O3) and attractiveness (O4 and O5)
is straightforward following the description of Section 2.3, we provided a more detailed
explanation for the assessment of the station daily amplitude O1 using the fast Fourier
transform.

Using the Clear Channel database [51] for the Malmöbybike BSS, it was possible to
obtain the usage trend of each station in ∆T (June 2020). We did not have any information
about bicycle relocations among stations performed by the operator; hence, we made an
assumption looking at the available data, which indicates origin and destination of each
bike-sharing trip in the network. If the bicycle bk is in the station si at a certain time h1, but
the previously registered trip (ended at h2) in the system does not have si as the destination
station, we assumed that relocation happened in the time interval h1-h2, more specifically
at the midpoint h3 (so that the time interval h2-h3 has the same length of h3-h1).

After obtaining the final usage trends (i.e., the bicycle variations) in ∆T taking into
account relocations as just described, the fast Fourier transform was applied to convert
the time domain waveforms to the frequency domain. The value of each station daily
amplitude is the one corresponding to frequency (cycles/day) = 1 (Figure 6).

The following Figures 4–6 show a practical example for two bike-sharing stations in
the system.
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Transforming the temporal domain (trend over time of the number of bikes in each
station) into the frequency domain allows finding signal periodicity that otherwise would
not be easy to identify. Figure 6 highlights a series of peaks representing the different am-
plitudes of the periodicities identified using the fast Fourier transform. Larger amplitudes
show the prevailing periodicities.

We chose to visualize the stations 1 and 15 (in Figures 4 and 6) since they are represen-
tatives of the different behaviors that the stations in the Malmöbybike system had during
∆T. Some of them (39.4% of the BSS stations) show a peak corresponding to frequency (cy-
cles/day) = 1 (such as the one shown in Figure 6, Station 1): this means that a typical (daily)
periodic behavior (∆t = 24 h) was detected for these stations (look at the corresponding
time domain, Figure 4, station 1; Figure 5, over 10 days of observations).

The other stations (look at the representative trend of Station 15, Figure 6) show a
smaller amplitude corresponding to frequency (cycles/day) = 1, and peak(s) at lower
frequencies (i.e., with cycles longer than 24 h).
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The highest frequency peak that was found in the entire database for all the BSS
stations is the one corresponding to frequency (cycles/day) = 1, that is, the smallest cyclical
temporal unit that can be detected in the system corresponds to ∆t.

3.4. Inputs, Outputs, and Station Selection

Since DEA is sensitive to outliers [60] and CoPlot has been often used as a supplemen-
tal tool to cluster analysis, DEA and outlier detection methods in the literature [61–63], we
decided to suggest its application to the proposed analysis [64–66]. Additionally, this anal-
ysis allows reducing the number of variables/DMUs to obtain a sufficient differentiation
between the efficiency scores, while following the rule of Dyson et al. [27].

We propose to use Robust CoPlot, an adaptation of multidimensional scaling (MDS)
that facilitates rich interpretation of multivariate data [67]; it has the capacity to work better
than CoPlot with datasets containing outliers since it is not affected by their presence.

Both CoPlot and Robust CoPlot are able to reduce multidimensional data into a two-
dimensional structure, by superimposing two graphs [68–70], simultaneously evaluating
associations between variables and between observations. The first map uses a nonmetric
version of MDS to spatially represent the distances between observations (in our case, the
observations are the DMUs, that is, the bike-sharing stations in Malmöbybike): similar
observations are located close to one another, and the goodness-of-fit of this representation
is summarized by a single parameter, the Kruskal stress value, σ [71]. The second map,
which is conditional on the first, generates vectors that display the relationships among
the variables (which, in our case, are inputs and outputs, Section 3.3). Each variable has its
vector: if two variables are highly correlated, the vectors describing them are close together,
and if their correlation is negative, the vectors describing them go in opposite directions.
In this case, we have a goodness-of-fit for each variable, which expresses the goodness of
the regression with respect to the observations, and is visualized by the length (magnitude)
of the vector (for more details, see [62,67]).

The procedure to identify correlated variables and outliers consists of repeating the
Robust Co-Plot several times, removing, before each repetition, respectively, some variables
correlated to each other and outliers. DMUs identified by a specific input/output variable
are positioned in the same direction of that input/output vector. Correlated variables
are represented by vectors having the same directions in space, while DMUs outliers are
represented by points positioned far from the center of gravity (the point where the vectors
diverge) compared to the other points of the chart.

Figure 7 shows, for example, the Robust CoPlot obtained for the 20 inputs and five
outputs described in Section 3.3 in the first repetition.

The DMUs (bike-sharing stations) are graphically represented by red dots: as ex-
plained above, similarities between the stations in the dataset are transformed into dis-
tances on the map such that similar stations are closer together than less similar stations.
The Kruskal stress value σ is 9.18%, showing a goodness-of-fit between good and fair [71].

The inputs and outputs are each represented by a black vector (labeled, with notation
and magnitude). Those vectors having the same directions in space are highly correlated,
hence we decided to not consider some of them and repeat the procedure, so to apply the
DEA only considering the most significant variables.

Note that the analysis to remove the highly correlated inputs and outputs has to be
done separately for inputs and outputs. Looking at the outputs (Figure 7), we can see
that O2 and O3 are almost overlapping, and O4 and O5 have a similar direction. Hence,
we selected O1, O3. and O5 since they seem to be the less correlated outputs and more
significant for this dataset. Similar reasoning was applied to the 20 inputs, also taking into
account those more meaningful in the Malmö context. The procedure was repeated three
times, progressively removing those vectors with higher correlation, obtaining at the end
the configuration shown by Figure 8, with 11 inputs and three outputs (the rule of Dyson
et al. [27] is satisfied). When removing a variable, there is a rearrangement of the remaining
ones in the Robust CoPlot map, depicting the associations in the new configuration.
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Looking at Figure 8, the efficient DMUs (bike-sharing stations) are represented with a
blue cross (28 in total), while the less efficient are represented with a red dot. By eliminating
variables with low correlations, the goodness-of-fit is slightly improved and the Kruskal
stress value σ results equal to 9.01%. We did not remove any DMU since we did not notice
any significant cluster/variable positioned too far from the center of gravity.

The estimated efficiency scores for the remaining DMUs as well as the inputs and
outputs are presented and further discussed in the next section.

4. Results and Discussion

Figure 9 presents the efficiency scores yielded by DEA. It shows an overall pattern
of the relative efficiency for the BSS stations included in the analysis based on the data
from June 2020. As represented by the ramp color (dark green to light yellow), stations
exhibit clear differences regarding their efficiency levels. Mapping the efficiency scores
across space is helpful for both identifying the most/least efficient stations and comparing
a subset of the stations to one another or to the contextual conditions. The variation in
the relative efficiency scores demonstrate a meaningful pattern concerning the contextual
factors and highlights three categories of stations according to their level of efficiency: (1)
the efficient BSS stations (having efficiency = 1); (2) the medium efficient BSS stations; (3)
the least efficient BSS stations. Each efficiency category is further addressed and discussed
in the following subsections.
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4.1. The Efficient BSS Stations

The stations visualized in the darkest green color represent efficient stations, that is,
those having efficiency equal to one (for instance, stations no. 30, 18, or 63). Located in
different areas of the city, the efficiencies of these stations may be attributed to varying
land use contexts. However, the availability of separated cycling lanes indicates that



Sustainability 2021, 13, 881 16 of 21

the catchment areas for these stations contain a high level of bicycle infrastructure. This
pattern reflects the results found in previous studies [35,72,73]. Consistent with the lit-
erature [4,15,20], another common property of this category is the proximity to a green
area or an activity center such as commercial buildings, public facilities, and job centers.
Considering the spatial properties and the urban context of the station locations, three
groups can be identified.

The first group includes stations located in the northern part of the city with good
access to nature, e.g., green areas and the waterfront. Trips originated from or ending at
these stations are likely made by cyclists visiting the area for outdoor activities. Therefore,
the presence of natural resources seems to positively contribute to the efficiency of these
stations. This result is similar to the finding reported in the study by Kim et al. [74].

The weather or the seasonal conditions may be considered another external factor
contributing to a larger number of trips connected to this area [18]. The last week in June
coincides with the start of summer vacations in Sweden, hence the increased usage of
shared bikes in areas with a larger share of recreational activities. In general, a combination
of the mentioned contextual factors is likely to improve the DEA based evaluated efficiency
for these stations.

The second group of efficient stations is located in those areas with a high level of
access to public transport (no. 18, 16, 1, 24, 25 next to railway stations), and close to the city
center. In this case, the shared bicycles users are likely the passengers who are travelling
by public transport, using bikes as first/last-mile feeder mode. Such trips can be both
commuting and noncommuting trips, meaning the efficiency of these stations may be
less affected by the weather or seasonal conditions in June. Hence, good access to public
transport may be a major contributor to the higher efficiency of these stations. This result
confirms the findings of previous research suggesting that successful BSSs complement
existing transport infrastructure such as public transport [16,75].

The third group includes those stations located in areas further from the city center (if
compared with the first two groups), but still in the urban area, e.g., stations no. 46, 57, 89.
Most of them are newly added stations that have a station age of less than one year. They
are located in areas with high population density, next to the buildings which are public
facilities or commercial centers, with good bicycle infrastructure available, and close to
bus stops. Previous studies have provided strong evidence that these factors contribute
to increased use of BSS services [4,74,76]. In some cases, the density of BSS station within
1 km is rather lower than the average level (farther than 500 m to the next station, e.g.,
stations no. 57, 89) which could contribute to the efficiency of these stations. The pattern of
this group may indicate that, for the less dense areas that are located further away from the
city center, locations next to the public facilities and commercial centers where often the
bus stops are planned are likely to be the optimal spots for planning efficient BSS stations.
At the same time, a good quality cycling infrastructure should be provided.

4.2. The Medium Efficient BSS Stations

Those stations colored in mid-range green are categorized as medium efficient stations,
such as stations no. 11, 14, 99. Most of these stations are located in the central area of the
city with a higher concentration of public facilities and commercial buildings. The central
area is often characterized by a high density in terms of population and jobs which, in
turn, implies that it generates or attracts a larger number of trips and, due to the densely
built environment, makes traveling by bikes or public transport more convenient than by
cars [77]. Similarly, this context may create a higher demand for cycling compared to the
peripheral areas, which often motivates the need for a medium/high level of BSS service
provision in urban centers.

In the case of Malmö, although these stations did not fall into the efficient station
group, many of them have obtained an efficiency score close to 1 (that is, the maximum
efficiency score in DEA). Their slightly lower efficiency scores are probably due to the very
high density of the BSS stations in the area. Most of the stations in this category have
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overlapping catchment areas and/or more than one BSS station may be present within their
300 m catchment area. Reducing the density by removing some stations would likely make
the remaining ones more efficient. However, given the urban form context in the city central
area, the level of the current efficiency of all the stations rather demonstrates the success of
the BSS service in the area. In a similar urban context, previous studies have suggested the
buffer to be between 200 and 400 m when planning for new stations [18,29,78]. In general,
a smaller radius seems to contribute positively to the usage of the service.

The stations located further away from the city center (no. 64, 87, 90) are commonly
placed within a maximum of 600 m distance from another. While this radius falls within
the reasonable distance range noted in the previous studies, these stations seem to further
benefit from proximity to bus stops or large public facilities/commercial buildings. Ad-
ditionally, despite the lower population size in the peripheral areas, a higher residential
density in the form of apartment housings, as opposed to single family houses areas, could
be observed in the catchment area of these stations. In general, the observed pattern
further confirms the results discussed in the earlier section and previous studies that for
the noncentral urban area, the density of the BSS stations, proximity to bus stops, and large
public buildings, as well as the high population density could contribute to the efficiency
of the BSS stations.

4.3. The Least Efficient BSS Stations

The least efficient stations, visualized in the lightest shade of green/yellow, mostly
include those added during 2019, meaning that their age is less than one year (e.g., stations
no. 52, 53, 56, 60, 66, 68, 71, 74, 83, 85, 86, 93). Most of these stations are located further
away from the city center and in areas with lower population density. While some of the
stations (such as no. 71, 74, 75) are located in proximity to small scale public facilities
and commercial buildings, the low population density in their catchment areas indicates
a low travel demand [28]. Similarly, the cycling infrastructure connected to the stations
is rather poor which can significantly impact cycling behavior [18]. Station no. 60 is an
exception to this, most likely because it is located next to two other BSS stations (no. 59
and 63) which are, respectively, next to a train station (no. 59) and public facility buildings
(no. 63), providing sufficient service demand in the area. In this single case, removing
station no. 60 perhaps would make stations no. 59 and 63 more efficient, reducing the
running cost in general. This shows how in the areas far away from city center, where the
population density is relatively low, even though there is demand due to the connection to
the public transport and access to the public facilities or commercial areas, a higher density
of BSS stations may not be needed. This issue has been discussed in the previous studies
which have suggested different buffers according to the distance between the location of
the stations and the central area [11,18].

Station no. 85 is located in a villa house area. The low efficiency of the station may
be due to a low population density around the station and to the socioeconomic features
of the population living in the catchment area. More specifically, the residents in the area
seem to be associated with larger household size and being part of a higher income group
who is more likely to travel by car than bicycle [79]. However, we would like to argue
that, although the station has low efficiency, from a behavior nudging perspective, it is still
worth placing the BSS service here for promoting and normalizing cycling for the groups
living in these contexts.

Based on the examination of the three efficiency categories in relation to the urban
contexts, the relative efficiencies evaluated by the DEA method seem highly reasonable
and well supported by the previous studies.

5. Conclusions

The study proposed and tested a method, the data envelopment analysis, for evaluat-
ing the relative efficiency of BSS stations. The method was tested by applying DEA to a
Swedish case study, the BSS Malmöbybike in Malmö.
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The efficiencies were evaluated starting from a pool of input and output variables
supported by literature, reports, and BSS planning guides, with declinations which allow
the same procedure to be applied potentially to any city. This method does not only
evaluate the efficiency of each shared-bicycle station but also enables the possibility of
considering the influence of external variables, thereby contributing to the literature as
a methodology for analyzing the efficient operation of shared-bicycle stations and the
management of shared-bicycle systems.

The results provided by the application to the Malmöbybike BSS are meaningful in
relation to both the specificities of the urban context and the findings reported in previous
studies. This seems to indicate that the suggested method can provide a reliable evaluation
of the BSS efficiency and that it can be used by decision-makers and planners for developing
operational strategies to plan BSS stations and networks.

One of the limitations of the proposed methodology is related to the identifica-
tion of a specific timeframe under evaluation. If external factors change during the
days/weeks/months after the analysis, the calculated efficiencies are no longer correct.
Furthermore, the analyst should have a good knowledge of the urban context under
examination to be sure to include the most suitable variables capable of representing it.

It is important to point out that the objective of the study is to propose and test the
DEA methodology rather than carrying out a comprehensive evaluation for the BSS in
Malmö. In future studies, broader spatial and temporal information should be included
and compared to achieve a more complete evaluation of the Malmöbybike efficiency. The
evaluation should be carried out during the seasons when cycling is the most and the
least popular. The differences between and within days, weeks, and months should all be
analyzed and compared to gain a good overview of the efficiency for supporting effective
operational and planning strategies.

Some of the input variables may be difficult to be expressed in a quantitative way, such
as the station visibility. This type of variable could be defined through fuzzy sets. A new
formulation of the methodology proposed here which considers a fuzzy DEA approach [66]
is currently being prepared.

A further line of research should possibly investigate the inclusion of the suggested
methodology in bike-sharing network design models, to take into account the potential
efficiency of BSS stations when planning or expanding such a system.
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66. Kuljanin, J.; Kalić, M.; Caggiani, L.; Ottomanelli, M. A Comparative Efficiency and Productivity Analysis: Implication to Airlines

Located in Central and South-East Europe. J. Air Transp. Manag. 2019, 78, 152–163. [CrossRef]

http://doi.org/10.1007/s11116-014-9538-1
http://doi.org/10.3141/2031-02
http://doi.org/10.1016/j.trd.2020.102566
http://doi.org/10.1080/15568318.2015.1012281
http://doi.org/10.3141/2387-10
http://doi.org/10.1016/j.tra.2020.08.015
http://doi.org/10.1016/j.trf.2012.08.002
http://doi.org/10.1016/j.tranpol.2018.01.018
http://doi.org/10.1016/j.jtrangeo.2018.07.012
http://doi.org/10.1016/j.retrec.2020.100992
https://www.statistikdatabasen.scb.se/pxweb/en/ssd
https://www.statistikdatabasen.scb.se/pxweb/en/ssd
http://miljobarometern.malmo.se/trafik/cykling/cykelbanor-och-bilvagar
http://miljobarometern.malmo.se/trafik/cykling/cykelbanor-och-bilvagar
https://utveckling.skane.se/publikationer/rapporter-analyser-och-prognoser/resvaneundersokning-i-skane
https://utveckling.skane.se/publikationer/rapporter-analyser-och-prognoser/resvaneundersokning-i-skane
https://www.lantmateriet.se/globalassets/kartor-och-geografisk-information/kartor/e_fastshmi.pdf
https://www.lantmateriet.se/globalassets/kartor-och-geografisk-information/kartor/e_fastshmi.pdf
https://www.trafikverket.se/TrvSeFiler/Dataproduktspecifikationer/V%C3%A4gdataprodukter/DPS_E-G/1054gcm-vagtyp.pdf
https://www.trafikverket.se/TrvSeFiler/Dataproduktspecifikationer/V%C3%A4gdataprodukter/DPS_E-G/1054gcm-vagtyp.pdf
http://doi.org/10.1016/j.tra.2019.09.062
https://www.clearchannel.se
https://weatherspark.com/m/76106/6/Average-Weather-in-June-in-Malm%C3%B6-Sweden
https://weatherspark.com/m/76106/6/Average-Weather-in-June-in-Malm%C3%B6-Sweden
https://www.malmobybike.se/en/info/about-malmo-by-bike
http://doi.org/10.1287/mnsc.2019.3407
https://www.trafikverket.se/TrvSeFiler/Dataproduktspecifikationer/V%C3%A4gdataprodukter/DPS_H-K/1011Hallplats.pdf
https://www.trafikverket.se/TrvSeFiler/Dataproduktspecifikationer/V%C3%A4gdataprodukter/DPS_H-K/1011Hallplats.pdf
https://www.scb.se/en/finding-statistics/statistics-by-subject-area/population/population-composition/population-statistics/
https://www.scb.se/en/finding-statistics/statistics-by-subject-area/population/population-composition/population-statistics/
http://www.scb.se/en/finding-statistics/statistics-by-subject-area/labour-market
http://www.scb.se/en/finding-statistics/statistics-by-subject-area/labour-market
http://www.scb.se/en/finding-statistics/statistics-by-subject-area/household-finances/income-and-income-distribution/income-and-tax-statistics
http://www.scb.se/en/finding-statistics/statistics-by-subject-area/household-finances/income-and-income-distribution/income-and-tax-statistics
http://doi.org/10.1108/JCC-09-2016-0010
http://doi.org/10.4304/jsw.7.10.2247-2251
http://doi.org/10.1016/j.omega.2006.02.006
http://doi.org/10.4192/1577-8517-v1_7
http://doi.org/10.1080/03610918.2013.875571
http://doi.org/10.4236/ojs.2017.71003
http://doi.org/10.1016/j.jairtraman.2019.01.009


Sustainability 2021, 13, 881 21 of 21

67. Bravata, D.M.; Shojania, K.G.; Olkin, I.; Raveh, A. CoPlot: A Tool for Visualizing Multivariate Data in Medicine. Stat. Med. 2008,
27, 2234–2247. [CrossRef] [PubMed]

68. Krzanowski, W.J.; Dillon, W.R.; Goldstein, M. Multivariate Analysis-Methods and Applications. Biometrics 1986, 42, 222.
[CrossRef]

69. Borg, I.; Groenen, P.J. Modern Multidimensional Scaling: Theory and Applications; Springer Science & Business Media:
Berlin/Heidelberg, Germany, 2005.

70. Cox, M.A.A.; Cox, T.F. Multidimensional Scaling. In Handbook of Data Visualization; Chen, C., Härdle, W., Unwin, A., Eds.;
Springer: Berlin/Heidelberg, Germany, 2008; pp. 315–347.

71. Kruskal, J.B. Multidimensional Scaling by Optimizing Goodness of Fit to a Nonmetric Hypothesis. Psychometrika 1964, 29, 1–27.
[CrossRef]

72. Caulfield, B.; Brick, E.; McCarthy, O.T. Determining Bicycle Infrastructure Preferences-A Case Study of Dublin. Transp. Res. Part
D Transp. Environ. 2012, 17, 413–417. [CrossRef]

73. Mateo-Babiano, I.; Bean, R.; Corcoran, J.; Pojani, D. How Does Our Natural and Built Environment Affect the Use of Bicycle
Sharing? Transp. Res. Part A Policy Pract. 2016, 94, 295–307. [CrossRef]

74. Kim, D.; Shin, H.; Im, H.; Park, J. Factors Influencing Travel Behaviors in Bikesharing. Available online: https://nacto.org/
wp-content/uploads/2012/02/Factors-Influencing-Travel-Behaviors-in-Bikesharing-Kim-et-al-12-1310.pdf (accessed on 30
December 2020).

75. McBain, C.; Caulfield, B. An Analysis of the Factors Influencing Journey Time Variation in the Cork Public Bike System. Sustain.
Cities Soc. 2018, 42, 641–649. [CrossRef]

76. Kaltenbrunner, A.; Meza, R.; Grivolla, J.; Codina, J.; Banchs, R. Urban Cycles and Mobility Patterns: Exploring and Predicting
Trends in a Bicycle-Based Public Transport System. Pervasive Mob. Comput. 2010, 6, 455–466. [CrossRef]

77. Ewing, R.; Cervero, R. Travel and the Built Environment: A Synthesis. Transp. Res. Rec. J. Transp. Res. Board 2001, 1780, 87–114.
[CrossRef]

78. El-Assi, W.; Salah Mahmoud, M.; Nurul Habib, K. Effects of Built Environment and Weather on Bike Sharing Demand: A Station
Level Analysis of Commercial Bike Sharing in Toronto. Transportation 2017, 44, 589–613. [CrossRef]

79. Maurer, L.K. Feasibility Study for a Bicycle Sharing Program in Sacramento, California. Available online: https://nacto.org/wp-
content/uploads/2012/02/Feasibility-Study-for-a-Bicycle-Sharing-Program-in-Sacramento-California-Maurer-12-4431.pdf (ac-
cessed on 30 December 2020).

http://doi.org/10.1002/sim.3078
http://www.ncbi.nlm.nih.gov/pubmed/17972340
http://doi.org/10.2307/2531265
http://doi.org/10.1007/BF02289565
http://doi.org/10.1016/j.trd.2012.04.001
http://doi.org/10.1016/j.tra.2016.09.015
https://nacto.org/wp-content/uploads/2012/02/Factors-Influencing-Travel-Behaviors-in-Bikesharing-Kim-et-al-12-1310.pdf
https://nacto.org/wp-content/uploads/2012/02/Factors-Influencing-Travel-Behaviors-in-Bikesharing-Kim-et-al-12-1310.pdf
http://doi.org/10.1016/j.scs.2017.09.030
http://doi.org/10.1016/j.pmcj.2010.07.002
http://doi.org/10.3141/1780-10
http://doi.org/10.1007/s11116-015-9669-z
https://nacto.org/wp-content/uploads/2012/02/Feasibility-Study-for-a-Bicycle-Sharing-Program-in-Sacramento-California-Maurer-12-4431.pdf
https://nacto.org/wp-content/uploads/2012/02/Feasibility-Study-for-a-Bicycle-Sharing-Program-in-Sacramento-California-Maurer-12-4431.pdf

	Introduction 
	Proposed Methodology 
	Data Envelopment Analysis (DEA) 
	List of Inputs to Include in the Model 
	List of Outputs to Include in the Model 

	Case Study: Malmöbybike 
	Context Description and Related Variables 
	BSS Data Description and Preparation 
	Specification of Inputs and Outputs 
	Inputs, Outputs, and Station Selection 

	Results and Discussion 
	The Efficient BSS Stations 
	The Medium Efficient BSS Stations 
	The Least Efficient BSS Stations 

	Conclusions 
	References

