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Position and Velocity Estimation of a
Non-cooperative Source From Asynchronous

Packet Arrival Time Measurements
Fabio Ricciato, Savio Sciancalepore, Francesco Gringoli, Niccolo Facchi, Gennaro Boggia

Index Terms—Asynchronous Localisation, Opportunistic Localisation, Time of Arrival, Time-Difference of Arrival, Source Localisation

F

Abstract—We tackle the problem of identifying the trajectory of a
moving radio source from Time of Arrival (TOA) measurements collected
by a set of cooperating receivers. The considered system is completely
asynchronous: nodes clocks are affected by unknown time and fre-
quency offsets, and no control is exerted over packet transmission times.
In the proposed solution, the receiver clock offset terms are estimated
from TOA measurements on packets originated by non-cooperative
reference transmitters, possibly but not necessarily coincidental with
reference receivers. Transmission time ambiguity is resolved by exploit-
ing the redundancy associated to the reception of the same packet at
multiple receivers. A distinguishing feature of the proposed solution is
that it seeks to identify the parameters of the trajectory as a whole,
rather than the individual points of transmission as done in traditional
point-based approaches. This allows the effective exploitation of TOA
measurements collected in lossy scenarios, where the generic packet
is received by a smaller subset of the available receivers (at least two).
For the problem at hand, we provide distinct estimators based on TOA
and Time-Difference of Arrival (TDOA) and prove their equivalence.
Numerical results from simulations and from a real WiFi testbed are
provided to validate the effectiveness of the proposed method.

1 INTRODUCTION

We tackle the problem of passively identifying the tra-
jectory of a moving radio source from Time of Arrival
(TOA) measurements collected by a set of cooperating
receivers. In order to facilitate practical adoption and
minimise cost of deployment, we keep the system-level
requirements down at a minimum. In the considered
scenario, receiver nodes’ clocks are left unsynchronised,
and no assumption is made about transmission times,
thus enabling the exploitation of signals of opportunity
from non-cooperative transmitters.

The general reference scenario is depicted in Fig.
1(a). We consider a wireless system with a blind node
transmitting a sequence of packets while moving linearly
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at constant velocity. In parallel, a set of fixed reference
transmitters in known positions are also transmitting.
Both types of packets (from the moving blind node and
from the fixed reference transmitters) are sent at arbitrary
(unknown) transmission times. A set of receivers in fixed
known positions overhear and timestamp each received
packet, and these data are shared with a central entity in
charge of the computation. The problem is to determine
the (final) position and the velocity vector of the blind
node from the measured timestamps.

A batch processing approach is considered, where
all measurements collected within the last observation
window of duration T are jointly processed in a single
run to estimate the trajectory parameters (final position
and velocity) with no prior knowledge about the initial node
state. This problem represents the generalisation to a
moving node of the classical localisation problem for a
static node and was termed “tracing1” in [1].

The considered system is completely asynchronous
and is characterised by the following features:
(a) Receivers are asynchronous: each node clock is af-

fected by unknown time offset and frequency offset.
(b) Packet transmissions are asynchronous: no explicit

control is exerted on the transmission times.
(c) Transmission times are unknown: the tracing pro-

cess relies exclusively on reception timestamps.
(d) The blind node moves with unknown constant ve-

locity.
We highlight that, owing to (b) and (c), transmitters
are not required to cooperate explicitly with the tracing
process. This is a key aspect of the considered system, as
it allows to exploit opportunistically the packets trans-
mitted for communication purposes. A minimum level
of cooperation is assumed solely between the (fixed)
receivers for the purpose of sharing the collected mea-
surements. We remark that in this scenario the blind
node acts purely as transmitter and does not participate
to the localisation process.

1. The tracing problem should be distinguished from the tracking
problem, where the current instantaneous position of the blind node is
iteratively updated upon arrival of a new measurement, starting from
an initial state that is known at least approximately.
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One limitation of the solution elaborated in this pa-
per is reliance on Line-of-Sight (LOS) propagation. This
limits its applicability to open outdoor environments.
Possible application domains include WiFi based pedes-
trian tracking [2], people localisation at mass events [3],
cattle localisation, WiFi based low-cost sensor networks
[4], intrusion detection [5], vehicular localisation [6].
A particular promising application domain is passive
drone localisation based on their WiFi signals.

One of the key contributions of our work is to show
that the mere set of time-of-arrival (TOA) measurements
available at the receivers are sufficient to resolve the
many unknown terms that are involved by the adop-
tion of minimalistic system assumptions (a)-(d), namely
packet transmission times, clock offsets, clock drifts,
node velocity. Failing to recognise this opportunity led
the authors of those previous work to impose additional
requirements onto their systems (e.g., node synchronisa-
tion, tightly controlled transmission timing, ad-hoc rang-
ing protocols) or abandon time-based ranging techniques
in favour of less accurate power-based ranging.

In the general scenario depicted in Fig. 1(a) reference
transmitters and receivers are regarded as independent
entities. For several real-world applications, particularly
those involving WiFi deployments and Wireless Sensor
Networks (WSN), it makes sense to consider a partic-
ularisation of this model with a single set of “anchor”
nodes in (known) fixed positions, each anchor serving
both as (reference) transmitter and receiver. In other
words, reference transmitters and receivers are 1:1 cou-
pled, as depicted in Fig. 1(b). Motivated by the practical
relevance of this scenario, and by the advantage of a
certain notational simplification in this case, hereafter we
focus the presentation of the proposed method and of the
numerical results to the particular scenario of Fig. 1(b),
with the understanding that all proposed algorithms can
be generalised straightforwardly to the more general
case of independent transmitters depicted in Fig. 1(a).

In this work we formalise the tracing/localisation
problem within the system model outlined above and
present a possible resolution strategy. Along the way, we
provide different variants of Least Squares (LS) estima-
tors based on Time of Arrival (TOA) and Time-Difference
of Arrival (TDOA). As a by-product of this study, we
prove the equivalence of the TOA and TDOA instances
for the problem at hand — a result that strengthens
and generalises previous results about TOA and TDOA
“equivalence”. Numerical results from Monte Carlo sim-
ulations are provided to explore the impact of various
system-level aspects and parameters. For the special
case of null blind velocity (localisation problem), the
proposed method is compared against an alternative ap-
proach based on Differential Time-Difference of Arrival
(DTDOA) that was published in a previous work [7].
Finally, results are validated on experimental data from
a real-world WiFi testbed.

Transmitters (non-cooperative) 

Receivers (cooperative) 

Reference Tx 
in fixed known position 

Blind node 

Localization Data 
from blind 

Synchronization Data 
from reference transmitters 

(a) General scenario with independent reference transmitters (non-
cooperative) and receivers (cooperative).

Anchor nodes 
in fixed known position 

Blind node 

(b) Particularized scenario: each anchor node serves both as
receiver and reference transmitter.

Figure 1. Reference scenario.

2 SYSTEM MODEL

The reference scenario is depicted in Fig. 1(b). Consider
a system with N+1 nodes indexed with n = 0, . . . , N . In-
dex n = 0 is reserved for the (moving) blind node, whose
trajectory parameters we wish to estimate, whereas the
remaining N (anchor) nodes are placed in fixed known
positions. We assume a minimum of five anchors, i.e.
N ≥ 5. During the observation interval, the blind node
transmits M (data) packets, while the generic anchor
n transmits Bn (beacon) packets. We shall indicate by
G

def
=
∑N
n=1Bn the total number of beacon packets trans-

mitted by all anchors. Each packet may be overheard
and timestamped by any other anchor node (except the
sender, in case of beacon packets) and all the collected
measurements are sent to a central computation entity.

In an ideal system with zero packet loss every packet
is timestamped by all potential receivers, resulting in a
complete dataset of MN+G(N−1) measurements. How-
ever, in real systems occasional packet loss cannot be
avoided (e.g., due to interference or collisions) and there-
fore must be taken into account in the system model. To
illustrate, we sketch graphically in Fig. 2(a) an example
of lossy dataset, where each transmitted packet (top row)
is received by only a subset of possible receivers. Since
the transmission time of a generic packet m is unknown,
the individual TOA measurement at a single anchor
does not carry any useful information about the receiver
position relative to the transmitter. However, if we con-
sider the collection of TOA measurements for the same
packet at two or more anchor nodes, they collectively
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Transmitted Packets  

Receiving 
Nodes 

(a) Initial lossy dataset

time 

discarded to insufficient TOA data 

(b) Data pre-filtering: packets re-
ceived by a single node are discarded.

time 

Useful Transmissions indexed in m	


Rr(m) : reference TOA element 
for packet m	


ξnm : generic TDOA element 
for packet m	


1 m	
…	
 m+1	
 …	
2 

Rnm : generic TOA element 
for packet m	


(c) For each useful transmission m, a single pivot
anchor nm is randomly selected.

Figure 2. Graphical representation of dataset pre-processing.

carry information about the relative node positions. In
other words, a generic packet transmitted at an unknown
time produces useful information for the localisation
problem only if it is received (and timestamped) by
at least two anchors. For this reason, we preliminarily
discard the reception timestamps associated to packets
that were received by a single anchor. The resulting
filtered dataset, sketched in Fig. 2(b), represents the input
for the proposed algorithm.

The following notation is introduced:

• A def
= {1, . . . , N} is the set of all anchor nodes.

• Am ⊆ A is the subset of anchor nodes that have
successfully received and timestamped packet m.

• Nm
def
= |Am| is the number of receiving anchors for

packet m. The pre-filtering stage guarantees Nm ≥ 2.
• i(m) ∈ {0, . . . , N} denotes the transmitting node

index for the generic mth packet. As the source node
cannot hear its own packet, i(m) /∈ Am.

• T is the duration of the observation window, i.e., the
maximum age of the data used for the estimation.

• tm ∈ [0, T ] is the unknown transmission time of
packet m by node i(m).

• nm ∈ Am is the “reference anchor” for packet m,
chosen arbitrarily among the elements of Am.

• Rnm is the reception timestamp of the mth packet at
the receiving node n as measured by its local clock.

• enm is a random error term (measurement noise)
affecting the reception timestamp Rnm.

• θn is the (unknown) clock offset term for node n.
• γn is the (unknown) clock skew factor for node n,

i.e., the relative difference between the actual and
nominal clock frequency.

• qn
def
= [xn, yn, zn] is the 3D position of generic anchor

node n = 1, . . . , N in the reference system.
• p

def
= [px, py, pz] is the actual position of the blind

node at the end of the observation window t = T .
• v

def
= [vx, vy, vz] the velocity vector of the blind node

in the reference 3D coordinate system.
• p(t) = p− v(T − t) is the instantaneous position of

the blind node at the generic time t ∈ [0, T ].
• dk,n

def
= ‖pk − qn‖ = dn,k is the Euclidean distance

between nodes k and n.
For ease of notation we stack the variables θn and γn,
n = 1, . . . , N into the vectors θ and γ, respectively.

We assume that the measurements errors enm are i.i.d.
with zero-mean and variance σ2

e . These assumptions are
reasonable in practical deployments with homogeneous
commercial-off-the-shelf (COTS) devices, where the tim-
ing accuracy is typically limited by the ADC rate and/or
clock resolution. Furthermore, if the error distribution
can be assumed gaussian, then the Least Squares (LS)
estimators developed throughout the paper represent the
optimal Maximum Likelihood (ML) estimators.

In addition to (random) measurement errors, we as-
sume that the timing measurements of the generic node
n are affected by two systematic error terms: a temporal
offset θn and a (relative) frequency offset γn. In other
words, the various nodes clocks are free to run without
any synchronisation nor tuning mechanism. We consider
a simplified scenario where signal propagation occurs
through direct Line-of-Sight (LOS) path between any
pair of nodes. The LOS assumption is very common in
time-based localisation studies, and most previous work
are based on full LOS models, e.g. [1], [2], [3], [4], [6],
[8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19].

The 3D positions of all anchor nodes are known
exactly without error. We assume the blind node position
to be constrained on the horizontal plane (hence vz = 0)
at known height pz , and the problem is to determine
the horizontal components [px, py, vx, vy]. With the above
notation, the reception timestamp measured at anchor n
for the mth packet sent by another anchor i(m) 6= n
writes as (anchor-to-anchor equation):

(1 + γn)Rnm = tm +
dn,i(m)

c
+ θn + enm (1)

where dn,i(m)
def
= ‖pi(m) − qn‖ denotes the (known)

distance between the transmitting and receiving anchors,
and c the speed of light. If, instead, the mth packet is
transmitted by the blind node, the reception timestamp
at anchor n writes as (blind-to-anchor equation):

(1 + γn)Rnm = tm+
1

c
‖p−v(T−tm)−qn‖+θn+enm. (2)

The overall resolution method relies on the model
equations (1) and (2) and it is sketched in Fig. 2. We
devise a two-stage approach, where synchronisation and
localisation (or tracing) are performed by two distinct
routines. First, clock error terms θ̂, γ̂ are estimated
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Figure 3. Workflow of the proposed method.

from anchor-anchor measurements with the method pre-
sented later in Sec. 3, and used to correct the blind-
anchor timestamps. In the second stage, the adjusted
blind-anchor timestamps are used to determine p and
v with the algorithms developed later in Sec. 4.

Hereafter we motivate the choice of a two-stages
approach. In fact, it is possible in principle to join
the estimation of clock error parameters and trajectory
parameters into a single larger estimation instance —
an approach followed e.g. by [8], [9] for a different
scenario. While this approach might seem more compact,
it would come at the cost of higher complexity due to
the larger dimensionality of the search space, with no
clear benefit in terms of final accuracy. To elaborate,
we sketch in Fig. 4 an abstract representation of the
overall problem structure. The red and blue lines rep-
resent, respectively, anchor-to-anchor equations of type
(1) and blind-to-anchor equations of type (2). Notably
the variable sub-spaces spanned by the two sets of
measurements intersect only at the sub-space of clock
error variables. Since the latter can be fully determined
by anchor-to-anchor measurements, that are abundant
in practice, there is no benefit in merging together the
two sub-sets of measurements in a single joint estimation
instance of much larger dimensionality. The advantage
of the split approach is reinforced by the fact that the
synchronisation sub-problem defined in Sec. 3 (red oval
in Fig. 4) is linear, hence can be solved directly in closed-
form. Moreover, the advantage of the split approach is
amplified when multiple blind nodes are to be traced
in parallel. Since the blind nodes are non-cooperating,
no blind-to-blind measurement is available to tie to-
gether the position/velocity variables of different nodes,
and therefore the localisation sub-problem for can be
naturally decoupled for different sources, letting each
blind node being traced independently from the others.
In other words, the splitting between localisation and
synchronisation sub-problems avoids the unnecessary
duplication of clock error estimation.

3 ESTIMATION OF CLOCK ERROR TERMS
(DATA SYNCHRONISATION)
For the first stage, we follow a procedure similar in
spirit to the synchronisation method adopted in [10] for
a very different system model (therein knowledge of
transmission times and two-way ranging between node
pairs were considered).

blind #k+1 
 

position & velocity 

transmission 
times 

 
blind #k+1-anchor 

packets transmission 
times 

anchor-anchor 

transmission 
times 

 
blind #1-anchor 

packets 

blind #1  
 

position & velocity 

transmission 
times 

 
blind #2-anchor 

packets 

blind #k 
 

position & velocity 

… 

clock error  
variables 

Localization  
sub-problem 

blind node #1 

Synchronization 
sub-problem 

Localization  
sub-problem 

blind node #k 

Localization  
sub-problem 
blind node #k+1 

…
 

anchor-anchor equation 
blind-anchor equation 

Figure 4. Graphical representation of the search space.

We start noting that the generic anchor-to-anchor
equation (1) is linear into the unknown variables θn, γn
(n = 1, . . . , N ) and tm (m = 1, . . . , G). Therefore the esti-
mation problem can be cast into a linear LS problem, for
which a closed form solution can be computed directly.
However, careful analysis reveals that the problem is
underdetermined, i.e., it does not have a unique solution
(see discussion in [10, Sec. VI]). To remove the ambiguity,
it is sufficient to pick one anchor to serve as clock
reference: without loss of generality we pick the first
anchor with n = 1 as reference, and set θ̂1 = 0 and γ̂1 = 0
as fixed parameters. It is obvious that setting θ̂1 = 0 is
inconsequential for the estimation process, since we have
one degree of freedom in setting the origin of the time
axis. As for the constraint γ̂1 = 0, we will show later that
the impact on the final estimate is absolutely negligible.

With these settings we are left with 2(N−1) clock error
terms plus G unknown transmission times to estimate.
For a more compact matrix notation we define the
variable vector y def

= [θ2, . . . , θN , γ2, . . . , γN , t1, . . . , tG]
T of

length 2(N − 1) +G. In order to represent the available
measurements in matrix form, we map all possible GN
measurements (for G packets at N anchors) to a single
index k = (m − 1)N + n, with m = 1, . . . , G and
n = 1, . . . , N . Denote by b the vector of length GN with
elements defined by:

bk
def
=

{
dn,i(m)/c−Rnm if n ∈ Am
0 otherwise

with k = (m− 1)N + n. Denote by H the matrix of size
GN × 2(N − 1) +G with elements hkj defined as

hkj
def
=


−1 if j = n, n ≥ 2, n ∈ Am
Rnm if j = N + n− 2, n ≥ 2, n ∈ Am
−1 if j = 2N − 2 +m and n ∈ Am
0 otherwise

wherein again k = (m−1)N+n. With the above notation,
and considering that all timestamp errors are assumed
i.i.d., the linear LS estimate derived from the model
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equations (1) writes as:

ŷ = argmin
y

(Hy − b)T (Hy − b) =H+b (3)

wherein H+ is the Moore-Penrose pseudo-inverse of H .

After estimating the clock error terms θ̂n, γ̂n from
anchor-to-anchor measurements, all reception times-
tamps for blind-to-anchor packets can be corrected. The
generic adjusted timestamp will be denoted by

R′nm
def
= (1 + γ̂n) ·Rnm − θ̂n. (4)

This procedure is equivalent to align all anchor clocks
to the clock of the reference anchor, leaving only an
unknown offset (“inherited” by the reference anchor) be-
tween the common clock frequency, equal for all anchors
after timestamp adjustment, and the nominal frequency.
We will show later in Sec. 4.5 that the effect of such
small common frequency offset is absolutely negligible in
practice, therefore we will disregard it in the analysis.

4 POSITION AND VELOCITY ESTIMATION

4.1 Preliminaries
Replacing the raw timestamps with the adjusted times-
tamps (4), the blind-to-anchor equation (2) after data
synchronisation rewrites as:

R′nm = tm +
1

c
‖p− v · (T − tm)− qn‖+ enm. (5)

Based on this model equation, we can cast the tracing
problem into a Non-linear LS form. However, before
proceeding further we introduce a small but impor-
tant simplification in the basic model equation (5): we
approximate the (unknown) packet transmission time
appearing in the distance term by the (known) arrival
time at some reference anchor. For every packet m, we
pick arbitrarily one of the receiving anchors nm ∈ Am to
serve as reference. We shall denote by R′m

def
= R′nm|n=nm

the (adjusted) reception timestamp associated to the
reference anchor nm. After replacing tm with R′m in the
distance term, eq. (5) rewrites as:

R′nm
∼= tm +

1

c
‖p− v · (T −R′m)− qn‖+ enm. (6)

The transmission time tm now appears only as an ad-
ditive term. The error on the final position estimate
introduced by approximating tm ≈ R′m into the distance
term is in the order of |v|c times the distance between
the blind node and the reference anchor, and can be
safely neglected in practical applications. For example,
with blind node speed of |v| = 10 m/s at a distance of
300 meters from the reference anchor, the approximation
error is in the order of 10−5 meters.

In order to reduce numerical errors, we recenter the
timestamp data for each packet m around the reference
time R′m, and rescale all terms by the speed of light c.
To this aim we define the new terms

R̃nm
def
=
(
R′nm −R′m

)
· c (7a)

t̃m
def
=
(
tm −R′m

)
· c (7b)

ẽnm
def
= enm · c. (7c)

With these definitions the basic equation (6) rewrites as:

R̃nm = t̃m + ‖p− v · (T −R′m)− qn‖+ ẽnm. (8)

Note the difference between the terms R̃nm (re-centered
and re-scaled by c) and R′m used, respectively, outside
and inside the distance term. We remark that both R̃nm
and R′m are computed directly from the input data.

For the sake of simpler notation we gather all the
variables of interest into the vector z

def
= [p,v] =

[px, py, vx, vy] and all nuisance variables into the vector
t

def
=
[
t̃1, . . . , t̃M

]
, and denote the non-linear terms by

dnm(z)
def
= ‖p− v · (T −R′m)− qn‖. (9)

With these positions the basic equation (8) rewrites as

R̃nm = t̃m + dnm(z) + ẽnm. (10)

If the error terms ẽnm are i.i.d. and gaussian, the negative
log-likelihood function is given by

` (z, t) =
1

2

M∑
m=1

∑
n∈Am

(
t̃m + dnm(z)− R̃nm

)2
. (11)

4.2 TOA formulation

In the first TOA variant the (unknown) transmission
times t are treated as nuisance variables to be estimated
jointly with the variables of interest z. The minimisation
of the negative log-likelihood function (11) leads to the
following Non-linear Least Squares (NLS) form:

ẑ, t̂ = argmin
z,t

M∑
m=1

∑
n∈Am

` (z, t)

= argmin
z,t

M∑
m=1

∑
n∈Am

(
t̃m + dnm(z)− R̃nm

)2
= argmin

p,v,t

M∑
m=1

∑
n∈Am

(
t̃m + ‖p− v · (T −R′m)− qn‖ − R̃nm

)2
.

(12)
The NLS estimator (12) corresponds to the Maximum
Likelihood (ML) estimator if the errors are i.i.d. and
gaussian, and in this case the solution is optimal in the
ML sense. If errors are i.i.d. unbiased but not gaussian2,
the solution delivered by the NLS method is not optimal
relatively to the achievable bound, but in absolute terms its
accuracy remains pretty similar to that of the gaussian
case (ref. Fig. 9 and discussion thereafter).

2. This is often the case in practical scenarios deploying homo-
geneous COTS devices, since the reception timestamp reported by
commercial receivers is typically obtained by the first sample of the
detected preamble. In this case, timestamp resolution is limited by the
ADC sampling rate of the radio front-end a more limiting factor than
the theoretically achievable bound (see e.g. [20]).
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4.3 TDOA formulation
In the alternative Time-Difference of Arrival (TDOA)
variant the (unknown) transmission time variable t̃m
is eliminated by taking the difference of arrival times
at different anchors. Subtraction introduces correlation
between the residuals, hence the need to consider a non-
diagonal covariance matrix. For a generic packet m sent
by the blind node, consider the reference anchor nm
and another receiving anchor n 6= nm, and denote the
difference between their respective TOA residuals by:

ξnm
def
= ẽnm − ẽnmm = R̃nm − dnm(z) + dm(z) (13)

wherein dm(z)
def
= dnm(z)|n=nm is the distance term asso-

ciated to the reference anchor. Recall that by definition
the re-centered timestamp of the reference anchor is zero,
i.e., R̃nm|n=nm

≡ 0. The term ξnm represents the TDOA
residual for packet m associated to the pair of receiving
anchors n and nm. For the sake of notational simplicity,
we stack into the vector ξm

def
= {ξnm, n ∈ Am\nm} all

TDOA residuals for packet m. Due to the presence of a
common term, the components of vector ξm are not in-
dependent, and therefore the (generalized) LS form must
take into account the non-diagonal covariance matrix of
ξm, denoted by Σm. For the particular case at hand, Σm

has a particularly simple structure, independent of the
choice of the reference anchor, with all diagonal elements
equal to ’2’ and all off-diagonal elements equal to ’1’.
Hence can be written as the sum Σm = I + O[Nm−1],
where I is the identity matrix and Ok denotes a square
k× k matrix with all unitary elements. By the Sherman-
Morrison theorem [21] the inverse develops as:

Σ−1m
def
=
(
I +O[Nm−1]

)−1
= I − 1

Nm
O[Nm−1].

Thanks to the simple structure of Σ−1m , the TDOA esti-
mator can be developed into the following simple form
(TDOA formulation):

ẑ =argmin
z

M∑
m=1

ξTmΣ−1m ξm

=argmin
z

M∑
m=1

 ∑
n∈Am
n6=nm

ξ2nm −
1

Nm

 ∑
n∈Am
n6=nm

ξnm


2.

(14)
Note that the search space of (14) has lower dimension-
ality than (12) since the nuisance variables t have been
eliminated. As for the variables of interest z, we will
show below that TOA and TDOA estimators represented
respectively by (12) and (14) lead exactly to the same
solution ẑ when instantiated with the same input data.

4.4 S-TOA formulation
Starting from the TOA formulation (12) it is possible to
derive an alternative formulation, with the same (lower)
dimensionality of the TDOA form (14), but without the

need of introducing pairwise timestamp differences. We
will refer to this new formulation by the term “S-TOA”
for “shrunk TOA”. For ease of notation let

fnm(z)
def
= dnm(z)− R̃nm = ‖p− v · (T −R′m)− qn‖ − R̃nm.

Recall that the solution ẑ to the unconstrained minimi-
sation (12) must satisfy the zero-gradient condition:

∂

∂t̃i

M∑
m=1

∑
n∈Am

(
t̃m + fnm(z)

)2
= 0, i = 1, . . . ,M

⇒ t̃m = − 1

Nm

∑
n∈Am

fnm(z), m = 1, . . . ,M.

(15)

hence replacing t̃m in the objective function (12) with the
last term of (15) does not change the solution in the space
of z. Doing so, after some trivial passages (12) rewrites:

ẑ = argmin
z

M∑
m=1

∑
n∈Am

(
fnm(z)− 1

Nm

∑
n∈Am

fnm(z)

)2

= argmin
z

M∑
m=1

 ∑
n∈Am

f2nm (z)− 1

Nm

( ∑
n∈Am

fnm (z)

)2
.

(16)
Note that we have effectively eliminated the variables
t̃m, reducing the dimensionality of the search space.

4.5 Insensitivity to a common frequency shift
In this section we prove that the presence of a small
common offset from the nominal clock frequency affecting
all input timestamps is inconsequential for the position
and velocity estimation, and therefore can be neglected.
Recall from Sec. 3 that a common frequency offset is
“inherited” by the clock of the anchor selected to serve
as clock reference. We derive the proof for the S-TOA
formulation (16), but since the solution of TOA and
TDOA is exactly the same as S-TOA, the proof is valid
for all these formulations.

Denote by γ << 1 the (unknown) relative frequency
offset term. To model a common frequency offset, all
measurement data should be rescaled by (1+γ), i.e., each
term R̃nm should be replaced by (1+γ)R̃nm. Accordingly,
the term fnm(z)

def
= ‖p−v·(T−R′m)−qn‖−R̃nm appearing

in (16) should be replaced by

f ′nm(z)
def
= ‖p− v · (T −R′m)− qn‖ − (1 + γ)R̃nm

= (1 + γ)
(
‖p′ − v′ · (T −R′m)− q′n‖ − R̃nm

)
wherein p′

def
= 1

1+γp, v′
def
= 1

1+γv and q′n
def
=

1
1+γ qn denote the spatial vectors in a reference sys-
tem rescaled by 1

1+γ . Since the argmin (·) function is
insensitive to a multiplicative rescaling it holds that
argmin

∑
n,m (1 + γ)xnm = argmin (1 + γ)

∑
n,m xnm =

argmin
∑
n,m xnm, therefore the outer factor (1 + γ) is

irrelevant in the minimisation (16) and the only residual
effect is the whole geometry rescaling. The relative error
caused by such rescaling is in the order of |γ|, since
γ << 1⇒ 1

1+γ ≈ 1− γ. For example, for a COTS device
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with frequency tolerance |γ| ≤ 10 ppm and a network of
dmax = 300 meters the error due to geometrical rescaling
remains below 3 mm, hence negligible in practice.

5 DISCUSSION
5.1 On the different forms of “equivalence” between
non-linear estimators
Consider two generic estimators in the form

ẑ1 = argmin
z∈X

φ1(z) and ẑ2 = argmin
z∈X

φ2(z)

with non-linear but differentiable objective functions
φi(z) (i = 1, 2) to be solved numerically by some
gradient-based method. We distinguish the following
types of relationship between the two estimators above:
(I) Equality if ẑ1 = ẑ2 ⇐ φ1(z) = φ2(z), ∀z ∈ X .

(II) Strong Equivalence if ẑ1 = ẑ2 but φ1(z) 6= φ2(z).
(III) Weak Equivalence if ẑ1 6= ẑ2 but E{ẑ1} = E{ẑ2}

and V AR{ẑ1} = V AR{ẑ2}.
Two “equal” estimators in the sense of definition (I)

have the same objective function (hence same gradient)
across the entire search space X . Consequently, the nu-
merical procedure will follow the very same numeric
path and eventually converge exactly to the same so-
lution (or not converge at all). In other words, the two
forms are merely different analytical representations of
the very same estimator.

Two “strongly equivalent” estimators in the sense
of definition (II) have different objective functions but
the same global minimum. They should theoretically
lead to the very same final solution, notwithstanding
the usual risks of numerical procedures (local minima,
divergence). However, even in the desirable case that the
adopted resolution algorithm is capable of converging to
the global optimum, the search path will be in general
different for the two forms. It practice, we may find
that one or the other form yields systematically bet-
ter convergence behaviour (e.g., converges with higher
probability to the global optimum in less iterations) and
therefore should be preferred. In other words, “strong
equivalence” of two analytical forms does not mean that
their performances are undistinguishable in practice.

Two “weakly equivalent” estimators in the sense of
definition (III) will lead in general to different solutions.
However, the two solutions have the same accuracy, i.e.,
same variance of final estimation error. If we denote by
z∗ the true value of the variable(s) we wish to estimate, it
can be easily seen that the definition of weak equivalence
implies that E

{
(ẑ1 − z∗)2

}
= E

{
(ẑ2 − z∗)2

}
.

5.2 Equality of TDOA and S-TOA
From the definition (13) it holds that ξmn = fmn(z) −
dm(z). Comparing (16) to (14), it is evident a strong
similarity between the objective functions. In fact, S-TOA
and TDOA can be written in the common format:

ẑ = argmin
z

M∑
m=1

v (g1m, . . . , gNm)

with v (x1, . . . , xN )
def
=
∑N
n=1 x

2
n − 1

N

(∑N
n=1 xn

)2
and the

terms gnm defined3 as:

gnm
def
=

{
fnm (z)− dm(z) for TDOA,
fnm (z) for S-TOA.

(17)

The term v (x1, . . . , xN ) represents the sum of squared
deviations from the mean for the set {xn, n = 1, . . . , N},
and rescaling by 1

N−1 would lead to the canonical ex-
pression for the sample variance. Likewise the sample
variance, v(·) is invariant to translation by a common
term µ, formally:

v (x1, x2, . . . , xN ) = v (x1 − µ, x2 − µ, . . . , xN − µ) , ∀µ

as can be easily verified with a few simple algebraic
passages. From (17) we immediately recognise that this
is indeed the case when comparing TDOA and S-TOA,
with dm(z) in (17) playing the role of the common shift
µ. Therefore, we conclude that TDOA and S-TOA yield the
same value of the objective function for any generic point z of
the search space. In other words, they are perfectly “equal”
in the sense of definition (I), i.e., TDOA and S-TOA are
merely two ways of expressing the same estimator, and for
this reason hereafter we will use the labels TDOA and
S-TOA interchangeably.

5.3 Strong equivalence of TOA and TDOA/S-TOA

By construction (ref. Sec. 4.4) S-TOA leads to the same
solution of TOA in the space of the variable of interest
z. In other words, they are “strongly equivalent” in the
sense of definition (II). Together with equality of S-TOA
and TDOA, this means that TOA and TDOA are also
“strongly equivalent”, i.e., their theoretical solution is
exactly the same. This is a new result that strengthens and
generalizes previous results comparing TOA and TDOA
solutions. In fact, previous work dealing with static node
localisation had proved only “weak equivalence”, based
on the comparison of the respective Cramer-Rao bounds
(see e.g. [22] and references therein). The only explicit
“strong equivalence” demonstration that we found in
the literature appears in [23, Theorem 2], limited to lin-
earised (approximated) versions of the TOA and TDOA
estimator and for the special case of a static node. We
remark that the our proof applies to any generic set
of non-linear functions fnm(z) in the generic vector of
variables z. As such, it applies to any arbitrary parametric
trajectory, including but not limited to the linear motion
that is the focus of the present work, and represents a
generalisation of the result in [23, Theorem 2].

5.4 Particularisation to a static emitter (localisation)

In the previous section we have developed estimators
for the “tracing” problem (following the definition in
[1]) where the unknown velocity v of a linearly moving

3. Since ξnm|n=nm
= 0 the inner sum in (14) can be extended to

the whole set Am, i.e.
∑

n∈Am, n6=nm
ξnm =

∑
n∈Am

ξnm.
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node must be estimated in addition to the final position
p. Since all estimators ultimately lead to exactly the
same solution, we shall refer to them collectively as
“TOA/TDOA” estimators hereafter. In the particular
case that the blind node is known to be static, the
tracing problem reduces to the classic static localisation
problem. We have two different options to address the
static localisation problem with our estimators:
• Dynamic TOA/TDOA. With this approach we use

any of the estimators derived above where velocity
v appears as an unknown variable. The solution
will in general deliver a small but non-zero velocity
estimate v̂ (the estimator will “interpret” part of the
measurement noise as node movement). The mid-
point of the estimated trajectory p̂ − 1

2 v̂T is then
selected as the estimate of the (fixed) node position.

• Static TOA/TDOA. With this approach the infor-
mation about the node being static is encoded ex
ante into the estimator. Any of the estimators de-
rived above can be used, but their formulation is
particularised by setting v = 0 into the function
dmn(·) leaving the position p̂ as the only variable
of interest to be determined. In other words, (9) is
replaced by dnm(z)

def
= ‖p− qn‖.

Alternatively, we may resort to some of the previously
published method. For the sake of comparison, for the
particular case of static blind node we will compare
our approach against the method previously proposed
in [7], hereafter referred as “range-based DTDOA”. A
schematic workflow of this method is given in Fig. 5.
A key point of this method is represented by the the
estimation of pseudo-ranges (or equivalently: distance
differences) between the blind node and the anchors,
hence the term “range-based”. Timestamps are used to
estimate pseudo-ranges, and the latter are then used
to estimate positions. This strategy has two drawbacks.
First, it does not extend easily to the case of moving
node, where the range (distance) between the blind node
and each anchor varies: in this case, one would need to
model each individual range variable with a time-varying
function (e.g. a polynomial). This approach, similar to
the method considered in [10], would greatly increase
the dimensionality of the search space.

Another disadvantage is that the range-based ap-
proach breaks the estimation process from timestamp
measurements to final position estimate by introducing
a layer of intermediate variables, namely the pseudo-
ranges. This represents an approximation to the original
problem that comes at the cost of a certain loss of
precision, as shown below.

6 SIMULATION RESULTS

6.1 Scenario
The blind node lies within a squared area of interest of
size 250 × 250 meters, at the (known) fixed height of
pz = 1.5 meters. For each trial, the initial blind node
position is extracted randomly within the area of interest

pseudo-ranges 
blind-anchor 

asynchronous 
RX timestamps 
blind-anchor link 

asynchronous 
RX timestamps 
anchor-anchor links 

anchor positions  
pseudo-‐range	  	  
es-ma-on	  

	  
algebric,	  
based	  on	  
DTDOA	  

range-‐based	  
posi-oning	  

	  
Non-‐Linear	  

Least	  Squares	  

blind node  
position estimate 

Figure 5. Workflow of range-based DTDOA method [7].

250 meters 

real trajectory 

estimated trajectory 

anchor 

anchor 

p− vT
p

v

p̂− v̂T

p̂

v̂

Figure 6. Reference topology with N = 5 anchors.

and its speed is set randomly between 3 and 6 m/s.
The moving direction is random, with the constraint of
ensuring that the final point remains within the area of
interest. We consider N = 5 anchors placed as depicted
in Fig. 6 at the fixed height of 4 meters. The relative
frequency offset and temporal offset of each node clock
are extracted randomly in the range [−40,+40] ppm
and [0, 100] ms, respectively. Timestamp measurement
errors are i.i.d. uniformly distributed in [−τ,+τ ] with
τ = 25 ns (corresponding to 20 MHz sampling rate).
The reception of a given packet at a generic anchor
occurs with probability 1− λ independently from other
reception events, λ denoting the packet loss probability.
During the observation period of duration T = 10 s, each
anchor node emits B = 10 beacons, while the blind node
emits M = 40 packets.

6.2 A first look at numerical resolution cost
For this work, all non-linear minimisation instances were
implemented in Matlab c© with the general purpose func-
tion fminunc. The built-in solver uses a trust-region
method. In all our instances the analytic gradient was
provided explicitly. The tolerance parameters and the
initialisation point were set to the same values for all
estimators. As expected based on the discussion above,
in each trial all estimators always converge to the same
solution, however they do so through different search
paths. Recall that the TOA form (12) has a larger dimen-
sionality than TDOA/S-TOA, with K+M total variables
instead of only K due to the presence of the packet trans-
mission times as (additive) nuisance variables. Therefore,
while both form eventually lead to the same solution
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Figure 7. Number of iterations for a sample scenario.

(strong equivalence), the number of numerical iterations
is not necessarily the same.

Fig. 7 reports the distribution of the number of itera-
tions needed to solve each estimator form in the simula-
tion scenario described in Sec. 6.1, with asynchronous
anchors and 20% packet loss, for 1000 Monte Carlo
trials. As expected, the curves for S-TOA and TDOA
overlap exactly, since the two objective functions (hence
their gradients) are equal across the whole search space,
therefore the numerical gradient-descendent procedure
follows exactly the same search path for the two estima-
tors. A bit surprisingly, it appears that in 40% of the trials
TOA converges with less iterations than TDOA/S-TOA,
reminding us that convergence speed depends not only
on the size of the search space, but also on the shape of
the objective function to be minimized.

6.3 Comparison with DTDOA for static emitter

We start comparing the accuracy of the proposed method
against the range-based DTDOA method from [7], in the
particular case of a static blind node. In Fig. 8 we report
the error distribution for the three methods described
earlier in Sec. 5.4 for the case of λ = 0. In fact, the
lossless scenario is the most favourable case for the
DTDOA method, wherein input measurements are built
from the difference of four reception timestamps asso-
ciated to packet pairs, and is therefore more sensitive to
packet loss. Despite the favourable scenario, the range-
based DTDOA method performs markedly worse than
the direct TOA/TDOA methods proposed in this work.
Note also that the accuracy of the Dynamic TOA/TDOA
approach is very close to that of the Static TOA/TDOA.

6.4 Results with moving node

In order to compare the estimated and actual trajectories
we shall consider the following error metrics:
• The position error εp = ‖p̂−p‖ given by the distance

between the estimated and actual final positions.
• The speed error εspeed = ‖v̂‖ − ‖v‖ given by the

difference between the estimated and actual speed.
• The heading error εangle = arccos v̂T v

‖v̂‖‖v‖ given by
the absolute angle between the estimated and actual
velocity vectors.

Figure 8. Final localisation error for static blind node
(asynchronous scenario with λ = 0).

(a) Asynchronous anchors

(b) Synchronous anchors

Figure 9. ECDF of absolute position error εp for different
loss probability λ ∈ {0, 0.2, 0.4}.

In Fig. 9(a) we report the distribution of the position
error εp obtained for different values of packet loss inten-
sities λ ∈ {0, 0.2, 0.4}. To validate our implementation,
for each individual Monte Carlo trial we run all three
estimators — TOA, TDOA and S-TOA — and verify that
the final solution was always exactly the same for all
three methods (each curve in Fig. 9(a) is actually the
superposition of three perfectly overlapping curves).

For each value of λ, we considered two distinct dis-
tributions for the input measurement error: uniform in
[−τ,+τ ] and gaussian with same variance σ2

e = τ2

3 , for
τ = 25 ns. Fig. 9(a) shows that the final error distribution
is similar in both cases, confirming the practical validity
of the LS solution also for non-gaussian input noise.

As expected, Fig. 9(a) shows that increasing the packet
loss implies a certain loss of information, and therefore
lower estimation accuracy. While for moderate packet
loss such degradation remains contained (compare the
curves for λ = 0 and λ = 0.2), it becomes noticeable
for higher loss levels. This is clearly to be expected,
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Figure 10. Error on speed (left) and angle (right) of
the estimated velocity versus true speed (asynchronous
anchors, 20% packet losses).

considering that the loss level has a direct impact on
the number of data points used for the estimation. This
effect is further amplified by the discarding of single-
received packets in the pre-filtering stage.

The curves in Fig. 9(a) are obtained in the case of
asynchronous anchors (with independent clocks) after
estimating the clock error terms with the procedure
described in Sec. 3 and adjusting the reception times-
tamps accordingly. It is interesting to compare these
results with Fig. 9(b), reporting what is obtained in the
ideal scenario where all receiving anchors are perfectly
synchronised ex ante to a common clock, and therefore
no timestamp adjustment is needed. Comparing the cor-
responding curves in Fig. 9(a) and Fig. 9(b) we observe
that the penalty due to the imperfect recovery of clock
synchronisation is pretty small, less than half meter in
this scenario. These results indicate that synchronisation,
if not provided natively by the system on the node
clocks, can be effectively achieved in post-processing on
the data, based on timing measurements from reference
transmitters (not necessarily cooperative). On the other
hand, the penalty due to high packet loss is much higher,
since high packet loss translates directly into loss of data.

From a system engineering point of view, our results
indicate that it would be more convenient, for the sake
of localisation accuracy, to invest in better reception,
with smarter receivers that are able to reduce packet
loss (lower λ) and at the same time increase timing
accuracy (reduce measurement noise variance), rather
than investing in building additional synchronisation
infrastructure.

Figure 10 reports the error on the estimated velocity,
separately for modulus (speed) and absolute angle, ver-
sus the true speed of the blind node. It can be seen that
in the tested scenario the speed can be estimated within
±0.5 m/s, and that the speed error is rather independent
from the actual speed. The estimated velocity direction
was mostly within ±10◦ off the actual direction.

6.5 Comparison with Cramér-Rao Bound
In this section we derive the Cramér-Rao Bound (CRB)
for the localisation problem assuming perfect synchro-

nisation and gaussian measurement noise with vari-
ance V AR(ẽnm) = σ2 = c2σ2

e . From the negative log-
likelihood `(z, t) given in (11) we derive the Fisher In-
formation Matrix (FIM) F by particularising the general
Slepian-Bangs formula (see [24] and [25, Chapter 3]):

F =
1

σ2

[
B[4×4] A[4×M ]

AT
[M×4] N[M×M ]

]
.

The matrix N[M×M ] = diag{N1, . . . , NM} is diagonal
with the mth element equal to the number of an-
chors Nm that have captured packet m. The generic
element of A is given by akm =

∑
n∈Am

∂dnm(z)
∂zk

for
k = 1, . . . , 4 and m = 1, . . . ,M . The generic ele-
ment of the symmetric square matrix B is given by
bk1k2 = bk2k1 =

∑M
m=1

∑
n∈Am

∂dnm(z)
∂zk1

· ∂dnm(z)
∂zk2

for
k1, k2 = 1, . . . , 4. The diagonal elements reduce to bkk =∑M
m=1

∑
n∈Am

(
∂dnm(z)
∂zk1

)2
. Recalling the definition (9) of

the distance term, the partial derivatives develop as:

∂dnm (z)

∂z1
=
∂dnm (z)

∂px
=
px − vx · (T −R′m)− xn

dnm (z)

∂dnm (z)

∂z2
=
∂dnm (z)

∂py
=
py − vy · (T −R′m)− yn

dnm(z)

∂dnm (z)

∂z3
=
∂dnm (z)

∂vx
= −∂dnm (z)

∂px
(T −R′m)

∂dnm (z)

∂z4
=
∂dnm (z)

∂vy
= −∂dnm (z)

∂py
(T −R′m).

(18)

The CRB is given by the inverse of FIM S
def
= F−1 =

σ2

[
B A
AT N

]−1
= σ2

[ (
B −AN−1AT

)−1
. . .

. . . . . .

]
.

The upper four diagonal elements of S, denoted by
skk, k = 1, . . . , 4, represent lower bounds to the variance
of the final estimates for the four variables of interest,
respectively p̂x, p̂y, v̂x and v̂y . For each variable, we com-
pare in Fig. 11 the Mean Square Error (MSE) obtained
with our estimation method across 1000 Monte Carlo
trials to the corresponding CRB value skk. The curves
were obtained in a fixed sample topology considering
different numbers of source packets M ∈ [6, . . . , 40]. The
“sinch.” data points were obtained for the ideal case of
perfectly synchronised anchors, while the “asinch.” data
were obtained for asynchronous anchors, by running the
data synchronisation procedure described in Sec. 3 with
B = 40 before the localisation procedure. As expected,
increasing M reduces the estimation error. From Fig. 11
we observe that the precision of our method is very close
to the theoretical bound, and that the penalty due to the
imperfect recovery of clock synchronisation is small.

7 EXPERIMENTAL RESULTS IN WIFI TESTBED

In order to validate the proposed solution in a real envi-
ronment we have performed experiments in a testbed
deployed at University of Brescia and composed of
commercial WiFi devices. We ran three different rounds
of experiments with different modulation schemes and
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Figure 11. Comparison of the empirical MSE and theoret-
ical CRB for position (top) and velocity (bottom) variables
for 1000 Monte Carlo trials on a sample topology.

timestamp resolution values. The first two rounds of
experiments were based on IEEE 802.11b transmission
with DSSS modulation and timestamp resolution of 45.4
ns. The third round of experiments was based on IEEE
802.11g transmission with OFDM modulation, and a
refined timing resolution of approximately 10 ns. All
experiments were conducted in an open outdoor area
(garden) with all nodes in full Line-of-Sight (LOS) con-
ditions. The actual node positions (ground truth) were
measured manually with an accuracy of 2-3 centimetres.

7.1 Testbed setup with IEEE 802.11b DSSS radios
and hardware timestamps
The testbed deployment consists of multiple fixed de-
vices (anchors) and one mobile device acting as blind
node. The nodes are programmed to send UDP packets
at a configurable average rate. Channel access at the
MAC layer is performed using the standard DCF pro-
tocol with a Contention Window of 15 slots.

All nodes are set to transmit in IEEE 802.11b mode
with DSSS modulation and datarate of 2 Mb/s on a sin-
gle channel. For these tests we used WRT54GL devices
from Linksys, i.e., the same used in [7]. These devices
are cheap and run a very robust OpenWRT distribu-
tion based on Linux Kernel 2.6.32. Most importantly,
their Network Interface Card (NIC) is compatible with
OpenFWWF [26], an open source firmware that replaces
the original binary-only software from Broadcom and
has been widely used as research platform [27], [28].
The modified OpenFWWF firmware4 allows to extract
the hardware timestamp (according to the local clock)
corresponding to the last sample of the incoming packet.
Although the CPU clock runs at 88 MHz, the last two

4. The OpenFWWF firmware used for these experiments is publicly
available at http://netweb.ing.unibs.it/openfwwf/localisation.

Figure 12. Experimental performances of different locali-
sation schemes for static node.

bits of every timestamp are non-informative, since the
timing resolution is limited by the sampling rate of
Fs = 22 MHz. In summary, we obtain timestamps with
a resolution of Ts = 1/Fs = 45.4 ns, corresponding to
13.6 meters at speed of light.

Experiment #1: comparison with range-based DTDOA
localisation for a static node

In the first set of experiments we aim at comparing
the accuracy of the proposed estimators with the range-
based DTDOA method described earlier in [7], for the
particular scenario of static blind node. For these tests
we have considered three different topologies consisting
of 6 anchors and one (static) blind node placed in a
rectangular area of 15 × 10 meters. For each topology
we collected 18 different datasets by repeating the mea-
surement in different (non overlapping) time intervals.
In this way we end up with a total of 54 different trials.
The duration of each trial was 3 s, and each node (anchor
and blind) was set to transmit in IEEE 802.11b mode at
the average rate of 56 packets/s.

The ECDF of the absolute error plotted in Fig. 12
confirms that our direct resolution methods (range-free)
beats the range-based DTDOA method. The Dynamic
and Static versions of our algorithms perform very sim-
ilarly for the particular case of static blind node. These
experimental results are in good agreement with the
previous simulation results from Fig. 8.

Experiment #2: moving node

In this second set of experiments, we considered a
fixed topology of 10 anchors. For each trial, a person
was walking at approximately constant speed along a
straight trajectory fully contained within the convex hull
of the anchor nodes. Each individual trial lasts between
4 and 5 s. During each trial, each node (anchors and
blind) was transmitting in IEEE 802.11b mode at the
average rate of 56 packets/sec. In Fig. 13 we report
the actual trajectory (ground truth, in blue continuous
line) along with the final estimated trajectory (dashed
red line) for some sample experiments. It can be seen
that the estimation error remains below 1 meter.



1536-1233 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2792443, IEEE
Transactions on Mobile Computing

12

Figure 13. Sample results for IEEE 802.11b DSSS modu-
lation and hardware timestamps. All anchors nodes serve
both as receivers and reference transmitters. Actual tra-
jectory (blue) vs. Estimated trajectory (red dotted).

Figure 14. Sample results for IEEE 802.11g OFDM mod-
ulation and CSI-corrected timestamps). The central node
(“pivot”) serves as the single reference transmitter, while
all other nodes act purely as receivers.

7.2 Testbed setup with IEEE 802.11g OFDM radios
and refined timestamps

For the third round of experiments we turned all nodes
to IEEE 802.11g mode with OFDM modulation and
datarate of 6 Mb/s. For these experiments we have
adopted a new prototype version of the OpenFWWF
firmware that is able to report for each received packet
also the Channel State Information (CSI), i.e., an estimate
of the channel frequency response computed by the
baseband processor on the basis of the 52-bits preamble
of each packet. The baseband processor uses CSI to
equalise the OFDM symbol, but this information can
be used to improve the accuracy of TOA measurements
by means of so-called Super-Resolution Algorithms [29].
This approach was recently adopted for WiFi [30] and
LTE signals [31]. For this work we have implemented a
procedure for timestamp correction based on CSI that
is similar in spirit to the method proposed in [30],
particularised for a single channel. In this way we were
able to reduce the timing error down to ±10 ns.

For this third round of experiments we have placed 9
fixed nodes in a regular 3× 3 grid as shown in Fig. 14,
plus one mobile device acting as blind node. Differently
from the previous experiments, where each anchor was
serving both as receiver and (reference) transmitter, in
this round we assigned to each anchor a specialised role:
the 8 external anchors were configured to serve purely
as receivers, while the single central node (denoted as
“pivot” node hereafter) serves as the single reference
transmitter for the synchronisation phase.

Both the pivot and the blind node act purely as
transmitters and do not cooperate to the localisation

process. They are programmed to send UDP packets
at the average rate of 9 packets/sec, a considerably
lower value than the previous experiments. The TOA
measurements (after CSI correction) collected by the
receiving anchors for the packets transmitted during this
period by the pivot and by the blind node are fed in
input, respectively, to the synchronisation phase (3) and
to the TOA estimator (12).

Experiment #3: moving node with refined timestamps

In Fig. 14 we report the actual and estimated trajectory
for three sample experiments. The accuracy is roughly
similar to the previous set of experiments, with mid-
point errors below 1 meter. However this result was
achieved with a much smaller number of packets com-
pared to the previous experiments. In other words, the
improved timing resolution gained with CSI correction
allowed to achieve the same final accuracy with a consid-
erably smaller number of more accurate measurements.

8 RELATED WORK

To the best of our knowledge there is no solution in the
literature that can be applied to the considered scenario,
since all previously proposed methods fail to meet one
or more of the system requirements (a)-(d) outlined
earlier in Section 1. The vast majority of previous work
on time-based localisation in asynchronous networks,
including e.g. [10], [11], [12], [13], [14], [15], [16], [17],
[32], [33] rely on the knowledge or tight control of
transmission times in addition to reception times, and
require some form of cooperation by the blind node. This
applies particularly to the solutions based on two-way
ranging [10], [34], [35]. Such methods can not be used
to implement fully opportunistic localisation on top of
legacy wireless systems without transmitter cooperation,
and therefore can not be directly compared to our work.
In [9], [36] the authors have considered nodes clock
with zero frequency offset, effectively assuming “quasi-
synchronous” scenario instead of “fully asynchronous”
(following the taxonomy proposed in [11]) and static
blind nodes, thus missing requirements (a) and (d). The
only previous work considering all three conditions (a)-
(c) are [7], [18] and more recently also [8], [19]. However,
the resolution algorithms proposed in these papers were
designed specifically for a static node (missing condition
(d)) and cannot be extended easily to the case of a
moving node. More specifically, the solutions proposed
in [7], [18], [19] are range-based, i.e., they rely on the
intermediate estimation of distances (or distance differ-
ences, or pseudo-ranges) between the blind node and
the anchors, and therefore do not generalise straight-
forwardly to the case of moving nodes, where blind-
anchor distances vary for each measurement. Similarly,
the algorithms proposed in [8] rely on linear and/or
semidefinite programming approximations of the core
ML estimation problem tailored to the static scenario.
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Some form of equivalence between TOA and TDOA
formulations was noted in previous work, limited to the
particular case of a static node. However, in most cases
only “weak equivalence” was recognised, based on the
comparison of the respective Cramer-Rao bounds (see
e.g. [22] and references therein). The only explicit “strong
equivalence” demonstration we found appears in [23,
Theorem 2], but limited to linearised (approximated)
versions of the TOA and TDOA estimators, and for the
special case of a static node. To the best of our knowl-
edge, no previous work has delved into the different
facets of “equivalence” between TOA and TDOA (and
S-TOA) for the general non-linear case.

Moving nodes and asynchronous clocks were consid-
ered earlier by Rajan et al. in [10]. There are however two
important differences with our work. First, they consider
a completely different set of system requirements, with
measurement of transmission times (in addition to recep-
tion times) and two-way ranging. As such, their work
cannot be applied to our system, where the transmitter
is non-cooperative. Second, they follow a range-based
approach, where each distance term (range) between the
blind node and every individual anchor is modelled
by a high-degree polynomial. In this way, even for
the simplest scenario of a single blind node moving
with linear trajectory, they need to introduce a large
set of variables, equal to the number of anchors times
the polynomial degree. Instead, our approach to model
directly the instantaneous position of the blind node is
much more parsimonious in the number of variables.

9 CONCLUSIONS AND FUTURE WORK

In this work we have considered the problem of de-
termining the (linear) trajectory parameters of a non-
cooperative moving emitter based solely on the reception
timestamps collected by a set of cooperative receivers
(anchors). In the proposed scenario, data synchronisation
can be achieved in post-processing, by estimating the
clock error terms (offset and skew) of the receiving nodes
from the timestamps associated to packets transmitted
by one ore more (non-cooperative) reference sources,
possibly but not necessarily coinciding with the receiv-
ing anchors. For the problem at hand, we have derived
three different forms of Non-linear Least Squares estima-
tors based exclusively on reception time measurements,
and proved their equivalence.

From a system-level point of view, our results indicate
that improving the precision of reception timestamps, i.e.,
reducing the variance of random timing errors, is much
more important than battling against clock misalignment
by means of costly node synchronisation infrastructure.
In fact, if node synchronisation is not implemented in
the system, data synchronisation can still be effectively
achieved in post-processing, by leveraging cooperation
between the receivers. This is because systematic clock
errors can be easily estimated and compensated in post-
processing. The main take-home message of our work

is that engineers and system developers should give
priority to investing into better receiver implementations, to
increase the precision of reception timestamps and reduce
packet loss, rather than endowing the system with costly
synchronisation infrastructure.

One key aspect of the proposed method is the ability
to exploit lossy measurements. Packets that are received
by as few as two receivers can be fruitfully exploited by
our method based on “tracing” the trajectory parameters
along the whole (small) observation window, whereas
alternative methods based on point-by-point localisation
would require each individual packet to be received by
no less than three (in 2D) or four (in 3D) receivers.

In the progress of this work we are investigating
more robust variants of the TOA estimator against large
errors, e.g., due to Non-Line-of-Sight propagation, by
complementing the core estimator with pruning heuris-
tics aimed at rejecting large errors, along the line of the
procedures proposed e.g. in [7] (“slice and prune”) and
[30] (“clustering”). We remark that the NLOS problem
affects all time-based localization methods, including the
one proposed here as well as any previously proposed
technique. Combating NLOS is a research problem per
se, and NLOS countermeasures need to be tailored to the
underlying localisation method. To date, NLOS filtering
and mitigation strategies have been studied mostly for
ranging and synchronous time-based methods, and to
a less extent for TDOA [37], [38], [39]. An important
direction for future work is to develop robust NLOS
mitigation strategies for fully asynchronous schemes like
the one presented here, and we hope that this contri-
bution will motivate further research in this direction.
Furthermore, we are investigating distributed privacy-
preserving implementations of the proposed estimators.
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