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We study the optimal (minimum mass) problem

for a prototypical self-similar tensegrity column. By

considering both global and local instability, we

obtain that mass minimization corresponds to the

contemporary attainment of instability at all scales.

The optimal tensegrity depends on a dimensionless

main physical parameter χ0 that decreases as the

tensegrity span increases or as the carried load

decreases. As we show the optimal complexity

(number of self-similar replication tensegrities) grows

as χ0 decreases with a fractal-like tensegrity limit.

Then, we analytically determine a power law

dependence of the optimal mass and complexity on

the main parameter χ0.

1. Introduction

The concept of tensegrity, first adopted by Fuller

[13], is used to denote a specific class of light

structures, consisting of compressed members (struts)

connected by tensile cables, whose stability and shape

depend on the prestretch of the tensile components.

This structural class presents some specific, sometimes

unique, characteristics that make it extremely attractive

to realize lightweight, developable, and smart structures

in different engineering fields. The first applications

of the tensegrity concept were aimed at the design

of light and elegant structures in Civil Engineering

[3]. Afterwords, many new interesting applications in

other fields have been proposed, based on the recalled

attractive properties: deployable structures [9], [10],

aerospace [6] and robotic [4] applications, sensors [5].

Finally the tensegrity concept has been observed in many

biological systems such as cell cytoskeleton [2,11] and it

is considered as an ubiquitous way for natural systems to

transmit and control forces.

c© The Authors. Published by the Royal Society under the terms of the

Creative Commons Attribution License http://creativecommons.org/licenses/

by/4.0/, which permits unrestricted use, provided the original author and

source are credited.
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The crucial problem in the design and analysis of tensegrity structures is the study of instability

effects: from one side the local buckling of struts, from the other side the (geometrical) global

instability phenomena induced by the strong nonlinear dependence from the external loads and

by the intrinsic non-unicity of the equilibrium problem (a typical effect in thin elastic structures,

such as inflated spherical membranes, see e.g. [19]). Usual analyses of these systems have been

based on the study of the only first type of instability (an exception can be find in [16] and [18]

where both local and global stability are considered). Here we propose an optimization approach

taking care of both local and global instability effects.

In particular, we consider the interesting case of hierarchical tensegrity structures obtained

by a self-similar reproduction of a tensegrity basic element at different scales (see [14], [2]). To

obtain analytical results, we focus on a plane tensegrity deduced starting by a T-bar [1] self-

similar element (see Fig.1). The main novelty of our approach is to consider as optimality condition

the contemporary attainment of a critical state at each scale. As we show, this full scale criticality

is verified by the minimum mass tensegrity. A similar result has been obtained in [17] in the

(nonlinear) mass optimization problem for truss structures, where the author shows that the

optimal solution is characterised by a multimodal instability.

We obtain that the optimization problem is regulated by a main physical non dimensional

parameter χ0 that decreases as the tensegrity total length increases and/or as the carried load

decreases. We then show the existence of an optimal complexity degree (number of self-similar

subdivisions) and optimal shape, depending on χ0 and on material parameters. Interestingly, we

find that the complexity grows as χ0 decreases. The dependence of optimal mass, prestress and

geometry on the applied load and material properties are then explicitly analysed.

We then determine the dependence of the optimality solution from χ0 and find power law

relationships for both the optimal complexity and optimal mass. In particular we find that when

χ0 → 0 the tensegrity tends to a fractal-like limit structure, with an infinite refinement of the self-

reproduction. Both the existence of a fractal limit and the signature of power laws inscribe our

results in the framework of Self-Organized Criticality (SOC) with interesting analogies with other

complex mechanical system (see e.g. [20], [21], [23] and references therein).

We point out that our results are of interest in the field of low loading and large length

structures that in our model correspond to the described limit of χ0 → 0. This situation occurs in

particular in Space Engineering where low mass and deployability represent typically the most

important design criteria [22]. Moreover we remark that our results are important also in the

explanation of the observed complexity of many tensegrity biological systems observed at nano,

micro and macro scales [2].

2. Mass optimization of a self-similar tensegrity column

As anticipated in the Introduction, the main novelty of the approach here proposed is an

optimality criterion requiring the contemporary attainment of a critical state at all involved scales.

This criterion will be confirmed by our analysis as a consequence of the Kuhn-Tucker conditions

for the considered optimality problem. To get analytical results and show the importance of the

analysis of both local and global stability, we focus on the simple explicit example of the plane

tensegrity column represented in Fig.1.

In what follows we analyze the mass optimization within this class of tensegrities of increasing

complexity, of fixed total length l0 and under a fixed compressive load N0.

(a) Single compressed bar

Consider first a single bar with cross section of area A0 and of axial area moment J0 =
A2

0

ξ2π2 (here

ξ depends only on the form of the cross section, e.g. ξ2 = 4
π in the case of circular section). We fix
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Figure 1. Scheme of the self-similar tensegrity column.

{figa}

A0 by imposing that N0 corresponds to the Eulerian critical load of the column:

A0 = ξ l0

√

N0

E
. (2.1) {A0}

Further, we indicate as χ0 =
N0

σsA0
the ratio between the Eulerian critical load an the compressive

failure load (here σs is the compression failure stress). This dimensionless parameter will be the

main parameter determining the optimal complexity. In view of (2.1), it can be written as

χ0 =

√
EN0

σsξ l0
. (2.2) {ko0}

If we assume that the compression failure load σsA0 is greater than the Eulerian critical load

(χ0 < 1), then the optimal mass of the column is

m0 =mb(l0, N0) = ρ ξ l20

√

N0

E
,

where ρ is the mass density. Here we indicate by mb(l, N) the optimal mass preventing Eulerian

buckling for a column of length l under a normal force N . Similarly we indicate by ms(l, N) =

ρ σs A l the optimal mass preventing material failure.

Then the assumption χ0 < 1 impies

χ0 =
N0

σsA0
=

ms(l0, N0)

mb(l0, N0)
≤ 1. (2.3) {ko}

Observe also that χ0 can be written as χ0 = (λs/λ)
2, where λ= l0√

J0/A0

is the slenderness of the

beam, whereas λs =
√

π2E
σs

is the value of the slenderness such that the critical Eulerian load and

the material failure load coincide. Thus χ0 measures the slenderness of the column and can be
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decreased or by decreasing the assigned load N0 (at fixed length) or by increasing the slenderness

(at fixed load).

The second dimensionless parameter determining the optimal complexity is

ǫ=
σs
E

≪ 1 (2.4) {eps}

This material parameter is here assumed as a smallness parameter. In particular in the following

the assumption (2.4) allows us to identify the length of the bars in the deformed and undeformed

configurations.

(b) Order one tensegrity column

Consider now a tensegrity column consisting, in the terminology of [1], in a T-bar (see Fig.1b)

characterized by the same length l0 and the same compression load N0 of the single column

considered above. This structure is constituted by:

· four prestressed cables of length s1 =
l0

2 cosα , where α is the angle between the cables and the

horizontal struts;

· two horizontal struts of length l1 =
l0
2 ;

· two vertical struts of length h1 =
l0 tanα

2 .

All struts are assumed hinged and have the same shape of the cross-section (fixed ξ) of the

zero order column. The tensegrity is prestressed and we describe the effect of prestrecthing on

the loaded state by the dimensionless parameter:

β1 =
N1

N0
> 1,

where N1 is the compressive force in the two horizontal struts. By equilibrium considerations we

find that the traction force on the four cables is T1 =
β1−1
2 cosαN0, whereas the compressive force in

the two vertical struts is Nv
1 = (β1 − 1)N0 tanα. Both α and β1 represent minimization (design)

parameters.

Now, we apply our optimality criterion to determine the masses of the components of the T-

bar. The optimal mass of a generic strut with length l= al0, carrying an axial force N = bN0, is

obtained by considering both the case in which N corresponds to its Eulerian critical load and the

case in which N corresponds to its compression failure load. Thus in the first case we determine

the optimal dimensionless mass

µb = µb(a, b) =
mb(al0, bN0)

mb(l0, N0)
= a2

√
b, (2.5) {mub}

while in the second case, using (2.3), the optimal dimensionless mass is given by

µs = µs(a, b) =
ms(al0, bN0)

mb(l0, N0)
=

ms(l0, N0)

mb(l0, N0)

ms(al0, bN0)

ms(l0, N0)
= χ0 ab. (2.6) {mus}

Thus the optimal dimensionless mass of the struts is

µ= µ(a, b) =max{µb(a, b);µs(a, b)}=max{a2
√
b;χ0 ab}.

Similarly the optimal dimensionless mass of a cable with length l= al0, carrying a traction force

N = bN0, is µs(a, b).

Here for simplicity of notation we assume that the cables are constituted by the same material

of the struts, but the results can be easily extended to the more general case of different materials.
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As a result, the dimensionless mass (with respect to mb(l0, N0)) of the order one tensegrity is

µ1 = 4µs

(

1

2 cosα
,
β1 − 1

2 cosα

)

+ 2µ

(

1

2
, β1

)

+ 2µ

(

tanα

2
, (β1 − 1) tanα

)

= χ0(β1 − 1)(tan2 α+ 1) + max

{

χ0β1;

√
β1
2

}

+ max

{

χ0(β1 − 1) tan2 α;

√
β1 − 1

2
(tanα)

5

2

}

.

(2.7) {mu1}

(c) Higher order tensegrity column ( n> 1 )

The tensegrity column of order n= 2 is obtained (see Fig.1c) by substituting in the previous

order one tensegrity the two horizontal struts by two geometrically similar order one tensegrities

(with length l1 = l0/2). In particular, we assume that each of the two, so introduced, order one

tensegrities is subjected to the same force β1N0 acting on the two removed horizontal struts and

that βT
2N0 = β1β2N0 is the force acting on the new four horizontal struts of length l2 = l0/4. Thus

βT
2 is the ratio between the forces acting on the four horizontal struts and the external load N0.

By reiterating this procedure we obtain the tensegrity column of order n, constituted by the

following elements:

· 2n horizontal struts of length ln = l0
2n undergoing the (compression) force Nn = βT

nN0 =

Πn
i=1βiN0;

·
∑n

i=1 2
i+1 cables of variable lengths si =

l0
2i cosα

, undergoing the traction forces Ti =
(β−1)βT

i−1

2 cosα N0;

·
∑n

i=1 2
i vertical struts also of variable lengths lvi = l0 tanα

2i
, undergoing the forces Nv

i = (βi −
1)βT

i−1N0 tanα.

Thus the (dimensionless) mass µn at the complexity n is

µn = 2nµ

(

1

2n
, βT

n

)

+

n
∑

i=1

2i+1µs

(

1

2i cosα
,
(βi − 1)βT

i−1

2 cosα

)

+

n
∑

i=1

2iµ

(

tanα

2i
, (βi − 1)βT

i−1 tanα

)

= max

{

√

βT
n

2n
, χ0β

T
n

}

+

n
∑

i=1

[

χ0(βi − 1)βT
i−1(1 + tan2 α)

+ max

{

tan
5

2 α
2i

√

(βi − 1)βT
i−1, χ0(βi − 1)βT

i−1 tan
2 α

}

]

.

(2.8) {resb}

3. Global stability

In this section we study the global stability problem for the tensegrity of complexity n. Again we

begin by analyzing an order one tensegrity to deduce, by an iterative method, stability results

for the order n complexity. Subsequently, we are able to optimize the parameters βi defining the

prestretching and the geometrical parameter α.
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Figure 2. Scheme of the global stability. a) Lagrangean variables, b) critical mode.

{figb}

(a) Order one tensegrity

Consider an order one tensegrity of length l, subjected to an axial force N . We choose

as Lagrangian parameters the generalized node displacements ui (see Fig.2a), measuring the

incremental displacements from the prestressed, loaded configuration. By considering the

symmetry properties of the system, these variables are chosen symmetric or antisymmetric with

respect to both the vertical axes and the horizontal axes.

The total potential energy (set equal to zero in the prestressed loaded state) of the generic order

one tensegrity structure can be written as

V (u, N) =

8
∑

k=1



N (k)∆l(k) +
EA(k)

2

(

∆l(k)

l(k)

)2

l(k)



− 2Nu1, (3.1) {eq1}

where

∆l(k) = ||∆x
(k) + T

(k)
u|| − l(k).

Here l(k) are the lengths of the members with area A(k) and ∆l(k) are their elongations, whereas

∆x
(k) and T

(k)
u are the axial vector in the reference configuration and the relative incremental

displacement vector between the end joints of the (k)-th bar, respectively. As already stated, in

view of the assumption (2.4) we identify the deformed lengths of the bars with the natural ones.

We assume, according with the so called maximum delay convention [15], that the system stays

in a (metastable) equilibrium configuration until it disappears. This is classical in structures

bifurcation stability analyses, but other possible hypotheses, e.g. assuming that the configurations

of the system correspond to the global energy minimum, can be considered (e.g. Maxwell

convention [22]). Under this assumption we study the positiveness of the Hessian (tangent

stiffness) matrix

K =
∂2V

∂u∂u
|

u = 0

≻ 0 (3.2) {eq2}

Page 6 of 16

http://mc.manuscriptcentral.com/prsa

Submitted to Proceedings A

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

7

rs
p
a
.ro

y
a
ls

o
c
ie

ty
p
u
b
lis

h
in

g
.o

rg
P

ro
c

R
S

o
c

A
0
0
0
0
0
0
0

..........................................................
that, based on our choice of the Lagrangian variables is a block diagonal matrix

K =











Kss

Kas
0

0
Ksa

Kaa











. (3.3) {eq3}

Here Kss, Kas, and Ksa are 2× 2 square matrices whereas Kaa is a scalar. The double index

notation indicates the symmetric (s) and antisymmetric (a) properties (see Fig.2), with the first

index referring to the horizontal axes and the second index to the vertical axes. In particular, u1
and u2 are ss variables, u3 and u4 are as variables, u5 and u6 are sa variables and u7 is an aa

variable. We refer to the Appendix 1 for all details and for the explicit deduction of K.

The proposed approach let us obtain numerically the solution of the optimal mass problem

for the generic tensegrity. However, in the following, to obtain analytical results, we assume (see

again the Appendix 1 for a justification of this hypothesis) that

φ=
N

El2
≪ 1. (3.4) {hypp}

Indeed, under this hypothesis we obtain that only one of the eigenvalues of Kas can be negative

whereas all other eigenvalues of K are positive (see again the Appendix 1). This eigenvalue takes

the form

λas1 =
4El

(

(β1 − 1) tan2 α− ǫ
(

β1 tan
2 α+ 1

))

ǫ
(

tan2 α+ 1
) φ (3.5) {eig}

and it is associated to the critical mode represented in Fig.2b.

Thus, using (3.5), we deduce that under the hypothesis (3.4) the order one tensegrity is stable

iff

tanα> η(β1) :=

√

ǫ

(β1 − 1)− βǫ
. (3.6) {etabeta}

(b) Higher order tensegrities

To extend the above results to higher complexity tensegrities, we first observe that the stability

result (3.6) does not depend from the length of the tensegrity, from the applied load and (see

Appendix 1 for details) from the stiffnesses of the struts.

Consider first the order two tensegrity. To study the stability of the single two T-bars with

length l0/2 (see Fig.1c) subjected to the forces N1 = β1 N0, we begin by observing that the stability

result (3.6) can be applied also in this case. As a result the stability of the two T-bars is ensured by

the relation

η(β2)< tanα. (3.7) {h1}

Then, the global stability of the order two tensegrity, can be analysed by substituting the two T-

bars by equivalent struts with identical elastic stiffness. Thus we reduce the stability analysis of

the order two tensegrity to the stability analysis of this equivalent order one tensegrity. We obtain

then the second stability condition

η(β1)< tanα. (3.8) {h2}

Therefore the stability of the order two tensegrity is granted by the simultaneous fulfillment of

(3.7) and (3.8).

The stability of the tensegrity of order n is then be simply obtained by reiterating this approach.

We obtain thus that the tensegrity is stable iff

η(βi)< tanα, i= 1, ..., n. (3.9) {hn}
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The optimal mass and complexity is then obtained by minimizing with respect to the

complexity parameter n. We indicate by αopt, βopt and µopt the solutions of the optimal

complexity determined by

µopt =min
n

µn(β̄n, tan ᾱn).

This minimization is described in Fig.4, for the two values ǫ= 10−3 and ǫ= 10−2 of

the material parameter in (2.4). The different curves correspond to different values of the

dimensionless load χ0 in (2.3). Observe that for high values of χ0, i.e. when the Eulerian load

N0 approaches the material failure load, the optimum mass corresponds to a low complexity or

even to the single compressed column. On the contrary the complexity grows as χ0 decreases, i.e.

when N0 decreases or the slenderness of the column grows.
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Figure 4. Optimal value of the mass as a function of the complexity n. Each curve is labelled by the values of the non

dimensional load χ0 in (2.3) for two different values of the smallness material parameter ǫ in (2.4).

{fig4}

These results are synthesized in Fig.5a where the optimal complexity nopt and the

corresponding optimal mass µopt are represented as functions of the slenderness parameter χ0.

Again the figure shows that the optimal complexity increases as χ0 decreases. The figure also

shows that the complexity grows as the non dimensional material parameter ǫ decreases.
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Figure 5. Dependence of the optimal complexity and optimal mass from the non dimensional stress χ0 in (2.3) for two

different values of the smallness material parameter ǫ in (2.4).

{fig5}

It is interesting to observe (see Appendix 2) that the optimal complexity nopt is attained at

the lowest complexity leading to the transition from Eulerian buckling to material failure in the

horizontal struts.
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Finally, the analysis of Fig.5b shows that the non-dimensional mass µopt decreases as the

slenderness increases and as the material parameter ǫ decreases. This can also be deduced by

observing that in Fig.3 only the boundary of the stability domain changes, according with (4.4),

moving upwards as ǫ increases. Also in Fig.6 we represent the dependence of the optimal prestress

βopt and of the angle αopt from both χ0 and ε.
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Figure 6. Optimal values of the prestress parameter β and of the angle α as functions of χ0 for two different values of ǫ.

{fig6}

5. Fractal limits and self organized criticality

In this section we study the important limit case of χ0 → 0 (limit of infinite tensegrity span

or of infinitesimal carried load) that, as the numerical analysis in the previous section shows,

determines an increasing optimal complexity. To obtain analytical results, we here fix the

geometrical parameter α (and consequently β according with the optimization condition (4.4)).

Under this hypothesis it is possible to define analytically the optimal complexity. More

precisely, it is possible to show (see the Propositions 1 and 2 in Appendix 2) that if the material

parameter ε is small enough (say ε= 10−2), we can find an open interval Iε = (α1(ε), α2(ε)) of

the angle α (say I10−2 = (0.047π, 0.461π)) such that if α∈ Iε then

int (ν)≤ nopt ≤ int (ν) + 1, (5.1) {incastro}

where

ν =− log10 χ0

log10 2
√
β
. (5.2) {nu0}

Remark. The inequalities (5.1) show that at the optimal complexity nopt a transition occurs from

Eulerian buckling to material failure in the horizontal struts. In other words, the optimal mass

is attained or in the highest complexity leading to Eulerian buckling or in the lowest complexity

leading to material failure. Thus, in particular, the replacement of a simple horizontal strut with

a T-bar of the same length is convenient only if the crisis of the strut is due to buckling.

In Fig.7a we show the linear dependence of the optimal complexity parameter ν on log10(χ0).

Interestingly, we obtain a linear dependence of the complexity on log10(χ0) with a power law

dependence between the optimal mass

µnopt = min{µint(ν), µint(ν)+1 }

and the parameter χ0 shown in Fig.7b with a linear log-log dependence for about three different

scales.
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Here, since the two vertical struts can be also designed against material failure,

A(3) =A(4) = νv ξ
l

2 tanα

√

(β − 1)N tanα

E

where νv > 0 has the same meaning of νh introduced above.

Finally, we have indicated by kes and kgs the elastic stiffness and the geometric stiffness of the

strings:

kes =
EA(k)

l(k)
=

E(β − 1)N

σl
, k= 5, 6, 7, 8,

kgs =
N (k)

l(k)
=

(β − 1)N

l
.

(5.5)

Here the cross sections areas are designed again material failure

A(k) =
(β − 1)N

2σ cosα
k= 5, 6, 7, 8.

Of course a numerical analysis let us analyze the positivity conditions K ≻ 0. However, to

determine analytically the critical mode and to study the positiveness of K we introduce the

smallness parameter

φ=
N

El2
≪ 1. (5.6) {ip}

Indeed, we may observe that

φ=
N

El2
≤ σsA

(1)

βEl2
=

ǫ

β

A(1)

l2
,

where ǫ is the small parameter introduced in (2.4). Of course also the second fraction is small for

a slender bar.

After easy computations we obtain (up to higher order terms) the eigenvalues

λss1 = λsa1 =
2
√
βElνhξ

π

√

φ;

λss2 = λas2 =
2Elνvξ

√

(β − 1) tanα

π

√

φ;

λas1 =
4El

(

(β − 1) tan2 α− ǫ
(

β tan2 α+ 1
))

ǫ
(

tan2 α+ 1
) φ;

λsa2 = λaa =
4El(β − 1)(E − σ)

σ
(

tan2 α+ 1
) φ

We can note that all the eigenvalues are positive, with the exception of λas1 that is positive iff

tanα> η(β) =

√

ǫ

(β − 1)− ǫβ
.

Finally, it is worth noting that, under the smallness assumptions (5.6), the stability results here

established are independent by the applied load. In this regard we recall that the bar cross sections

are not fixed, but are designed on the base of the applied load.

Appendix 2

In this Appendix we obtain the results we adopt to analyze the case χ0 → 0 in Section 5.

Proposition 1 The optimal complexity nopt verifies nopt ≤ 1 + int(ν), where

ν =− log10 χ0

log10 2
√
β
. (5.7) {nu}

Page 13 of 16

http://mc.manuscriptcentral.com/prsa

Submitted to Proceedings A

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

14

rs
p
a
.ro

y
a
ls

o
c
ie

ty
p
u
b
lis

h
in

g
.o

rg
P

ro
c

R
S

o
c

A
0
0
0
0
0
0
0

..........................................................
Proof. We begin by defining the dimensionless mass increment

∆µn = µn − µn−1 (5.8) {del0}

between the complexity n− 1 and n. Further, we denote by χj the ratio between the minimal

mass preventing material failure and the minimal mass preventing buckling in the horizontal

struts at the complexity order j:

χj =
ms(lj , β

jN0)

mb(ln−1, βn−1N0)
. (5.9) {c1}

In view of (2.5) and (2.6), χj is given by

χj =
(

2
√

β
)j

χ0. (5.10) {chi_n1}

Thus, by (2.8) and (5.10), ∆µn can be written as

∆µn =

(√
β

2

)n−1

∆µ̃(χn−1, β, tanα) (5.11) {del}

where

∆µ̃(χn−1, β, tanα) = βmax
{

1
2
√
β
, χn−1

}

−max {1, χn−1}

+ χn−1(β − 1)(1 + tan2 α)

+ (β − 1) tan2 αmax

{

(tanα)
1

2

2
√
β−1

, χn−1

}

.

(5.12) {deltild}

Here, in view of the optimality conditon (4.4), β = η−1(tanα), with tanα> 0.

Now, let us denote by n∗ − 1 the first complexity degree for which the horizontal struts

undergo material failure, so that, by definition (5.9), χn∗−1 ≥ 1 and, by (5.11) and (5.12),

∆µn∗−1 > 0. In view of (5.10), for any n> n∗ we have χn−1 >χn∗−1 ≥ 1 and, again by (5.11)

and (5.12), ∆µn > 0 (see Fig.10a). Then the optimal complexity nopt verifies the inequality nopt ≤
n∗ − 1.

As a consequence, n∗ − 1 is determined as the minimum positive integer such that n∗ − 1≥
int(ν), where ν, defined by (5.7), is the real positive number for which it is satisfied the condition

χν = χ0(2
√

β)ν = 1. (5.13) {ii}

Thus we have n∗ = 1 + int(ν).

Proposition 2 There exist a value ε̄ of the parameter ε and an open interval Iε = (α1(ε), α2(ε)) of the

angle α such that for α∈ Iε with ε≤ ε̄, it results

nopt ≥ int (ν). (5.14) {resres}

Proof. We begin by observing that ∆µ̃ is an increasing function of both χ and tanα. Morover,

since the optimal prestrecth parameter β = η−1(tanα) decreases as ε decreases, we have that ∆µ̃

decreases as ε decreases (see the scheme in the Fig.10b).

Now, in order to prove the proposition, we evaluate ∆µ̃ at χ= 1
2
√
β

, which corresponds, in

view of (5.10), to the (non integer) complexity j = ν − 1. First, we want to show that at this (non

integer) complexity, for any ε < ε̄, where ε̄ is a suitable value of ε, we always find an interval Iε
such that if α∈ Iε then we have ∆µ̃< 0. To this end in Fig.10b we represent the dependence of ∆µ̃,

evaluated at χ= 1
2
√
β

, on α for three different values of ε (corresponding to ε= 10−3, 10−2, 5 ∗
10−2). Fig.10b shows the existence of Iε and, since ∆µ̃ decreases as ε decreases, that the amplitude

of the interval Iε grows as ε decreases.

Finally, we observe that, as consequence of the monotonicity of χ and of ∆µ̃, if α∈ Iε then

∆µ̃< 0 also at the integer complexity int(ν)− 1 (see Fig.10a). This, in view of (5.8) and (5.11),

implies that µint(ν) <µint(ν)−1, so that the optimal complexity nopt must satisfies the relation

nopt ≥ int (ν) .
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Figure 10. a) Scheme of the monotonicity properties of the mass µ with respect to the complexity order n. b)

Evaluation of the domains Iε where ∆µ̃ at χ= 1

2
√

β
is negative for different values of ε. In particular we find

I
10−3 = (0.0015π, 0.489π), I

10−2 = (0.047π, 0.461π), I
5∗10−2 = (0.115π, 0.396π).

{fig10b}
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