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A multiscale model for macromolecular materials with

unfolding domains

D. De Tommasi1,∗, G. Puglisi1,∗, G. Saccomandi1,∗∗

Abstract

We propose a simple approach, based on the minimization of the total (en-
tropic plus unfolding) energy of a two-state system, to describe the unfolding
of multidomains macromolecules (proteins, silks, polysaccharides, nanopoly-
mers). The model is fully analytical and enlightens the role of the differ-
ent energetic components regulating the unfolding evolution. As an explicit
example we compare the analytical results with the titin Atomic Force Mi-
croscopy stretch-induced unfolding experiment showing the ability of the
model to quantitatively reproduce the experimental behavior. In the ther-
modynamic limit the sawtooth force-elongation unfolding curve degenerates
to a constant force unfolding plateau.

Keywords: Macromolecules unfolding, Biopolymers, Macromolecules Me-
chanics, Biological tissues, Multiscale models, Worm Like Chain.

1. Introduction

2. Micromechanics of the single chain unfolding
{ea}

Typical protein macromolecules are constituted by a sequence of folded
(e.g. β-sheets crystals) and unfolded domains. Atomic Force Microscopy ex-
periments (see [67] for the titin and [10] for fibrinogen, dextan [65], silks [83],
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DNA/RNA strands [74]) show that under increasing end-to-end length these
chains undergo successive events of domains unravelling. These phenomena
are revealed by a (typically periodic) sequence of stress drops (see Fig. 1b)
corresponding to an increase of the contour length due to the availability of
new monomers arising by the single domain unravelling (the periodicity of
the diagram reveals that each drop corresponds to all-or-none single domain
unravelling [67]).

To describe this behavior we model each macromolecule as a lattice of two
states domains that can undergo a hard (folded) → soft (unfolded) transi-
tion under growing force. To this scope, following [19], we consider a Griffith
energy minimization scheme searching for the global minima of the total (en-
tropic plus unfolding) potential energy of the chain. Specifically, we consider
identical folded domains, with the same unfolding energy Q, representing the
energy dissipated in the folded-unfolded transition, and a constant number of
monomers released in each transition, leading to an increase lc of the contour
length. Moreover, we neglect (see [19]) the elasticity and the dimension of
the folded domains and the mixing (folded/unfolded) entropy.

Under these hypotheses one can show (see again [19] for a statistical
justification based on an Ising type transition energy) that the total energy
of the chain depends on the only end-to-end length L and total number n
of unfolded domains. Indeed, by considering the Worm Like Chain (WLC)
elastic energy of the unfolded fraction as proposed in [50], the total energy
is given by

ΦWLC = ΦWLC
e + nQ, (1) {llll}

where

ΦWLC
e = κ

(
λ2
r

1− λr
+ 2λ2

r

)
Lc (2)

is the entropic energy of the unfolded fraction, nQ is the energy expended to
unfold n domains. Here

κ =
kBT

4p

with kB the Boltzmann constant, T the temperature, p the persistence length.
Moreover we introduced the relative chain stretch

λr =
L

Lc
∈ (0, 1)

where
Lc = L̂c(n) = nlc, n ∈ (no, nt) (3) {lcc}
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is the chain contour length, no is the virgin (reference) number of unfolded
domain and nt is the total number of hard domains in the macromolecule.
Notice that the initial (undamaged) contour contour length is

L0

c = nolc (4) {Lo}

and the fully unfolded (damage saturation) contour length is

L1

c = ntlc (5) {Lu}

so that Lc ∈ (L0
c, L

1
c).

In order to attain fully analytical solutions, fundamental in the follow-
ing deduction of the three dimensional model, we consider the simplified
expression of the WLC energy density proposed in [19] that keeps the same
asymptotic behavior (as L→ Lc) of the WLC model proposed in [50]

Φe = κ
λ2
r

1− λr
Lc. (6) {Phie}

By differentiating with respect to L we get the force-stretch relation

f = κ
2λr − λ2

r

(1− λr)2
. (7) {WLC}

Of course the total energy (see (1)) is given by

Φ = Φe + nQ. (8) {Toten}

The same approach has been considered in polymer damage mechanics (see
[18], [20] and references therein) and in the decohesion problems (see [61]
and references therein). It is important to observe that the effective unfolding
strategy is affected by the ability of the system of overcoming energy barriers
and thus depends on the rate of deformation. Here, aimed again to a fully
analytical approach, following the time scale separation proposed in [19], we
consider the classical Maxwell hypothesis (see e.g. [5]) that the configurations
of the system corresponds always to the global minimizers of the total energy.

One can show (see Fig. 1a and the proof in [19]) that under this hypothesis
the domains, according with the experimental observations described above,
unfold following a sequence of single domain transitions that by correspond
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to the condition Φ(L, n) − Φ(L, n + 1) = 0, n = 0, ..., nt − 1. As a result
we obtain the n dependent unfolding length

Lun = Lun(n) =
2n+ 1−

√
4ζn(n+ 1) + 1

2(1− ζ)
lc, (9) {lthr}

where for simplicity we omit the n dependence of Lc. Here

ζ =
κ lc
Q
, (10)

is the main non dimensional parameter of the system that measures the ratio
between unfolding and elastic energy of the single hard domain. Observe that
Lun ∈ (0, Lc) and that Lun increase with n (dL

un

dn
> 0) so that the n-th branch

delivers the global minimum of the energy in the interval

L ∈ (Lun(n− 1), Lun(n)), n ∈ (1, nt − 1),

Using (7), we get the unfolding force

f un = f un(n) =
kbT

4Lp

2ζn(n+ 2) + 1 + (2ζn+ 1)
√

4ζn(n+ 1) + 1

2ζ2n2
. (11) {fthr}

In Fig.1 we describe the typical behavior of a chain under the hypoth-
esis that its configurations correspond to the global minima of the energy.
In the figure we schematically show the decomposition of the external work
into unfolding (dissipated) and elastic energy. In particular, according with
the considered Maxwell hypothesis, the system follows an equilibrium branch
until the elastic energy difference (between the two branches) equals the dissi-
pation Q. Observe that the chain follows the typical sawtooth transition path
observed in protein macromolecules with periodic transitions corresponding
to the unfolding of single domains and the resulting entropy jump (force
drop) due to the periodic unraveling of a fixed number of monomers.

Regarding the behavior of the system under unloading, we remark that an
important hypothesis of the model is unfolding irreversibility assuming that
the unfolded domains cannot refold upon unloading. More general assump-
tions in this direction can be considered by introducing an healing effect
(see [21], [68]). As a result if the system is unloaded at a given equilib-
rium branch n it follows this branch until both stretch and force goes to
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Figure 1: Unfolding behavior for a system with no = 2 and nt = 6. Here we considered
the parameters Q = 10, ζ = 0.1 and lc = 1. Each equilibrium path is labelled by the
number n of unfolded domains.

modelsoft

zero. Under reloading the system follows again the same branch and it may
undergo another hard-soft transition at the same value of primary loading
Lun = Lun(n). Consequently, the memory of the system is restricted to the
only maximum value attained in the past by the end-to-end length Lmax.

3. Continuum Limit

In this section, aimed to the deduction of a continuum three-dimensional
model for macromolecular materials (see e.g. [23]), we analyze the continuum
limit of the proposed model when the discreteness can be neglected (i.e.
nt →∞). To get this limit we fix the total unfolded length, that by (3) is

L1

c = ntlc, (12) {tcl}

and consider the limit when both lc → 0 and nt → ∞. A more rigorous
mathematical approach would require a discrete-continuum Γ-limit (see e.g.
[60] and references therein where the authors deduce a continuum damage
model useful in the description of peeling in biological adhesion [61]).

To this scope, we first introduce the (continuum) damage variable

ν :=
n

nt
∈ (νo, 1), (13) {nu}
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representing the unfolded fraction (here νo = no/nt represents the unfolded
fraction of the ‘virgin’ configuration). In the language of Continuum Mechan-
ics ν represents a damage internal variable, with ν ∈ (νo, 1) where ν = νo
represents the virgin state and ν = 1 in the fully unfolded state [16, 17]
(damage saturation).

As a result the elastic energy Φe is again given by (6) where the total
contour length is using (3) given by

Lc = Lc(ν) = νL1

c ∈ (L0

c, L
1

c). (14) {Lcnu}

Notice that in our model the damage variable ν measures the change of
contour length with, in particular, Lc = L0

c in the virgin configuration (ν =
νo) and Lc = L1

c in the damage saturation configuration (ν = 1). Moreover,
in view of (14), the relative deformation variable depends on the continuum
damage variable ν according with the following relation

λr = λr(L, ν) =
L

Lc(ν)
=

L

νL1
c

. (15) {etac}

Similarly the total energy Φ can be expressed as

Φ = Φ(L, ν) = Φe(L, ν) + νntQ = κ
λ2
r

1− λr
νL1

c + νntQ. (16) {Toten}

Finally observe that equilibrium equation

f = ∂LΦe(L, ν) (17) {eeqq}

gives again the expression (7) of the equilibrium force.
An important result in the analysis of the continuum limit of the unfolding

chain is that the unfolding events are characterized by a fixed unfolding force
(stress plateau) obtained by (11) in the limit nt →∞

f un = κ
2
√
ζ + 1

ζ
(18)

and a fixed unfolding relative stretch λr = λun
r , with

λun

r =
1√
ζ + 1

, (19) {luuu}
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continuous analog of (9). This corresponds to an unfolding length

Lun = ν
L1
c√

ζ + 1
= νλun

r L
1

c.

As a result the behavior of the chain is assigned by the parameters that
can be deduced by the single β sheet, Lp, lc and ζ (or analogously the unfold-
ing stretch λun

r ), and by the only initial number of unfolded elements no and
the total number of elements nt (or analogously L0

c and L1
c). It is important

to remark that the unfolding relative stretch and force depend on the barrier
Q that, as observed in [19] and references therein may depend on the rate of
deformation. In the following we consider the limit of slow stretching rates
and a rate-independent value of Q and ζ.

1 2 3 4 5Lc
o
Λr

un Lc Λr
un

0

10

20

30

f un

L

f
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Figure 2: Unfolding behavior in a continuum system with the same parameters of Fig.1.
Each equilibrium path is labelled by the damage ν.

modelcont

In particular the value of the unfolding length is a function of the internal
damage variable ν:

Lun = Lun(ν) = λun

r Lc(ν) = νλun

r L
1

c ∈ (λun

r L
0

c, λ
un

r L
1

c). (20) {LU}

The behavior of the system is illustrated in Fig.2. If we begin loading the
chain the damage begins at L = Lun(L0

c) = λun
r L

0
c (point A in the figure) that

represents the virgin elastic threshold and for Lmax ≤ Lun(L0
c) the behavior is

purely elastic. If the end-to-end length is increased further, the chain unfolds
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following the stress plateaux (A-B-C in the figure) f = f un. The damage
saturation is attained at L = λun

r L
1
c (point C) so that for Lmax ≥ λun

r L
1
c the

behavior is again elastic with a fixed damage ν = 1 (curve O-C-D). If we
unload before damage saturation is attained (e.g. point B in the figure)
the system follows an equilibrium branch at fixed damage ν (curve B-O).
Similarly if we reload the system follows the same branch until L = Lmax (B)
when the unfolding fraction ν starts increasing.

Notice that, as in the discrete case considered in the previous section, the
memory of the system is restricted to Lmax. In particular

ν = ν̄(Lmax) =
Lmax

λun
r L

1
c

=
Lmax

L1
c

(
√
ζ + 1) Lmax ∈ (λun

r L
0

c, λ
un

r L
1

c). (21) {nuL}

3.1. Thermodynamical consistence of the continuum damage model

We observe that the deduced model can be inscribed in the framework
of Thermodynamics with internal state variables [15] in the special simple
setting of isothermal processes. Indeed the state of the continuum chain can
be assigned by a single ‘external variable’ L and a single ‘internal variable’
ν. Following [15] we may then introduce the rate of entropy production

γ

T
= Ṡ(L, ν) +

fL̇

T
,

where

Ṡ = −Φ̇e

T
,

is the entropy of the chain. The classical (Clausius-Duhem type) dissipation
inequality [15] requires that

γ

T
=

1

T

[
(−∂LΦe(L, ν) + f) L̇+ gν̇

]
≥ 0. (22) {dis}

where

g = g(L, ν) = −∂νΦe(L, ν) = κ
λ2
r

(1− λr)2
L1

c > 0 (23) {ddff}

is the generalized force working for damage growth.
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Moreover, using the equilibrium equation (17), we obtain the reduced
dissipation (variational) inequality

γ = gν̇ ≥ 0 (24) {rCD}

that using (23) ensures that the Clausius Duhem inequality is respected if
an only if our irreversibility hypothesis

ν̇ ≥ 0

is fulfilled.
To show that our model can be inscribed in the classical damage mechan-

ics, we observe that the activation of damage can be equivalently assigned
by the three simple conditions

hL(L) = L− Lun = 0, hf (f) = f − f un = 0, hλr(λr) = λr − λun

r = 0,
(25) {thresh}

defining in particular the present elastic domain as a function of ν.
Thus, since when damage is active we have

L = Lmax = Lun(ν), (26)

using (20) we obtain the flow rule

ν̇ = ν̇(L, L̇, ν) =



0 if L < Lun, elastic regime,

0 if L = Lun, L̇ ≤ 0, elastic unloading,

L̇

λun
r L

1
c

, if L = Lun, L̇ > 0, damage regime.

To evaluate the dissipation potential D we observe that when damage is
active after easy computations we have

g = g(Lun(ν), ν) = ntQ

so that
D = D(ν̇) = ntQ ν̇.

In particular, we obtain a constant dissipation rate and a rate independent
dissipation behavior (the potential is a homogeneous function of degree one).

9



Finally, it is interesting to observe, both from a theoretical and numer-
ical point of view, that the unfolding behavior of the system can be ob-
tained through a variational approach, considering a Griffith-type minimiza-
tion scheme for the total (elastic plus unfolding) potential energy

G(L, ν) = Φ(L, ν)− fL.

Indeed if we consider the constrained minimization problem

min
ν≥ν̄,L

G(L, ν̄),

where ν̄ is the present value of damage, the damage evolution equations
result as classical Kuhn-Tucker minimization conditions (see e.g. [3]) for the
Lagrangian function L = G(L, ν̄) + µ (ν̄ − ν):

∂LL = L1

c∂Lϕe − f = 0,

∂νL = nQ− g − µ = 0,

ν ≥ ν̄,

µ ≥ 0,

µ(ν − ν̄) = 0⇒ (q − g)(ν − ν̄) = 0.

(27) {KT}

By these conditions we deduce the equilibrium equation

f = ∂LΦe,

the consistency condition

(ntQ− g)(ν̄ − ν) = 0,

assuring that the unfolding can happen only on the thresholds defined in
(25). Moreover, since µ ≥ 0, we obtain the admissibility conditions

g ≤ ntQ⇒ f ≤ f un, L ≤ Lun.

Remark 1. We may observe that since the energy is positive semidefinite
these conditions are also sufficient to attain the global minimum of the total
energy G [3], representing the unique solution due to the convexity of the
energy function.
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Remark 2. It is easy to verify that the conditions (27) correspond to the
classical condition of maximal dissipation adopted in non equilibrium Ther-
modynamics [86]. Indeed, if we consider the incremental variational problem
for (24)

max
g−ntQ≤0

γ = max
g−ntQ≤0

gν̇

we obtaion the Kuhn Tucker condition (g − ntQ)ν̇ = 0.

3.2. Chain elastic and residual stretches

In the spirit of deducing a continuum three dimensional model, and with
the aim of interpreting the experimentally observed macroscopical residual
stretches as an effect of the unfolding, we here introduce the notion of elastic,
plastic and total stretch for the chain.

As discussed above, the contour length of the chain, due to the new avail-
able monomers resulting from crystals unfolding events (see the schematic
representation in Fig.3), changes with the maximum attained elongation (14)

Lc = νL1

c = νntlc. (28) {Lcb}

Based on classical Statistical Mechanics results [71] the natural length of
the chain depends on the present number of unfolded hard crystals through
the relation

Lp = Lp(ν) =
√
n̄b =

√
νn̄tb, (29) {llpp}

giving the natural (zero force) length of the chain once the number of unfolded
Kuhn segments

n̄ = nkn

and their length b is known. Here nk = lc/b is the number of Kuhn segments
inside each unfolded domain and

n̄t =
lc
b
nt = nknt (30) {nnt}

is the total number of Kuhn segments. In particular we denote by

Lo =
√
νon̄tb. (31) {Lo}
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We then define the following stretch measures

λ =
L

Lo
, (total) stretch,

λe =
L

Lp(ν)
, elastic stretch,

λp =
Lp(ν)

Lo
, permanent stretch

(32) {str}

verifying the classical deformation composition (see Fig.3)λ = λeλp. More-
over it is easy to verify that

λ = ν

√
n̄t
νo

λr, λe =
√
νn̄t λr, λp(ν) =

√
ν

νo
. (33) {abc}

We may then introduce the energy density

φe = φe(λ, ν) :=
Φe(λLo, ν)

Lo

that using (17) and (32)1 gives

f = ∂λφe(λ, ν). (34)

To complete the “continuum” extension we have to rephrase the damage
evolution law (21) in terms of the stretch λ. Since according with (32)1 the
maximum attained stretch λmax corresponds to Lmax, using (21), (12) and (31)
we obtain

ν =

√
νo
n̄t

λmax

λun
r

, λ ∈ (λo, λ1). (35) {nunu}

Here

λo =
√
νon̄tλ

un

r , λ1 =

√
n̄t
νo
λun

r (36) {thress}

are the stretches corresponding to damage initiation (see (31)) and damage
saturation (see (5)), respectively.
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4. Three dimensional unfolding networks: macroscopic energy den-
sity

In this section we consider the second scale passage, deducing a three
dimensional non-linear damage macroscopic limit based on the energy mini-
mization results of the single macromolecule obtained in the previous section.
The aim of this model is to predict the dissipative and softening behavior of
continuum macromolecular bodies with unfolding chains.

Let f be the deformation function for a continuous body and let B be
the left Cauchy-Green strain tensor

B = ∇f(∇f)T = λ2
1e1 ⊗ e1 + λ2

2e2 ⊗ e2 + λ2
3e3 ⊗ e3, (37) {CG}

where λi and ei, i = 1, 2, 3, are the principal stretches and the principal unit
vectors, respectively. In the following, as usual for polymeric materials and
many biological materials, we assume incompressibility, so that

detB = λ2
1λ

2
2λ

2
3 = 1.

To obtain the constitutive behavior of materials constituted by unfolding
macromolecules we first need to connect the macroscopic stretches to the
chains elongations. We here deduce this relations based on the classical
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assumption of affine deformations, assuming the chains elongations coincide
with the macroscopic stretches (see e.g. [87] for an analysis of the limits of
this simplifications).

Based on this simple approach, we also show that an analysis of the
variable configuration of the chains due to macromolecule unfolding delivers
a natural way of deducing the presence of permanent stretches observed in
the experimental behavior of biological materials with unfolding chains (see
the schematic representation in Fig.3).

4.1. Isotropic damage energy: 8-chain model

To obtain the macroscopic constitutive law of the macromolecular con-
tinuum body, a general approach would require the analysis of a continuum
distribution of chains as in the full network model (see Wu and Van der
Giessen [84] and [51]). In this case the energy density depends on the orien-
tation and distribution of the chains. The resulting model can be numerically
heavy (see [2] for an efficient numerical approach of the resulting model).

Here we follow the Arruda-Boyce 8-chain approach [1] and deduce an
isotropic damage model. Let thenN be the number of chains per unit volume.
In the case of the well known Arruda Boyce eight chains model, the authors
show that considering a cubic unit chains cell with faces parallel to the stretch
eigenvectors e1, e2, e3 (see (37)), with the N chains distributed along the
eight diagonals connecting the vertexes to the cell center, is energetically
equivalent to consider all N chains aligned in the direction

m =
1√
3

(e1 + e2 + e3)

with all chains characterized by the same stretch

λ =

√
I

3
(38) {princ}

where I = tr B.
The main idea of the 8-chain approach is clarified by the observation that

the first invariant I, according with a simple result by Kearsley [41], is equal
to “three times the square of the stretch ratio of an infinitesimal line element
averaged over all possible orientations”. An important consequence of this
observation is that the 8-chain approximation let us deduce the evolution of
both damage and residual stretch only in an “averaged sense”. As a result, we

14



here obtain an isotropic damage model and an isotropic hardening plasticity
condition with all chains undergoing the same damage and the same residual
stretch.

More realistic results in this perspective requires the use of anisotropic
multiscale approaches such as the three chains model or the full network
approach [51, 2] that will be the subject of our future work.

In particular under this simplifying assumption since all chains undergo
the same elongation, both damage and plastic effects are assumed to be
isotropic. As a result we consider, using (32)3 a spherical plastic deformation
tensor

F p =

√
ν

νo
I,

with a simple form of the multiplicative decomposition

F = F eF p =

√
ν

νo
F e. (39) {FF}

where we assume elastic incompressibility (detF e = 1).
To determine the macroscopic energy we may relate, based on (38) the

chain relative stretch to the first invariant I. Indeed, using (33)1 we have
that

λr =
λ

λc
=

√
I

Ic
(40) {dom}

where, based on (33)1, we introduced the critical value of the stretch λc =

ν
√

n̄t

νo
and of the first invariant

Ic = 3λ2
c = 3ν2 n̄t

νo
, Ic ∈ (Ioc , I

1
c ), (41) {icic}

such that the representative chain in the 8-chain model reaches its (damage
dependent) contour length (λr = 1). This microstructure resulting limit
threshold for I takes the same role of the limit threshold of the classical
Gent model in rubber elasticity [36]. Here Ic can be seen as a fair (and
natural) measure of the average contour length of the chains composing the
network. In (41)

Ioc = 3νon̄t and I1
c = 3

n̄t
νo

15



represent the virgin and damage saturations (contour length) thresholds,
respectively. Moreover, using (35), since by (38) Imax = 3(λmax)2, we obtain

Ic =
Imax

(λun
r )2

, Imax ∈ (Io, I1), (42) {IcIc}

with λun
r the material parameter in (19) and

Io = 3νon̄t(λ
un

r )2 and I1 = 3
n̄t
νo

(λun

r )2

the virgin and damage saturations invariant thresholds, respectively.
Based on this analysis, it is now possible to deduce the macroscopic energy

density starting from the energy of the chain (16). Indeed, based on the
classical additivity assumption, the energy density per unity volume of a
network with N chains per unit volume is given by

ϕ = ϕe + νq (43) {contte}

where
ϕe = NΦe(L, ν) = NLoφe(λ, ν)

and
q = NntQ

is the total dissipation for the full unfolding of the N chains in the cell.
Using (6) and (33) we obtain

ϕe = Nκ
λ2
r

1− λr
νL1

c − c, (44) {fifi}

where c is the usual normalizing constant such that ϕe = 0 in the reference
configuration. As a result, since L1

c = n̄tb, we obtain, using (41)

ϕe =
µo
2

√
Ioc
Ic

1−
√

I
Ic

I − c, (45) {contphi}

where

µo =
2

3
κNb =

Nb

6p
kBT

is the (virgin) infinitesimal shear modulus.
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Under the assumption of elastic incompressibility we obtain the kinematic
constraint

detF =
(
ν

νo

) 3
2

=

(
Ic
Ioc

) 3
4

(46) {kk}

showing the volume growth effect induced by the increase of chain length
(29) due to the new available monomers related to unfolding. As a result the
macroscopic constitutive law that, using (43) and (45), assigns the Cauchy
stress tensor

T = −pI + (detF )−1∂Fϕ(I, Ic)F
T = −pI + ℵ(I, Ic)B (47) {equilb}

where we used (39) and

ℵ(I, Ic) = µo
1− 1

2

√
I
Ic(

1−
√

I
Ic

)2

(
Ioc
Ic

) 5
4

,

where Ic is given in (42), whereas p is the pressure arising from the kinematic
constrain (46).

Also we observe that on the primary loading path I = Imax, using (42) we
have a constant value of ℵ:

ℵ̄(I) = ℵ(Imax, Ic) = µo(λ
un

r )
5
2

2− λun
r

2(1− λun
r )2

(
Ioc
I

)5/4

.

As a result we have that the Cauchy stress is given by

T =



−pI + ℵ(I, Ioc )B if Imax ≤ Io virgin elastic regime,

−pI + ℵ(I, Imax

(λunr )2
)B if Io < Imax < I1, İ

max = 0 fixed damage regime,

−pI + ℵ̄(I) if Io < Imax < I1, İ
max > 0 growing damage regime,

−pI + ℵ(I, I1
c )B if Imax ≥ I1 damage saturation regime.

To verify the thermodynamical consistence of the model we observe that
the Clausius-Duhem inequality requires the positivity of the rate of entropy
density production

γ

T
= − ϕ̇e

T
+

TF−T · Ḟ
T

≥ 0.

17



Notice that in our entropic elasticity model −ϕe

T
is the entropy density func-

tion. Thus we obtain in view of (45)

(−∂Fϕe + TF−T ) · Ḟ + gν̇ ≥ 0

where

g = g(Ie, ν) = µo

√
Ie

Iec(
1−

√
Ie

Iec

)2

Ie
4ν

that, using (??) and (??) can be rewritten in term of I as

g = g(I, ν) = µo

√
I
Ic(

1−
√

I
Ic

)2

νoI

4ν2
.

Using (47) with the constraint F−T · Ḟ = 0, due to the incompressibility
assumption, we obtain the reduced dissipation inequality (CORREGGI)

gν̇ = µo

√
I
Ic

8
(
1−

√
I
Ic

)2 I
İmax

Imax
≥ 0.

Moreover we may observe that g(., Imax) grows we have that the maximum
dissipation is attained when I = Imax when the dissipation rate equals the
dissipation potential

D = g(Imax, Imax)ν̇ =
µθ

4(θ − 1)2
(Imax − 3)

İmax

Imax
.

Finally we observe that since ∂ϕe(Ie,ν)
∂Ie

> 0 and ∂2ϕe(Ie,ν)
∂2Ie

> 0, the elastic
energy is a polyconvex function of the elastic strain F e for all ν ≥ νo [82].

5. Numerical examples and comparisons with experiments

We consider the two simple cases of unitxial extension and biaxial exten-
sion.
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5.0.1. Uniaxial extension

Consider first the simple case of uniaxial extension schematized in Fig.4a
with

B =


λ2 0 0

0
(
Ic
Ioc

) 3
4 λ−1 0

0 0
(
Ic
Ioc

) 3
4 λ−1

 ,
respecting the kinematic constraint (46) and

I = λ2 + 2

(
Ic
Ioc

) 3
4 1

λ
.

By imposing T 22 = T 33 = 0, we determine the pressure

p = ℵ
(
Ic
Ioc

) 3
4 1

λ
,

so that we obtain the stress strain relation

t = T 11(λ) = ℵ

λ2 −
(
Ic
Ioc

) 3
4 1

λ


the corresponding component of the engineering (Piola) stress S = T F ∗

(with F ∗ = detF F−T ) is given by

s = S11(λ) = ℵ

( Ic
Ioc

) 3
4

λ−
(
Ic
Ioc

) 3
8 1

λ2

 .
5.0.2. Biaxial extension

Consider now the case of biaxial extension schematized in Fig.5b Let

F e =

 λe 0 0
0 λe 0
0 0 λ−2

e

 .
Thus we have

F =


λ 0 0
0 λ 0

0 0
(
ν
νo

) 3
2 λ−2
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and

I = 2λ2 +
(
ν

νo

)3 1

λ4
,

where λ =
√

ν
νo
λe.

By imposing T 33 = 0, we determine the pressure

p = ℵ
(
ν

νo

) 5
2 1

λ4
,

so that we obtain the stress strain relation

σ = T 11(λ) = ℵ
(√

νo
ν
λ2 −

(
ν

νo

) 5
2 1

λ4

)

the corresponding component of the engineering (Piola) stress S = TF−T is
given by

s = S11(λ) = ℵ
(√

νo
ν
λ− ν

νo

1

λ2

)
.
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5.0.3. Simple shear

Consider finally the case of simple shear schematized in Fig.6b Let

F e =

 1 ke 0
0 1 0
0 0 1

 ,
where ke is the shear deformation. Thus we have

F =


√

ν
νo

k 0

0
√

ν
νo

0

0 0
√

ν
νo

 .
Thus we have

I = 3
ν

νo
+ k2,

where k =
√

ν
νo
ke.

Thus we obtain the stress strain relation

τ = T 12(k) = ℵk

the corresponding component of the engineering (Piola) stress S = TF−T is
given by

t = S11(λ) = ℵke = ℵ
√
νo
ν
k.
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6. Conclusions
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7. Appendix: List of symbols

L current chain length
f force acting on the chain ends
L1
c totally unfolded contour length

L0
c initial (virgin) unfolded contour length

nt total number of hard domains
no initial v of hard domains
n current number of hard domains
lc contour length of the single hard domain
ν damage (internal) variable
νo initial (virgin) fraction of unfolded domains
ν damage (internal) variable
ν damage (internal) variable
ν damage (internal) variable
ν damage (internal) variable
ν damage (internal) variable
ν damage (internal) variable
ν damage (internal) variable
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[45] W.A. Linke, A. Grützner 2008, Pulling single molecules of titin by AFM-
recent advances and physiological implications, Pflügers Archiv - Eu-
ropean Journal of Physiology, 456, 101–115. (doi:10.1007/s00424-007-
0389-x)

[46] S. Lv, D.M. Dudek, Y. Cao, M.M. Balamurali, J. Gosline, H. Li 2010,
Designed biomaterials to mimic the mechanical properties of muscles,
Nature, 465, 69–73. (doi:10.1038/nature09024)

27



[47] D. E. Makarov 2009, A Theoretical Model for the Mechani-
cal Unfolding of Repeat Proteins, Biophys. J., 96, 2160-2167.
(doi:http://dx.doi.org/10.1016/j.bpj.2008.12.3899)

[48] F. Manca, S. Giordano, P.L. Palla, F. Cleri, and L. Colombo 2013, Phys.
Rev. E, 87,032705. (doi:10.1103/PhysRevE.87.032705)

[49] M. Carrion-Vazquez, A.F. Oberhauser, S.B. Fowler, P.E. Marszalek, S.E.
Broedel, J. Clarke, and J.M. Fernandez 1999, Proc. Nat. Acad. Sci., 96,
36943699 (1999). (doi:10.1073/pnas.96.7.3694)

[50] J.F. Marko, E.D. Siggia 1995, Macromol., 28, 8759–8770.
(doi:10.1021/ma00130a008)

[51] C. Miehe, S. Gktepe, F. Lulei, 2004, J. Mech. Phys. Solids., 52, 2617–
2660.

[52] L. Mirny, E. Shakhnovich 2001, Protein Folding Theory: From Lattice
to All-Atom Models, Annual Review of Biophysics and Biomolecular
Structure, 30, 361–396, (doi:10.1146/annurev.biophys.30.1.361)

[53] A. Miserez, S.S. Wasko, C.F. Carpenter, J.H. Waite 2009, Non-entropic
and reversible long-range deformation of an encapsulating bioelastomer,
Nat. Mater., 8, 910. (doi:10.1038/nmat2547)

[54] N. Nakagawa, M. Peyrard 2006, The inherent structure land-
scape of a protein, Proc. Nat. Acad. Sci., 103, 52795284. (doi:
10.1073/pnas.0600102103)

[55] A. F. Oberhauser, P. R. Marszalek, H. P. Erickson, J. M. Fernan-
dez 1998, The molecular elasticity of the extracellular matrix protein
tenascin, Nature, 393, 181–185. (doi:10.1038/30270)

[56] E. Oroudjev, J. Soares, S. Arcidiacono, J.B. Thompson, S.A. Fos-
sey, and H.G. Hansma 2002, Proc. Nat. Acad. Sci, 99, 6460–6465,
(doi:10.1073/pnas.082526499 )

[57] G. Puglisi, L. Truskinovsky 2002, A mechanism of transformational plas-
ticity, Cont. Mech. Therm., 14, 437–457. (doi:10.1007/s001610200083)

28



[58] G. Puglisi, L. Truskinovsky 2005, Thermodynamics of rate-
independent plasticity, J. Mech Phys. Sol., 53 , 655–679.
(doi:http://dx.doi.org/10.1016/j.jmps.2004.08.004)

[59] Puglisi G., Truskinovsky L. (2013). Cohesion-decohesion asymmetry in
geckos. Phys. Rev. E, 87 (3), art. no. 032714.

[60] F. Maddalena, D. Percivale, G. Puglisi, L. Truskinovsky 2009, Mechanics
of reversible unzipping Continuum Mech. Thermodyn., 21 , 251–268.
(doi:10.1007/s00161-009-0108-2)

[61] G. Puglisi, L. Truskinovsky 2013, Cohesion-decohesion asymmetry in
geckos Phys. Rev. E, 87 , 032714. (doi:10.1103/PhysRevE.87.032714)

[62] Z. Qin and M.J. Buehler 2010, Cooperative deformation of hydrogen
bonds in beta-strands and beta-sheet nanocrystals, Physical Review E.,
82, 061906. (doi:10.1103/PhysRevE.82.061906)

[63] H.J. Qi, C. Ortiz, M.C. Boyce 2006, Mechanics of Biomacromolecular
Networks Containing Folded Domains, Trans. ASME, Jnl. Engineering
Materials and Technology, 128, 509–518.

[64] R. Raj, P.K. Purohit 2011, J. Mech. Phys. Sol., 59, 2044-69.
(doi:http://dx.doi.org/10.1016/j.jmps.2011.07.003)

[65] M. Rief, F. Oesterhelt, B. Heymann, H.E. Gaub 1997, Single Molecule
Force Spectroscopy on Polysaccharides by Atomic Force Microscopy, Sci-
ence, 275, 1295–97. (doi:10.1126/science.275.5304.1295)

[66] M. Rief, J. M. Fernandez, H. E. Gaub 1998, Elastically Coupled Two-
Level Systems as a Model for Biopolymer Extensibility, Physical Review
Letters, 81, 4764. (doi:10.1103/PhysRevLett.81.4764)

[67] M. Rief, M. Gautel, F. Oesterhelt, J. M. Fernandez, H. E. Gaub 1997,
Reversible Unfolding of Individual Titin Immunoglobulin Domains by
AFM, Science, 276, 1109-1112. (doi:10.1126/science.276.5315.1109)

[68] M. Rief, H. Grubmüller 2002, Force Spectroscopy of Single Biomolecules,
Chemphyschem, 3, 255-261. (doi:10.1002/1439-7641)

29



[69] F. Ritort 2006, Single-molecule experiments in biological physics:
methods and applications, J. Phys, Cond. Matt., 18, R531.
(doi:10.1088/0953-8984/18/32/R01)

[70] F. Ritort, C. Bustamante, I. Tinoco 2002, A two-state kinetic model for
the unfolding of single molecules by mechanical force, Proc. Nat. Acad.
Sci., 99, 13544. (doi:10.1073/pnas.172525099 )

[71] M. Rubinstein, R.H. Colby (2003) Polymer Physics. Oxford Uni-
versity Press.

[72] I. Schwaiger, C. Sattler, D.R. Hostetter, M. Rief, 2002. The myosin
coiled-coil is a truly elastic protein structure. Nature Mat., 1, 232–235.

[73] H. Shulhaa, C.W.P. Foob, D.L. Kaplanb, V.V. Tsukruka,
2006, Unfolding the multi-length scale domain struc-
ture of silk fibroin protein, Polymer, 47, 5821–5830.
(doi:http://dx.doi.org/10.1016/j.polymer.2006.06.002)

[74] S.B. Smith, Y. Cui, C. Bustamante 1996, Overstretching B-DNA: the
elastic response of individual double-stranded and single-stranded DNA
molecules, Science, 271, 795 (1996).

[75] D. B. Staple, S.H. Payne, A. L. C. Reddin, H. J. Kreuzer 2008, Model
for Stretching and Unfolding the Giant Multidomain Muscle Protein Us-
ing Single-Molecule Force Spectroscopy, Phys. Rev. Lett., 101, 248301.
(doi:10.1103/PhysRevLett.101.248301)

[76] Y. Termonia 1994, Molecular Modeling of Spider Silk Elasticity, Macro-
molecules, 27, 7378. (doi:10.1021/ma00103a018)

[77] Treloar L. R. G. (1975) The Physics of Rubber Elasticity Oxford
University Press, Oxford and New York.

[78] M. Vendruscolo, E. Paci 2003, Protein folding: bringing theory
and experiment closer together, Curr Opin Struct Biol., 13, 82–87.
(doi:http://dx.doi.org/10.1016/S0959-440X(03)00007-1,)

[79] K. Wang 1996, Titin/connectin and nebulin: giant protein rulers of
muscle structure and function, Adv. Biophys., 33, 123-134.

30



[80] H. Li, W.A. Linke, A.F. Oberhauser, M. Carrion-Vazquez, J.G.
Kerkvliet, H. Lu, P. E. Marszalek, J.M. Fernandez 2002, Reverse en-
gineering of the giant muscle protein titin, Nature, 418, 998-1002.
(doi:10.1038/nature00938)

[81] W.A. Linkea, M. Kulkea, H. Lib, S. Fujita-Beckerc, C. Neagoea, D.J.
Mansteinc, M. Gauteld, J.M. Fernandez 2002, J. Struct. Biol., 137,
194–205. (doi:http://dx.doi.org/10.1006/jsbi.2002.4468)
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