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A B S T R A C T   

In recent years, the micromobility and the usage of shared electric kick scooters (e-kscooters) have been 
constantly growing, especially for systematic and recreational trips in large urban areas. Micromobility might be 
seen as a well-suited last-mile solution by providing a 昀氀exible travel service connection with public transport and 
MaaS (Mobility as a Service), in general. However, there is a need for implementing adequate regulations 
regarding safety aspects and shared e-kscooter parking locations, but also for meeting the user requirements. The 
choice of optimal shared e-kscooter parking locations could help decision-makers to regulate unmanaged dock- 
less shared e-kscooter parking spots that could generate issues for other road users. To this end, in this paper, a 
novel multi-objective Micromobility Maximal Coverage Parking Location model (M-MCPL) is developed. The 
model has been solved by applying an elitist Genetic Algorithm that returns the optimal shared e-kscooter 
parking locations based on the following objective functions: i) the maximization of the population coverage; ii) 
the maximization of multimodal accessibility coverage (i.e., bus, railway, and metro modes); iii) the maximi-
zation of the attraction coverage considering the most relevant points of interest for each corresponding zone in 
large urban areas. The proposed M-MCPL model has been applied to the case of Rome (Italy) and results suggest 
priorities for the shared e-kscooter parking locations design. Furthermore, the proposed model is 昀氀exible and can 
be considered as a decision support tool for decision-makers when planning dedicated services in different large 
urban areas. For that purpose, we conducted the sensitivity analysis by focusing on the single-objective model in 
which decision-makers might be interested in providing only high accessibility to transport services or maxi-
mizing potential demand.   

1. Introduction 

The spreading of shared mobility has led to the success of vehicles 
belonging to the so-called micromobility category. In particular, in the 
centers of the major European cities, e-kick scooter-sharing companies 
have imposed their presence, both autonomously and by participating in 
public tenders. The ease of driving, the agility in traf昀椀c, and the speed 
that can be achieved with minimal physical effort are features that make 
e-kick scooters a good alternative to private cars, especially in restricted 
traf昀椀c zones and for 昀椀rst/last mile connections (Ignaccolo et al., 2022), 
as well as in areas or time intervals in which there is a lack of public 
transport service. In addition, such an alternative can be considered a 
valid element of a MaaS system. However, most of the time, public ad-
ministrations do not provide a clear regulation of these new forms of 
mobility, especially because e-kscooters (e-scooter from now on) are 
pre-eminently supplied as free-昀氀oating services (Caggiani et al., 2017; 

Zhou et al., 2019; Sun et al., 2019). Shared e-scooter services have been 
spreading only in the last few years; due to the novelty of this mode, few 
attempts have been made by scholars to design proper e-scooter in-
frastructures (Fazio et al., 2021). Especially in Italy, the COVID-19 
pandemic triggered and boosted the e-scooters spreading. Moreover, 
city administrations have long left room for operators to decide on the 
management of the service, while academic studies generally focused on 
the relocation of the vehicles to satisfy operators’ and users’ needs, 
without considering the legitimacy of the choices. Furthermore, the 
problem with the regulation has led to the emergence of some important 
issues with e-scooter service, mainly related to their safety during cir-
culation and the illegal parking performed by the users, who prefer to 
“abandon” the vehicles in a spot located as close as possible to their 
destination, neglecting the needs of other road users (James et al., 2019; 
Schellong et al., 2019; Jiao and Bai, 2020; Zakhem and Smith-Colin, 
2021; Buehler et al., 2022). Therefore, the issues related to land use 
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and the obstructions in road spaces and/or sidewalks generated by 
improper parking behavior cannot be disregarded. However, one should 
consider that, although usually equated to e-bikes, e-scooters have some 
speci昀椀c features that should be taken into account when considering the 
planning and designing of parking locations/infrastructure, such as: i) E- 
scooters are a recent mode of transport which usage increased during the 
pandemic emergency. Also due to this reason, it is dif昀椀cult to have trip 
data that faithfully re昀氀ect the potential demand for the service; ii) The 
shared e-scooter service is usually performed by several private com-
panies operating in the same city, then a complete and homogeneous 
dataset on travel information is dif昀椀cult to obtain; iii) the shared e- 
scooter services are smaller than bikes and they are generally used for 
shorter trips (in time and distance) (Chang et al., 2019). All this means 
that the space required for potential parking spaces is smaller than the 
one used for a bike-sharing service and that the capacity of the station 
can be considered a fuzzier factor; iv) E-scooters can be considered as a 
good solution for the 昀椀rst/last mile “extension” of public transport trips 
enhancing the capillarity of the transit service (they can often be taken 
aboard metro and regional trains, and, in the case of shared services, it is 
bene昀椀cial for users to have them available close to railway stations and 
bus stops). 

Based on these premises, the objective of this paper is to provide a 
novel mathematical model for selecting parking locations dedicated to 
shared e-scooter vehicles. To this end, a novel multi-objective Micro-
mobility Maximal Coverage Parking Location model (M-MCPL) is 
developed. The multi-objective M-MCPL model selects the shared e- 
scooter parking locations to satisfy the trade-off between the needs of 
the operators (to cover the transport demand and the accessibility of 
public transport) and those of users (to have shared e-scooters available 
in the places of interest), allowing administrations to avoid excessive 
and illegal land use by the users and improving the safety conditions of 
the service. Those aspects have been included in the objective functions 
of the proposed M-MCPL model which are related to: i) the maximiza-
tion of the population coverage perceived as potential users of shared e- 
scooters; ii) the maximization of multimodal accessibility coverage 
considering bus, railway, and metro modes; iii) the maximization of 
attraction coverage considering several points of interest (POIs). 
Therefore, the proposed model is multi-objective and uses an elitist 
genetic algorithm to generate Pareto front of optimal solutions. The 
proposed model has been applied to the city center of Rome (Italy) 
which bene昀椀ts from detailed territorial zoning to guarantee the 
coverage of population and availability of shared e-scooter service both 
from the aspects of public transport and POIs’ accessibility. Further-
more, the sensitivity analysis has been carried out by considering 
separately each objective function, and by varying the distance coverage 
of e-scooters and different budget scenarios in terms of the number of 
parking locations. Consequently, this is especially bene昀椀cial for the 
speci昀椀c goal of decision-makers and for investigating the opportunities 
for adopting e-scooter technology based on economic resources. The 
proposed model could be used to de昀椀ne optimal geofencing of the 
parking areas in order to reduce and control the improper/illegal 
parking of e-scooters. 

The remainder of the paper is organized as follows: second section 
presents the state of the art on the topic; third section illustrates the 
proposed M-MCPL model; section four presents the case study and the 
results. Finally, conclusions are drawn in section 昀椀ve. 

2. Literature review 

The literature review on micromobility, and especially on shared e- 
scooters, has experienced recent expansion that has been mostly focused 
on policy implementation, analysis of micro-drivers’ behavior, and the 
potential of substituting private trips with these new and more sus-
tainable mobility solutions (Kazemzadeh and Sprei, 2022). Conversely, 
location models have been extensively used in the literature related to 
the transportation 昀椀eld; more in detail, the approach we propose in this 

study falls within location-allocation problems (which will be analyzed 
in depth in section 2.2). However, it is worth mentioning different ap-
proaches, such as location-routing optimization problems. Examples are 
those by He and Wang (2023) that propose a location-routing model to 
optimize the gathering site locations in the case of free-昀氀oating bike–-
sharing, and by Hulagu and Celikoglu (2020, 2021) which dealt with 
electric vehicle charging stations locations solving their location-routing 
problem, also considering energy consumption constraints and using 
Multiple Objective formulation (Hulagu and Çelikoglu, 2019). There-
fore, we organized our literature overview as follows: the 昀椀rst section 
describes the recent 昀椀ndings regarding the e-scooter policy regulations, 
and precisely, the parking regulations and the studies related to the 
selection of e-scooter parking locations, and the factors that in昀氀uence e- 
scooter driving behavior. The second part of the literature review 
regards on location-allocation models for shared-mobility stations, 
focusing on micromobility vehicles. Finally, in the third part, we 
describe the contributions of this work with the respect to the most 
recent related studies and the 昀椀ndings from the review. 

2.1. Research on e-scooter users’ behavior and regulation 

The topic of shared e-scooter driver behavior has recently been 
addressed by scholars in literature in the last few years. For instance, the 
evidence of stated preference driver behavior has shown the potential 
for e-scooter implementation in 昀椀ve cities (Copenhagen, Munich, Bar-
celona, Tel Aviv, and Stockholm) by taking into account several issues 
that should be managed, e.g., the lack of regulations, mitigation of 
multimodal traf昀椀c, and the price dissatisfaction (Esztergár-Kiss et al., 
2022). Similarly, Vallamsundar et al. (2022) analyzed the travel 
behavior and the geographical aspects of e-scooters based on a survey 
study conducted in the city of Austin. The survey results indicate that 
potential users attracted by e-scooters are younger individuals in the age 
group 26–45 years old. Furthermore, the authors determined the main 
factors that in昀氀uence e-scooter usage such as trip distance, connectivity 
to transit, congestion, parking issues, and pollution reduction. Another 
study proposed by Mouratidis (2022) examined the pro昀椀le of micro-
mobility and Uber users which showed similar characteristics of e- 
scooter users such as younger age groups, less educated, without dis-
abilities, and with residence in denser neighborhoods. Followed by the 
e-scooter user behavior patterns, other recent research 昀椀ndings showed 
the potential of e-scooters for replacing car trips (Wang et al., 2022). The 
research study carried out by Reck et al. (2022) pointed out trip distance 
as one of the fundamentals for micromobility mode choice considering 
the willingness of users to walk between around 60 to 200 m to access 
the parking location of e-scooters. Similarly, Guo and Zhang (2021) 
applied a mixed logit model for extracting signi昀椀cant factors that affect 
the car mode substitution with e-scooter; the results suggested that 
parking is the main motivation factor (i.e., users with parking issues 
have a 0.04 higher probability of choosing e-scooters). Moreover, Reck 
et al. (2021) developed a methodology used to analyze bivariate re-
lationships between four different micromobility modes, i.e., dockless e- 
scooters, dockless e-bikes, docked e-bikes, and docked bikes, and esti-
mate the mode choice models. From their analyses, the authors stated 
that users prefer docked e-bikes during peak hours and dockless e- 
scooters during off-peak hours. However, few studies in the literature 
investigated the interaction between shared e-scooters and public 
transport. Zuniga-Garcia et al. (2022) investigated the statistical rela-
tionship between e-scooter and bus transit services in university campus 
areas of the city of Austin, which indicated that 10% of transit trips 
increment might result in 2.5% of e-scooter trips increment. Further-
more, Weschke et al. (2022) used multinomial regression for analyzing 
the mode shift behavior of shared e-scooters in Germany which showed 
that public transport and walking can be substituted by >60% of e- 
scooter trips. 

Recently, scholars have focused their interest on the e-scooter service 
operation limits by proposing methods to regulate their usage in urban 
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areas, and by restricting their interaction with other traf昀椀c (Liazos et al., 
2022; Prencipe et al., 2022). Similarly, the systematic review provided 
by Kazemzadeh et al. (2023) investigated e-scooter safety that suggested 
the necessity for operating e-scooters on sidewalks and bike lanes, 
wearing helmets, as well as speed regulation to decreasing the vulner-
ability of e-scooter drivers when interacting with other road users. Such 
policy regulations, for instance, in the city of Rome, include the 
maximum e-scooter speed limit of 20 km/h and the permission to 
circulate in pedestrian zones, reserved bicycle lanes, and zones with a 
speed limit of 30 km/h (D’Andreagiovanni et al., 2022). Differently, 
Brown (2021) investigated the U.S. cities’ scooter parking regulations, 
where most of them are allowed to be parked at bike racks. Another 
study proposed by Zakhem and Smith-Colin (2021) analyzed the areas 
with high e-scooter parking demand that would eventually show in-
dications for the future micromobility management policy imple-
mentation, e.g., use of GPS trajectories and penalizing high-speed streets 
(>35 mph) within the network. The aforementioned studies have shown 
the importance of e-scooter parking locations, both from regulation and 
safety points of view. 

2.2. Research on location-allocation models for shared-mobility stations 

The topic of shared-mobility station location has been addressed by 
scholars in literature, in particular in the case of electric vehicles with 
station-based service. Most of the studies, especially in the case of free- 
昀氀oating systems, focus on the problem of relocation of vehicles at the 
end (or beginning) of the service (e.g., You and Hsieh, 2014; Caggiani 
et al., 2018; Chen et al., 2018; Prencipe et al., 2022). However, this 
problem differs substantially from the one addressed in this study 
because in this case the relocation should not be carried out by the 
operator, but the users themselves are obliged to go to the provided 
parking spots that are similar to those of a station-based service, 
although certainly greater in number and with a capacity not limited by 
the presence of physical infrastructures. A similar problem to the one 
presented in this work is the location of virtual stations for free-昀氀oating 
bike-sharing services (FFBSS). In this respect, Caggiani et al. (2017) 
introduced the concept of dynamic virtual stations to ease the relocation 
problem in FFBSS by generating spatio-temporal clusters of the usage 
patterns of the available bikes in every zone of the city. Similarly, Zhou 
et al. (2019) developed a multi-objective planning model to obtain 
virtual FFBSS stations in a university campus minimizing the distance 
between the origin and the station and the total construction cost as the 
objective function. Sun et al. (2019) proposed a mixed-integer linear 
programming (MILP) model to locate virtual stations for FFBSS to 

maximize user demand during morning and evening rush hours. Zhang 
et al. (2019) proposed a location-allocation maximum coverage model 
to de昀椀ne a geo-fence that would protect users to park FFBSS vehicles at 
illegal spots. Hua et al. (2020) identi昀椀ed spatial candidates for virtual 
stations using the best clustering of FFBSS trip data in the city of Nanjing 
by using the spatio-temporal clustering technique. Similarly, Zhao and 
Ong (2021) proposed a procedure integrating the Density-Based Spatial 
Clustering of Applications with the Noise method and the k-means 
clustering algorithm to identify potential bicycle parking locations and 
establish their capacities for the city of Xiamen. 

When it comes to e-scooters, most of the authors have dealt with the 
peculiarities of e-scooters when considering the location of charging/ 
battery swapping stations (Carrese et al., 2021). An earlier study is the 
one by Wang (2007), who developed a model for the location of 
recharging stations for recreational e-scooters; the model, using an 
integer program, aims at minimizing the cost of locating the station at a 
candidate site considering the recharge time, 昀氀eet size, locating capacity 
and mean length of stay at destinations. The model is validated by 
applying it to the case study of Penghu County; results suggest that 
speedy recharge could signi昀椀cantly reduce the number of stations. Chen 
et al. (2018) used Multi-Objective Particle Swarm Optimization to 
determine the optimal location and number of stations, differentiating 
between charging stations and battery-swapping ones. Results have 
shown that both types of stations should be located in more dense areas 
while charging stations should be present in the outskirts of the low 
population density areas. Akova et al. (2021) presented a mixed-integer 
linear programming formulation for the location of the cost-optimal 
recharging stations for e-scooters; their model integrates a location 
model with an energy consumption model based on vehicle motion 
dynamics, in order to obtain an accurate calculation of the energy 
consumption. Results show a potential underestimation of recharge 
station requirements, with some e-scooters running out of battery before 
昀椀nishing their trips. A similar study is the one developed by Der Lin et al. 
(2021) that proposed a Monte Carlo simulation to predict the demand of 
stochastic battery swapping for e-scooters and to estimate different 
scenarios for battery swapping station locations, optimizing the cost of 
rentals, and covering users’ demand. Sandoval et al. (2021) have pro-
posed a clustering algorithm for establishing e-scooter parking locations 
based on the potential demand based on a dataset of trips from the city of 
Nashville (Tennessee, USA). Likewise, Zakhem and Smith-Colin (2021) 
used trip clustering method to identify parking zones for dockless e- 
scooters. Finally, Ayfantopoulou et al. (2022) conducted a data-driven 
analysis using the K-Means algorithm to select suitable locations for 
dock-based scooter-sharing service stations, based on trip data, road 

Table 1 
Relevant literature on location-allocation of e-scooter stations.  

Reference Model Parameters Case study 
Wang (2007) Integer programming Recharge speed, length of stay, station capacity, cost Penghu County 

Chen et al. (2018) Multi-Objective Particle Swarm 
Optimization Distance from customers, land cost, station cost, station capacity Synthetic 

Akova et al. (2021) Location Problem Vehicle motion dynamics-based energy consumption Ayazaga Campus (ITU, 
Instanbul) 

Der Lin et al. (2021) Allocation Model with Monte Carlo 
Simulation Land cost, traf昀椀c 昀氀ow, station cost, average travel distance Central District of Taichung 

City, Taiwan 
Sandoval et al. (2021) Clustering algorithm with 

hyperparameter tuning Scooter trips’ end locations Nashville, Tennessee, USA 
Zakhem and Smith-Colin 

(2021) Trip clustering Scooter trips’ origin and destination locations City of Dallas, USA 
Ayfantopoulou et al. 

(2022) 
Facility location model with K- 
Means algorithm Trips data, road geometric characteristics, and station capacity Thessaloniki, Greece 

Ayyildiz (2022) Hybrid fuzzy MCDM Almost 50 criteria Instanbul, Turkey 
Altintasi and Yalcinkaya 

(2022) 
GIS-based Analytic Hierarchy 
Process 

Distance to points of interest and public transportation stations, existence of 
bicycle infrastructure, population density, slope 

Karsiyaka District in Izmir, 
Turkey 

Deveci et al. (2023) Hybrid fuzzy MCDM 12 criteria, concerning users, public authority, service operator, and urban 
livability Synthetic 

Altay et al. (2023) BWM-MARCOS model Economic, geographic, and socio-demographic criteria Synthetic (University 
Campus)  
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geometric characteristics, and station capacity; they applied their 
method to the case of Thessaloniki. 

As far as the authors’ knowledge, the only studies found in the 
literature that consider a larger number of parameters, including socio- 
demographic ones, are those that apply multicriteria analysis methods, 
with the ultimate goal of providing a ranking of a few predetermined 
locations. In this respect, Ayyildiz (2022) presented a fuzzy multi- 
criteria method for e-scooter charging station location-selection 
considering several criteria weighted by experts. Altintasi and Yalcin-
kaya (2022) used a GIS-based Analytic Hierarchy Process to rank e- 
scooter charging station locations and applied the method in Karsiyaka 
District in Izmir, Turkey; the main criteria used for the location ranking 
are distance to points of interest and public transportation stations, the 
existence of bicycle infrastructure, population density, and slope. Altay 
et al. (2023) propose an integrated interval type-2 fuzzy best-worst 
method implemented with MARCOS to rank the shared e-scooter sta-
tion locations inside a university campus. Similarly, Deveci et al. (2023) 
used a hybrid fuzzy MCDM model taking into account 12 criteria, con-
cerning users, public authority, service operator, and urban liveability. 
Table 1 summarizes the relevant literature on location-allocation of e- 

scooter stations according to the models implemented, their parameters, 
and the case study. 

Table 1 shows that existing literature related to optimization 
methods primarily emphasizes recharging issues and station costs as 
parameters for localization, while none of the approaches addresses 
mobility needs by considering socio-demographic parameters. The only 
articles that address such issues are the ones adopting MCDA ap-
proaches, which however acknowledge a series of few pre-established 
locations and employ a multicriteria method to furnish a ranking of 
the proposed localizations. In Table 1 one can see that several models 
and algorithms can be used for the location allocation of shared trans-
port facilities. In our work we propose the utilization of a Maximum 
Coverage Location Problem (MCLP) approach; our choice falls on MCLP 
since it offers computational simplicity and 昀氀exibility compared to more 
complex models that would increase CPU time signi昀椀cantly. Although 
there are no studies that use MCLP for the localization of scooter stations 
speci昀椀cally, scholars have applied it recently in the broader context of 
shared mobility stations. MCLP has been used by Hu et al. (2019) in the 
case of bike-sharing station locations. Moreover, different scholars used 
MCLP for the location of charging stations for electric vehicles (Frade 

Table 2 
Relevant literature MCLP for shared vehicles’ station location.  

Reference Vehicle Model Parameters 
Frade et al., 2011 e-cars MCLP Demand 

Wang and Lin 
(2013) 

mixed 
stations 

Tri-level model with stochastic RBF-based 
solution algorithms 

Traf昀椀c 昀氀ow, Travel time, recharging delay, tour utility, income, EV purchasing cost, 
station cost, government budget 

Hu et al., 2019 bike-sharing Potential Path Area and Capacitated CMCLP Demand 
Bayram et al., 

2022 e-cars MCLP (GIS solver) Population and road traf昀椀c 
Sun et al., 2020 e-cars MCLP Population, historical trips, station cost, recharging time, station capacity, and budget  

Fig. 1. Shared e-scooter parking location framework.  
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et al., 2011; Wang and Lin, 2013; Sun et al., 2020; Bayram et al., 2022. 
Table 2 summarizes relevant literature on the use of MCLP for the 
location of shared vehicle stations, proving its suitability in solving this 
type of problem. 

2.3. Contributions 

Motivated by the recent shared e-scooter management issues and the 
necessity for policy regulations, in this study, we focused on designing a 
shared e-scooter parking location model. The choice of the optimal 
shared e-scooter parking location requires different aspects to be 
considered for avoiding illegal parking and road infrastructure issues. To 
the best of the authors’ knowledge, no scholars have dealt with the 
problem of locating parking stations for e-scooters, considering different 
aspects such as potential demand data, presence of attractive destina-
tions, and the possibility to work as a proxy for 昀椀rst/last-mile connection 
with public transport. In this respect, this paper proposes a model that 
takes a step forward embedding the following issues: i) considering the 
peculiarities of e-scooter-sharing services; (ii) taking into account both 
data on potential demand and points of interest for the users; (iii) using a 
multi-objective model, i.e., able to obtain Pareto front optimal solutions 
guaranteeing high levels of achievement towards different objectives. In 
addition, the detailed contribution of the proposed model is described as 
follows:  

" The novel M-MCPL problem aims at choosing the optimal areas for 
shared e-scooter parking locations by taking into account one of the 
main strategic issues of the shared e-scooter locations, such as 
providing a certain service to the users within a speci昀椀ed distance 
limit (i.e., service coverage), which has been scarcely tackled in the 
literature. The strategic planning of shared e-scooter parking loca-
tions is the 昀椀rst and one of the crucial steps that might further help 
cities in regulating nowadays issues of improper e-scooter usage.  

" The proposed study examines different factors and aspects that can 
in昀氀uence the usage of e-scooters and the selection of parking loca-
tions (e.g., as reported in the literature review provided by Vallam-
sundar et al. (2022)) for obtaining a comprehensive understanding of 
the shared e-scooter parking location problem. Consequently, we 
went further in quantitatively modeling those aspects into a multi- 
objective M-MCPL optimization problem. 

" The proposed model embeds the accessibility of public trans-
portation for reaching shared e-scooter parking locations which, 
based on the authors’ research, has been investigated in the litera-
ture only from a statistical point of view and has never been 
considered in an e-scooter parking location optimization model.  

" To the best of the authors’ knowledge, this is the 昀椀rst study that 
proposed a novel version of the MCPL model for selecting shared e- 
scooter parking locations from a multi-objective perspective (maxi-
mizing public transport accessibility, demand, and points of 
interest). 

3. Methodology 

Shared e-scooters could indeed increase the opportunity for mode 
shifting from private cars, as well as reaching multimodal accessibility, 
especially in the case of restricted traf昀椀c zones (e.g., historical centers 
and pedestrian zones). However, the high number of injuries and un-
managed shared e-scooter parking locations have been pushing some 
cities to limit or ban the usage of this mode (see Eurocities, 2023). To 
meet these requirements, this study deals with 昀椀nding the optimal areas 
for placing shared e-scooters’ parking locations that mitigate those is-
sues and help decision-makers regulate unmanaged dock-less shared e- 
scooter placement. 

The selection of optimal areas for placing shared e-scooter parking 
locations should involve one or more goals of decision-makers 
(Macioszek et al., 2023). Thus, in this study, we focused on public 

authorities, shareholders, and users as the main decision-makers inter-
ested/involved in managing shared e-scooter parking locations, as 
depicted in the proposed methodological framework (Fig. 1). The 昀椀rst 
part of the proposed framework related to data acquisition comprises the 
detailed territorial zoning of considered study area (i.e., census zones, 
population, bus and railway/metro stations, and POIs). Then, we 
developed a novel multi-objective Micromobility Maximal Coverage 
Parking Location model (M-MCPL) that deals with positioning shared e- 
scooter locations considering multiple objective functions. 

The proposed multi-objective M-MCPL model has been solved with a 
variant of elitist Genetic Algorithm, i.e., the Non-dominated Sorting 
Genetic Algorithm (NSGA-II). This is a well-used solution approach that 
shows good performance when dealing with multiple objectives and 
generating a well-grounded representation of Pareto front (Deb, 2001). 
In addition, we carried out a sensitivity analysis by focusing on each 
decision-making goal separately, which gave us the possibility to 
analyze the in昀氀uence of different goals (i.e., population coverage 
maximization, maximization of bus stop accessibility, maximization of 
railway/metro station accessibility, POIs maximization) on the place-
ment of shared e-scooter locations. 

3.1. Problem description 

In this section, we describe the mathematical formulation of the 
novel multi-objective Micromobility Maximal Coverage Parking Loca-
tion model (M-MCPL), developed as an extension of the maximal 
coverage location problem originally proposed by Church and ReVelle 

Table 3 
The nomenclature of the proposed M-MCPL model.  

Sets 
I Set of zone centroid i, i * I 
J Set of candidate sites for locating shared e-scooter j, j * J 
B Set of bus stops node b,b * B 
R Set of railway/metro stations access/egress nodes r, r * R  

Parameters 
dij 

Distance between zone centroid i and the potential shared e-scooter location 
j 

tbus
ib Approximated travel time between zone centroid i and bus stop b 

trail
ir 

Approximated travel time between zone centroid i and railway/metro 
access/egress nodes r 

s Fixed number of shared e-scooter locations to be selected 
hi Population [no. residents] of the zone centroid i 
Dc Threshold for distance coverage 
Tc Threshold for time coverage 

aij 

Parameter aij equal to 1 if the distance between the zone centroid i and 
shared e-scooter location j is within the range Dc,

(dij f Dc
), i.e., within the 

subset Ni ¦ J where Ni =
{j * J|dij f Dc

}, 0 otherwise 

abus
jb 

Parameter abus
jb equal to 1 if the approximate travel time between the 

potential shared e-scooter location j, that corresponds to the zone centroid i, 
and bus stop node b is within the range Tc,

(tbus
ib f Tc

), i.e., within the subset 
Nbus

i ¦ B where Nbus
i =

{b * B|tbus
ib f Tc

}, 0 otherwise 

arail
jr 

Parameter arail
jr equal to 1 if the approximate travel time between the 

potential e-scooter j, that corresponds to the zone centroid i, and railway/ 
metro ingress/egress station node r is within the range Tc,

(trail
ir f Tc

)

, i.e.,

within the subset Nrail
i ¦ R where Nrail

i =
{r * R|trail

ir f Tc
}, 0 otherwise 

accbus
i 

Parameter accbus
i related to the total bus accessibility measure of each zone 

centroid i 
accrail

i 
Parameter accrailr related to the total railway/metro ingress/egress 
accessibility measure of each zone centroid i 

pi The total number of points of interest associated with zone centroid i  

Decision variables 

yi 
Binary decision variable related to the covering decisions, where yi is equal 
to 1 if the zone centroid i is covered by chosen shared e-scooter location j, 
0 otherwise 

xj 
Binary decision variable related to the location decisions, where xj is equal 
to 1 if the candidate shared e-scooter location j is chosen, 0 otherwise  
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(1974), in which we focused on the shared e-scooters services since they 
are considered as one of the promising micromobility modes for 
decreasing the transport-related environmental impact in urban areas. 
Therefore, the goal of the proposed model is to 昀椀nd the optimal areas to 
determine the shared e-scooter parking locations that could meet the 
requirements of users and mobility service providers. The M-MCPL en-
sures that the coverage of the selected location is maximized considering 
three aspects: i) the maximization of the population coverage (herein-
after referred to as “residents”), perceived as potential users of shared e- 
scooters; ii) the maximization of multimodal accessibility coverage 
considering bus, railway and metro services; iii) the maximization of 
attraction coverage considering several POIs (e.g., touristic and histor-
ical attractions, education institutions, religious sites, green areas, and 
restaurants). The nomenclature adopted in the proposed M-MCPL model 
is reported in Table 3. 

The mathematical formulation of the multi-objective M-MCPL 
model, expressed as Integer Linear Programming (ILP) model, is speci-
昀椀ed as follows: 
maxf1 =

3

i*I

hi⋅yi (1)  

maxf2.a =
3

i*I

accbus
i ⋅yi (2.a)  

maxf2.b =
3

i*I

accrail
i ⋅yi (2.b)  

maxf3 =
3

i*I

pi⋅yi (3) 

s.t. 
yi f

3

j*Ni

aij⋅xj,"i * I (4)  

3

j*J

xj = s (5)  

yi, xj * {0, 1},"i * I, j * J (6) 
The proposed multi-objective M-MCPL model aims at maximizing 

the coverage of the optimal parking locations of shared e-scooter park-
ing places considering three objective functions. Objective function f1(y)
(Eq. (1)) aims at maximizing the demand (population) coverage 
expressed as the number of residents hi of each zone i. The second 
objective is related to the accessibility coverage of public transport; 
more in detail, we decided to distinguish between two sub-objectives 
related to urban connection; in this case, we considered bus stops 
(f2.a(y)), and railway/metro ingress/egress stations (f2.b(y)). In detail, 
each shared e-scooter parking location candidate j is associated with the 
corresponding zone centroid i. In this way, each zone contains one 
shared e-scoter location candidate. Furthermore, the considered acces-
sibility measure is a traditional gravity-based measure as developed by 
Hansen (1959). The total bus accessibility measure of each zone i con-
taining the corresponding shared e-scooter parking locations candidate j 
is expressed by the following formulation: 

accbus
i =

3

b*Nbus
i

e(−tbus
ib )⋅abus

jb "i * I, "j * J, i = j (7) 

Similarly, the total railway accessibility measure of each zone i 
containing the corresponding shared e-scooter parking locations candi-
date j is expressed through the following formulation: 

accrail
i =

3

r*Nrail
i

e(−trail
ir )⋅arail

jr "i * I,"j * J, i = j (8) 

Third objective function f3(y) (Eq. (3)) aims at maximizing the 
coverage by taking into account the points of interest pi. 

Constraints (4) state that demand at node i cannot be covered unless 

Fig. 2. Case study and data.  
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at least one of the shared e-scooter location j is selected. Constraint (5) 
indicates that we cannot locate more than s shared e-scooter locations, 
which implies that the number s is known in advance according to the 
pre-昀椀xed budget of the decision-makers. Constraints (6) are related to 
the binary nature of the variables xj,yi. 

4. Case study 

4.1. Territorial framework and data 

The method has been applied to the case study of Rome. Rome is the 
capital city of Italy. It is well-known all around the world for its his-
torical heritage and such touristic vocation has awakened the interest of 
several e-scooter sharing companies; these services are indeed often 
used by tourists for their trips, but also by younger residents to reach 
schools and universities (Laa and Leth, 2020; Klassen and Jödden, 
2022). At present, there are 7 e-scooter-sharing operators in Rome, 
counting approximately 14,500 vehicles. The presence of such many 
operators and vehicles has led to the emergence of some issues with the 
service, especially related to illegal parking. In this respect, the admin-
istration is working to draft a new call for regulation according to which, 
from January 2023, the sharing operators will be reduced from the 
current 7 to 3 (Municipality of Rome, 2022). Consequently, this will 
reduce the number of e-scooters to a maximum of 9000, with 3000 units 
assigned to the central areas with the rest equally distributed among the 
other districts. The situation that the city of Rome is currently experi-
encing can be considered representative of many other Italian cities, 
which, for the same reasons, are issuing service regulations for speci昀椀c 

shared e-scooters. Providing a novel model to regulate/manage the 
parking operations can be a good solution to reduce the problems related 
to parking; however, in order to guarantee the free-昀氀oating soul of the 
service, the location of the parking spots must be carefully evaluated to 
maintain as much as possible the capillary of the e-scooter service. For 
these reasons, the city of Rome was chosen as a case study for the 
application of the developed model in the paper. In particular, we 
decided to focus our attention on the heart of the city center; we chose 
this boundary since it physically encompasses the principal tourist at-
tractions, the most relevant POIs, and the main railway/bus station of 
the city. 

The zoning of the study area has been conducted according to the one 
used by the Italian National Statistics Institute (ISTAT, 2022) for the 
general Census, with a total of 1364 census zones; the decision to use it is 
linked to the detailed level of information provided, with the densest 
areas of only 3m2; this allowed to retrieve also data on population from 
ISTAT, expressed as potential demand in the model. We represent the 
demand node as the centroid of each census zone. The locations of the 
main POIs of the city have been extracted from the OpenStreetMap 
database; the selected POIs are those related to touristic and historical 
attractions, education institutions, religious sites, green areas, and res-
taurants with a total number of 883 POIs. The same method has been 
used to extract the locations of bus stops and railway/metro stations 
with a total number of 477 and 14, respectively. Fig. 2 shows zoning, 
POIs, and public transport terminals for the selected case study. Addi-
tionally, Fig. 3 represents the population distribution for each census 
zone. 

Fig. 3. Case study: population distribution per census zone.  
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4.2. Application and results 

The M-MCPL model has been run with a 13th Gen Intel(R) Core (TM) 
i9-13950HX CPU (5.5GHz) and 64GB of RAM, coded in Matlab R2022b, 
and applied to the case study of Rome. The presence of multiple objectives 
requires the generation of as many as possible sets of optimal solutions, 

known as Pareto-optimal solutions. Many optimization methods aim to 
solve this problem by converting multi-objective into a single-objective 
optimization problem for obtaining single Pareto-optimal solution (e.g., 
weighted-sum method). However, the generation of a Pareto front 
considering different Pareto-optimal solutions requires many simulation 
runs, and therefore higher computation time. For this reason, the best- 

Table 4 
Elitist NSGA-II parameter tuning of M-MCPL over 10 runs.  

Gen = 10;Pop = 25 
Obj. function Maximum value Minimum value Best average value Best Std. dev. value Average CPU time [s] 

f1(y) 55,577.00 22,417.00 43,850.33 7105.97 
146.52 f2.a(y) 423.29 224.08 359.95 33.26 

f2.b(y) 10.51 0.87 6.22 1.53 
f3(y) 370.00 197.00 306.50 33.77  

Gen = 25;Pop = 50 
Obj. function Maximum value Minimum value Best average value Best Std. dev. value Average CPU time [s] 

f1(y) 56,656.00 16,900.00 39,499.59 9473.78 
639.36 f2.a(y) 433.11 182.14 341.75 47.63 

f2.b(y) 10.46 1.34 6.23 1.92 
f3(y) 381.00 191.00 295.53 40.08  

Gen = 50;Pop = 100 
Obj. function Maximum value Minimum value Best average value Best Std. dev. value Average CPU time [s] 

f1(y) 58,458.00 16,688.00 39,802.18 9857.69  

2,619.00 
f2.a(y) 433.40 175.45 336.20 52.86 
f2.b(y) 10.19 0.75 5.42 2.18 
f3(y) 388.00 177.00 290.00 41.75  

Gen = 100;Pop = 200 
Obj. function Maximum value Minimum value Best average value Best Std. dev. value Average CPU time [s] 

f1(y) 60,942.00 12,544.00 40,043.23 9485.51 
11,547.07 f2.a(y) 436.48 136.07 343.61 55.81 

f2.b(y) 11.15 0.51 5.18 2.47 
f3(y) 403.00 126.00 286.03 45.99  

Fig. 4. Elitist NSGA-II parameter tuning comparison of four objective functions over 10 runs in terms of the maximum value.  
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Fig. 5. The 3-dimensional representation of the Pareto front with the non-dominated solutions of the multi-objective optimization (Gen = 100 and Pop = 200).  

Fig. 6. Elitist NSGA-II performance of M-MCPL (Gen = 100 and Pop = 200).  
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found solutions of the multi-objective optimization were obtained by 
applying an elitist Genetic Algorithm (GA), originally provided by Deb 
and Goldberg (1989), that has a feature of 昀椀nding multiple Pareto- 
optimal solutions in one single simulation run. It has been noted in the 
literature that Elitist GA shows high performance in solving multi- 
objective optimization problems, and better convergence characteristics 
than non-elitist multi-objective evolutionary algorithms (Deb and Goel, 
2001). In speci昀椀c, we applied the elitist Non-dominated Sorting Genetic 
Algorithm (NSGA-II), proposed by Deb (2001), that outperforms other 
solution approaches in terms of convergence and computational 
complexity. The applied NSGA-II algorithm uses an elite-preserving 
mechanism and fast non-dominated sorting procedure. For more details, 
see Deb (2001) and Deb et al. (2002). 

The Pareto-optimal solutions were generated by solving the multi- 
objective optimization model with four different objective functions 
(f1(y) , f2.a(y) , f2.b(y) , f3(y)

), as reported in Section 3. The number of 
shared e-scooter locations has been set as s = 50. In addition, parameter 
Tc referred to the time to walk a distance coverage Dc (i.e., the average 
distance needed for reaching a shared e-scooter parking location from 
the centroid of each zone by walking). The parameter Dc is considered as 
an on-the-昀氀y distance that can be considered as a value of 200 m and 
400 m, as it can be found in the literature for similar services (Cohen, 
2016; Schoner and Levinson, 2013). Consequently, parameter Tc is the 

threshold of time coverage calculated as Dc divided by average walking 
speed set as 1 m/s. 

Furthermore, parameter tuning of elitist NSGA-II is needed for 
obtaining high-quality Pareto-optimal solutions related to the maximi-
zation of population coverage, bus stop accessibility, railway/metro sta-
tion accessibility, and POIs. Since there is no single way to 昀椀nd the best 
parameter con昀椀guration due to the problem size and complexity, the 
number of generations Gen and size of population Pop are considered as 
the most effective in obtaining good quality solutions (Mosayebi and 
Sodhi, 2020). For those reasons, we considered common values related to 
crossover fraction equal to 0.8, Pareto fraction equal to 0.35, and stopping 
criteria as the maximum number of Gen (Mohamed et al., 2022). Conse-
quently, Table 4 reports descriptive statistics (best maximum, minimum, 
average, and std. dev. values) and average CPU time obtained over 10 
runs for different size of Gen and Pop. In speci昀椀c, we considered a pro-
portional increasing of number Gen = {10,25,50, 100} and Pop =

{25,50, 100, 200} to obtain the insight of different representation of 
Pareto-optimal solutions. It is worth to notice that the increase of Gen and 
Pop results in higher average CPU time, on the one side, but on the other 
side, in the relevant improvement of all four objective functions, as 
observed in Fig. 4. The better-quality solutions are obtained by increasing 
the number of Gen and Pop, but for obtaining acceptable optimization 
results in a reasonable CPU time, we 昀椀xed the maximum Gen and Pop 
equal to 100 and 200, respectively. For instance, the best average per-
centage values of objective functions f1(y), f2.a(y), f2.b(y), f3(y) over 10 
runs, for Gen = 10 and Pop = 25 are f1(y) = 46.52%, f2.a(y) = 36.90%,

f2.b(y) = 50.10%, f3(y) = 37.60%, while for Gen = 100 and Pop = 200 
are f1(y) = 48.94%, f2.a(y) = 44.43%, f2.b(y) = 53.59%, f3(y) =

41.45%. Additionally, standard deviation values resulted in the highest 
dispersion for the objective function f1(y), due to the signi昀椀cant variations 
among all covered zones expressed in number of residents. For further 
insight into the descriptive statistics of each run see Appendix A. 

Fig. 7. One of the Pareto-optimal solutions of the multi-objective optimization with s = 50, Dc = 200m.  

Table 5a 
Results of the Pareto-optimal solution (covered population f1(y) and land zones).  

s Dc Covered population f1(y) Covered land zones 
No. [m] [no.residents] [%] [%] No. [

km2]

50 200 57,439 48.94 40.32 550 8.33  
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Based on the parameter tuning, the best values are obtained with 
Gen = 100 and Pop = 200. Consequently, Fig. 5 represents the Pareto 
front considering the best obtained set of non-dominated solutions; the 
3-dimensional representation shows all combinations of the obtained 
Pareto-optimal set by considering the four objective functions when G =

100, and Pop = 200. 
In addition, Fig. 6 depicts the elitist NSGA-II performance in terms of 

selection function, score, and 昀椀tness of each individual. 
Fig. 7 shows one of the Pareto-optimal solutions by representing the 

spatial distribution of the shared e-scooter parking locations obtained as 
the output of the multi-objective optimization model with Dc = 200m 
and s = 50. In detail, for the considered solution, in Table 5a and 
Table 5b, we report results in terms of values of objective functions, 
population and land zones. Additionally, for simplicity, we express those 
results in percentages. 

The solution obtained from the model allows to optimize the four 
chosen objectives at the same time. Nevertheless, the proposed multi- 
objective M-MCPL model can be applied by considering three/two 
objective functions and their corresponding combinations, as reported 
in Appendix B. However, in section 4.3, we focused on each single 
objective function to match the speci昀椀c goal of decision-makers, and 
therefore, obtained a comprehensive analysis and comparison between 
multiple and single targets on shared e-scooter parking locations and 
their performance. 

4.3. Sensitivity analysis 

The Pareto-optimal solutions of the multi-objective optimization 
provide a sparse coverage and accessibility distribution of the shared e- 
scooter locations. However, public administrations or transport opera-
tors might be interested in obtaining the maximization of the shared e- 
scooter service coverage by giving a higher priority to only one aspect (i. 
e., objective function). For this reason, we carried out a sensitivity 
analysis by splitting the multi-objective M-MCPL model into four 
different single-objective problems that could be adapted to a speci昀椀c 
goal of micromobility stakeholders (i.e., public authorities, shared e- 
scooter mobility companies, etc.). 

The MCPL model has been run with a 13th Gen Intel(R) Core (TM) i9- 
13950HX CPU (5.5GHz) and 64GB of RAM, coded in Matlab R2022b. 
The optimality of the solution is reached in reasonable computation time 
by using the Branch-and-Bound exact solution approach. For each 
single-objective optimization model, we obtained optimal solutions by 
varying the number of the shared e-scooter locations until obtaining full 
coverage; this is done to consider potential different budget resources 
dedicated to micromobility services, expressed in the number of shared 
e-scooter locations s. Therefore, for each one of the proposed cases, we 
reported the results for s = {5,25,50, 75,100}. 

Finally, we set the distance coverage as Dc = {200,400} to approx-
imate the walking distance to reach the shared e-scooter parking loca-
tion from each centroid. Therefore, we distinguish four different cases:  

" Case 1 with the objective function f1(y);  
" Case 2 with the objective function f2.a(y);  
" Case 3 with the objective function f2.b(y);  
" Case 4 with the objective function f3(y). 

For each Case, we evaluated the following performance indicators: 

Table 5b 
Results of the Pareto-optimal solution (f2.a(y), f2.b(y), f3(y)).  

s Dc Bus accessibility 
f2.a(y)

Railway/metro 
accessibility f2.b(y)

POIs coverage 
f3(y)

No. [m] − [%] − [%] No. [%]

50 200 377.49 38.95 6.70 34.56 331 37.49  

Fig. 8. The result of Case 1 - obj. Function f1(y) with s = 50 and Dc = 200m.  
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two general and one speci昀椀c for each single-objective function. General 
indicators for all the cases are the covered population and the covered 
land zones. The speci昀椀c indicators, i.e., bus and railway/metro acces-
sibility and POIs coverage, are indicated in the following description of 
the results. The optimal solution for Case 1, with the objective function 
f1(y), s = 50, and Dc = 200m is depicted in Fig. 8. As reported in Table 6, 
the percentage of the covered population when s = 50 is around 85%, 
while with s = 25 > 60% of residents in the considered zone is covered. 
We can observe that with s = 100 the selected shared e-scooter locations 
are positioned in the zones with a higher population coverage which 
results in the maximum land coverage of 73.79%, leaving uncovered 
only poorly populated and unpopulated zones. However, when Dc =

400m, we can reach full population coverage with s = 50. 
Furthermore, according to Kamphuis and van Schagen (2020), we 

estimated the number of shared e-scooters per parking location required 
to satisfy the covered population. Speci昀椀cally, the authors estimated 

Table 6 
Results of Case 1 (obj. Function f1(y)).  

s Dc Covered 
population 

Covered land zones ns CPU time 

No. [m] No. [%] No. [

km2] [%] No. [s] 

5 200 29,192 24.87 75 0.60 3.96 8 1.78 
5 400 52,807 44.99 292 2.14 14.16 15 2.28 
25 200 70,580 60.14 383 3.40 22.47 4 1.71 
25 400 114,288 97.38 1018 9.89 65.32 6 25.67 
50 200 100,415 85.56 771 6.20 40.95 3 2.21 
50 400 117,364 100 1096 12.75 84.23 3 10.69 
75 200 113,784 96.95 965 8.83 58.34 2 14.11 
75 400 117,364 100 1096 12.75 84.23 2 1.87 
100 200 117,118 99.79 1061 11.17 73.79 2 14.12 
100 400 117,364 100 1096 12.75 84.23 2 1.47  

Fig. 9. The result of Case 2 with obj. Function f2.a(y) with Dc = 400m and s = 25.  

Table 7 
Results of Case 2 (obj. Function f2.a(y)).  

s Dc Covered population Covered land zones Accessibility measure f2.a(y) ns CPU time 
No. [m] No. [%] No. [km2] [%] − [%] No. [s]
5 200 8334 7.10 120 0.69 4.42 165.17 17.04 2 1.38 
5 400 32,526 27.71 386 2.39 15.77 361.74 37.32 9 2.19 
25 200 41,853 35.66 528 3.05 20.14 530.19 54.70 2 1.40 
25 400 111,068 94.64 1252 10.84 71.59 936.58 96.62 6 89.24 
50 200 67,442 57.46 848 6.31 41.67 780.51 80.53 2 7.10 
50 400 117,364 100 1364 15.14 100 969.23 100 3 2.46 
75 200 102,070 86.96 1143 9.16 60.51 914.29 94.33 2 22.23 
75 400 117,364 100 1364 15.14 100 969.23 100 2 1.51 
100 200 112,428 95.79 1281 11.58 76.35 959.16 98.96 2 214.23 
100 400 117,364 100 1364 15.14 100 969.23 100 2 1.59  
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around 0.0006 e-scooters per resident in Germany. Proportionally, we 
estimated the ratio as 0.0014 per resident for covering the total popu-
lation of 117,364 residents in the case study. Therefore, the total number 
of shared e-scooters is estimated as no.e− scooter locations = 165. 
Consequently, the approximate no. e-scooters ns per e-scooter parking 
location s is calculated as ns =

(covered population [%]×no.e−scooters
no.e−scooter locations s

)

, as reported 
in Table 6. 

The optimal solution of Case 2 with the objective function f2.a(y), and 
s = 25 is presented in Fig. 9, while Table 7 reports the results. It is 
observed that we can cover 100% of the population with 50 shared e- 
scooter locations, and almost 30% of the population with only 5 shared 
e-scooter locations when the distance coverage Dc = 400m. Accessibility 
has been used as a speci昀椀c indicator for Case 2. However, the percentage 
of the population coverage as well as the bus accessibility measure is 
almost twice lower when the distance coverage Dc = 200m. This 

highlights the importance of investigating the willingness of users to 
walk for reaching the shared e-scooter location. 

Table 8 shows the results of Case 3 with the objective function f2.b(y), 
while Fig. 10 depicts the results of the model for Dc = 400m, and s = 5. 
Again, accessibility has been used as a speci昀椀c indicator. In Case 3, we 
observe that we can achieve total accessibility measure coverage with 50 
shared e-scooter parking locations (see Table 8), and thus, there is no 
need for installing more locations, since we obtain no increase in pop-
ulation and accessibility coverage improvement. 

The optimal solution of Case 4, with the objective function f3(y) and 
s = 50, is presented in Fig. 11. In this case, we observe similar results 
regarding the covered population and land zone with distance coverage 
Dc = 200m and Dc = 400m. However, we achieved the maximum per-
centage of the POIs coverage for s = {50,75}, respectively, which 
resulted in a percentage of the covered population of around 65%, as 
reported in Table 9. 

Table 8 
Results of Case 3 (obj. Function f2.b(y)).  

s Dc Covered population Covered land zones Accessibility measure f2.b(y) ns CPU time 
No. [m] No. [%] No. [

km2] [%] − [%] No. [s]

5 200 9963 8.49 70 0.74 4.90 10.48 54.03 3 1.39 
5 400 21,142 18.01 200 2.14 14.14 15.41 79.43 6 1.51 
25 200 31,919 27.20 284 3.24 21.41 18.87 97.27 2 1.37 
25 400 39,971 34.06 378 4.84 31.98 19.40 100 2 1.64 
50 200 39,840 33.95 377 4.83 31.93 19.40 99.99 1 1.57 
50 400 39,971 34.06 378 4.84 31.98 19.40 100 1 1.35 
75 200 39,971 34.06 378 4.84 31.98 19.40 100 1 1.36 
75 400 39,971 34.06 378 4.84 31.98 19.40 100 1 1.54 
100 200 39,971 34.06 378 4.84 31.98 19.40 100 1 1.40 
100 400 39,971 34.06 378 4.84 31.98 19.40 100 1 1.38  

Fig. 10. The result of Case 3 with obj. Function f2.b(y) with Dc = 400m and s = 5.  
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4.4. Discussion of results 

The analysis of the results shows that, in the case of single-objective 
optimization, Case 2 achieves the best performance regarding popula-
tion, land, and accessibility measure coverage with the lower number of 
shared e-scooter locations, although not covering all the POIs. Further-
more, the percentage of the covered population in Case 3, resulting in 
around 34% when s = 50 is signi昀椀cantly lower than in Case 2 in which 
the total population coverage can be satis昀椀ed. This result is correlated 
with the total number of investigated bus stops and railway/metro sta-
tions; the lower presence of railway/metro stations signi昀椀cantly affects 
the covered population decrease. Also, the value of distance coverage Dc 
has a relevant impact on the bus and railway/metro accessibility mea-
sure, and therefore, on the percentage of the covered population in the 
Case 2 and Case 3 if compared to Case 1. Based on these, we can observe 
that the distance coverage Dc in Case 2 has a large in昀氀uence on the bus 

stations’ accessibility measure and demand coverage, which is coherent 
to practical situations. These results show that the proposed model can 
be used as a 昀椀rst-step analysis in the decision-making process regarding 
the planning of shared e-scooter parking locations. 

Results coming from the multi-objective M-MCPL model might be 
used to provide priority areas to locate e-scooter parking spots when all 
four objectives are considered equally important by the different actors in 
the decision-making process. Single-objective models can be used to 
re昀椀ne the choice of location, according to the priorities assigned by the 
different stakeholders. For example, public authorities might be inter-
ested in providing high accessibility to transport services to promote 
multimodal trips by residents and tourists: hence, they could opt to re昀椀ne 
location by adopting Case 2 (f2.a(y)) and Case 3 (f2.b(y)). Conversely, 
shared e-scooter providers are generally interested in maximizing service 
pro昀椀ts and, therefore, in maximizing potential demand (of residents and 
tourists) as reported in Case 1 (f1(y)) and Case 4 (f3(y)). 

Fig. 11. The result of Case 4 with obj. Function f3(y) with Dc = 400m and s = 25.  

Table 9 
Results of Case 4 (obj. Function f3(y)).  

s Dc Covered population Covered land zones POIs f3(y) ns CPU time 
No. [m] No. [%] No. [

km2] [%] No. [%] No. [s]

5 200 5699 4.85 96 0.57 3.74 138 15.63 2 1.42 
5 400 26,335 22.44 266 1.90 12.57 354 40.09 7 1.77 
25 200 33,245 28.33 364 2.84 18.76 485 54.93 2 1.41 
25 400 69,472 59.19 649 8.34 55.08 853 96.60 4 8.59 
50 200 54,231 46.21 535 5.28 34.87 708 80.18 2 2.64 
50 400 76,522 65.20 674 9.14 60.39 883 100 2 1.80 
75 200 72,072 61.41 634 7.32 48.33 829 93.88 1 4.17 
75 400 76,522 65.20 674 9.14 60.39 883 100 1 2.29 
100 200 76,413 65.11 671 9.11 60.16 880 99.66 1 16.27 
100 400 76,522 65.20 674 9.14 60.39 883 100 1 1.50  
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The comparison between multi-objective and single-objective results 
considering distance coverage Dc = 200m and number of parking loca-
tions s = 50, is depicted in Fig. 12. In addition, results are compared 
considering two general indicators (covered land zones and covered 
population) which are common for both multi and single objective cases. 
Therefore, speci昀椀c indicators in Case 2, Case 3, and Case 4 can be 
compared only with multi-objective model results. Even though all 
single-objective models tend to maximize their corresponding objective 
functions, it is worth noticing that the general indicator of land zone 
coverage is within the similar range between 30% and 40%. This means 
that MCPL models tend to place shared e-scooter parking locations in the 

most populated census zones. In addition, we can notice that the dis-
tance range coverage Dc plays a key role in terms of the difference be-
tween land coverage and the maximization of their corresponding 
objective functions, as observed in the sensitivity analysis (section 4.3). 
However, the proposed multi-objective M-MCPL model tends to maxi-
mize all objectives at the same time returning a similar percentage be-
tween all indicators (i.e., between 40% and 50%). 

Finally, Fig. 13 depicts the geographical representation of obtained 
shared e-scooter locations considering M-MCPL and 4 cases of MCPL 
model with Dc = 200m and s = 50. Considering the frequency of ob-
tained shared e-scooter locations in census zones, results show that only 

Fig. 12. The comparison of general and speci昀椀c indicators among multi-objective (M-MCPL) and single-objective (MCPL) model results with Dc = 200m and s = 50.  

Fig. 13. Heatmap and geographical representation of shared e-scooter locations of multi-objective (M-MCPL) and single-objective (MCPL) results with Dc = 200m 
and s = 50. 
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1 zone is considered optimal for locating the shared e-scooter parking 
spots in 4 out of 5 of the different models; more in general, only 175 
zones are considered optimal in at least one of the 5 models, while 1189 
zones result as unsuitable. This analysis also shows an overlapping of the 
resulting zones of about 30%, i.e., 75 over 250 shared e-scooter parking 
locations are common among at least two models. The heatmap in 
Fig. 13 shows that the density of shared e-scooter parking locations is 
higher in the northeast and in the northwest, while areas located in the 
south show a lower density. This proves the performability of the model 
to guarantee the coverage of main POIs of the city in line with the 
mapping of Fig. 2, which depicts that in these northern areas one can 
昀椀nd the main amenities of the city, including the central railway station 
“Roma Termini” (in the northeast). The lower density of southern areas 
is compliant with a lower population distribution per census zone as one 
can see in Fig. 3, which is mainly occupied by historical venues and 
parks; an exemption is the southwestern neighborhood named “Testa-
ccio”, with a denser road network plenty of facilities and residential 
venues. The outcome of this analysis re昀氀ects the importance of inves-
tigating different criteria for placing shared e-scooter locations which 
can contribute to the decision-making process. 

5. Conclusions 

This study presented a novel multi-objective Micromobility Maximal 
Coverage Parking Location model (M-MCPL) to design parking locations 
for shared e-scooter services. The model returns optimal locations by 
satisfying four different objective functions related to population 
coverage, accessibility to public transport, and POIs attractiveness. The 
model has been applied to the central area of Rome: results show that the 
multi-objective model achieves coverage of around 39% (considering 
the average coverage value of obtained Pareto-optimal solutions) when 
all objectives have the same importance for the decision-makers. How-
ever, a decision-maker might opt to select one or a combination of four 
objective functions (e.g., in small towns where public transport is not 
present). This 昀氀exibility might be useful for decision-makers in the case 
of planning dedicated services (e.g., to tourists or for regular transit 
users) or applying the model in different contexts (e.g., small towns, and 
rural areas). Therefore, those aspects have been investigated through a 
sensitivity analysis in which we distinguished four cases with a single 
objective function. Results of Case 1, with the objective function f1(y), 
showed that we could achieve coverage of around 70% in terms of 
population, land density, and accessibility with the number of parking 
locations s = 25. However, in other cases, the model might obtain a 
more convenient achievement of full coverage. For example, in Case 2 

and Case 3 with objective functions f2.a(y) and f2.b(y), we can achieve full 
coverage when the number of shared e-scooter parking locations s = 50.

However, the obtained locations do not consider a high-level land- 
use knowledge and the presence of areas that fall under private property, 
areas of archaeological interest, exclusively pedestrian areas, and areas 
where vehicle parking is risky or physically impossible. Moreover, the 
considered areas could depend on peculiar facts that cannot be veri昀椀ed 
if not by an on-昀椀eld survey (e.g., the presence of obstacles, and lack of 
suitable spaces). Precisely for these reasons, it was considered appro-
priate to use the census zoning which has a fairly high level of detail and 
provides accurate data on the potential demand, rather than denser 
geometric zoning. Future research should certainly address this issue, e. 
g., by designing a geofencing model which might be used to exclude 
areas that have location constraints already known by the decision- 
makers or avoid unwanted areas. Also, in the presence of appropriate 
data, the model could be extended considering other or different ob-
jectives, for example optimizing the location in the zones with high 
environmental pollution or traf昀椀c congestion. Nonetheless, the pro-
posed model can be also used as a general framework applicable to other 
micromobility solutions (e-bikes, bikes, cargo bikes, scooters, etc.). 
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Appendix A. Descriptive statistics of the Elitist NSGA-II parameter tuning for each run of M-MCPL model with s = 50, and Dc = 200m.  
No runs Gen = 10; Pop = 25 Gen = 25; Pop = 50 

Obj. Fun. Max Min Avg Std. dev. CPU time [s] Max Min Avg Std. dev. CPU time [s] 

1 
f1(y) 52,541.00 24,130.00 37,562.00 9979.52 

184.12 
55,677.00 19,934.00 36,760.58 11,405.67 

635.56 f2.a(y) 406.55 252.35 338.81 56.17 433.11 229.39 320.77 65.61 
f2.b(y) 7.09 2.64 4.93 1.53 10.08 1.72 4.97 2.68 
f3(y) 352.00 232.00 293.63 42.16 364.00 206.00 281.74 53.08 

2 
f1(y) 55,577.00 25,149.00 37,661.89 10,073.68 

145.62 
54,096.00 16,900.00 34,372.12 12,488.82 

648.33 f2.a(y) 403.11 224.08 322.16 71.05 415.92 198.79 310.98 70.18 
f2.b(y) 8.80 2.60 5.02 2.08 10.04 1.83 4.66 2.61 
f3(y) 366.00 208.00 284.11 57.82 362.00 208.00 278.65 50.69 

3 
f1(y) 55,121.00 22,417.00 41,046.70 12,206.51 

129.00 
56,656.00 22,068.00 38,250.21 11,196.28 

657.25 f2.a(y) 411.59 273.66 348.52 46.03 414.87 214.35 328.28 70.03 
f2.b(y) 9.29 1.72 6.22 2.57 9.33 1.35 4.81 2.18 
f3(y) 359.00 250.00 306.50 34.61 381.00 216.00 288.00 51.38 

4 
f1(y) 53,042.00 24,859.00 38,102.25 9594.68 

152.33 
56,365.00 21,539.00 37,434.37 11,555.73 

619.21 f2.a(y) 418.37 246.55 335.83 57.13 422.41 244.30 341.75 60.50 
f2.b(y) 9.00 2.74 5.27 2.32 9.72 1.90 5.22 2.37 
f3(y) 357.00 244.00 293.75 36.60 367.00 234.00 293.16 44.45 

5 
f1(y) 55,264.00 26,168.00 41,796.40 9479.83 

154.78 
56,020.00 22,078.00 38,697.11 11,964.66 

661.24 f2.a(y) 407.36 239.23 352.93 62.45 417.85 221.64 325.39 67.33 
f2.b(y) 9.27 2.70 6.10 2.07 10.46 1.69 5.15 2.44 

(continued on next page) 
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(continued ) 
No runs Gen = 10; Pop = 25 Gen = 25; Pop = 50 

Obj. Fun. Max Min Avg Std. dev. CPU time [s] Max Min Avg Std. dev. CPU time [s] 
f3(y) 368.00 197.00 301.00 53.11 356.00 191.00 281.37 56.69 

6 
f1(y) 52,839.00 24,334.00 37,954.83 9821.49 

128.32 
55,993.00 25,326.00 39,499.59 9473.78 

617.88 f2.a(y) 408.86 270.08 338.00 46.37 417.26 231.84 341.36 59.34 
f2.b(y) 8.37 1.60 4.85 2.37 10.08 1.88 5.29 2.38 
f3(y) 359.00 244.00 295.58 35.15 365.00 217.00 295.53 45.10 

7 
f1(y) 52,153.00 22,629.00 38,420.58 8364.29 

141.62 
54,104.00 23,409.00 37,566.24 11,337.73 

632.87 f2.a(y) 423.29 257.21 342.06 51.77 424.89 182.14 307.70 86.36 
f2.b(y) 10.51 2.40 5.63 2.62 10.22 1.64 4.91 2.74 
f3(y) 367.00 204.00 293.17 46.79 370.00 198.00 274.06 53.39 

8 
f1(y) 54,603.00 29,153.00 40,759.89 9627.35 

158.00 
56,214.00 23,517.00 38,341.47 9890.85 

637.22 f2.a(y) 410.03 258.71 339.24 56.25 429.94 259.05 339.89 47.63 
f2.b(y) 9.72 0.87 5.19 2.89 10.33 1.78 6.23 2.81 
f3(y) 349.00 236.00 302.00 43.47 377.00 220.00 285.32 41.23 

9 
f1(y) 55,569.00 35,627.00 43,850.33 7105.97 

139.94 
55,824.00 19,816.00 36,502.00 10,515.41 

637.32 f2.a(y) 414.83 309.05 359.95 33.26 417.26 211.47 337.97 61.35 
f2.b(y) 8.07 2.04 5.03 2.27 9.24 1.34 5.08 2.57 
f3(y) 370.00 257.00 303.67 38.75 363.00 201.00 279.63 40.08 

10 
f1(y) 54,167.00 24,723.00 40,300.67 9440.83 

131.49 
55,033.00 22,790.00 37,213.88 10,335.38 

646.73 f2.a(y) 401.47 278.97 347.73 45.35 417.07 257.83 333.17 55.74 
f2.b(y) 8.84 1.56 5.17 2.55 7.93 1.40 4.42 1.92 
f3(y) 353.00 243.00 302.44 33.77 360.00 220.00 282.82 42.91  

No runs Gen = 50; Pop = 100 Gen = 100; Pop = 200 
Obj. Fun. Max Min Avg Std. dev. CPU time [s] Max Min Avg Std. dev. CPU time [s] 

1 
f1(y) 57,205.00 20,291.00 38,514.44 11,575.76 

2755.52 
57,439.00 14,521.00 37,377.29 11,377.24 

10,966.83 f2.a(y) 428.15 198.68 323.33 71.81 430.59 136.07 323.15 68.84 
f2.b(y) 9.77 0.98 5.04 2.81 10.40 0.72 4.75 2.65 
f3(y) 385.00 194.00 281.32 57.40 366.00 126.00 271.49 56.03 

2 
f1(y) 56,599.00 20,533.00 39,802.18 11,713.95 

2598.74 
60,942.00 12,544.00 36,082.46 12,590.81 

10,948.86 f2.a(y) 420.90 240.46 336.20 56.75 424.69 162.60 305.50 79.47 
f2.b(y) 9.63 0.99 4.66 2.31 9.44 0.83 4.23 2.50 
f3(y) 378.00 208.00 289.15 48.55 369.00 151.00 266.23 58.45 

3 
f1(y) 56,814.00 21,650.00 38,302.03 10,720.89 

2538.35 
59,091.00 14,664.00 35,686.12 12,375.66 

10,217.80 f2.a(y) 431.33 237.99 335.17 52.86 429.39 161.57 319.58 73.03 
f2.b(y) 9.79 1.24 4.87 2.50 9.72 0.62 4.65 2.75 
f3(y) 365.00 222.00 285.76 42.54 376.00 181.00 272.68 55.00 

4 
f1(y) 57,067.00 19,858.00 38,656.03 10,709.78 

2575.86 
58,071.00 21,694.00 38,906.07 10,756.24 

10,227.91 f2.a(y) 429.86 214.55 333.73 57.09 430.98 220.58 336.54 59.31 
f2.b(y) 10.04 0.87 5.08 2.58 10.18 0.89 4.84 2.51 
f3(y) 388.00 210.00 290.00 46.16 371.00 200.00 280.09 47.58 

5 
f1(y) 57,715.00 19,402.00 36,692.13 11,010.83 

2615.77 
57,969.00 15,442.00 35,134.38 11,877.99 

10,031.71 f2.a(y) 427.06 175.45 309.18 72.78 436.48 178.67 314.34 72.24 
f2.b(y) 9.36 0.75 4.03 2.58 10.33 0.57 4.34 2.52 
f3(y) 362.00 192.00 272.39 49.04 403.00 138.00 266.74 65.48 

6 
f1(y) 56,507.00 21,154.00 37,244.24 11,143.57 

2613.05 
56,627.00 20,302.00 35,917.28 11,269.27 

16,291.47 f2.a(y) 422.16 222.51 330.15 62.43 430.73 171.02 312.48 75.64 
f2.b(y) 9.54 0.85 5.04 2.46 11.15 0.68 4.63 3.00 
f3(y) 362.00 183.00 282.12 51.01 375.00 172.00 267.38 57.17 

7 
f1(y) 57,405.00 19,283.00 37,888.56 11,527.57 

2665.62 
57,941.00 24,036.00 40,043.23 9485.51 

12,484.33 f2.a(y) 433.40 213.92 335.90 63.85 425.28 225.53 343.61 55.81 
f2.b(y) 10.19 1.54 5.42 2.68 9.11 0.83 4.76 2.47 
f3(y) 377.00 209.00 286.85 49.12 373.00 201.00 286.03 45.99 

8 
f1(y) 56,006.00 22,704.00 38,510.68 10,360.17 

2605.44 
57,676.00 20,785.00 37,821.00 10,342.20 

13,213.05 f2.a(y) 421.42 229.51 328.68 54.30 426.56 218.63 323.98 65.21 
f2.b(y) 9.45 0.93 4.62 2.33 9.92 0.51 4.34 2.68 
f3(y) 367.00 195.00 283.29 41.75 379.00 181.00 277.45 50.25 

9 
f1(y) 56,999.00 22,498.00 38,092.45 9857.69 

2618.18 
57,884.00 19,843.00 38,495.71 10,674.31 

10,558.53 f2.a(y) 419.42 235.73 331.98 55.18 430.37 206.15 333.06 62.33 
f2.b(y) 8.37 1.22 4.44 2.18 10.42 0.93 5.18 2.64 
f3(y) 362.00 212.00 286.11 43.10 376.00 200.00 282.94 50.96 

10 
f1(y) 58,458.00 16,688.00 35,528.88 12,210.93 

2603.51 
56,514.00 20,186.00 37,816.28 10,698.64 

10,530.20 f2.a(y) 424.92 194.59 323.31 63.62 433.42 216.68 330.54 63.53 
f2.b(y) 9.77 1.20 4.88 2.72 10.03 1.07 4.71 2.58 
f3(y) 373.00 177.00 282.68 51.95 391.00 196.00 282.19 49.75   
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